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Abstract

The distribution-dependent stochastic differential equations (DDSDEs) describe s-
tochastic systems whose evolution is determined by both the microcosmic site and the
macrocosmic distribution of the particle. The density function associated with a DDS-
DE solves a Landau type nonlinear PDE. Due to the distribution-dependence, some
standard techniques developed for SDEs do not apply. By iterating in distributions,
a strong solution is constructed using SDEs with control. By proving the uniqueness,
the distribution of solutions is identified with a nonlinear semigroup P ∗

t on the space of
probability measures. The exponential contraction as well as Harnack inequalities and
applications are investigated for the nonlinear semigroup P ∗

t using coupling by change
of measures. The main results are illustrated by homogeneous Landau equations.
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1 Introduction

A fundamental application of the Itô SDE is to solve Kolmogorov’s problem [13] of deter-
mining Markov processes whose distribution density satisfies the Fokker-Planck-Kolmogorov
equation. Let Wt be the d-dimensional Brownian motion on a complete probability space

∗Supported in part by NNSFC (11626245, 11431014) and CRC 1283.
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with nature filtration (Ω, {Ft}t≥0,P), and let b : Rd → Rd; σ : Rd → Rd⊗Rd be measurable.
Then the distribution density of the solution to the SDE

(1.1) dXt = b(Xt)dt+ σ(Xt)dWt

satisfies the parabolic equation

(1.2) ∂tft =
1

2

d∑
i,j=1

∂i∂j
{
(σσ∗)ijft

}
−

d∑
i=1

∂i{bift},

which describes the time evolution of the probability density function of the velocity of a
particle under the influence of drag forces and random forces. If b and σ are “almost” locally
Lipchitzian, then the SDE (1.1) has a unique strong solution up to life time (c.f. [7]). When
σ is invertible (i.e. the SDE is non-degenerate), this condition has been largely weakened as
|b|+ |∇σ| ∈ Lploc(dx) for some p > d, see [26] and references within.

However, in many cases the distribution density satisfies a nonlinear PDE, for instance,
the Landau type equation

(1.3) ∂tft =
1

2
div

{∫
Rd

a(· − z)
(
ft(z)∇ft − ft∇ft(z)

)
dz

}
,

for some reference coefficient a : Rd → Rd ⊗ Rd. This includes the homogenous Landau
equation where d = 3 and

a(x) = |x|2+γ
(
I − x⊗ x

|x|2
)
, x ∈ R3

for some constant γ ∈ [−3, 1]. When γ ∈ [0, 1], the existence, uniqueness, regularity esti-
mates, and exponential convergence have been investigated for good enough initial distribu-
tions, see [5, 6, 4] and references within. To describe the solution of (1.3) using stochastic
processes, consider the following distribution-dependent SDE (DDSDE) for b = diva and σ
such that σσ∗ = a:

(1.4) dXt = (b ∗ LXt)(Xt)dt+ (σ ∗ LXt)(Xt)dWt,

where Lξ denotes the distribution of a random variable ξ, and

(f ∗ µ)(x) :=
∫
Rd

f(x− z)µ(dz)

for a function f and a probability measure µ. By Itô’s formula and the integration by parts
formula, the distribution density of Xt is a weak solution to (1.3). For the homogenous
Landau equation with γ ∈ [0, 1] and initial distribution density f0 satisfying

(1.5)

∫
R3

f0(x)
(
f0(x) + e|x|

α)
dx <∞ for some α > γ,
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the existence and uniqueness of weak solutions to (1.4) has been proved in [8] by an approx-
imation argument using particle systems. This approximation is known as propagation of
chaos according to Kac [12], see also [9, 10] and references within.

In this paper, we aim to investigate the (pathwise) strong solutions of (1.4) and charac-
terize their distribution properties.

In general, for measurable maps

b : [0,∞)× Rd × P(Rd) → Rd; σ : [0,∞)× Rd × P(Rd) → Rd ⊗ Rd,

we consider the following DDSDE on Rd:

(1.6) dXt = bt(Xt,LXt) dt+ σt(Xt,LXt) dWt.

When more than one probability measures on Ω are concerned, we use LXt |P instead of LXt

to emphasize the distribution under probability P. Due to technical reasons, we will restrict
ourselves to the following P ∗

t -invariant subspace of P for some θ ∈ [1,∞):

Pθ :=

{
ν ∈ P : ν(| · |θ) :=

∫
Rd

|x|θν(dx) <∞
}
,

which is a polish space under the Lθ-Wasserstein distance

Wθ(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
Rd×Rd

|x− y|θπ(dx, dy)
) 1

θ

, µ1, µ2 ∈ Pθ,

where C (µ1, µ2) is the set of all couplings for µ1 and µ2.
The following definition is standard in the literature of SDEs.

Definition 1.1. (1) For any s ≥ 0, a continuous adapted process (Xt)t≥s on Rd is called a
(strong) solution of (1.6) from time s, if∫ t

s

E
{
|br(Xr,LXr)|+ ∥σr(Xr,LXr)∥2

}
dr <∞, t > s,

and P-a.s.,

Xt = Xs +

∫ t

s

br(Xr,LXr)dr +

∫ t

s

σr(Xr,LXr)dWr, t ≥ s.

We say that (1.6) has (strong or pathwise) existence and uniqueness, if for any s ≥ 0 and
Fs-measurable random variable Xs,s with E|Xs,s|2 < ∞, the equation from time s has a
unique solution (Xs,t)t≥s. We simply denote X0,t = Xt.

(2) A couple (X̃t, W̃t)t≥s is called a weak solution to (1.6) from time s, if W̃t is the
d-dimensional Brownian motion with respect to a complete filtration probability space
(Ω̃, {F̃t}t≥0, P̃), and X̃t solves the DDSDE

(1.7) dX̃t = bt(X̃t,LX̃t
|P̃)dt+ σt(X̃t,LX̃t

|P̃)dW̃t, t ≥ s.

(3) (1.6) is said to have weak uniqueness in Pθ, if for any s ≥ 0, any two weak solutions of
the equation from time s with common initial distribution in Pθ are equal in law. Precisely,
if s ≥ 0 and (X̄s,t, W̄t)t≥s with respect to (Ω̄, {F̄t}t≥0, P̄) and (X̃s,t, W̃t)t≥s with respect to

(Ω̃, {F̃t}t≥0, P̃) are weak solutions of (1.6), then LX̄s,s
|P̄ = LX̃s,s

|P̃ implies LX̄s,· |P̄ = LX̃s,·
|P̃.
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When (1.6) has strong existence and uniqueness, the solution (Xt)t≥0 is a Markov process
in the sense that for any s ≥ 0, (Xt)t≥s is determined by solving the equation from time s
with initial state Xs. More precisely, letting {Xs,t(ξ)}t≥s denote the solution of the equation
from time s with initial state Xs,s = ξ, the existence and uniqueness imply

(1.8) Xs,t(ξ) = Xr,t(Xs,r(ξ)), t ≥ r ≥ s ≥ 0, ξ is Fs-measurable with E|ξ|θ <∞.

However, in general the solution is not strong Markovian since we do not have LXτ = LXt on
the set {τ = t} for a stopping time τ and t > 0. Moreover, the associated Makov operators
(Ps,t)t≥s given by

Ps,tf(x) := Ef(Xs,t(x)), x ∈ Rd, f ∈ Bb(Rd)

is not a semigroup, see (1.10) below.
When the DDSDE has Pθ-weak uniqueness (in the classical case it follows from the

pathwise uniqueness according to Yamada-Watanabe), we may define a semigroup (P ∗
t )t≥s

on Pθ by letting P ∗
s,tµ = LXs,t for LXs,s = µ ∈ Pθ. Indeed, by (1.8) we have

(1.9) P ∗
s,t = P ∗

r,tP
∗
s,r, t ≥ r ≥ s ≥ 0.

To see that (Ps,t)t≥s is not a semigroup, we write

(Ps,tf)(µ) = (P ∗
s,tµ)(f) :=

∫
Rd

fd(P ∗
s,tµ), f ∈ Bb(Rd), t ≥ 0, µ ∈ Pθ.

Then Ps,tf(x) = (Ps,tf)(δx), where δx is the Dirac measure at point x. Since (LXs,t)t≥s solves
a nonlinear equation as indicated in the beginning, the semigroup P ∗

s,t is nonlinear; i.e.

P ∗
s,tµ ̸=

∫
Rd

(P ∗
s,tδx)µ(dx), t > s ≥ 0

for a non-trivial distribution µ. In other words, in general

(Ps,tf)(µ) ̸= µ(Ps,tf) :=

∫
Rd

Ps,tfdµ, t > s ≥ 0,

so that

(Ps,tf)(µ) :=

∫
Rd

fd(P ∗
s,tµ) =

∫
Rd

fd(P ∗
r,tP

∗
s,rµ) = (Pr,tf)(P

∗
s,rµ)

̸=
∫
Rd

(Pr,tf)d(P
∗
s,rµ) = (Ps,r(Pr,tf))(µ), t > s ≥ 0.

(1.10)

Although the semigroup P ∗
s,t is nonlinear, we may also investigate the ergodicity in the

time homogeneous case when σt and bt do not depend on t. In this case we have P ∗
s,t = P ∗

t−s
for t ≥ s ≥ 0. We call µ ∈ Pθ an invariant probability measure of P ∗

t if P ∗
t µ = µ for all

t ≥ 0, and we call the solution ergodic if there exists µ ∈ Pθ such that limt→∞ P ∗
t ν = µ

weakly for any ν ∈ Pθ. Obviously, the ergodicity implies that P ∗
t has a uniqueness invariant

probability measure.
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When b and σ are bounded and Lipschitz continuous in (x, ν) ∈ Rd × W2, the weak
solution of (1.6) has been constructed in [16] by using propagation of chaos. In this paper, we
investigate the existence, uniqueness and distribution properties of the strong solutions. To
explain the difficulty of the study, let us recall some standard techniques developed for (1.1)
with locally bounded coefficients. Firstly, by a truncation argument one reduces an SDE with
locally bounded coefficients to that with bounded coefficients, so that when σ is invertible
the existence of weak solutions is ensured by the Girsanov transform and the uniqueness
follows from Zvonkin type argument, see e.g. [26] and references within. Then the SDE has
a unique strong solution according to Yamada-Watanabe’s principle [25]. However, these
techniques do not apply to DDSDEs: since the coefficients depend on the distribution which
is not pathwisely determined, the truncation argument and Yamada-Watanabe’s principle
do not work; since the distribution of solution depends on the reference probability measure,
the Girsanov transform method is invalid for the construction of weak solutions. Moreover,
due to the lack of strong Markovian property, one can not let the marginal processes move
together after the coupling time, so that the classical coupling argument does not apply. To
overcome the difficulty caused by distribution-dependence, we will approximate the DDSDE
(1.6) using classical ones by iterating in distributions, see Lemma 2.3 below. This enables
us to construct the strong solution. However, since the approximating SDEs depend on the
initial distributions, this method does not provide other properties from existing results for
classical SDEs. Fortunately, we are able to develop coupling argument to investigate the W2-
exponential convergence, Harnack inequality and applications for the associated nonlinear
semigroup.

In Section 2, we investigate the existence, uniqueness and time-space continuity of so-
lutions. In Section 3, we study the W2-exponential contraction of P ∗

t , which implies the
exponential ergodicity in the time-homogenous case. In Sections 4 and 5, we use coupling
by change of measures to establish Harnack and shift Harnack inequalities and make ap-
plications. Finally, in Section 6, we apply the main results to specific models including
the homogeneous Landau equation. These results provide pointwise estimates on the dis-
tributions, which are essentially different from existing results on Lp-estimates and Sobolev
regularities derived in [5, 6, 4] for the homogeneous Landau equation.

2 Existence, uniqueness and time-space continuity

As already explained in Introduction that the distribution dependence of coefficients may
cause trouble in the study of DDSDEs. To get rid of the distribution dependence, we will
iterate (1.6) in distributions. To prove the convergence of solutions to iterating SDEs, we
make the following assumptions on the continuity, monotonicity and growth of coefficients.

(H1) (Continuity) For every t ≥ 0, bt is continuous on Rd × Pθ. Moreover, there exist
increasing Kσ,1, Kσ,2 ∈ C([0,∞); (0,∞)) such that

∥σt(x, µ)− σt(y, ν)∥2 ≤ Kσ,1(t)|x− y|2 +Kσ,2Wθ(µ, ν)
2, t ≥ 0, x, y ∈ Rd, µ, ν ∈ Pθ.
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(H2) (Monotonicity) There exists increasing Kb,1, Kb,2 ∈ C([0,∞); (0,∞)) such that

2
⟨
bt(x, µ)− bt(y, ν), x− y

⟩
≤ Kb,1(t)|x− y|2 +Kb,2(t)Wθ(µ, ν)|x− y|,

t ≥ 0;x, y ∈ Rd;µ, ν ∈ Pθ.

(H3) (Growth) b is bounded on bounded sets in [0,∞)×Rd×Pθ, and there exists increasing
Kb,3 ∈ C([0,∞); (0,∞)) such that

|bt(0, µ)|θ ≤ Kb,3(t)
{
1 + +µ(| · |θ)

}
, x ∈ Rd, t ≥ 0, µ ∈ Pθ.

2.1 Main results

We first consider the existence, uniqueness and Wθ-Lipschitz continuous in initial distribu-
tions.

Theorem 2.1. Assume (H1)-(H3) for some θ ∈ [1,∞) such that Kσ,2 = 0 when θ < 2.

(1) The DDSDE (1.6) has strong/weak existence and uniqueness with initial distributions
in Pθ. Moreover, for any p ≥ θ and s ≥ 0, E|Xs,s|p <∞ implies

(2.1) E sup
t∈[s,T ]

|Xs,t|p <∞, T ≥ t ≥ s ≥ 0.

(2) There exists increasing ψ : [0,∞) → [0,∞) such that for any two solutions Xs,t and
Ys,t of (1.6) with LXs,s ,LYs,s ∈ Pθ,

(2.2) E|Xs,t − Ys,t|θ ≤
(
E|Xs,s − Ys,s|θ

)
e
∫ t
s ψ(r)dr, t ≥ s ≥ 0.

Consequently,

(2.3) lim
E|Xs,s−Ys,s|θ→0

P
(

sup
r∈[s,t]

|Xs,r − Ys,r| ≥ ε
)
= 0, t > s ≥ 0, ε > 0;

and

(2.4) Wθ(P
∗
s,tµ0, P

∗
s,tν0)

θ ≤ W2(µ0, ν0)
θe

∫ t
s ψ(r)dr, t ≥ s ≥ 0.

Next, we consider the continuity of Xt(x) in t, x) ∈ [0,∞)×Rd, where Xt(x) for X0 = x.
Since assumptions (H1)-(H3) are weaker for larger θ, and δx ∈ Pθ for any θ ≥ 1, by
Theorem 2.1 the DDSDE (1.6) has a unique solution Xt(x) for X0 = x. The next result says
that X is continuous in (t, x) ∈ [0,∞)×Rd provided b has a polynomial growth. Because the
coefficients depend on the distribution of solution, it seems hard to prove the flow property,
for instance to prove that P-a.s. for all t the map Xt(·) : Rd → Rd is a diffeormorphism, by
using techniques developed in the classical setting. So, we leave the study to the future.
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Theorem 2.2. Assume (H1)-(H3) for some θ ≥ 1. If there exists p ≥ 1 such that

(2.5) |bt(x, µ)| ≤ K(t)
{
1 + |x|p + µ(| · |p)

}
, t ≥ 0, x ∈ Rd

holds for some increasing function K : [0,∞) → (0,∞), then P-a.s. the map

[0,∞)× Rd ∋ (t, x) 7→ Xt(x) ∈ Rd

is continuous.

To prove these results, we first approximate (1.6) using classical SDEs by iterating in
distributions.

2.2 An approximation argument using classical SDEs

We fixed s ≥ 0 and Fs-measurable random variable Xs,s on Rd with E|Xs,s|θ <∞. Let

X
(0)
s,t = Xs,s, µ

(0)
s,t = LXs,s , t ≥ s.

For any n ≥ 1, let (X
(n)
s,t )t≥s solve the classical SDE

(2.6) dX
(n)
s,t = bt(X

(n)
s,t , µ

(n−1)
s,t )dt+ σt(X

(n)
s,t , µ

(n−1)
s,t ) dWt, X(n)

s,s = Xs,s, t ≥ s,

where µ
(n−1)
s,t = L

X
(n−1)
s,t

.

Lemma 2.3. Assume (H1)-(H3) for some θ ∈ [1,∞).

(1) For every n ≥ 1, the SDE (2.6) has a unique strong solution and

(2.7) E sup
t∈[s,T ]

|X(n)
s,t |θ <∞, T > s, n ≥ 1.

(2) If either θ ≥ 2 or σ(x, µ) does not depend on µ, then for any T > 0 there exists t0 > 0
which is independent on s ∈ [0, T ] and Xs,s, such that

(2.8) E sup
t∈[s,s+t0]

|X(n+1)
s,t −X

(n)
s,t |θ ≤ 2θe−nE sup

t∈[s,s+t0]
|X(1)

s,t |2, s ∈ [0, T ], n ≥ 1.

Proof. Without loss of generality, we only prove for s = 0.
(1) We first prove that the SDE (2.6) has a unique strong solution and (2.7) holds. By

(H1), bt(x, µ
(0)
t ) and σt(x, µ

(0)
t ) are continuous in x. Then the SDE (2.6) for n = 1 has

a weak solution up to life time (see [16, Theorem 6.1.6] and [11, p.155-163]). Next, by
Itô’s formula it is easy to see that (H2) implies the pathwise uniqueness. According to the
Yamada-Watanabe principle [25], the SDE has a unique solution up to life time. It remains
to prove (2.7). By (H3) and Itô’s formula we have

d|X(1)
t |2 = 2⟨σt(X(1)

t , µ
(0)
t )dWt, X

(1)
t ⟩

+
{
2
⟨
bt(X

(1)
t , µ

(0)
t ), X

(1)
t

⟩
+ ∥σt(X(1)

t , µ
(0)
t )∥2HS

}
dt.

(2.9)
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By (H1) with y = 0, ν = δ0, we have

(2.10) ∥σt(x, µ)∥2HS ≤ K(t)
{
1 + |x|2 + µ(| · |θ)

2
θ

}
for some increasing K : [0,∞) → [0,∞). Combining this with (H2) and (H3), we may find
increasing H : [0,∞) → (0,∞) such that

max
{
2
⟨
bt(x, µ

(0)
t ), x

⟩
, ∥σt(x, µ(0)

t )∥2HS
}

≤ max{2
⟨
bt(x, µ

(0)
t )− bt(0, µ

(0)
t ), x

⟩
+ 2|bt(0, µ(0)

t )| · |x|, ∥σt(x, µ(0)
t )∥2HS

}
≤ H(t)

{
1 + |x|2 + µ

(0)
t (| · |θ)

2
θ

}
, t ≥ 0, x ∈ Rd.

Thus, by (2.9), (2.10) and using Itô’s formula, there exists a constant c1(θ) > 0 such that

d(1 + |X(1)
t |2)

θ
2 ≤θ(1 + |X(1)

t |2)
θ−2
2 ⟨σt(X(1)

t , µ
(0)
t )dWt, X

(1)
t ⟩

+ c1(θ)H(t)
{
(1 + |X(1)

t |2)
θ
2 + µ

(0)
t (| · |θ)

2
θ
∨1
}
dt.

Letting τN = inf{t ≥ 0 : |X(1)
t | ≥ N}, we conclude from this, (2.10) and the BDG inequality

yield that for some increasing Ψ : [0,∞) → (0,∞),

E sup
s∈[0,t∧τN ]

(
1 + |X(1)

s |2
) θ

2 ≤ c1(θ)H(t)E
∫ t∧τN

0

{(
1 + |X(1)

s |2
) θ

2 + µ
(0)
t (| · |θ)

2
θ
∨1
}
ds

+ c2(θ)K(t)E
(∫ t∧τN

0

{(
1 + |X(1)

s |2
)θ

+
(
1 + |X(1)

s |2
)θ− 1

2µ(0)
s (| · |θ)

2
θ
∨1
}
ds

) 1
2

≤ Ψ(t)E
∫ t∧τN

0

{(
1 + |X(1)

s |2
) θ

2 + µ(0)
s (| · |θ)

2
θ
∨1
}
ds+

1

2
E sup
s∈[0,t∧τN ]

(
1 + |X(1)

s |2
) θ

2 .

Therefore,

E sup
s∈[0,t∧τN ]

(
1 + |X(1)

s |2
) θ

2 ≤ 2Ψ(t)

∫ t

0

{(
1 + |X(1)

s∧τN |
2
) θ

2 + µ(0)
s (| · |θ)

2
θ
∨1
}
ds.

By Gronwall’s lemma and letting N → ∞, we arrive at

E sup
s∈[0,t]

(
1 + |X(1)

s |2
) θ

2 ≤
(
1 + 2tΨ(t) sup

s∈[0,t]

(
E|X(0)

s |θ
) 2

θ
∨1
)
exp

[
2tΨ(t)

]
<∞.

Therefore, (2.7) holds for n = 1.
Now, assume that the assertion holds for n = k for some k ≥ 1, we intend to prove it

for n = k + 1. This can be done in the same way by using (X
(k+1)
· , µ

(k)
· , X

(k)
· ) in place of

(X
(1)
· , µ

(0)
· , X

(0)
· ). So, we omit the proof to save space.

(2) To prove (2.8), for n ≥ 1 we simply denote

ξ
(n)
t = X

(n+1)
t −X

(n)
t ,
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Λ
(n)
t = σt(X

(n+1)
t , µ

(n)
t )− σt(X

(n)
t , µ

(n−1)
t ),

B
(n)
t = bt(X

(n+1)
t , µ

(n)
t )− bt(X

(n)
t , µ

(n−1)
t ).

Below we prove for 1) θ ≥ 2 and 2) θ < 2 but Kσ,2 = 0 respectively.
Let θ ≥ 2. By (H1), (H2) and Itô’s formula, there exists increasing K0 : [0,∞) → [0,∞)

such that

(2.11) d|ξ(n)t |2 ≤ 2⟨Λ(n)
t dWt, ξ

(n)
t ⟩+K0(t)

{
|ξ(n)t |2 +Wθ(µ

(n)
t , µ

(n−1)
t )2

}
dt.

Combining this with (H1) and using the BDG inequality, we may find out increasing func-
tions K1, K2 : [0,∞) → (0,∞) such that

E sup
s∈[0,t]

|ξ(n)s |θ ≤ 2
θ
2
−1

∣∣∣∣ sup
s∈[0,t]

∫ s

0

2⟨Λ(n)
t dWt, ξ

(n)
t ⟩

∣∣∣∣ θ2
2

θ
2
−1K0(t)

(∫ t

0

{
|ξ(n)s |2 +Wθ(µ

(n)
s , µ(n−1)

s )2
}
ds

) θ
2

≤ K1(t)E
(∫ t

0

{
|ξ(n)s |2∥Λ(n)

s ∥2
}
ds

) θ
2

+K1(t)

∫ t

0

{
E|ξ(n)s |θ +Wθ(µ

(n)
s , µ(n−1)

s )θ
}
ds

≤ 1

2
E sup
s∈[0,t]

|ξ(n)s |θ +K2(t)

∫ t

0

{
E|ξ(n)s |θ +Wθ(µ

(n)
s , µ(n−1)

s )θ
}
ds.

Then

E sup
s∈[0,t]

|ξ(n)s |2 ≤ 2K2(t)

∫ t

0

{
E|ξ(n)s |θ +Wθ(µ

(n)
s , µ(n−1)

s )θ
}
ds, t ≥ 0.

By Gronwall’s lemma, we obtain

E sup
s∈[0,t]

|ξ(n)s |θ ≤ 2tK2(t)e
2tK2(t) sup

s∈[0,t]
Wθ(µ

(n)
s , µ(n−1)

s )θ

≤ 2tK2(t)e
2tK2(t)E sup

s∈[0,t]
|ξ(n−1)
s |θ, t ≥ 0.

(2.12)

Taking t0 > 0 such that 2t0K2(t0)e
2t0K2(t0) ≤ e−1, we arrive at

E sup
s∈[0,t0]

|ξ(n)s |θ ≤ e−1E sup
s∈[0,t0]

|ξ(n−1)
s |θ, n ≥ 1.

Since
E sup
s∈[0,t0]

|ξ(0)s |θ ≤ 2θ−1E
{
|X0|θ + sup

s∈[0,t0]
|X(1)

s |θ
}
≤ 2θE sup

s∈[0,t0]
|X(1)

s |2,

we prove (2.8).
Let θ ∈ [1, 2) but Kσ,2 = 0. Then instead of (2.11) we have

d|ξ(n)t |2 ≤ 2⟨Λ(n)
t dWt, ξ

(n)
t ⟩+K0(t)|ξ(n)t |

{
|ξ(n)t |+Wθ(µ

(n)
t , µ

(n−1)
t )

}
dt.

9



Since θ ≤ 2, for any ε > 0, by Itô’s formula we obtain

d(ε+|X(n)
t |2)

θ
2 ≤ θ(ε+|X(n)

t |2)
θ−2
2

{
⟨Λ(n)

t dWt, ξ
(n)
t ⟩+K0(t)

2
|ξ(n)t |

{
|ξ(n)t |+Wθ(µ

(n)
t , µ

(n−1)
t )

}
dt
}
.

Since (H1) with Kσ,2 = 0 implies ∥Λ(n)
t ∥2 ≤ Kσ,1(t)|ξ(n)t |2, this and the BDG inequality yield

E sup
s∈[0,t]

(ε+ |X(n)
s |2)

θ
2 ≤ K1(t)E

(∫ t

0

(ε+ |X(n)
s |2)θds

) 1
2

+K1(t)E
∫ t

0

{
(ε+ |X(n)

s |2)
θ
2 + (ε+ |X(n)

s |2)
θ−1
2 Wθ(µ

(n)
s , µ(n−1)

s )
}
ds

≤ 1

2
E sup
s∈[0,t]

(ε+ |X(n)
s |2)

θ
2 +K2(t)

∫ t

0

{
(ε+ |X(n)

s |2)
θ
2 +Wθ(µ

(n)
s , µ(n−1)

s )θ
}
ds

for some increasing K1, K2 : [0,∞) → [0,∞). Letting ε→ 0 and using Gronwall’s inequality,
we prove (2.12), which implies the desired estimate (2.8) as explained above.

2.3 Proofs of Theorem 2.1 and Theorem 2.2

Proof of Theorem 2.1. Without loss of generality, we only consider the DDSDE (1.6) from
time s = 0.

(1) Since the uniqueness follows from (2.3) which will be proved in the next step, in this
step we only prove the existence and the estimate (2.1).

By Lemma 2.3, there exists an adapted continuous process (Xt)t∈[0,t0] such that

(2.13) lim
n→∞

sup
t∈[0,t0]

Wθ(µ
(n)
t , µt)

θ ≤ lim
n→∞

E sup
t∈[0,t0]

|X(n)
t −Xt|θ = 0,

where µt is the distribution of Xt. Noting that due to (2.6)

X
(n)
t = X0 +

∫ t

0

bs(X
(n)
s , µ(n−1)

s )ds+

∫ t

0

σs(X
(n)
s , µ(n−1)

s )dWs,

it follows from (2.13), (H1) and (H3) that P-a.s.

Xt = X0 +

∫ t

0

bs(Xs, µs)ds+

∫ t

0

σs(Xs, µs)dWs, t ∈ [0, t0].

Therefore, (Xt)t∈[0,t0] is a solution to (1.6), and (2.13) implies E sups∈[0,t0] |Xs|θ < ∞. Since
t0 > 0 is independent of X0, we conclude that (1.6) has a unique solution (Xt)t≥0 with

(2.14) E sup
s∈[0,t]

|Xs|θ <∞, t ∈ (0,∞).

It remains to prove (2.1) for E|X0|p <∞. As in the proof of (2.7) above, by (H1)-(H3)
and Itô’s formula we have

d|Xt|2 ≤ 2⟨σt(Xt,LXt)dWt, Xt⟩+H(t)
{
1 + |Xt|2 + (E|Xt|θ)

2
θ

}
dt
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for some increasing function H : [0,∞) → (0,∞). Then applying Itô’s formula to (1+|Xt|2)
p
2

and repeating step (1) in the proof of Lemma 2.3, we prove (2.1).
(2) By Itô’s formula, (H2) and (H1) with Kσ,2 = 0 if θ < 2, we have

d|Xt − Yt|2 ≤ 2
⟨
Xt − Yt, {σt(Xt,LXt)− σt(Yt,LYt)}dWt

⟩
+K1(t)

{
|Xt − Yt|2 + 1{θ≥2}Wθ(LXt ,LYt)

2 + |Xt − Yt|Wθ(LXt ,LYt)
}
dt.

(2.15)

By Itô’s formula we obtain

d|Xt − Yt|θ ≤ θ|Xt − Yt|θ−2
⟨
Xt − Yt, {σt(Xt,LXt)− σt(Yt,LYt)}dWt

⟩
+K2(t)

{
|Xt − Yt|θ +Wθ(LXt ,LYt)

θ
}
dt

for some increasing K2 : [0,∞) → [0,∞). Noting that Wθ(LXt ,LYt)
θ ≤ E|Xt − Yt|θ < ∞,

this implies

E|Xt − Yt|θ ≤ E|X0 − Y0|θ + 2

∫ t

0

K2(s)E|Xs − Ys|2ds.

By Gronwall’s lemma, we prove (2.2).
To prove (2.3), let τε := inf{t ≥ 0 : |Xt − Yt| ≥ ε} for ε ∈ (0, 1). By (2.2) and (2.15),

there exists increasing K : [0,∞) → [0,∞) such that

E|Xt∧τε − Yt∧τε |θ

≤ E|X0 − Y0|θ + E
∫ t∧τε

0

K(s)
(
E|Xs − Ys|θ + |Xs − Ys|θ

)
ds

≤
{
1 + tetψ(t)

}
E|X0 − Y0|2 +

∫ t

0

K(s)
{
E|Xs∧τε − Ys∧τε|θ

}
ds, t ≥ 0.

By Gronwall’s lemma, there exists positive ϕ ∈ C([0,∞)) such that

εθP(τε ≤ t) ≤ E|Xt∧τε − Yt∧τε|θ ≤ ϕ(t)E|X0 − Y0|θ, t ≥ 0.

Therefore,

P
(

sup
s∈[0,t]

|Xs − Ys| ≥ ε
)
= P(τε ≤ t) ≤ ε−θψ(t)E|X0 − Y0|θ, t, ε > 0.

Hence, (2.3) holds.
(3) Let (Xt,Wt) and (X̃t, W̃t) with respect to (Ω, {Ft}t≥0,P) and (Ω̃, {F̃t}t≥0, P̃) respec-

tively be two weak solutions such that LX0 |P = LX̃0
|P̃. Then Xt solves (1.6) while X̃t

solves

(2.16) dX̃t = bt(X̃t,LX̃t
|P̃)dt+ σt(X̃t,LX̃t

|P̃)dW̃t.

To prove that LX |P = LX̃ |P̃, let µt = LXt |P and

b̄t(x) = bt(x, µt), σ̄t(x) = σ(x, µt), t ≥ 0, x ∈ Rd.
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By (H1)-(H3), the SDE

(2.17) dX̄t = b̄t(X̄t)dt+ σ̄t(X̄t)dW̃t, X̄0 = X̃0

has a unique solution for any initial points. According to Yamada-Watanabe, it also has
weak uniqueness. Noting that

dXt = b̄t(Xt)dt+ σ̄t(Xt)dWt, LX0 |P = LX̃0
|P̃,

the weak uniqueness of (2.17) implies

(2.18) LX̄ |P̃ = LX |P.

So, (2.17) reduces to

dX̄t = bt(X̄t,LX̄t
|P̃)dt+ σt(X̄t,LX̄t

|P̃)dW̃t, X̄0 = X̃0.

Since by (1) the DDSDE (2.16) has a unique solution, we obtain X̄ = X̃. Therefore, the
weak uniqueness follows from (2.18).

Finally, for any µ0, ν0 ∈ Pθ, take F0-measurable random variables X0, Y0 such that
LX0 = µ0,LY0 = ν0 and Wθ(µ0, ν0)

θ = E|X0 − Y0|θ. Since Wθ(P
∗
t µ0, P

∗
t ν0)

θ ≤ E|Xt − Yt|θ,
(2.2) implies (2.4).

Proof of Theorem 2.2. Since the assumptions are weaker for larger θ, we may and do assume
that θ ≥ 2. By Kolmogorov’s modification theorem, it suffices to prove

(2.19) E|Xt(x)−Xs(y)|m ≤ Φ(s, t; x, y)(|x− y|+ |s− t|)q, |t− s|+ |x− y| ≤ 1

for some constants m > 0, q > 1 and locally bounded function Φ on [0,∞)2 × R2d. Firstly,
by (2.1) and (2.2), we may find out an increasing function ψ : [0,∞) → (0,∞) such that

E|Xt(x)−Xt(y)|2θ ≤
{
E|Xt(x)−Xt(y)|θ

} 2
3 ×

{
E|Xt(x)−Xt(y)|4θ

} 1
3

≤ ψ(t)(1 + |x|+ |y|)
4θ
3 |x− y|

2θ
3 , t ≥ 0, x, y ∈ Rd.

(2.20)

Next, by (H3) and (2.5), there exist a constant C > 0 and an increasing function ϕ : [0,∞) →
(0,∞) such that

E|Xt(x)−Xs(x)|2θ ≤ CE
(∫ t

s

K(r)(1 + |Xr(x)|p + E|Xr(x)|p)dr
)2θ

+ CE
(∫ t

s

K2(r)(1 + |Xr(x)|2 + E|Xr(x)|2)dr
)θ

≤ ϕ(t)(1 + |x|2θp)(t− s)θ, |t− s| ≤ 1, x ∈ Rd.

This together with (2.20) implies the desired (2.19) with p = 4, q = 2θ
3
> 1.
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3 W2-Exponential contraction of P ∗
s,t

We intend to estimate the Wasserstein distance of solutions with different initial distributions
and investigate the exponential ergodicity. For simplicity, we only consider the W2-distance.
To this end, we use the following condition to replace (H2):

(H2′) There exist positive functions C2, C2 ∈ L1
loc(dt) such that

2⟨bt(x, µ)− bt(y, ν), x− y⟩+ ∥σt(x, µ)− σt(y, ν)∥2HS
≤ C1(t)W2(µ, ν)

2 − C2(t)|x− y|2, t ≥ 0;x, y ∈ Rd;µ, ν ∈ P2.

Theorem 3.1. Assume (H1), (H2′) and (H3).

(1) For any µ0, ν0 ∈ P2,

W2(P
∗
s,tµ0, P

∗
s,tν0)

2 ≤ W2(µ0, ν0)
2e

∫ t
s {C1(r)−C2(r)}dr, t ≥ 0.

(2) Let bt = b and σt = σ do not depend on time t such that (H2′) holds for some constants
C1 and C2. If C2 > C1 then Pt has a unique invariant probability measure µ ∈ P2

such that
W2(P

∗
t ν0, µ)

2 ≤ W2(ν0, µ)
2e−(C2−C1)t, t ≥ 0, ν0 ∈ P2.

Proof. (1) Without loss of generality, we only prove for s = 0. Let Xt and Yt be two solutions
to (1.6) such that LX0 = µ0,LY0 = ν0 and

(3.1) W2(µ0, ν0)
2 = E|X0 − Y0|2.

Simply denote µt = LXt , νt = LYt , t ≥ 0. By (H2′) and Itô’s formula we have

d|Xt − Yt|2 ≤ 2
⟨
Xt − Yt, {σt(Xt, µt)− σt(Yt, νt)}dWt

⟩
+
{
C1(t)W2(µt, νt)

2 − C2(t)|Xt − Yt|2
}
dt.

Noting that W2(µs, νs)
2 ≤ E|Xs − Ys|2, combining this with (3.1) we obtain

E|Xt − Yt|2 ≤ W2(µ0, ν0)
2 +

∫ t

0

{
[C1(s)− C2(s)]E|Xs − Ys|2

}
ds.

This implies the first assertion by Gronwall’s lemma.
(2) Let δ0 be the Dirac measure at point 0 ∈ Rd. Then P ∗

t δ0 = LXt(0). We first prove

(3.2) lim
t→∞

W2(P
∗
t δ0, µ) = 0

for some µ ∈ P2. To this end, it suffices to show that {P ∗
t δ0}t≥0 is a W2-Cauchy family

when t→ ∞; that is,

(3.3) lim
t→∞

sup
s≥0

W2(P
∗
t δ0, P

∗
t+sδ0) = 0.
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We will prove this using the shift-coupling and the weak uniqueness according to Theorem
2.1(3). More precisely, for any s ≥ 0, it is easy to see that (X̄t := Xt+s(0))t≥0 solves the
DDSDE

dX̄t = b(X̄t,LX̄t
)dt+ σ(X̄t,LX̄t

)dW̄t, X̄0 = Xs(0)

for the d-dimensional Brownian motion W̄t := Wt+s −Ws. So, by the weak uniqueness we
have

(3.4) P ∗
t (P

∗
s δ0) = LX̄t

= LXt+s(0) = P ∗
t+sδ0, s, t ≥ 0.

Combining this with Theorem 3.1(1) and letting Xt(P
∗
s δ0) solve (1.6) with LX0 = P ∗

s δ0, we
obtain

W2(P
∗
t+sδ0, P

∗
t δ0)

2 = W2(LXt(P ∗
s δ0),LXt(0))

2

≤ W2(P
∗
s δ0, δ0)

2e−(C2−C1)t = e−(C2−C1)tE|Xs(0)|2, s, t ≥ 0.

This implies (3.3) provided

(3.5) sup
s≥0

E|Xs(0)|2 <∞.

By (H2′) and (H3) for constant C1 < C2 and K2, it is easy to see that

2⟨b(x, µ), x⟩+ ∥σ(x, µ)∥2HS ≤ C0 − (C2 − ε)|x|2 + (C1 + ε)µ(| · |2)

holds for some constant C0 > 0 and ε := C2−C1

4
> 0. By Itô’s formula and Gronwall’s lemma,

this implies
E|Xt(0)|2 ≤ C0e

−(C2−C1−2ε)t, t ≥ 0.

Therefore, (3.5) holds.
Moreover, by (2.4) and (3.2) we have

lim
t→∞

W2(P
∗
s µ, P

∗
s P

∗
t δ0) = 0, s ≥ 0.

Combining this with (3.2) and (3.4), we obtain

W2(P
∗
s µ, µ) ≤ lim

t→∞
W2(P

∗
s P

∗
t δ0, P

∗
t δ0) = lim

t→∞
W2(P

∗
t+sδ0, P

∗
t δ0) = 0.

Then µ is an invariant probability measure. Therefore, by Theorem 3.1(1) with C2 > C1,
for any ν0 ∈ P2 we have

W2(P
∗
t ν0, µ)

2 = W2(P
∗
t ν0, P

∗
t µ)

2 ≤ e−(C2−C1)tW2(ν0, µ)
2, t ≥ 0,

so that the proof is finished.
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4 Harnack inequality and applications

In this section, we investigate the dimension-free Harnack inequality in the sense of [20] and
the log-Harnack inequality introduced in [15, 22] for the DDSDE (1.6), see [21] and references
within for general results on these type Harnack inequalities and applications. To establish
Harnack inequalities for DDSDEs using coupling by change of measures, we need to assume
that the noise part is distribution-free; that is, we consider the following special version of
(1.6):

(4.1) dXt = bt(Xt,LXt)dt+ σt(Xt)dWt.

Then

(Ptf)(µ0) =

∫
Rd

fd(P ∗
t µ0) = Ef(Xt(µ0)), f ∈ Bb(Rd), t ≥ 0, µ0 ∈ P2,

where Xt(µ0) solves (4.1) with initial distribution µ0.
To make the study easy to follow, we first introduce the main steps in establishing

Harnack inequalities using coupling by change of measures summarized in [21, §1.1].
(S1) Let (Xt)t≥0 solve (4.1) with LX0 = µ0. By the uniqueness we have µt := P∗

tµ0 = LXt ,
and the equation (4.1) reduces to

(4.2) dXt = bt(Xt, µt)dt+ σt(Xt)dWt.

(S2) Construct a process (Yt)t∈[0,T ] such that for a weighted probability measure Q := RTP,

(4.3) XT = YT Q-a.s., and LYT |Q = P ∗
Tν0 =: νT .

Obviously, (S1) and (S2) implies

(4.4) (PTf)(µ0) = E[f(XT )] and (PTf)(ν0) = EQ[f(YT )] = E[RTf(XT )], f ∈ Bb(Rd).

Combining this with (4.4) Young’s inequality (see [1, Lemma 2.4]), we obtain the log-Harnack
inequality:

(PT log f)(ν0) ≤ E[RT logRT ] + logE[f(XT )]

= log(PTf)(µ0) + E[RT logRT ], f ∈ B+
b (R

d);
(4.5)

while using Hölder’s inequality we prove the Harnack inequality with power p > 1:

(4.6) (PTf(ν0))
p = (E[RTf(XT )])

p ≤ (ER
p

p−1

T )p−1(PTf
p)(µ0), f ∈ B+

b (R
d).

To construct Yt in (S2), we will need the following assumption.

(A) σt(x) is invertible and locally Lipschitzian in x which is locally uniformly in t ≥ 0,
and there exist increasing functions κ0, κ1, κ2, λ : [0,∞) → (0,∞) such that for any
t ∈ [0, T ], x, y ∈ Rd and µ, ν ∈ P2, we have

(4.7) ∥σ−1
t ∥∞ ≤ λ(t), |bt(0, µ)|2 + ∥σt(x)∥2 ≤ κ0(t)(1 + |x|2 + µ(| · |2)),

2⟨bt(x, µ)− bt(y, ν), x− y⟩+ ∥σt(x)− σt(y)∥2HS
≤ κ1(t)|x− y|2 + κ2(t)|x− y|W2(µ, ν).

(4.8)

Obviously, (A) implies assumptions (H1)-(H3) in Theorem 2.1.
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4.1 Main results

For any µ0 ∈ P2 and r ≥ 0, let B(µ0, r) = {ν ∈ P2 : W2(µ0, ν) ≤ r}. Let

ϕ(s, t) = λ(t)2
(

κ1(t)

1− e−κ1(t)(t−s)
+
tκ2(t)

2 exp[2(t− s)(κ1(t) + κ2(t))]

2

)
, 0 ≤ s < t.

Under assumption (A), we have the following result for the log-Harnack inequality and
regularity estimates on Pt.

Theorem 4.1. Assume (A) and let t > s ≥ 0.

(1) For any µ0, ν0 ∈ P2,

(4.9) (Ps,t log f)(ν0) ≤ log(Ps,tf)(µ0) + ϕ(s, t)W2(µ0, ν0)
2, f ∈ B+

b (R
d).

Consequently,

(4.10) |∇Ps,tf |2 ≤ 2ϕ(s, t)
{
Ps,tf

2 − (Ps,tf)
2
}
, f ∈ Bb(Rd).

(2) For any different µ0, ν0 ∈ P2, and any f ∈ Bb(Rd),

|(Ps,tf)(µ0)− (Ps,tf)(ν0)|2

W2(µ0, ν0)2

≤ 2ϕ(s, t) sup
ν∈B(µ0,W2(µ0,ν0))

{
(Ps,tf

2)(ν)− (Ps,tf)
2(ν)

}
.

(4.11)

Consequently,

∥P ∗
s,tµ0 − P ∗

s,tν0∥var := 2 sup
A∈Bb(Rd)

|(P ∗
s,tµ0)(A)− (P ∗

s,tν0)(A)|

≤
√
2ϕ(s, t)W2(µ0, ν0).

(4.12)

Next, when ∥σt∥∞ is locally bounded in t, we have the following result on Harnack
inequality with power p > 1 and applications.

Theorem 4.2. Assume (A) and that for some increasing γ : [0,∞) → (0,∞),

(4.13) |{σt(x)− σt(y)}∗(x− y)| ≤ γ(t)|x− y|, t ≥ 0.

Let
p(t) = (1 + 4λ(t)γ(t))2, Γ(t) = κ2(t)

2λ(t)2T e2κ1(t)+2κ2(t).

Then for any µ0, ν0 ∈ P2 and F0-measurable random variables X0, Y0 with LX0 = µ0,LY0 =
ν0,

(Ps,tf)
p(ν0) ≤(Ps,tf

p)(µ0) exp

[ √
pΓ(t)W2(µ0, ν0)

2

(
√
p+ 1)[2(

√
p− 1)2 − 16λ(t)2γ(t)2]

]

×
(
E exp

[
2λ(t)2κ1(t)|X0 − Y0|2

(
√
p− 1)2(1− e−κ1(t)(t−s))

]) √
p (

√
p−1)2

(
√

p+1)[2(
√
p−1)2−16λ(t)2γ(t)2]

,

t > s ≥ 0, p ≥ p(t), f ∈ B+
b (R

d).

(4.14)
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In particular, for any x, y ∈ Rd, t > s ≥ 0 and p ≥ p(t),

(4.15) (Ps,tf)
p(x) ≤ (Ps,tf

p)(y) exp

[ √
p|x− y|2

(
Γ(t) + 2κ1(t)λ(t)2

1−exp[−κ1(t)(t−s)]

)
(
√
p+ 1)[2(

√
p− 1)2 − 16λ(t)2γ(t)2]

]
.

Below we present some consequences of the above Harnack inequalities. Comparing
with [5, Theorem 1.1], the following estimates are new in two folds: firstly, they work for
arbitrarily two initial distributions while in [5, Theorem 1.1] one of the initial distributions
is the equilibrium; secondly, they imply that the relative entropy becomes finite immediately
once the initial distribution has finite Wasserstein distance, while in [5, Theorem 1.1] the
relative entropy of the initial distribution has to be finite.

Corollary 4.3. Assume (A) and let t > s ≥ 0.

(1) For any µ0, ν0 ∈ P2, P
∗
s,tµ0 and P

∗
s,tν0 are equivalent and the Radon-Nykodim derivative

satisfies the entropy estimate

(4.16)

∫
Rd

{
log

dP ∗
s,tν0

dP ∗
s,tµ0

}
dP ∗

s,tν0 ≤ ϕ(s, t)W2(µ0, ν0)
2.

Consequently, in the situation of Theorem 3.1(2),∫
Rd

{
log

dP ∗
t ν0

dP ∗
t µ

}
dP ∗

t ν0 ≤ ϕ(0, 1)e−(C2−C1)(t−1)W2(µ, ν0)
2, t ≥ 1.

(2) If (4.13) holds, then for any t > s ≥ 0 and p ≥ p(t),∫
Rd

{
dP ∗

s,tν0

dP ∗
s,tµ0

} 1
p

d(P ∗
s,tν0)

≤ exp

[
Γ(t)W2(µ0, ν0)

2

(1 + p−
1
2 )[2(

√
p− 1)2 − 16λ(t)2γ(t)2]

]

×
(
E exp

[
2λ(t)2κ1(t)|X0 − Y0|2

(
√
p− 1)2(1− e−κ1(t)(t−s))

]) (
√

p−1)2

(1+p
− 1

2 )[2(
√

p−1)2−16λ(t)2γ(t)2]

(4.17)

for F0-measurable random variables X0, Y0 with LX0 = µ0,LY0 = ν0.

Proof. According to the proof of [21, Theorem 1.4.1], when µ0 and ν0 are Dirac measures,
these results follow from (4.9) and (4.15) respectively. In general, the proof is completely
similar. Precisely, for a (P ∗

s,tµ0)-null set A and n ≥ 1, we apply (4.9) to f := n1A + 1, so
that

(P ∗
s,tν0)(A) log(n+ 1) = (P ∗

s,t log f)(ν0) ≤ ϕ(s, t)W2(µ0, ν0), n ≥ 1.

Letting n → ∞ we obtain (P ∗
s,tν0)(A) = 0, so that P ∗

s,tν0 is absolutely continuous with
respect to P ∗

s,tµ0. By the symmetry, P ∗
s,tµ0 is also absolutely continuous with respect to

P ∗
s,tν0. Moreover, (4.16) follows from (4.9) by taking f =

dP ∗
s,tν0

dP ∗
s,tµ0

, while (4.17) follows from

(4.14) by taking f = (
dP ∗

s,tν0

dP ∗
s,tµ0

)
1
p .
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4.2 Proof of Theorem 4.1

Without loss of generality, we only prove for s = 0. As in [23, §2], for fixed T > 0, let

(4.18) ξt =
1

κ1(T )

(
1− eκ1(T )(t−T )

)
, t ∈ [0, T ].

Let νt = P ∗
t ν0 and let Y0 be F0-measurable with LY0 = ν0. Consider the SDE

(4.19) dYt =
{
bt(Yt, νt) +

1

ξt
σt(Yt)σt(Xt)

−1(Xt − Yt)
}
dt+ σt(Yt)dWt.

By (A) and supt∈[0,T ] νt(| · |2) < ∞ due to Theorem 2.1, this SDE has a unique solution
(Yt)t∈[0,T ). Let

τn := T ∧ inf{t ∈ [0, T ) : |Xt|+ |Yt| ≥ n}, n ≥ 1.

We have τn ↑ T as n ↑ ∞. To verify step (S2), we first prove that

(4.20) Rs := exp

[ ∫ s

0

1

ξt

⟨
σt(Xt)

−1(Yt −Xt), dWt

⟩
− 1

2

∫ s

0

|σt(Xt)
−1(Yt −Xt)|2

ξ2t
dt

]
is a uniformly integrable martingale for s ∈ [0, T ].

Lemma 4.4. Assume (A). Let X0, Y0 be two F0-measurable random variables such that
LX0 = µ0,LY0 = ν0 and

(4.21) E|X0 − Y0|2 = W2(µ0, ν0)
2.

Then (Rs)s∈[0,T ] is a uniformly integrable martingale with

(4.22) sup
t∈[0,T ]

E[Rt logRt] ≤ ϕ(0, T )W2(µ0, ν0)
2.

Proof. By (A), for any n ≥ 1 the process (Rs∧τn)s∈[0,T ) is a uniformly integrable continuous
martingale. Since τn ↑ T as n ↑ ∞, by the martingale convergence theorem, it suffices to
prove

(4.23) sup
t∈[0,T ],n≥1

E[Rt∧τn logRt∧τn ] ≤ ϕ(0, T )W2(µ0, ν0)
2.

We fix t ∈ (0, T ) and n ≥ 1. By Girsnaov’s theorem,

W̃s :=Ws −
1

ξs
σs(Xs)

−1(Ys −Xs), s ∈ [0, t ∧ τn]

is a d-dimensional Brownian motion under the weighted probability Qt,n := Rt∧τnP. Refor-
mulating (4.2) and (4.19) as

dXs =
{
bs(Xs, µs)−

Xs − Ys
ξs

}
ds+ σs(Xs)dW̃s,

dYs = bs(Ys, νs)ds+ σs(Ys)dW̃s, s ∈ [0, t ∧ τn],
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by (A) and Itô’s formula under probability Qt,n, we obtain

d|Xs − Ys|2 ≤
{
κ1(s)|Xs − Ys|2 + κ2(s)|Xs − Ys|W2(µs, νs)−

2|Xs − Ys|2

ξs

}
ds+ dMs

for s ∈ [0, t ∧ τn] and some Qt,n-martingale Ms. Then

d
|Xs − Ys|2

ξs
≤dMs

ξs
+
κ2(s)

2W2(µs, νs)
2

2
ds

− |Xs − Ys|2

ξ2s

{
2− κ1(s)ξs + ξ′s −

1

2

}
ds, s ∈ [0, t ∧ τn].

(4.24)

By (4.18) and the monotonicity of κ1, we have

2− κ1(s)ξs + ξ′s −
1

2
≥ 2− κ1(T )ξs + ξ′s −

1

2
=

1

2
.

Moreover, since (4.8) implies (H2) for K1 =
κ1+

√
κ21+4κ22
2

≤ κ1 + κ2, it follows from Theorem
2.1 that

W2(µs, νs) ≤ W2(µ0, ν0)e
s{κ1(T )+κ2(T )}, s ∈ [0, T ].

Substituting these into (4.24) and using (4.21), we arrive at

EQt,n

∫ t∧τn

0

|Xs − Ys|2

ξ2s
ds

≤ 2

ξ0
+ EQt,n

∫ t∧τn

0

κ2(s)
2W2(µs, νs)

2ds

≤
[
2

ξ0
+ Tκ2(T )

2 exp[2T (κ1(T ) + κ2(T ))]

]
W2(µ0, ν0)

2.

(4.25)

Writing

logRt∧τn =

∫ t∧τn

0

1

ξs

⟨
σs(Xs)

−1(Ys −Xs), dW̃s

⟩
+

1

2

∫ t∧τn

0

|σs(Xs)
−1(Ys −Xs)|2

ξ2s
ds,

by ∥σ−1
t ∥ ≤ λ(t) due to (4.7), ξ0 = 1

κ1(T )
(1 − e−κ1(T )T ) due to (4.18), and using (4.25), we

arrive at

E[Rt∧τn logRt∧τn ] =
1

2
EQt,n

∫ t∧τn

0

|σs(Xs)
−1(Ys −Xs)|2

ξ2s
ds ≤ ϕ(0, T )W2(µ0, ν0)

2.

Therefore, (4.23) holds since t ∈ (0, T ) and n ≥ 1 are arbitrary.

Proof of Theorem 4.1. (1) By Lemma 4.4 and the Girsanov theorem, dQ := RTdP is a
probability measure such that

(4.26) W̃s := Ws −
∫ s

0

σt(Xt)
−1(Yt −Xt)

ξt
dt, s ∈ [0, T ]
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is a d-dimensional Brownian motion. Then (4.19) reduces to

(4.27) dYt = bt(Yt, νt) + σt(Yt)dW̃t.

Consider the DDSDE

dX̃t = bt(X̃t,LX̃t
|P̃)dt+ σt(X̃t)dW̃t, X̃0 = Y0.

By the weak uniqueness we have LX̃t
|P̃ = P ∗

t ν0 = νt for t ∈ [0, T ]. Combining this with

(4.27) and the strong uniqueness, we conclude that X̃t = Yt for t ∈ [0, T ]. In particular,
LYT = νT as required in (S2). Therefore, (4.5) and Lemma 4.4 lead to

(PT log f)(ν0) ≤ log(PTf)(µ0) + ϕ(0, T )W2(µ0, ν0)
2.

In particular,

PT log f(x) ≤ (logPTf)(y) + ϕ(0, T )|x− y|2, x, y ∈ Rd, f ∈ Bb(Rd).

According to [2, Proposition 2.3], this implies (4.10).
(2) Let W2(µ0, ν0) > 0. We first assume that µ0 is absolutely continuous with respect

to the Lebesgue measure. In this case, by [18, Theorem 10.4.1] (see [14] when ν0 is also
absolutely continuous), there exists a measurable map F : Rd → Rd such that Ξ(x) :=
x+ F (x) maps µ0 into ν0; that is, ν0 = µ0 ◦ Ξ−1. Let

Ξs(x) = x+ sF (x), µs = µ0 ◦ Ξ−1
s , s ∈ [0, 1].

Then it is easy to see that

W2(µs, µt) = |t− s|W2(µ0, ν0), s, t ∈ [0, 1].

Now, for any n ≥ 1 and 0 ≤ i ≤ n− 1, we have

W2(µi/n, µ(i+1)/n) = εn :=
1

n
W2(µ0.ν0).

For any f ∈ Bb(Rd) and c > 0, when n is large enough such that cεnf + 1 > 0, the
log-Harnack inequality implies

(4.28) PT log(cεnf + 1)(µi/n) ≤ log(cεnPTf + 1)(µ(i+1)/n) + ε2nϕ(0, T ), 0 ≤ i ≤ n− 1.

By Taylor’s expansion, there exists a constant c(f) > 0 depending on ∥f∥∞ such that∣∣∣PT log(cεnf + 1)(µi/n)− cεn(PTf)(µi/n) +
(cεn)

2

2
(PTf

2)(µi/n)
∣∣∣ ≤ c(f)

n3
,∣∣∣ log(cεnPTf + 1)(µ(i+1)/n)− cεn(PTf)(µ(i+1)/n) +

(cεn)
2

2
(PTf)

2(µ(i+1)/n)
∣∣∣ ≤ c(f)

n3
.

Substituting these into (4.28), we obtain∣∣(PTf)(µ(i+1)/n)− (PTf)(µi/n)
∣∣
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≤ cεn
2

∣∣(PTf 2)(µi/n)− (PTf)
2(µ(i+1)/n)

∣∣+ ϕ(0, T )εn
c

+
2c(f)

cn2W2(µ0, ν0)
, 0 ≤ i ≤ n− 1.

Therefore,

|(PTf)(µ0)− (PTf)(ν0)| ≤
n−1∑
i=0

∣∣(PTf)(µ(i+1)/n)− (PTf)(µi/n)
∣∣

≤ c

2

n−1∑
i=0

εn
∣∣(PTf 2)(µi/n)− (PTf)

2(µ(i+1)/n)
∣∣+ ϕ(0, T )W2(µ0, ν0)

c
+O(n−1).

Noting that εn = 1
n
W2(µ0, ν0), by letting n→ ∞, we obtain

|(PTf)(µ0)− (PTf)(ν0)|
W2(µ0, ν0)

≤ c

2
sup

ν∈B(µ0,W2(µ0,ν0))

∣∣(PTf 2)(ν)− (PTf)
2(ν)

∣∣+ ϕ(0, T )

c
.

Minimizing the upper bound in c > 0, we prove (4.11). Since

(P ∗
Tν)(A)− {(P ∗

Tν)(A)}2 ≤
1

4
, A ∈ B(Rd), ν ∈ P,

(4.12) follows from (4.11) with f = 1A.

In general, for any µ0 ∈ P2, we take a sequence {µ(n)
0 }n≥1 ⊂ P2 converging to µ0 in

W2 and having densities with respect to the Lebesgue measure. Then µ
(n)
0 converges to µ0

weakly. By (4.10), this implies

lim
n→0

(Ps,tf(µ
(n)
0 ) = (Ps,tf(µ0),

lim
n→∞

sup
ν∈B(µ

(n)
0 ,W2(µ

(n)
0 ,ν0))

{
(Ps,tf

2)(ν)− (Ps,tf)
2(ν)

}
= sup

ν∈B(µ0,W2(µ0,ν0))

{
(Ps,tf

2)(ν)− (Ps,tf)
2(ν)

}
.

Therefore, by (4.11) with µ
(n)
0 replacing µ0 which we just proved, and letting n → ∞, we

finish the proof.

4.3 Proof of Theorem 4.2

Again, we only prove for s = 0. By (4.13), for any r > 0 we have

exp

[
− rΓ(T )W2(µ0, ν0)

2

λ(T )2

]
EQ

[
e
r
∫ t∧τn
0

|Xs−Ys|2

ξ2s
ds
]

≤ EQ

[
e

2r|X0−Y0|
2

ξ0
+4r

∫ t∧τn
0

⟨Xs−Ys,{σs(Xs)−σs(Ys)}dW̃s⟩
ξs

]
≤ EQ

[
e

2r|X0−Y0|
2

ξ0 EQ

(
e4r

∫ t∧τn
0

⟨Xs−Ys,{σs(Xs)−σs(Ys)}dW̃s⟩
ξs

∣∣∣F0

)]
≤ EQ

[
e

2r|X0−Y0|
2

ξ0

√
EQ

(
e
32r2

∫ t∧τn
0

|{σs(Xs)−σs(Ys)}∗(Xs−Ys)|2
ξ2s

ds
∣∣∣F0

)]
≤

√
EQe

4r|X0−Y0|2
ξ0

√
EQe

32r2γ(T )2
∫ t∧τn
0

|Xs−Ys|2
ξ2s

ds
,

(4.29)
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where we have used the inequality EQ(e
Mt|F0) ≤

√
EQ(e2⟨M⟩t|F0) for a continuous Q-

martingale Mt. When r ≤ 1
32γ(T )2

, by Jensen’s inequality√
EQe

32r2γ(T )2
∫ t∧τn
0

|Xs−Ys|2
ξ2s

ds ≤
(
EQ

[
e
r
∫ t∧τn
0

|Xs−Ys|2

ξ2s
ds
])16rγ(T )2

,

so that (4.29) implies

EQ

[
e
r
∫ t∧τn
0

|Xs−Ys|2

ξ2s
ds
]
≤ e

rΓ(T )W2(µ0,ν0)
2

λ(T )2(1−16rγ(T )2)

(
EQ

[
e

4rκ1(T )|X0−Y0|
2

1−e−κ1(T )T

]) 1
2−32rγ(T )2

.

Letting n ↑ ∞ and t ↑ T , and noting that Q|F0 = P|F0 since R0 = 1, we obtain

EQ

[
e
r
∫ T
0

|Xs−Ys|2

ξ2s
ds
]
≤e

rΓ(T )W2(µ0,ν0)
2

λ(T )2(1−16rγ(T )2)

(
E
[
e

4rκ1(T )|X0−Y0|
2

1−e−κ1(T )T

]) 1
2−32rγ(T )2

,

if 0 ≤ r ≤ 1

32γ(T )2
.

(4.30)

On the other hand, letting Mt =
∫ t
0

1
ξs
⟨σs(Xs)

−1(Ys −Xs), dW̃s⟩, t ∈ [0, T ], by (4.20) we

have RT = eMT+ 1
2
⟨M⟩T . So,

ER
p

p−1

T = EQR
1

p−1

T = EQe
MT
p−1

+
⟨M⟩T
2(p−1)

≤
(
EQ exp

[
1

√
p− 1

MT − 1

2(
√
p− 1)2

⟨M⟩T
]) 1

1+
√

p
(
EQ exp

[
⟨M⟩T

2(
√
p− 1)2

]) √
p√

p+1

≤
(
EQ exp

[
λ(T )2

2(
√
p− 1)2

∫ T

0

|Xs − Ys|2

ξ2s
ds

]) √
p√

p+1

.

(4.31)

Since p ≥ p(T ) implies λ(T )2

2(
√
p−1)2

≤ 1
32γ(T )2

, this and (4.30) with r = λ(T )2

2(
√
p−1)2

yield

ER
p

p−1

T ≤ e

√
pΓ(T )W2(µ0,ν0)

2

(
√

p+1){2(√p−1)2−16λ(T )2γ(T )2}

(
EQe

2λ(T )2κ1(T )|X0−Y0|
2

(
√
p−1)2(1−e−κ1(T )T )

) √
p (

√
p−1)2

(
√
p+1){2(√p−1)2−16λ(T )2γ(T )2}

.

Substituting into (4.6), we finish the proof.

5 Shift Harnack inequality and applications

In this section we establish the shift Harnack inequality and integration by parts formula
introduced in [24]. Since the study for the multiplicative noise case is very complicated, here
we only consider the additive noise for which the DDSDE (1.6) reduces to

(5.1) dXt = bt(Xt,LXt)dt+ σtdWt.
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Theorem 5.1. Let σ : [0,∞) → Rd⊗Rd and b : [0,∞)×Rd×P2 → Rd are measurable such
that σt is invertible with ∥σt∥+ ∥σ−1

t ∥ locally bounded in t ≥ 0, and bt(·, µt) is differentiable
with ∫ T

0

∥∇bt(·, µt)∥2∞dt <∞, T > 0, µ· ∈ C([0, T ];P2).

(1) For any p > 1, t > s ≥ 0, µ0 ∈ P2, v ∈ Rd and f ∈ B+
b (Rd),

(Ps,tf)
p(µ0) ≤(Ps,tf

p(v + ·))(µ0)

× exp

[
p
√
p |v|2

∫ t
s
∥σ−1

r ∥2
{
1 + (r − s)∥∇br(·, P ∗

s,rµ0)∥∞
}2
dr

2(p− 1)(
√
p+ 1)(t− s)2

]
.

Moreover, for any f ∈ B+
b (Rd),

(Ps,t log f)(µ0) ≤ log(Ps,tf(v+·))(µ0)+
|v|2

2(t− s)2

∫ t

s

∥σ−1
r ∥2

(
1+(r−s)∥∇br(·, µr)∥∞

)2

dr.

(2) For any t > s ≥ 0, f ∈ C1(Rd) and Fs-measurable random variable Xs,s with µ0 :=
LXs,s ∈ P2,

E(∇vf)(Xs,t) = E
[
f(Xs,t)

t− s

∫ t

s

(r − s)
⟨
σ−1
r ∇vbr(·, P ∗

s,rµ0)(Xs,r), dWr

⟩]
, v ∈ Rd.

Proof. Without loss of generality, we only prove for s = 0 and t = T for some fixed time
T > 0. Denote µt = P ∗

t µ0 = LXt , t ≥ 0. Then (5.1) becomes

(5.2) dXt = bt(Xt, µt)dt+ σtdWt, LX0 = µ0.

Let Yt = Xt +
tv
T
, t ∈ [0, T ]. Then

dYt = bt(Yt, µt)dt+ σtdW̃t, LY0 = µ0, t ∈ [0, T ],

where

W̃t := Wt +

∫ t

0

ξsds,

ξt := σ−1
t

{ v
T

+ bt(Xt, µt)− bt

(
Xt +

tv

T
, µt

)}
.

Let RT = exp[−
∫ T
0
⟨ξt, dWt⟩ − 1

2

∫ T
0
|ξs|2ds]. By the Girsanov theorem we obtain

(PTf)(µ0) = E[RTf(YT )] = E[RTf(XT + v)] ≤ (PTf
p(v + ·))

1
p (µ0)

(
ER

p
p−1

T

) p−1
p .

This proves (1) since similarly to (4.31), we have

ER
p

p−1

T = EQR
1

p−1

T ≤
(
EQe

p

2(p−1)2

∫ T
0 |ξs|2ds

) √
p√

p+1

23



≤ exp

[
p
√
p |v|2

∫ T
0
∥σ−1

t ∥2
{
1 + t∥∇bt(·, P ∗

t µ0)∥∞
}2
dt

2(p− 1)2(
√
p+ 1)T 2

]
.

To prove (2), we let Xε
t = Xt +

εtv
T

for ε ∈ (0, 1) and t ∈ [0, T ]. Using εv replace v, the
above argument implies

(PTf)(µ0) = E[Rε
Tf(XT + εv)], ε ∈ (0, 1),

where

Rε
T := exp

[
−

∫ T

0

⟨ξεt , dWt⟩ −
1

2

∫ T

0

|ξεs |2ds
]
,

ξεt := σ−1
t

{εv
T

+ bt(Xt, µt)− bt

(
Xt +

εtv

T
, µt

)}
.

Therefore,

0 = lim
ε→0

1

ε
E[Rε

Tf(XT + εv)− f(XT )]

= E[(∇vf)(XT )]− E
[
f(XT )

T

∫ T

0

r
⟨
σ−1
r ∇vbr(·, P ∗

0,rµ0)(Xr), dWr

⟩]
.

Then the proof is finished.

As applications of Theorem 5.1, we have the following estimates on the density of P ∗
s,t.

Corollary 5.2. In the situation of Theorem 5.1, for any t > s ≥ 0 and µ0 ∈ P2,
(P ∗

s,tµ0)(dx) = ρµ0s,t(x)dx for some density function ρµ0s,t satisfying the following estimates:∫
Rd

|∇ log ρµ0s,t(x)|pρ
µ0
s,t(x)dx

≤
{
(1 ∨ p(p−1)

2
)

(t− s)2

∫ t

s

(r − s)2∥σ−1
r ∥2∥∇br(·, P ∗

s,rµ0)∥2∞dr

} p
2
(1∧ 1

p−1
)

, p > 1;

(5.3)

∫
Rd

{
ρµ0s,t(x)

} p
p−1dx

≤
(
p
√
p
∫ t
s
∥σ−1

r ∥2{1 + (r − s)∥∇b2(·, P ∗
s,rµ0)∥∞}2dr

4π(p− 1)(
√
p+ 1)(t− s)2

) d
2(p−1)

, p > 1;

(5.4)

∫
Rd

ρµ0s,t(x) log ρ
µ0
s,t(x)dx

≤ d

2
log

(∫ t
s
∥σ−1

r ∥2{1 + (r − s)∥∇b2(·, P ∗
s,rµ0)∥∞}2dr

4π(
√
p+ 1)(t− s)2

)
.

(5.5)
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Proof. According to [24, Theorem 2.4, Theorem 2.5], the desired assertions follow from
Theorem 5.1 . Indeed, by [24, Theorem 2.4], the integration by parts formula in Theorem
5.1(2) implies the existence of density ρµ0s,t and∫

Rd

|∇ log ρµ0s,t(x)|pρ
µ0
s,t(x)dx = E|∇ log ρµ0s,t|p(Xs,t) = E

∣∣E(N |Xs,t)
∣∣p ≤ E|N |p,

where

N :=
1

t− s

∫ t

s

(r − s){σ−1
r ∇br(·, P ∗

s,rµ0)(Xs,r)}∗dWr.

Then estimate (5.3) follows. Moreover, it is easy to see that the proof of [24, Theorem
2.5] also applies to P ∗

s,tµ0 in place of P (x, ·), so that estimates (5.4) and (5.5) follow from
Theorem 5.1(1).

6 DDSDEs for homogeneous Landau equation

We consider the homogeneous Landau equation with r ∈ [0, 1] on R3 (see e.g. [19]):

(6.1) ∂tft =
1

2
div

(∫
R3

| · −y|2+γ
(
I − (· − y)⊗ (· − y)

| · −y|2
){
ft(y)∇ft − ft∇ft(y)

}
dy

)
.

Let a(x) = |x|γ(|x|2I − x⊗ x) and

(6.2) b0(x) := diva(x) = −2|x|γx, σ0(x) := |x|
γ
2

 x2 0 x3
−x1 x3 0
0 −x2 −x1

 .

Then σ0σ
∗
0 = a. Take

bt(x, µ) = b(x, µ) := −2

∫
Rd

|x− z|γ(x− z)µ(dz),

σt(x, µ) = σ(x, µ) :=

∫
Rd

σ0(x− z)µ(dz).

(6.3)

Then the density of LXt for the DDSDE (1.6) is a weak solution to (6.1). In this section we
consider (1.6) for this specific choice of b and σ.

6.1 The case with Maxwell molecules: γ = 0

When γ = 0, both b0 and σ0 in (6.2) are Lipschitz continuous. Below we consider a more
general model. For two Lipschitz continuous maps

b0 : Rd → Rd, σ0 : Rd → Rd ⊗ Rd,
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let

bα(x, µ) :=

∫
Rd

b0(x−αz)µ(dz), σα(x, µ) :=

∫
Rd

σ0(x−αz)µ(dz), α ∈ R, x ∈ Rd, µ ∈ P2.

For fixed α, β ∈ R, consider the DDSDE

(6.4) dXt = bα(Xt,LXt)dt+ σβ(Xt,LXt)dWt.

Theorem 6.1. Let α, β ∈ R, B0 := ∥∇b0∥∞ < ∞ and C0 := sup|v|=1,x∈Rd ∥∇vσ0(x)∥2HS <
∞. Moreover, let K0 ∈ R such that

⟨b0(x)− b0(y), x− y⟩ ≤ K0|x− y|2, x, y ∈ Rd.

(1) For any F0-measurable X0 with E|X0|2 <∞, the equation (6.4) has a unique solution
and supt∈[0,T ] E|Xt|2 < ∞ for all T > 0. Moreover, Xt(x) is jointly continuous in

(t, x) ∈ [0,∞)× Rd.

(2) For any µ0, ν0 ∈ P2,

W2(P
∗
t µ0, P

∗
t ν0)

2 ≤ W2(µ0, ν0)
2e(2K0+C0(1+|β|)2+2|α|B0)t, t ≥ 0.

If, in particular, 2K0+C0(1+|β|)2+2|α| < 0, then P ∗
t has a unique invariant probability

measure.

(3) If β = 0 and σ0 is invertible with λ := ∥σ−1
0 ∥∞ < ∞, then assertions in Theorem 4.1,

Theorem 4.2 and Corollary 4.3 hold for

ϕ(s, t) = λ2
(

2K0 + C0

1− e−(2K0+C0)(t−s)
+ (t− s)|α|e2(t−s)(2K0+C0+2|α|)

)
.

(4) If σ0 is constant and invertible, then assertions in Theorem 5.1 and Corollary 5.2 hold
for σr ≡ σ0.

Proof. Since b0 and σ0 are Lipschitz continuous, it is easy to see that (H1)-(H3) and (2.5)
hold for (bt, σt) ≡ (bα, σβ) for all t ≥ 0. Then the first assertion follows from Theorems 2.1
and 2.2.

To prove the second assertion using Theorem 3.1(2), we observe that for any π ∈ C (µ, ν).

⟨bα(x, µ)− bα(y, ν), x− y⟩

=

∫
Rd

(
⟨b0(x− αz)− b0(y − αz), x− y⟩+ ⟨b0(y − αz)− b0(y − αz′), x− y⟩

)
π(dz, dz′)

≤ K0|x− y|2 +B0|α| · |x− y|
∫
Rd

|z − z′|π(dz, dz′).

Then

2⟨bα(x, µ)− bα(y, ν), x− y⟩ ≤ 2K0|x− y|2 + 2|α|B0W1(µ, ν)|x− y|
≤ (2K0 + |α|B0)|x− y|2 + |α|B0W2(µ, ν)

2.
(6.5)
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Similarly,

∥σβ(x, µ)− σβ(y, ν)∥2HS ≤ C0

{
|x− y|+ |β|W1(µ, ν)

}2

≤ C0(1 + |β|)|x− y|2 + C0(|β|+ β2)W2(µ, ν)
2.

Combining this with (6.5) we obtain

2⟨bα(x, µ)− bα(y, ν), x− y⟩+ ∥σβ(x, µ)− σβ(y, ν)∥2HS
≤ {2K0 + |α|B0 + C0(1 + |β|)}|x− y|2 + {|α|B0 + C0|β|(1 + |β|)}W2(µ, ν)

2.

Then the second assertion follows from Theorem 3.1(2).
Finally, by (6.5) and ∥σ0(x)− σ0(y)∥2HS ≤ C0|x− y|2 we have

2⟨bα(x, µ)− bα(y, ν), x− y⟩+ ∥σ0(x)− σ0(y)∥2HS ≤ (2K0 +C0)|x− y|2 +2|α||x− y|W2(µ, ν).

Then assumption (A) holds for λ(t) = λ, κ1(t) = 2K0 + C0 and κ2(t) = 2|α|. Therefore,
assertions (3) and (4) follow from Theorem 4.1, Theorem 4.2, Corollary 4.3, Theorem 5.1
and Corollary 5.2.

Coming back to the DDSDE for the homogeneous Landau equation with Maxwell molecules,
i.e. (6.4) for b0 and σ0 in (6.2), Theorem 6.1 applies with B0 = C0 = 2 and K0 = −2, so
that we have the following result.

Corollary 6.2. Let b0 and σ0 be in (6.2) and let α, β ∈ R. For any F0-measurable X0

with E|X0|2 < ∞, the equation (6.4) has a unique solution and supt∈[0,T ] E|Xt|2 < ∞ for all

T > 0. Moreover, Xt(x) is jointly continuous in (t, x) ∈ [0,∞) × Rd. Moreover, for any
µ0, ν0 ∈ P2,

W2(P
∗
t µ0, P

∗
t ν0)

2 ≤ W2(µ0, ν0)
2e{4(|α|+|β|)+2β2−2}t, t ≥ 0, µ0, ν0 ∈ P2.

When 2(|α|+ |β|) + β2 < 1, P ∗
t has a unique invariant probability measure µ and

W2(P
∗
t ν0, µ)

2 ≤ e−2(1−2|α|−2|β|−β2)tW2(ν0, µ)
2, t ≥ 0, ν0 ∈ P2.

When β = α = 1 which corresponds to the homogeneous Landau equation with Maxwell
molecules,

(6.6) W2(P
∗
t µ0, P

∗
t ν0)

2 ≤ W2(µ0, ν0)
2e8t, t ≥ 0, µ0, ν0 ∈ P2.

Remark 6.1. Let N(z, A) denote the normal distribution on Rd with mean z ∈ Rd and
covariance A, and let α = β = 1 in Corollary 6.2 for the homogeneous Landau equation
with Maxwell molecules. According to [3, Theorem 1.1] (see also [6]), there exists a constant
p > 0 such that if ∫

Rd

|x|pµ0(dx) +

∫
Rd

|ξ|p|µ̂0(ξ)|2dξ <∞,

where µ̂0 is the fourier transform of µ0, then

∥P ∗
t µ0 −N(z0, γ

2
0I)∥var ≤ c1e

−c2t, t ≥ 0
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holds for some constants c1, c2 > 0 depending on µ0, where z0 :=
∫
R3 xµ0(dx) and γ20 :=∫

Rd |x− z0|2µ0(dx). See [4] for exponential convergence in the case that γ ∈ (0, 1]. Therefore,
P ∗
t is not ergodic since the limit distribution varies in the initial one. This fits the inequality

(6.6) where the upper bound does not go to 0 as t → ∞. However, it seems that the sharp
upper bound in (6.6) should be bounded in t.

6.2 The case with hard potentials: γ ∈ [0, 1]

When γ ∈ [0, 1], the weak existence and uniqueness have been proved in [8]. To prove the
same assertion for strong solutions, we first present a result for the equivalence of the weak
existence/uniqueness and the strong existence/uniqueness.

Theorem 6.3. Let θ ≥ 1. Assume that for any µ ∈ C([0,∞) → Pθ) the SDE

(6.7) dXt = bt(Xt, µt)dt+ σt(Xt, µt)dWt

has strong existence and uniqueness for X0 with LX0 = µ0. Then for initial distribution
µ0 ∈ Pθ, the DDSDE (1.6) has weak existence (respectively uniqueness) if and only if it has
strong existence (respectively uniqueness).

Proof. (a) Since the strong existence implies the weak one, it suffices to prove the strong
existence from the weak one. For any initial distribution µ0 ∈ Pθ, let (X̄t, W̄t) be a weak
solution under probability P̄. We have

(6.8) dX̄t = bt(X̄t, µt)dt+ σt(X̄t, µt)dW̄t,

where µt := LX̄t
|P̄. Now, given a Brownian motion under the probability P, let Xt be a

strong solution to (6.7) with LX0 = µ0. By Yamada-Watanabe’s principle for SDE, the
strong existence and uniqueness of (6.7) imply the weak uniqueness, so that LXt = µt so
that (6.7) reduces to the DDSDE (1.6). Then the strong solution to (6.7) is also a strong
solution to (1.6).

(b) Obviously, the weak uniqueness implies the strong uniqueness. On the other hand,

let (1.6) has strong uniqueness, we aim to prove the weak uniqueness. Let (X
(i)
t ,W

(i)
t ) under

probability Pi(i = 1, 2) be two weak solutions to (1.6) with L
X

(1)
0
|P1 = L

X
(2)
0
|P2 = µ0, we

aim to prove

(6.9) LX(1) |P1 = LX(2)|P2 .

Let µt = L
X

(1)
t
|P1 . By assumption, the SDE

(6.10) dXt = bt(Xt, µt)dt+ σt(Xt, µt)dW
(2)
t , X0 = X

(2)
0

has a unique strong solution X := (Xt)t≥0. By Yamada-Watanabe’s principle, (6.10) also
has weak uniqueness. So,

(6.11) LX |P2 = LX(1) |P1 .

In particular, LXt |P2 = µt, so that Xt is also a strong solution to (1.6) with the given

Brownian motion W
(2)
t replacing Wt. Since X

(2)
t solves the same DDSDE, by the strong

uniqueness of (1.6) we have X = X(2). Combining this with (6.11), we prove (6.9).
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Now, we consider the DDSDE (1.6) with bt and σt in (6.3) for γ ∈ (0, 1].

Corollary 6.4. Let with bt and σt in (6.3) for γ ∈ (0, 1]. Then for any F0-measurable X0

with density f0 satisfying (1.5), the DDSDE (1.6) has a unique strong solution such that
Ee|Xt|α <∞ for any t > 0.

Proof. By [8, Theorem 2], the SDDE has a unique weak solution such that Ee|Xt|α <∞ for
any t > 0. According to Theorem 6.3, the same holds for the strong solution.
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