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Abstract. This paper proposes a strategic model of pollution control. A firm, representative
of the productive sector of a country, aims at maximizing its profits by expanding its production.
Assuming that the output of production is proportional to the level of pollutants’ emissions, the
firm increases the level of pollution. The government of the country aims at minimizing the social
costs due to the pollution, and introduces regulatory constraints on the emissions’ level, which
then effectively cap the output of production. Supposing that the firm and the government face
both proportional and fixed costs in order to adopt their policies, we model the previous problem
as a stochastic impulse two-person nonzero-sum game. The state variable of the game is the level
of the output of production which evolves as a general linearly controlled one-dimensional Itô-
diffusion. Following an educated guess, we first construct a pair of candidate equilibrium policies
and of corresponding equilibrium values, and we then provide a set of sufficient conditions under
which they indeed realize an equilibrium. Our results are complemented by a numerical study
when the (uncontrolled) output of production evolves as a geometric Brownian motion, and
the firm’s operating profit and the government’s running cost functions are of power type. An
analysis of the dependency of the equilibrium policies and values on the model parameters yields
interesting new behaviors that we explain as a consequence of the strategic interaction between
the firm and the government.
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1 Introduction

In recent years, the growing importance of global environmental issues, such as the global warm-
ing, pushed countries or institutions to adopt environmental policies aiming at reducing the level
of pollution. Some of these policies are the result of international agreements (such as the Kyoto
Protocol, or the Paris Climate Agreement of 2016); some others are adopted more on a local
scale: it is indeed a news of a few months ago that the authorities of Beijing issued a five-day
warning and ordered heavy industries to slow or halt their production due to increasing smog.1

Environmental problems have attracted the interest of the scientific community as well (see,
e.g, Nordhaus (1994), and Chapter 9 of Perman et al. (2003) for an exhaustive introduction
to pollution control policies). Many papers in the mathematical and economic literature take
the point of view of a social planner to model the problem of reducing emissions of pollutants
arising from the production process of the industrial sector. For example, in Pindyck (2000)
and Pindyck (2002) a social planner aims at finding a time at which the reduction of the rate
of emissions gives rise to the minimal social costs. In Pommeret and Prieur (2013) the optimal
environmental policy to be adopted is the one that maximizes the economy’s instantaneous net
payoff, i.e. the sum of the economic damage of pollution and of the economic benefits from
production. Finally, Goulder and Mathai (2000) and Schwoon and Tol (2006) consider the
planner’s problem of choosing the abatement policy, and research and development investment,
that minimize the costs of achieving a given target of CO2 concentration. All those works tackle
the resulting mathematical problems with techniques from (stochastic) optimal control theory,
and provide policy recommendations.

In this paper we do not take the point of view of a fictitious social planner, but we propose a
strategic model of pollution control. An infinitely-lived profit maximizing firm, representative of
the productive sector of a country, produces a single good, and faces fixed and proportional costs
of capacity expansion. In line with other papers in the environmental economics literature (cf.
Pindyck (2002) and Pommeret and Prieur (2013)), we suppose that the output of production is
proportional to the level of pollutants’ emissions. Those are negatively perceived by the society,
and we assume that the social costs of pollution can be measured by a suitable penalty function.
A government intervenes in order to dam the level of emissions, e.g., by introducing regulatory
constraints on the emissions’ level, which then effectively cap the output of production. We
suppose that the interventions of the government have also some negative impact on the social
welfare (e.g., they might cause an increase in the level of unemployment or foregone taxes), and
we assume that such negative externality can be quantified in terms of instantaneous costs with
fixed and proportional components. The government thus aims at minimizing the total costs of
pollution and of the interventions on it.

Due to the fixed costs of interventions faced by the firm and the government, it is reasonable
to expect that the two agents intervene only at discrete times on the output of production.
Between two consecutive intervention times, the latter is assumed to evolve as a general regular
one-dimensional Itô-diffusion2. We therefore model the previously discussed pollution control

1See, e.g., https://www.theguardian.com/world/2016/dec/17/beijing-smog-pollution-red-alert-declared-in-
china-capital-and-21-other-cities.

2Uncertain capital depreciation or technological uncertainty might justify the stochastic nature of the output
of production (see also Asea and Turnovsky (1998), Eaton (1981), Epaulard and Pommeret (2003) and Wälde
(2011)).
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problem as a stochastic impulse3 nonzero-sum game between the government and the firm.
The policy of each player is a pair consisting of a sequence of times, and a sequence of sizes
of interventions on the output of production, and each player aims at picking a policy that
optimizes her own performance criterion, given the policy adopted by the other player. The two
players thus interact strategically in order to determine an equilibrium level of the output of
production, i.e. of the level of pollutants’ emissions.

Following an educated guess, we first construct a couple of candidate equilibrium policies,
and of associated equilibrium values. In particular, we suppose that the equilibrium policies
adopted by the firm and the government are characterized by four constant trigger values: on
the one hand, whenever the output of production falls below a constant threshold, we conjecture
that it is optimal for the firm to push the output of production to an upper constant level; on
the other hand, whenever the level of emissions reaches an upper threshold, the government
should provide regulatory constraints which let the output of production jump to a constant
lower value. It turns out that, by employing these policies, the two agents keep the output of
production (equivalently, the level of pollutants’ emissions) within an interval whose size is the
result of their strategic interaction.

In order to choose those four trigger values we require that the agents’ performance crite-
ria associated to the previous policies are suitably smooth, as functions of the current output
of production level. Namely, each agent imposes that her own candidate equilibrium value is
continuously differentiable at her own trigger values. We then move on proving a verification
theorem which provides sufficient conditions under which the previous candidate strategies in-
deed form an equilibrium. In particular, we show that if the solution of a suitable system of four
highly nonlinear algebraic equations exists and satisfies a set of appropriate inequalities, then
such a solution will trigger an equilibrium. Our results are finally complemented by a numerical
study in the case of (uncontrolled) output of production given by a geometric Brownian motion.
Also, we discuss the dependency of the trigger values and of the equilibrium impulses’ size on
the model parameters. This comparative statics analysis shows interesting new behaviors that
we explain as a consequence of the strategic interaction between the firm and the government.
As an example, we find, surprisingly, that the higher the fixed costs for the firm, the smaller the
sizes of the impulses applied by both the agents on the production process.

The contribution of this paper is twofold. On the one hand, we propose a general strategic
model that highlights the interplay between the productive sector and the government of a coun-
try for the management of the pollution which inevitably arises from the production process.4.
On the other hand, from a mathematical point of view, ours is one of the first papers dealing
with a two-player nonzero-sum stochastic impulse game. It is worth noticing that a verification
theorem for two-player nonzero-sum stochastic impulse games, in which the uncontrolled process
is a multi-dimensional Itô-diffusion, has been recently proved in Aı̈d et al. (2017). There the
authors give a set of sufficient conditions under which the solutions (in an appropriate sense)

3Stochastic impulse control problems naturally arise in many areas of applications. Among these we refer to
optimal control of exchange and interest rates (Cadenillas and Zapatero (1999), Mitchell et al. (2014), Perera et
al. (2016), among others), portfolio optimization with fixed transaction costs (Korn (1999)), optimal inventory
control (Bensoussan et al. (2010), and Harrison et al. (1983)), rational harvesting of renewable resources (Alvarez
(2004)), and optimal dividend problems (Cadenillas et al. (2006)).

4For other works modeling the pollution control problem as a dynamic game one can refer, among others, to
the example in Section 4 of De Angelis and Ferrari (2016), Long (1992) and van der Ploeg and de Zeeuw (1991).
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of a system of coupled constrained PDE problems (the so-called quasi-variational inequalities,
QVIs5) identify equilibrium values of the game. Then, they consider a one-dimensional sym-
metric game with linear running costs, and obtain equilibrium values and equilibrium policies
by finding the solutions of the related system of QVIs, and by verifying their optimality.

Our methodology is different with respect to that of Aı̈d et al. (2017). Here we obtain candi-
date equilibrium values without relying on solving the system of QVIs that would be associated
to our game. Indeed, our candidate equilibrium values are constructed as the performance cri-
teria that the players obtain by applying a potentially suboptimal policy. This construction,
which employs probabilistic properties of one-dimensional Itô-diffusions, has been already used
in single-agent impulse control problems (see, e.g., Alvarez (2004), Alvarez and Lempa (2008)
and Egami (2008)), and has the advantage of providing candidate equilibrium values which
are automatically continuous functions of the underlying state variable. As a computationally
useful byproduct, in our asymmetric setting we only have to find the four equilibrium trigger
values, and for that we only need four equations. This is in contrast to the eight equations one
would obtain by imposing C0 and C1-regularity of the solutions to the system of QVIs (cf. eqs.
(4.5)-(4.6) in Aı̈d et al. (2017)).

The rest of the paper is organized as follows. In Section 2 we introduce the setting and
formulate the problem. In Section 3.1 we construct candidate equilibrium policies and candidate
equilibrium values, whereas in Section 3.2 we provide a verification theorem. Finally, in Section 4
we provide the numerical solution to an example, and we study the dependency of the equilibrium
with respect to the model parameters. Conclusions are finally drawn in Section 5.

2 Setting and Problem Formulation

We consider a firm (agent 1), and a government (agent 2). The firm produces a single good,
and its profits from production are described by a function π : R+ 7→ R+ which is continuous,
strictly concave and increasing. We assume that the production process leads to emissions, for
example of greenhouse gases such as CO2, that are proportional to the level of the output (see
also Pindyck (2002) and Pommeret and Prieur (2013), among others). These emissions have a
negative externality on the social welfare, and the resulting disutility incurred by the society is
measured by a cost function C : R+ 7→ R+ that depends on the rate of emissions. The function
C is continuous, strictly convex and increasing.

The production process is assumed to be stochastic, since it may depend on uncertain cap-
ital depreciation or other exogenous random factors (see Asea and Turnovsky (1998), Bertola
(1998), Epaulard and Pommeret (2003) and Wälde (2011), among others). In particular, let
W = (Wt)t≥0 be a one-dimensional, standard Brownian motion on a complete probability space
(Ω,F ,F,P), where F := (Ft)t≥0 is a filtration satisfying the usual conditions. The output of
production at time t ≥ 0 is denoted by Xt, and it evolves as a linear Itô-diffusion on (0,∞);
that is

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x > 0, (2.1)

for some Borel-measurable functions µ, σ to be specified. Here, µ is the trend of the production,
while σ is a measure of the fluctuations around this trend.

5The interested reader may refer to the book by Bensoussan and Lions (1984) for the theory of QVIs.
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To account for the dependence of X on its initial level, from now on we shall write Xx where
appropriate, and Px to refer to the probability measure on (Ω,F) such that Px( · ) = P( · |X0 =
x), x ∈ (0,∞). Throughout this paper we will equivalently use the notations E[f(Xx

t )] and
Ex[f(Xt)], f : R → R Borel-measurable and integrable, to refer to expectations under the
measure Px.

For the coefficients of the SDE (2.1) we make the following assumption, which will hold
throughout the paper.

Assumption 2.1. The functions µ : R 7→ R and σ : R 7→ (0,∞) are such that

|µ(x)− µ(y)| ≤ K|x− y|, |σ(x)− σ(y)| ≤ h(|x− y|), x, y ∈ (0,∞), (2.2)

for some K > 0, and h : R+ 7→ R+ strictly increasing such that h(0) = 0 and∫
(0,ε)

du

h2(u)
=∞, for every ε > 0. (2.3)

As a consequence of the above assumption one has that if a solution to (2.1) exists, then
it is pathwise unique by the Yamada-Watanabe’s Theorem (cf. Karatzas and Shreve (1998),
Proposition 5.2.13 and Remark 5.3.3, among others). Moreover, from (2.2) and (2.3) it follows
that for every x ∈ (0,∞) there exists ε > 0 such that∫ x+ε

x−ε

1 + |µ(y)|
σ2(y)

dy < +∞. (2.4)

Local integrability condition (2.4) implies that (2.1) has a weak solution (up to a possible
explosion time) that is unique in the sense of probability law (cf. Karatzas and Shreve (1998),
Section 5.5C). Therefore, (2.1) has a unique strong solution (possibly up to an explosion time)
due to Karatzas and Shreve (1998), Corollary 5.3.23.

Remark 2.2. An example of microfoundation for a stochastic dynamics of the output of pro-
duction is the following. Assume (cf. Bertola (1998)) that at time t ≥ 0 the output of production
Xt is given in terms of the capital stock, Kt, and the output of labor, Lt, by

Xt =
(
Kρ
t L

1−ρ
t

)γ
, 0 < ρ ≤ 1, and γ > 0. (2.5)

Also, suppose that the firm is faced with a constant elasticity demand function

Pt = Xλ−1
t , 0 < γλ < 1, (2.6)

where Pt is the product price at time t ≥ 0, and λ is a measure of the firm’s monopoly power.
Since the input of labor Lt is chosen such that Lt = arg maxL

{
PtXt − wL

}
, for some wage

w > 0, one can obtain from (2.5) and (2.6) that

Lt =

[
γλ

w
(1− ρ)

] 1
1−(1−ρ)γλ

K
ργλ

1−(1−ρ)γλ
t = α̂K

ργλ
1−(1−ρ)γλ
t , (2.7)

where α̂ :=
[γλ
w (1− ρ)

] 1
1−(1−ρ)γλ . Hence, by plugging (2.7) into (2.5) we have

Xt = α̂(1−ρ)γK
γρ

1−(1−ρ)γλ
t . (2.8)
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If now capital stock is stochastic and depreciates at a rate δ > 0, i.e. dKt = −δKtdt+ σKtdWt

for some Brownian motion W (see, e.g., Wälde (2011)), by Itô’s formula one finds that Xt

evolves as

dXt = µ̂Xtdt+ σ̂XtdWt,

for some constants µ̂, σ̂.

Both the agents can influence the process of production: on the one hand, the firm can
increase instantaneously the level of production, for example by increasing the capital stock.
This leads to instantaneous costs which have both a variable and a fixed component, and that
we model through a function g1 : R+ 7→ R+ of the size of interventions on the production. In
particular we take

g1(ξ) := K1 + κ1ξ, ξ ≥ 0.

On the other hand, the government can introduce regulatory constraints that effectively force
the firm to decrease the level of production6, hence of the emissions. A similar situation has
recently happened in Beijing where authorities issued a five-day warning and ordered heavy
industries to slow or halt production in order to reduce the smog in the air. We assume that the
instantaneous costs of a similar policy can be measured by a function g2 : R+ 7→ R+ given by

g2(η) := K2 + κ2η,

with K2, κ2 > 0. Such costs might arise because of an increase in the rate of unemployment or
forgone taxes due to a possible decrease of the production capacity.

Because of the presence of fixed costs, it is reasonable to expect that the firm (resp. the
government) intervenes only at discrete times on the output of production by shifting the current
level of output up (resp. down) of some nonzero amount. More formally, the policy of any agent
is defined as follows.

Definition 2.3. The policies ϕ1 and ϕ2 of the firm and of the government, respectively, are
pairs

ϕ1 := (τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ),

ϕ2 := (τ2,1, . . . , τ2,n, . . . ; η1, . . . , ηn, . . . )

where 0 < τi,1 < τi,2 < . . . , for i = 1, 2, is an increasing sequence of F-stopping times, ξk
are positive Fτ1,k-measurable random variables, and ηk are positive Fτ2,k-measurable random
variables.

Intervening on the output of production, the two agents modify the dynamics of the produc-
tion process which then becomes

Xx,ϕ1,ϕ2
t = x+

t∫
0

µ(Xx,ϕ1,ϕ2
s )ds+

t∫
0

σ(Xx,ϕ1,ϕ2
s )dWs

+α
∑

k:τ1,k≤t
ξk
∏
l≥1

1{τ1,k 6=τ2,l} −
∑

k:τ2,k≤t
ηk, t ≥ 0,

Xx,ϕ1,ϕ2
0− = x > 0,

(2.9)

6Restrictions on the output of production can be achieved by the government in different ways. The interested
reader may refer to the classical book by Pigou (1938).
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where α > 0 measures the effect of an increase in the capital stock on the output of production,
and Xx,ϕ1,ϕ2

t− := limε↓0X
x,ϕ1,ϕ2
t−ε for any t ≥ 0.

In (2.9) ξk represents the lump-sum increase of the output of production made by the firm
at time τ1,k. Moreover, ηk is the impact on production of the regulatory constraints imposed
by the government at time τ2,k. If both the agents are willing to intervene on the output of
production at the same time, it is reasonable to allow the government to have the priority: the
infinite product

∏
l≥1

1{τ1,k 6=τ2,l} in (2.9) takes care of that. In the rest of this paper we write

Xx,ϕ1,ϕ2 to stress the dependence of the output of production on its initial level, and on the
policies ϕ1 and ϕ2 adopted by the two agents.

Remark 2.4. Following the microfoundation of Remark 2.2, suppose that at a certain time τ1,k
the firm increases the capital stock by an amount ξk, while the government does not intervene.
Then we have by (2.8) that

Xτk = α̂(1−ρ)γK
ργ

1−(1−ρ)γλ
τk = α̂(1−ρ)γ

(
Kτk− + ξk

) ργ
1−(1−ρ)γλ

.

Taking γ > 1, for ρ = 1−γλ
γ−γλ ∈ (0, 1) and λ such that γλ ∈ (0, 1), we find

Xτk = Xτk− + α̂(1−ρ)γξk,

that is consistent with (2.9) if we set α := α̂(1−ρ)γ.

The firm’s total expected profits arising from production, net of present costs, are

J1(x, ϕ1, ϕ2) := Ex
[ ∞∫

0

e−r1tπ(Xϕ1,ϕ2
t )dt−

∑
k≥1

e−r1τ1,kg1(ξk)1{τ1,k<∞}

]
, (2.10)

where r1 > 0 is the subjective discount factor of the firm.
Furthermore, the government’s total expected costs arising from the emissions of pollutants

is

J2(x, ϕ1, ϕ2) := Ex
[ ∞∫

0

e−r2tC(βXϕ1,ϕ2
t )dt+

∑
k≥1

e−r2τ2,kg2(ηk)1{τ2,k<∞}

]
, (2.11)

for some r2 > 0 and β > 0. The constant β is the proportional factor between the rate
of emissions and the output of production, while r2 characterizes the time preferences of the
government.

Remark 2.5. We notice that the choice of a constant β > 0 in (2.11), and of a constant α > 0
in (2.9) is just to simplify exposition. Indeed, our results do hold even if we allow for suitable
state dependent β(·) or α(·).

The firm and the government pick their policies within the following admissible class.

Definition 2.6. For any initial level of the production x > 0, we say that the policies ϕ1 :=
(τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ) and ϕ2 := (τ2,1, . . . , τ2,n, . . . ; η1, . . . , ηn, . . . ) are admissible, and
we write (ϕ1, ϕ2) ∈ S(x), if the following hold true:
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(i) There exists a unique strong solution to (2.9) such that Xx,ϕ1,ϕ2
t ≥ 0 P-a.s. for all t ≥ 0.

(ii) The functionals (2.10) and (2.11) are finite; that is,

(a) Ex
[ ∫ ∞

0
e−r1tπ(Xϕ1,ϕ2

t )dt+

∫ ∞
0

e−r2tC(βXϕ1,ϕ2
t )dt

]
<∞,

(b) Ex
[∑
k≥1

e−r1τ1,kg1(ξk)1{τ1,k<∞} +
∑
k≥1

e−r2τ2,kg2(ηk)1{τ2,k<∞}

]
<∞.

(iii) If τi,k = τi,k+1 for some i = 1, 2 and k ≥ 1, then τi,k = τi,k+1 =∞ Px-a.s.

(iv) If there exists lim
k→∞

τi,k =: ζi for some i = 1, 2, then ζi =∞ Px-a.s.

Notice that requirements (iii) and (iv) prevent each agent to exercise twice at the same
time, and to accumulate her interventions. In order to ensure that S(x) 6= ∅, we now make the
following standing assumption.

Assumption 2.7. The total expected profits and costs associated to non-intervention policies
are such that

Ex
[ ∫ ∞

0
e−r1tπ(Xt)dt+

∫ ∞
0

e−r2tC(βXt)dt

]
<∞.

Indeed, under Assumption 2.7, it follows that the policies associated with no interventions, i.e.
τi,k =∞ Px-a.s., for any i = 1, 2 and k ≥ 1, belong to S(x).

Remark 2.8. Notice that in the benchmark cases in which the uncontrolled output of production
is such that dXt = µXtdt + σXtdWt, i.e. Xt = x exp((µ − 1

2σ
2)t + σWt), µ ∈ R, σ > 0, and

π(x) = xa, a ∈ (0, 1), and C(x) = xb, b > 1, one has that Assumption 2.7 is satisfied by taking

r1 >

[
µa− σ2a

2
(1− a)

]+
and r2 >

[
µb+

σ2b

2
(b− 1)

]+
.

Given the policy adopted by the other agent, the firm aims at maximizing its profit, whereas
the government at minimizing the social costs of pollution. Hence, for any x > 0 the two agents
aim at finding (ϕ∗1, ϕ

∗
2) ∈ S(x) such that{

J1(x, ϕ∗1, ϕ∗2) ≥ J1(x, ϕ1, ϕ
∗
2), ∀ϕ1 such that (ϕ1, ϕ

∗
2) ∈ S(x),

J2(x, ϕ∗1, ϕ∗2) ≤ J2(x, ϕ∗1, ϕ2), ∀ϕ2 such that (ϕ∗1, ϕ2) ∈ S(x).
(P)

Definition 2.9. Let x > 0. If (ϕ∗1, ϕ
∗
2) ∈ S(x) satisfying (P) exist, we call them equilibrium

policies, and we define the equilibrium values as

V1(x) := J1(x, ϕ∗1, ϕ∗2) and V2(x) := J2(x, ϕ∗1, ϕ∗2).

3 Solving the Strategic Pollution Control Problem

In this section, we first construct a pair of admissible candidate equilibrium policies. Then,
under suitable requirements, we show that these policies indeed solve problem (P).
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3.1 Construction of a Candidate Solution

We conjecture that a solution (ϕ∗1, ϕ
∗
2) solving (P) exists and is characterized by three intervals

of the real line. These are the so-called joint inaction region, where both agents do not intervene
on the production process, and the action regions of the firm and of the government, where the
two agents independently intervene on the output of production. More precisely, we conjecture
the following.

(i) The firm increases its production instantaneously by exerting an impulse whenever the
output of production is such that Xt ≤ b11, for some b11 > 0 to be found, and shifts the
process upwards to b12, where b12 > b11. We therefore define the candidate firm’s action
region as A1 := (0, b11].

(ii) The government introduces regulatory constraints whenever the level of production, hence
of emissions, is too large, i.e. Xt ≥ b22, for some b22 to be determined, and induces a shift of
the process downwards to some b21, where b22 > b21 > b11. Hence, the candidate government’s
action region is given by A2 := [b22,∞).

In the rest of this paper, we will denote by Ii := R+ \ Ai the inaction region of agent i.
Following the previous conjecture, for any x > 0 given and fixed we set

ϕ̃1 := (τ̃ ϕ̃1,ϕ2
1,1 , . . . , τ̃ ϕ̃1,ϕ2

1,n , . . . ; ξ̃1, . . . , ξ̃n, . . . ) and ϕ̃2 := (τ̃ϕ1,ϕ̃2
2,1 , . . . , τ̃ϕ1,ϕ̃2

2,n , . . . ; η̃1, . . . , η̃n, . . . ),

where we have introduced:

(a) the sequence of the firm’s intervention times {τ̃ ϕ̃1,ϕ2

1,k }k≥1 such that τ̃ ϕ̃1,ϕ2

1,k := inf{t >
τ̃ ϕ̃1,ϕ2

1,k−1 : Xx,ϕ̃1,ϕ2
t ≤ b11} for all ϕ2 such that (ϕ̃1, ϕ2) ∈ S(x), and with τ̃ ϕ̃1,ϕ2

1,0 := 0 P-a.s.;

(b) the sequence of the government’s intervention times {τ̃ϕ1,ϕ̃2

2,k }k≥1 such that τ̃ϕ1,ϕ̃2

2,k := inf{t >
τ̃ϕ1,ϕ̃2

2,k−1 : Xx,ϕ1,ϕ̃2
t ≥ b22} for all ϕ1 such that (ϕ1, ϕ̃2) ∈ S(x), and with τ̃ϕ1,ϕ̃2

2,0 := 0 P-a.s.;

(c) the sequence of interventions of the firm ξ̃k := 1
α(b12 −X

x,ϕ̃1,ϕ2

τ̃
ϕ̃1,ϕ2
1,k −

) for all k ≥ 1 and ϕ2 such

that (ϕ̃1, ϕ2) ∈ S(x);

(d) the sequence of impulses applied by the government η̃k := Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

− b21 for all k ≥ 1 and

ϕ1 such that (ϕ1, ϕ̃2) ∈ S(x).

Notice that by the definition of τ̃ ϕ̃1,ϕ2

1,k and τ̃ϕ1,ϕ̃2

2,k one has that the sequence of impulses ξ̃k and η̃k
are constant-sized (apart the initial impulses, that depend on the initial state x). In particular,
ξ̃k := (b12− b11)/α and η̃k := b22− b21 for all k ≥ 2, and ξ̃1 := (b12− x∧ b11)/α and η̃1 := x∨ b22− b21.

We now show that the policies (ϕ̃1, ϕ̃2) previously defined are in fact admissible.

Lemma 3.1. Recall Definition (2.6). Then for any x > 0 the policies (ϕ̃1, ϕ̃2) ∈ S(x).

Proof. Let x > 0 be given and fixed. Existence of a unique strong solution to (2.9) can be
obtained by arguing as in Lemma 2.3 of Aı̈d et al. (2017). Also, Xx,ϕ̃1,ϕ̃2

t ∈ [b11, b
2
2] ⊂ [0,∞)

P-a.s. for all t > 0. Hence, Condition (i) of Definition 2.6 is satisfied.
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The fact that Xx,ϕ̃1,ϕ̃2
t ∈ [b11, b

2
2] P-a.s. for all t > 0 and the continuity of π and C in particular

imply that (ii)− (a) of Definition 2.6 is fulfilled. As for (ii)− (b) note that ξ̃k ≤ b12/α Px-a.s. for
all k ∈ N, and that η̃k ≤ max(b22 − b21, x− b21) Px-a.s. for all k ∈ N. Hence there exists a positive
constant Θ (possibly depending on x) such that g1(ξ̃k) + g2(η̃k) ≤ Θ Px-a.s. for all k ∈ N. In
order to prove that (ii) − (b) of Definition 2.6 holds true, it thus suffices to show that for any
i = 1, 2 one has

Ex
[∑
k≥1

e−riτ̃
ϕ̃1,ϕ̃2
i,k

]
<∞.

Without loss of generality we consider the case i = 1, since the treatment of the case i = 2 is

analogous. Defining τ̃ := inf{t > 0 : X
b12,ϕ̃1,ϕ̃2

t ≤ b11}, and exploiting the time-homogeneity of
the production process X and the independence of the Brownian increments, we can write for
any k ≥ 1

Ex
[
e−r1τ̃

ϕ̃1,ϕ̃2
1,k

]
= Ex

[
e−r1τ̃

ϕ̃1,ϕ̃2
1,k−1

]
E
[
e−r1τ̃

]
.

By iterating the previous argument one finds Ex
[
e−r1τ̃

ϕ̃1,ϕ̃2
1,k

]
= Ex

[
e−r1τ̃

ϕ̃1,ϕ̃2
1,1

](
E
[
e−r1τ̃

])k−1
.

Then summing over k on both sides of the previous equation and applying Fubini-Tonelli’s
theorem, we obtain

Ex
[∑
k≥1

e−r1τ̃
ϕ̃1,ϕ̃2
1,k

]
= Ex

[
e−r1τ̃

ϕ̃1,ϕ̃2
1,1

]∑
k≥0

(
E
[
e−r1τ̃

])k
,

and the series on the right-hand-side above converges as E[e−r1τ̃ ] < 1.
Finally, because b11 < b22 by assumption, and b12, b

2
1 ∈ (b11, b

2
2), condition (iii) and (iv) of

Definition 2.6 are satisfied.

The expected payoffs associated to the admissible policies (ϕ̃1, ϕ̃2) are defined as

v1(x) := J1(x, ϕ̃1, ϕ̃2) and v2(x) := J2(x, ϕ̃1, ϕ̃2), x > 0.

Moreover, thanks to Assumption 2.7, the performance criteria associated with no interventions
are finite and given by

G1(x) := Ex
[ ∫ ∞

0
e−r1sπ(Xs)ds

]
, and G2(x) := Ex

[ ∫ ∞
0

e−r2sC(βXs)ds

]
. (3.1)

For frequent future use, we define the infinitesimal generator LX of the uncontrolled diffusion
Xx by (

LXu
)
(x) :=

1

2
σ2(x)u′′(x) + µ(x)u′(x), x > 0,

for any u ∈ C2((0,∞)). Then, for fixed r > 0, under Assumption 2.1 there always exist two
linearly independent, strictly positive solutions of the ordinary differential equation LXu = ru
satisfying a set of boundary conditions based on the boundary behaviour of Xx (see, e.g., pp.
18–19 of Borodin and Salminen (2002)). These functions span the set of solutions of LXu = ru,
and are uniquely defined up to multiplication if one of them is required to be strictly increasing
and the other one to be strictly decreasing. We denote the strictly increasing solution by ψr and
the strictly decreasing one by φr. From now on we set ψi := ψri and φi := φri for i = 1, 2.
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Remark 3.2. The functions G1 and G2 are the expected cumulative present value of the flows
π(Xx

t ) and C(βXx
t ), respectively. It is well known that Gi, i = 1, 2, can be represented in terms

of the fundamental solutions ψi and φi, i = 1, 2. We refer the reader to equation (3.3) in Alvarez
(2004), among others.

For any i = 1, 2 we introduce the strictly decreasing and positive function Fi such that
Fi(x) := φi(x)/ψi(x). Also, for given bij , i, j = 1, 2, such that 0 < b11 < b12 < b22 and b11 < b21 < b22,
we set

Ai(x) :=
ψi(x)

ψi(b11)

[
Fi(b

2
2)− Fi(x)

Fi(b22)− Fi(b11)

]
, Bi(x) :=

ψi(x)

ψi(b22)

[
Fi(x)− Fi(b11)
Fi(b22)− Fi(b11)

]
i = 1, 2. (3.2)

The next result provides a representation of vi(x) = Ji(x, ϕ̃1, ϕ̃2), i = 1, 2.

Proposition 3.3. Let x > 0 and recall (3.2). For given bij , i, j = 1, 2, such that 0 < b11 <

b12 < b22 and b11 < b21 < b22, the performance criteria v1(x) and v2(x) associated to the policies
(ϕ̃1, ϕ̃2) ∈ S(x) can be represented as

v1(x) =



w1(b
1
2)−K1 − κ1

α (b12 − x), x ≤ b11,[
w1(b

1
2)−K1 − κ1

α (b12 − b11)−G1(b
1
1)
]
A1(x)

+
[
w1(b

2
1)−G1(b

2
2)
]
B1(x) +G1(x), x ∈ (b11, b

2
2),

w1(b
2
1), x ≥ b22,

(3.3)

and

v2(x) =



w2(b
1
2), x ≤ b11[

w2(b
2
1) +K2 + κ2(b

2
2 − b21)−G2(b

2
2)
]
B2(x)

+
[
w2(b

1
2)−G2(b

1
1)
]
A2(x) +G2(x), x ∈ (b11, b

2
2),

w2(b
2
1) +K2 + κ2(x− b21), x ≥ b22,

(3.4)

where

w1(b
1
2) :=

[
1−A1(b

1
2)−

B1(b
1
2)A1(b

2
1)

1−B1(b21)

]−1[G1(b
2
1)B1(b

1
2)

1−B1(b21)
+G1(b

1
2)

−
(
K1 + κ1(b

1
2 − b11) +G1(b

1
1)

)(
A1(b

2
1)B1(b

1
2)

1−B1(b21)
+A1(b

1
2)

)
−G1(b

2
2)

(
B1(b

2
1)B1(b

1
2)

1−B1(b21)
+B1(b

1
2)

)]
,

w1(b
2
1) :=

[
1−B1(b

2
1)
]−1[(

w1(b
1
2)−K1 − κ1(b12 − b11)−G1(b

1
1)
)
A1(b

2
1)

−G1(b
2
2)B(b21) +G1(b

2
1)
]
,
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and

w2(b
1
2) :=

[(
1−A2(b

1
2)
)(

1−B2(b
2
1)
)

B2(b12)
−A2(b

2
1)

]−1
×[

G2(b
1
2)
(
1−B2(b

2
1)
)

B2(b12)
+G2(b

2
1) +K2 + κ2(b

2
2 − b21)−G2(b

2
2)

−G2(b
1
1)

(
A2(b

1
2)

1−B2(b
2
1)

B2(b12)
+A2(b

2
1)

)]
,

w2(b
2
1) :=

[
1−B2(b

2
1)
]−1[(

K2 + κ2(b
2
2 − b21)−G2(b

2
2)
)
B2(b

2
1)

+
(
w2(b

1
2)−G2(b

1
1)
)
A2(b

2
1) +G2(b

2
1)
]
,

Proof. We consider only the case i = 1 since the arguments are symmetric for i = 2. Let x > 0
be given and fixed, and define τ1 := inf{t ≥ 0 : Xx

t ≤ b11} and τ2 := inf{t ≥ 0 : Xx
t ≥ b22}.

According to the policies (ϕ̃1, ϕ̃2), the stopping time τ1 ∧ τ2 is the first time at which either the
firm or the government intervenes. Then, noticing that X is uncontrolled up to time τ1∧ τ2, the
payoff of the firm associated to (ϕ̃1, ϕ̃2) satisfies the functional relation

v1(x) = Ex
[ τ1∧τ2∫

0

e−r1tπ(Xt)dt+ e−r1τ11{τ1<τ2}

(
v1(b

1
2)−K1 −

κ1
α

(b12 −X ϕ̃1,ϕ̃2
τ1 )

)
+ e−r1τ21{τ1>τ2}v1(b

2
1)

]
.

(3.5)

Taking x ∈ (b11, b
2
2) = I1 ∩ I2 in (3.5), defining wi as the restriction of vi on I1 ∩ I2, i.e.

wi := vi|I1∩I2 , noticing that b12 and b21 belong to I1 ∩ I2 and recalling (3.1), by the strong
Markov property we can write

w1(x) =
[
w1(b

1
2)−K1 −

κ1
α

(b12 − b11)−G1(b
1
1)
]
Ex[e−r1τ11{τ1<τ2}]

+
[
w1(b

2
1)−G1(b

2
2)
]
Ex[e−r1τ21{τ1>τ2}] +G1(x).

By using now the formulas for the Laplace transforms of hitting times of a linear diffusion (see,
e.g., Dayanik and Karatzas (2003), eq. (4.3)), we find (cf. (3.2))

Ex[e−r1τ11{τ1<τ2}] = A1(x), Ex[e−r1τ21{τ1>τ2}] = B1(x),

so that

w1(x) =
[
w1(b

1
2)−K1 −

κ1
α

(b12 − b11)−G1(b
1
1)
]
A1(x) +

[
w1(b

2
1)−G1(b

2
2)
]
B1(x) +G1(x),

for all x ∈ (b11, b
2
2).
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Taking x ≤ b11 in (3.5) we obtain v1(x) = w1(b
1
2)−K1 − κ1

α (b12 − x), while picking x ≥ b22 we
have v1(x) = w1(b

2
1). Therefore we can write

v1(x) =



w1(b
1
2)−K1 − κ1

α (b12 − x), x ≤ b11,[
w1(b

1
2)−K1 − κ1

α (b12 − b11)−G1(b
1
1)
]
A1(x)

+
[
w1(b

2
1)−G1(b

2
2)
]
B1(x) +G1(x), x ∈ (b11, b

2
2),

w1(b
2
1), x ≥ b22.

(3.6)

Recalling again that b12, b
2
1 ∈ (b11, b

2
2) by construction, and taking first x = b12 and then x = b21

in (3.6), we obtain a linear system of two equations for the two unknowns w1(b
1
2) and w1(b

2
1).

Once solved, this system yields

w1(b
1
2) =

[
1−A1(b

1
2)−

B1(b
1
2)A1(b

2
1)

1−B1(b21)

]−1[G1(b
2
1)B1(b

1
2)

1−B1(b21)
+G1(b

1
2)

−
(
K1 + κ1(b

1
2 − b11) +G1(b

1
1)

)(
A1(b

2
1)B1(b

1
2)

1−B1(b21)
+A1(b

1
2)

)
−G1(b

2
2)

(
B1(b

2
1)B1(b

1
2)

1−B1(b21)
+B1(b

1
2)

)]
,

and

w1(b
2
1) =

[
1−B1(b

2
1)
]−1[(

w1(b
1
2)−K1 − κ1(b12 − b11)−G1(b

1
1)
)
A1(b

2
1)

−G1(b
2
2)B(b21) +G1(b

2
1)
]
.

The proof is then completed.

It is easy to see from (3.3) and (3.4) that vi, i = 1, 2, is by construction a continuous function
on (0,∞). In order to obtain the four boundaries bij , i, j = 1, 2, we first assume that each agent

picks her own action boundary bii, i = 1, 2, such that vi is also continuously differentiable there.
This gives

v′1(b
1
1 +) =

κ1
α
, (3.7)

v′2(b
2
2−) = κ2, (3.8)

where we have set v′i(· ± ) := limε↓0 v
′
i( · ± ε).

The two equations (3.7) and (3.8) may be interpreted as the so-called smooth-fit equations,
well known optimality conditions in the literature on singular/impulse control and optimal
stopping (see, e.g., Fleming and Soner (2005) and Peskir and Shiryaev (2006)). Furthermore,
we assume that at each intervention the firm and the government shift the process X to the
points that give rise to the maximal net profits and minimal total costs, respectively. This means
that b12, b

2
1 ∈ (b11, b

2
2) are selected such that

b12 = arg supy≥b11

{
v1(y)− κ1

α
(y − x)−K1

}
, x ≤ b11,
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and

b21 = arg infy≤b22

{
v2(y) + κ2(x− y) +K1

}
, x ≥ b22.

Consequently,

v′1(b
1
2) =

κ1
α
, (3.9)

v′2(b
2
1) = κ2. (3.10)

The four equations (3.7)-(3.10) can be used in order to obtain the four unknowns b11, b
1
2, b

2
1, b

2
2,

whenever a solution to such a highly nonlinear system exists.

3.2 The Verification Theorem

Here we prove a verification theorem providing a set of sufficient conditions under which the
solution to (3.7)-(3.10) (if it exists) characterizes an equilibrium; that is, (ϕ̃1, ϕ̃2) = (ϕ∗1, ϕ

∗
2),

and v1 ≡ V1, v2 ≡ V2 (cf. Definition 2.9). For its proof the following assumption is needed.

Assumption 3.4.

(i) The function θ1 : R+ 7→ R such that θ1(x) := π(x) + κ1
α (µ(x) − r1x) attains a global

maximum at a point x̂1 > 0;

(ii) The function θ2 : R+ 7→ R such that θ2(x) := C(βx) + κ2(µ(x) − r2x) attains a global
minimum at a point x̂2 > 0.

Remark 3.5. It is worth noticing that Assumption 3.4 is verified by the benchmark cases µ(x) =

µx, µ ∈ R, π(x) = xa, a ∈ (0, 1), and C(x) = xb, b > 1, with x̂1 =
[
κ1
aα(r1 − µ)

] 1
a−1 , x̂2 =[

κ2
bβb

(r2 − µ)
] 1
b−1 (whenever r1 ∧ r2 > µ).

Theorem 3.6 (Verification Theorem). Under Assumption 3.4, let bij, i, j = 1, 2, be a solution

of (3.7)-(3.10) such that 0 < b11 < b12 < b22 and b11 < b21 < b22, recall v1, v2 as in (3.3) and (3.4),
and suppose that

v′1(x) ≥ κ1
α
, for all x ∈ (b11, b

1
2], (3.11)

v′1(x) <
κ1
α
, for all x ∈ (b12, b

2
2], (3.12)

v′2(x) < κ2, for all x ∈ (b11, b
2
1), (3.13)

v′2(x) ≥ κ2, for all x ∈ [b21, b
2
2), (3.14)

and

b11 ≤ x̂1, (3.15)

π(b11) +
c1
α
µ(b11)− r1v1(b11) ≤ 0, (3.16)

b22 ≥ x̂2, (3.17)

C(βb22) + κ2µ(b22)− r2v2(b22) ≥ 0. (3.18)
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Then, for x > 0, the policies (ϕ̃1, ϕ̃2) ∈ S(x) such that{
τ̃ ϕ̃1,ϕ̃2

i,k = inf{t > τ̃i,k−1 : X ϕ̃1,ϕ̃2
t /∈ Ii}, k ≥ 1, Px − a.s.,

τ ϕ̃1,ϕ̃2
i,0 = 0, Px-a.s.,

(3.19)

for i = 1, 2, and

ξ̃k =
1

α

(
b12 −X

ϕ̃1,ϕ̃2

τ̃
ϕ̃1,ϕ̃2
1,k −

)
, η̃k = X ϕ̃1,ϕ̃2

τ̃
ϕ̃1,ϕ̃2
2,k −

− b21, k ≥ 1, Px-a.s., (3.20)

form an equilibrium, and v1 and v2 are the corresponding equilibrium values; that is,

v1 = V1, v2 = V2 on (0,∞).

Proof. The proof is organized in two steps.

Step 1. Here we discuss the regularity properties of the function vi, i = 1, 2, constructed in
Proposition 3.3. Note that by (3.3) and (3.4) one can directly check that vi ∈ C((0,∞)) for i =
1, 2. Moreover, by (3.7) and (3.8) one has v1 ∈ C1((0, b22)), v2 ∈ C1((b11,∞)) and it can be checked
by direct calculations that v′′1 ∈ L∞loc((0, b22)) and v′′2 ∈ L∞loc((b11,∞)). Also, for any x ∈ (b11, b

2
2) we

have from (3.3) and (3.4) that
(
LXv1− r1v1

)
(x) +π(x) = 0 and

(
LXv2− r2v2

)
(x) +C(βx) = 0.

Because x̂1 is a global maximum of θ1 (cf. Assumption 3.4), and b11 ≤ x̂1 by assumption, we
obtain from (3.3) that for any x < b11 one has(

LXv1 − r1v1
)
(x) + π(x) = θ1(x)− r1

[
v1(b

1
2)−K1 −

κ1
α
b12
]

≤ θ1(b11)− r1
[
v1(b

1
2)−K1 −

κ1
α
b12
]

= π(b11) +
κ1
α
µ(b11)− r1v1(b11) ≤ 0,

(3.21)

where we have used that v1(b
1
2) = v1(b

1
1) +K1 + κ1

α (b12 − b11), (3.15) and (3.16).
Similarly, one can check that

(
LXv2 − r2v2

)
(x) + C(βx) ≥ 0 for all x > b22 due to (3.17),

(3.18), and the fact that x̂2 is a global minimum point for θ2 (cf. Assumption 3.4).

Step 2. Given x > 0 we now prove that (ϕ̃1, ϕ̃2) ∈ S(x) are equilibrium policies; that is,

v1(x) ≥ J1(x, ϕ1, ϕ̃2), ∀ϕ1 s.t. (ϕ1, ϕ̃2) ∈ S(x),

v2(x) ≤ J2(x, ϕ̃1, ϕ2), ∀ϕ2 s.t. (ϕ̃1, ϕ2) ∈ S(x),

with equalities when we pick ϕ1 = ϕ̃1 and ϕ2 = ϕ̃2. Without loss of generality we consider
i = 1, since the arguments for i = 2 are analogous.

Let ϕ1 = (τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ) be such that (ϕ1, ϕ̃2) ∈ S(x), and for N > 0

set τR,N := τR ∧ N, where τR := inf{s > 0 : Xx,ϕ1,ϕ̃2
s /∈ (−R,R)}, with the usual convention

inf ∅ = ∞. Since Xx,ϕ1,ϕ̃2
t ≤ b22 P-a.s. for all t > 0, by the regularity of v1 discussed in Step 1

we can apply the generalized Itô’s formula for semimartingales (see, e.g., Øksendal and Sulem
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(2006), Theorems 2.1 and 6.2), so to obtain

v1(x) = Ex

[
−

τR,N∫
0

e−r1t(LXv1 − r1v1)(Xϕ1,ϕ̃2
t )dt+ e−r1τR,N v1(X

ϕ1,ϕ̃2
τR,N

)

−
∑

k: τ1,k<τR,N

e−r1τ1,k
(
v1(X

ϕ1,ϕ̃2
τ1,k

)− v1(Xϕ1,ϕ̃2
τ1,k− )

)
−

∑
k: τ̃

ϕ1,ϕ̃2
2,k <τR,N

e−r1τ̃
ϕ1,ϕ̃2
2,k

(
v1(X

ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

)− v1(Xϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

)
)]
. (3.22)

By using again that Xx,ϕ1,ϕ̃2
t ≤ b22 for all t > 0 P-a.s., and since (LXv1 − r1v1)(x) ≤ −π(x) for

a.e. x < b22 due to (3.21), we obtain from (3.22) that

v1(x) ≥ Ex

[ τR,N∫
0

e−r1tπ(Xϕ1,ϕ̃2
t )dt −

∑
k: τ1,k<τR,N

e−r1τ1,k
(
v1(X

ϕ1,ϕ̃2
τ1,k

)− v1(Xϕ1,ϕ̃2
τ1,k− )

)
−

∑
k: τ̃

ϕ1,ϕ̃2
2,k <τR,N

e−r1τ̃
ϕ1,ϕ̃2
2,k

(
v1(X

ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

)− v1(Xϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

)
)

+ e−r1τR,N v1(X
ϕ1,ϕ̃2
τR,N

)

]
.

(3.23)

In order to take care of the two sums in the expectation above, we define the nonlocal
operator (

M1v1
)
(x) := sup

ξ≥0

{
v1(x+ αξ)− g1(ξ)

}
,

and we notice that ξ̃k of (3.20) is such that ξ̃k = arg supξ≥0
{
v1(x+ αξ)− g1(ξ)

}
, for all k ∈ N,

due to (3.11) and (3.12). Hence

(
M1v1

)
(x) =

v1(b
1
2)−K1 − κ1

α (b12 − x), if x ≤ b12,

v1(x)−K1, if x > b12.
(3.24)

One can easily see from (3.3) and (3.24) that v1(x) ≥
(
M1v1

)
(x) for all x ∈ (0, b11]∪ (b12,∞),

with equality for x ≤ b11. Then, noticing that x 7→ v1(x) −
(
M1v1

)
(x) is increasing for any

x ∈ (b11, b
1
2] by (3.11) and (3.24), we conclude that v1(x) ≥

(
M1v1

)
(x) for all x > 0. Therefore

v1(X
x,ϕ1,ϕ̃2
τ1,k− ) ≥

(
M1v1

)
(Xx,ϕ1,ϕ̃2

τ1,k− ) ≥ v1
(
Xx,ϕ1,ϕ̃2
τ1,k

)
− g1(ξk), (3.25)

for any Fτ1,k -measurable ξk ≥ 0. Moreover, because Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

≥ b22 P-a.s. and Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

= b21

P-a.s., we find by (3.3) that

v1(X
x,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

) = v1(X
x,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

), (3.26)
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upon noticing that v1(b
2
1) = w1(b

2
1) since b21 ∈ (b11, b

2
2). It thus follows from (3.25) and (3.26)

that

v1(x) ≥ Ex

[ τR,N∫
0

e−r1tπ(Xx,ϕ1,ϕ̃2
t )dt−

∑
k:τ1,k<τR,N

e−r1τ1,kg1(ξk) + e−r1τR,N v1(X
x,ϕ1,ϕ̃2
τR,N

)

]
. (3.27)

But now, since Xx,ϕ1,ϕ̃2
t ∈ [0, b22] P-a.s. by admissibility of (ϕ1, ϕ̃2) and r1 > 0, we can use

the dominated convergence theorem for the last term in (3.27) and the monotone convergence
theorem for the integral and the series in (3.27), to let first R→∞ and then N →∞ and find

v1(x) ≥ J1(x, ϕ1, ϕ̃2).

Finally, by construction we also have v1(x) = J1(x, ϕ̃1, ϕ̃2).
Because arguments analogous to the ones employed for v1 yield v2(x) ≤ J2(x, ϕ̃1, ϕ2) for

all ϕ2 such that (ϕ̃1, ϕ2) ∈ S(x), and v2(x) = J2(x, ϕ̃1, ϕ̃2), we conclude that (ϕ̃1, ϕ̃2) are
equilibrium policies and (v1, v2) are the corresponding equilibrium values.

Remark 3.7. As a byproduct of Theorem 3.6 we have that, if (3.11)-(3.18) are fulfilled, then
v1 and v2 satisfy in the a.e. sense the system of QVIs

max{
(
Lv1 − r1v1

)
(x) + π(x),M1v1(x)− v1(x)} = 0, for a.e. x < b22,

min{
(
Lv2 − r2v2

)
(x) + C(βx),M2v2(x)− v2(x)} = 0, for a.e. x > b11,

v1(x) ≥M1v1(x), ∀x > 0,

v2(x) ≤M2v2(x), ∀x > 0,

v1(x) = v1
(
b21
)
, ∀x ≥ b22,

v2(x) = v2
(
b12
)
, ∀x ≤ b11.

(3.28)

A system analogous to (3.28) has been introduced in the context of nonzero-sum stochastic dif-
ferential games with impulse controls in Aı̈d et al. (2017).

4 A Numerical Example and Comparative Statics

Verification Theorem 3.6 involves the highly nonlinear system of four algebraic equations (3.7)–
(3.10) for the four boundaries. We have solved this system numerically in a specific setting by
using MATLAB. In particular, for the numerical example we have assumed that the uncontrolled
output of production evolves as a geometric Brownian motion, i.e. µ(x) = µx and σ(x) = σx for
some µ ∈ R and σ > 0. Moreover, we have taken an operating profit function of Cobb-Douglas
type π(x) = xa, a ∈ (0, 1), and a social disutility function of the form C(x) = xb, b > 1.

Among the possible parameters’ values satisfying Assumption 2.7, we pick for example those
provided in Table 1, and we notice that for such a choice the performance criteria associated
with no interventions (cf. (3.1)) are given by

G1(x) =
1

r1 − µ
2 + σ2

8

=
1000

95

√
x, and G2(x) =

1

r2 − 2µ− σ2
x2 = 50x2. (4.1)
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µ σ r1 r2 α β K1 κ1 K2 κ2 a b

0.02 0.20 0.10 0.10 1 1 0.5 0.8 0.6 0.3 0.5 2

Table 1: Parameters’ values for the numerical example.

Also, by an application of the Newton method in MATLAB, we find that the numerical
solution to (3.7)-(3.10) is given by

b11 = 0.1558984470, b12 = 0.3825673799,

b21 = 0.2359455020, b22 = 0.5746537199.

Moreover (cf. (3.15)-(3.18)),

x̂1 =
[
2κ1(r1 − µ)

]−2
= 61.03515625 > b11, π(b11) +

c1
α
µ(b11)− r1v1(b11) = −0.0727643376 ≤ 0,

x̂2 =
κ2(r2 − µ)

2
= 0.012 < b22, C(βb22) + κ2µ(b22)− r2v2(b22) = 0.1390988361 ≥ 0.

The plots of the equilibrium values and of their derivatives in the joint inaction region (b11, b
2
2)

are provided in Figures 1(a), 1(b), and 2(a) and 2(b), respectively. In Figures 1(c) and 1(d) one
observes the drawings of the value functions that the firm and the government would have in
a non-strategic setting (i.e. if they optimize their own performance criterion in absence of the
other agent).

Comparing Figures 1(a) and 1(b) with Figures 1(c) and 1(d), it is worth noticing that, as a
consequence of the strategic interaction between the two agents, the equilibrium values V1 and
V2 loose their monotonicity with respect to the state variable. From Figures 2(a) and 2(b) one
can also check that conditions (3.11)-(3.14) are satisfied.

We now discuss the dependency of our equilibrium policies with respect to the model param-
eters. The following plots are obtained with MATLAB through an application of the Newton
method initialized at the parameters’ values specified in Table 1 above.

Figure 3(a) displays the behavior of the optimal action boundaries b11 and b22 when the
volatility σ varies in the range [0.19, 0.22]. Furthermore, Figure 3(b) shows how the optimal size
of interventions, b12 − b11 and b22 − b21, changes with σ. One can observe that the optimal action
threshold of the government increases with σ, whereas the firm’s action threshold decreases. This
behavior is well-known in the real options literature (see the seminal paper by McDonald and
Siegel (1986)): when uncertainty increases, the agent is more reluctant to act and her inaction
region becomes larger. Furthermore, Figure 3(b) reveals that the strength of interventions of the
firm and of the government increases with increasing volatility. The higher are the fluctuations
of the production/pollution process, the more the agents are afraid of a quicker need of a new
costly intervention. Hence both the agents increase the size of their impulses in order to postpone
their next action.

We now take σ = 0.2, and we let µ vary in the interval [0.01, 0.025]. Figure 4(a) leads us
to the following conclusion: as the drift µ increases, the firm’s action region becomes smaller.
That is, an higher trend of the output of production decreases the firm’s willingness to intervene.
We can also observe from Figure 4(a) that the government’s threshold decreases with µ: since
the output of production, and therefore the rate of emissions, increases faster, the government
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(a) Equilibrium value V1 in (b11, b
2
2). (b) Equilibrium value V2 in (b11, b

2
2).

(c) Value function of the firm in the inaction region for
a non-strategic model.

(d) Value function of the government in the inaction re-
gion for a non-strategic model.

Figure 1: Value functions in the strategic and non-strategic setting.
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(a) Derivative of V1. (b) Derivative of V2.

Figure 2: Derivatives of the equilibrium values.

tries to dam the increasing social cost by introducing more severe regulatory constraints. Figure
4(b) shows that the higher is the trend of the output of production, the lower is the size of
interventions b12 − b11, i.e. the lower the willingness of the firm to pay for additional capacity.
Also, one can observe that the government’s size of interventions decrease with increasing µ. We
believe that this effect is due to the strategic interactions between the two agents, and it might
be justified as follows. The higher is µ, the smaller is the length of the joint inaction region (see
Figure 4(a)). Hence, the government reduces the size of interventions when µ increases so to
likely reduce the firm’s incentive to intervene.

Finally, we analyze the dependency of the action thresholds and of the equilibrium impulses’
size with respect to the cost components K1 and κ1 (see Figures 5 and 6). Similar behaviors are
also observed with respect to K2 and κ2. Higher fixed costs lead to decreasing action boundaries,
see Figure 5(a), and therefore to a larger inaction region of the firm. As a consequence, the
government exploits the firm’s reluctance to invest when fixed costs are larger and confines the
production process below a lower level. A particular comment is deserved by Figure 5(b) where
we observe that the sizes of interventions of both agents are decreasing with respect to K1. This
behavior might be explained once more as an effect of the strategic interaction between the two
agents. When K1 increases, the firm reduces the size of its interventions in order to likely avoid
a possible further action by the government, and, in turn, a further costly capacity expansion.
As a result of the reduction of the joint inaction region (see Figure 5(a)), the government also
diminishes its size of interventions so to try to prevent the firm to undertake a further capacity
expansion. A similar rationale might also explain the behavior of the equilibrium thresholds and
equilibrium impulses’ sizes with respect to the variable costs κ1.
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(a) The optimal action boundaries b11 (black), b12 (blue),
b21 (red), b22 (green).

(b) Optimal size of interventions: firm (blue) and gov-
ernment (black).

Figure 3: Dependency of the equilibrium on the volatility σ.

(a) The optimal action boundaries b11 (black), b12 (blue),
b21 (red), b22 (green).

(b) Optimal size of interventions: firm (blue) and gov-
ernment (black).

Figure 4: Dependency of the equilibrium on the drift µ.
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(a) The optimal action boundaries b11 (black), b12 (blue),
b21 (red), b22 (green).

(b) Optimal size of interventions: firm (blue) and gov-
ernment (black).

Figure 5: Dependency of the equilibrium on the firm’s fixed cost K1.

(a) The optimal action boundaries b11 (black), b12 (blue),
b21 (red), b22 (green).

(b) Optimal size of interventions: firm (blue) and gov-
ernment (black).

Figure 6: Dependency of the equilibrium on the firm’s variable cost κ1.
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5 Conclusions

In this paper a government and a firm, representative of the productive sector of a country,
are the two players of a stochastic nonzero-sum game of impulse control. The firm faces both
proportional and fixed costs to expand its stochastically fluctuating production with the aim
of maximizing its expected profits. The government introduces regulatory constraints with the
aim of reducing the level of emissions of pollutants and of minimizing the related total expected
costs. Assuming that the emissions’ level is proportional to the output of production, by issuing
environmental policies the government effectively forces the firm to decrease its production.

We have conjectured that an equilibrium in this strategic problem is characterized by four
constant trigger values, to be endogenously determined. We have then provided a set of sufficient
conditions under which these candidate equilibrium policies do indeed form an equilibrium.
Finally, we have studied numerically the case in which the (uncontrolled) output of production
evolves as a geometric Brownian motion, and the firm’s operating profit and the government’s
running cost function are of power type. Within such a setting, a study of the dependency
of the equilibrium policies and values on the model parameters have yielded interesting new
behaviors that we have explained as a result of the strategic interaction between the firm and
the government.

There are many directions in which it would be interesting to extend the present study.
As an example, one might consider a two-dimensional formulation of our game in which the
state variables are given by the production capacity of the firm and the level of pollution. The
firm faces a costly capacity expansion and maximizes its net expected profits. The output of
production, however, increases the emissions, which in turn contribute to the accumulation of
a pollution stock. The government aims at reducing the level of the pollution stock by issuing
costly environmental policies. This would lead to a daunting two-dimensional stochastic game
with impulse controls for which a sophisticated theoretical and numerical analysis might be
needed.

Acknowledgments. We wish to thank Giorgia Callegaro, Herbert Dawid, Frank Riedel
and Jan-Henrik Steg for useful comments.
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