SOBOLEV REGULARITY FOR THE POROUS MEDIUM EQUATION
WITH A FORCE

BENJAMIN GESS

ABSTRACT. We establish improved velocity averaging Lemmata with applications to
non-isotropic parabolic-hyperbolic PDE. In particular, this leads to improved spatial
regularity estimates for solutions to porous media equations with a force in fractional
Sobolev spaces. Scaling arguments indicate that the obtained regularity is optimal and
it is consistent with the optimal regularity in the linear limit. In particular, regularity
estimates of an order of differentiability larger than one are obtained for forced porous
media equations here for the first time. In addition, optimal regularity estimates for a
degenerate parabolic Anderson model are shown in one spatial dimension.

1. INTRODUCTION

We consider the spatial regularity of solutions to porous media equations with a force,
that is, to

(1.1) dyu — Aul™ = S(t,2) on (0,T) x RY,
u(0) = ug on RY,

with ug € L'(R%), S € LY([0,T] x RY), T > 0, m > 1 and ul™ := |u[" lu. We are
particularly interested in the case m € (1,2) and in the limit case m | 1. To this end,
we note that all available regularity results for concerning spatial regularity in terms
of Holder or Sobolev spaces are restricted to a degree of differentiability of an order less
than one. Clearly, this is in contrast to the limit case m = 1 where u is known to be twice
(spatially) weakly differentiable. In contrast, in this paper we provide regularity estimates
for in (fractional) Sobolev spaces of order of differentiability %—. Scaling arguments
suggest that this is the optimal regularity and, in particular, this is consistent with the
optimal regularity in the linear limit m | 1.

The regularity of solutions to porous media equations in fractional Sobolev spaces has
been previously analyzed by Ebmeyer in [16, Theorem 2.3], where it was shown that, for
S =0, ug € L*° and on bounded domains with zero Dirichlet boundary conditions,

(1.2) u € LT[0, T, W™ Vs <

m+1
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By entirely different methods, Tadmor-Tao showed in [31] that, for all ¢ > 0 and ug €
(L' N L=)(RY),

s,1 d
(R .
u(t) e W, (RY), Vs< 1

A comparison with the Barenblatt solution

k(m—1) |zf? )ml

UBB(tam;a”)/) = (t +’7)_k <a2 N 2dm (t+ )%
’y d

+

where 7, a, k are appropriately chosen constants (cf. [32]), which satisfies

vt
ocC

upp(t) € W, iff v <

m—1

shows that can be close to optimal only in the limit m 1 oo. In particular, since
5 < miﬂ < 1, no weak differentiability of an order higher than one can be deduced by
the results of [16, Theorem 2.3]. This restriction is inherent to the methods employed
in [16], for a more detailed discussion we refer to Remark below. As a consequence,
the regularity estimates obtained in [16,31] are not sharp for m close to one. In fact, in the
linear case (m = 1) we have u € L'([0, T]; W2 (R%)) which may suggest that for one
has u(t) € WsmPm for some sequences S, T 2, py, | 1 for m | 1. Indeed, a simple scaling
argument (cf. Section ) suggests an optimal regularity of order % The proof of this
fact is the main result of this paper: We prove that solutions of , with ug € LP(RY),
S € LP([0,T] x RY) satisfy

2
(1.3) we LP([0,T); WSP(RY)), Vs < —pE [1,m),

loc

which provides an optimal, consistent regularity estimate in the “linear limit” m | 1. We
also provide quantitative estimates of ([1.3)) of the form, for every § > 0 small enough,

z,loc

Itz < € (100l s gosnss 1913y gz, +1)-

In addition, we treat more general classes of equations, in particular including anisotropic
porous media equations of the form

d
(1.4) Opu — Z@xﬂju[mf] = S(t,z) on (0,T) x RY,
j=1
with 1 < m := min{m;} and let m := max{m;}. In this case we obtain that, for all
2 (m—1 2m
5 < i (%) P < mrT

/ £t 2,0)6(0) dv € LP([0, T); WP (RY))

where f(t,2,v) := 1,cyu(t,z) — lu<o and ¢ is an arbitrary cut-off function.
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In a third main result, we consider the degenerate parabolic Anderson model
(1.5) O = Opzul™ + 4 S on (0,T) x I
u=0on (0,7) x 0
u(0) = ug € L™TH(I),

on an open, bounded interval I C R, with m € (1,2) and S being spatial white noise.

The additional difficulty in this case is the irregularity of the source S, since spatial white

noise is a distribution only. We prove the existence of a weak solution u to (1.5]) satisfying
13

(1.6) we LP([0, T, WP(I)), Vs< 5P € [1,m).

The proof presented in this paper is based on Fourier analytic techniques and averaging

Lemmata. The key first step is to pass to a kinetic formulation of (|1.1)). Introducing the
kinetic function f(t,x,v) := L,<y(,2) — lu<o leads to the kinetic form of (L.1)

(17) O f — m‘v|m_1Af = 0yq + S(ta x)éu(t,x) (U)a

for some non-negative measure q. Since this constitutes a linear equation in f, the reg-
ularity of velocity averages [ f¢(v)dv for smooth cut-off functions ¢ can be analyzed by
means of suitable micro-local decompositions in Fourier space. Up to this point our setup
is in line with [31]. However, in the available literature, one of the drawbacks of analyzing
regularity by means of averaging techniques is that it was unknown how to make use of
the sign of the measure g. In fact, these estimates only made use of the fact that the total
variation norm of ¢ is finite (cf. e.g. [12,/13]). In this work, we make use of the additional
fact that the entropy dissipation measure ¢ has finite singular moments, meaning that
|v|~7q has finite mass for all v € [0,1). In this way we are able to exploit, at least to
some extent, the sign property of ¢. In addition, we introduce a new concept of isotropic
truncation properties for Fourier multipliers, which allows us to obtain improved integra-
bility exponents in the estimate . A further obstacle arising in classical averaging
arguments is that they rely on a bootstrap technique. However, even if u is smooth, the
kinetic function f will only have up to one spatial derivative. Therefore, the standard
bootstrap argument is not well-suited in order to derive higher order differentiability es-
timates. In the anisotropic case, this difficulty is avoided in the current paper by directly
exploiting the v-regularity of f. In the isotropic case these issues are overcome by intro-
ducing the isotropic truncation property mentioned above. In both cases this allows to
fully avoid bootstrapping arguments. In order to underline the differences and improve-
ments with regard to [31] we employ the notation and structure of [31] as far as possible.
While, as usual in the theory of averaging techniques, our proof also relies on a micro-local
decomposition in Fourier space, the order of decomposition and real-interpolation, the key
Lemma the bootstrapping argument and the estimation of the entropy dissipation
measure proceed differently, as outlined above.

1.1. Short overview of the literature. The study of regularity of solutions to porous
media equations has a long history and we make no attempt to reproduce a complete ac-
count here. In the absence of external forces, the continuity of weak solutions to the porous
medium equation has been first shown in general dimension by Caffarelli-Friedman in [8].
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This result has been subsequently generalized to the case of forced porous media equa-
tions by Sacks in [29,30], based on arguments developed by Cafarelli-Evans in [7]. Further
generalizations to more general classes of equations have been shown by DiBenedetto [14]
and Ziemer [34]. A detailed account of these developments may be found in Vazquez [32].
Holder continuity of solutions to the porous medium equation without force was first ob-
tained by Caffarelli-Friedman [9], see also [32,33], where it is shown that bounded solutions
to the porous medium equations are spatially a-Ho6lder continuous with o = % € (0,1).
We note that in the linear limit m | 1 this does not recover the optimal Holder regularity
of the linear case. A generalization to a more general class of degenerate PDE has been
obtained by DiBenedetto-Friedman in [15]. In the recent work [25], the assumptions on
the forcing have recently been relaxed and quantitative estimates are obtained. In partic-
ular, it is shown that the Holder exponent « is bounded away uniformly from 0 for m | 1.
In the nice recent works [5,/6] continuity estimates for the porous medium equation and
inhomogeneous generalizations thereof with measure valued forcing have been derived.

A particular feature of the porous medium equation (m > 1) is the effect of finite speed
of propagation and thus the occurrence of open interfaces. The regularity of the open
interfaces has attracted a lot of attention in the literature, cf. e.g. Caffarelli-Friedman [9],
Caffarelli-Vazquez-Wolansky [10], Koch [24] and the references therein.

In non-forced porous media equations also higher order regularity estimates have been
obtained. In one spatial dimension Aronson-Vazquez |2] proved eventual C'*° regularity
of solutions. For recent progress in the general dimension case see Kienzler-Koch-Vazquez
[23].

In terms of fractional Sobolev regularity of solutions to the porous medium equation less
is known. As mentioned above, Ebmeyer [16] and Tadmor-Tao [31] proved for non forced
porous media equations that

(1.8) we L0, T, W th), Vs <

oc

m+1

See also Appendix |C| for a slight improvement of these results. In the recent work [20],
Gianazza-Schwarzacher proved higher integrability for nonnegative, local weak solutions
to forced porous media equations in terms of a bound on

m—+41

oMz o mywizee)

for all € > 0 small enough. In the case of non-forced porous medium equations, Aronson-
Benilan type estimates can be used to derive further regularity properties. For example,
in [32, Theorem 8.7] it has been shown that Au™ € L} ((0,00); L1).

1.2. Structure of the paper. In Section [2 we will consider the case of anisotropic,
parabolic-hyperbolic second order PDE. The proof of certain multiplier estimates will
be postponed to the Appendix [A] In Section [3] we then treat the isotropic case in more
detail, in particular introducing the concept of the isotropic truncation property for Fourier
multipliers. We will then deduce our main regularity estimates for forced porous media
equations. In Section (4] we treat the case of the one-dimensional degenerate parabolic
Anderson model. A slight improvements of the results obtained by Ebmeyer [16] will be
presented in Appendix [C]
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1.3. Notation. For p € [1,00) we let L? be the usual Lebesgue spaces. The space of
all locally finite Radon measures is M, the subspace of all measures with finite total
variation Mpy. We let M+ C M be the set of all non-negative, locally finite Radon
measures and M;V = Mqpy N MT. When convenient we will use the shorthand no-
tation L} = L*(R?), L}, = L'([0,7] x RY). For p > 1 let p’ be its conjugate, that
is, 113 + % = 1. We further let H, be the fractional Sobolev spaces defined via their

Fourier transform, that is, as in [22, Definition 6.2.2] and W*P be the fractional Sobolev-
Slobodeckij spaces (cf. |1, Section 7.35]). We follow the notation of [21,]22] and [3]. Let
N*P(RY) be the Nikolskii spaces (cf. [27]) and B, , Besov spaces (cf. [21]). We further let

P By, = LP([0,T); B; ,(R%) denote time-space nonhomogeneous Besov spaces as in [3,
Definition 2.67]. We define the discrete increment operator by Afu := u(x + he) — u(z).
For results and standard notations in interpolation theory we refer to |4]. We let SiXd
denote the space of symmetric, non-negative definite matrices. For b = (b); j=1..4 € SiXd
we set 0 = b%, that is, b; ; = ZZ:1 0; k0k,j- For a locally bounded function b: R — SiXd
we let ;1 be such that 8], (v) = 0, (v). Similarly, for ¢ € C2°(R,) we let ij be such
that (ﬁfk)’(v) = 1(v)o; 1 (v). We further introduce the kinetic function

X(uv U) = ly<y — Ly<o-

Analogously, for a function u : [0, T]xR? — R we set f(t,,v) := x(u(t,z),v) = Ly<u(t,z)—
1y<0. We use the short-hand notation |£| ~ 27 for the set {¢ € R: 2/~ < |¢| < 271}, For
u € R we set ul™ := |u/™ v,

2. ANISOTROPIC CASE

We consider equations of the form
(2.1) O f(t,z,v) +a(v) - Vi f(t,z,v) — div(b(v)V, f(t, z,v)) =: L(O, Vg, v) f(t, z,v)
= go(t,x,v) + 0yg1(t, x,v),
where a : R - R4 b: R — SiXd are C'. The operator £ is given by its symbol
(2.2) L(i1,i&,v) =it +ia(v) - £ + (£, b(v)E).

In this section we will derive regularity estimates for the velocity average, for ¢ € Cy°(R,),

fit,z) = / F(t, 2, 0)(v) do.

These regularity properties are obtained by using a suitable micro-local decomposition of f
in Fourier space, which in turn relies on the so-called truncation property of the multiplier
L (cf. Definition below). In contrast to previous results, we will make use of singular

moments of g1, that is, for v € (0,1),
LI(R; x RE x R l<qg<2
nltwo)lo| e 4 1R B R L
Mry(Ry x Rg xRy), ¢=1.

An additional difficulty arises in the use of bootstrapping arguments. In the theory of
averaging Lemmata, optimal regularity estimates are typically obtained by bootstrapping
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a first non-optimal regularity estimate. This argument, however, can only be applied if the
aspired final order of regularity is less than one. Therefore, we have to devise a proof which
avoids the use of a bootstrapping argument, which is achieved in Section[A] by improving a
fundamental LP estimate on a class of Fourier multipliers by directly exploiting regularity
of f in the velocity direction.

2.1. Anisotropic averaging lemma.

Lemma 2.1. Let [ € Lf’x(Hg’p) for 1 < p <2 solve, in the sense of distributions,

n n
(2.3) L(O, Vg, v)f(t,z,v) = AZ go(t,z,v) + 0,AZ g1(t,z,v) on Ry X ]Rg x Ry,
with g; being locally bounded measures satisfying
_ Li(R; x R x R,), l<g<2
(2.4) |90l (t, 2, v) + [g1|(t, 2, v)[0] 7 € (o s d ? !
Mry (Re x R x Ry), ¢=1,

for somey >0,n1>0,1<q<pand L(O,Vyz,v) as in (2.1)) with corresponding symbol
L(it,i&,v) as in (2.2)). Assume that L(iT,i§,v) satisfies the truncation property uniformly
inv €R (c¢f. Appendiz . Let I C R be a not necessarily finite interval and set

wﬁ(']; 6) = sup |Q£(77€;5)|7 QC<T7§;5) = {U €l: ’ﬁ(”—a Z§7U)| < 5}7
TER, EERY €|~ T

and suppose that the following non-degeneracy condition holds: There exist o, B > 0 such
that

0
(2.5) we(J;0) S (ﬁ)a vé>1, J>1.
Moreover, assume that there exist A > 0 and p € [0,1] such that, ¥o > 1, J > 1,
(2.6) sup sup  |9pL(iT, i€, v)||v]" < JAH

and 0;—? < X+1n. Then, for all s € [0,s%), p € [1,p*), ¢ € Cy°(I), T >0 and O CC R?,
there is a C > 0 such that

H/f(t,x,v)qb(v) dU”Lf’([O,T];stZB(O)) < C(||90¢HL‘1

t,z,v

+ [lg1¢'|| e

t,x,v

+ ol 919l g

t,x,v

150l gy + Nl oy + 1700 7 s3)
with s* = (1 — 9)0‘75 + 0(0‘(1—,5 — A —m), where § =0, and p* are given by

1 1-60 0 P
€(0,1), —i=—+ -, rc(——, PN (1, 0).
%_%)4‘1 ( )P* D q (1+Up’p] ( )

Proof. Let o, ¢1 be smooth functions with ¢y supported in B;(0) and ¢; supported in
the annulus {£ € R?: 1 < |¢| <2} and

po(6) + > p1(277€) =1, VEeR?

jEN
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By considering the decomposition f = fy + f1 with

for=F o Fufl, fri= > Fu'lenl

jeN

§

we may assume without loss of generality that f has Fourier transform supported on
B;1(0)¢, since for all n € [1, 00)

(2.7) u / fobdoll ppwen < 1£6lry. 11

Partially inspired by [31, Averaging Lemma 2.3] we consider a micro-local decomposition
of f with regard to the degeneracy of the operator L£(9;,V,,v). Let 1, 11 be smooth
functions with vy supported in B;(0) and 1; supported in the annulus {£ € C : % <E <
2} and

O+ @ r =1, weC
keN
For 9 > 0 to be specified later we write

O, Vg, (O, Va,
F= (BT po o (AT g
= O+ f
where, for k € NU {0},

T;Z)Z' (E(atavmav)) — ]:tjxl Z(‘C(ZT’ Zg?“)) ]:t,m-

52k
Since f solves (2.3)) we have

L(0 n n
(2.8)  L(d, Vg, v)fL(t,z,v) Zz/;l < t(;Qk )> (Aa?go(t,x,v) +A§3vgl(t,x,v)>
keN
and thus
L(0, Vg, 1
(29) t Z, ’U Z 52]61/}1 < t52k U)> AxQ.gO(tuxu’U)
keN
a’ b
+)° 521{‘?1 ( t52k )> Azavgl(t ,v)
keN
::f2(t,x,v) +f3(t,x,v),
where
- P(2)
TORRA:

In conclusion, we have arrived at the decomposition

f:z/fg&dvz/f0¢dv+/f2¢dv+/f3¢dv::f0+f2+f3.
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We aim to estimate the regularity of f9, f2, f3 in Besov spaces. Hence, we decompose
each f' into Littlewood-Paley pieces with respect to the z-variable. Let g, ¢1 be as
above. We set, for i = 0, 2, 3,

fio= F o S)F S, forjeN.

Then, since f* has Fourier transform supported on By (0)¢,
=31
i>1
where f]’ (1,€,v) is supported on frequencies || ~ 27.
Step 1: f°
Let j € N arbitrary, fixed. Then, by Lemma [A.3| for every r € (

%Wap/] N (1a 00)7

|| / £odollie. S 16l gwy sup [2c(r.€,0)

7,|€ \NQJ

§ \
Sl mgr) ((2;)6) '

Hence, f' = [ fO¢dv € Lpo’“oo (cf. [3, Definition 2.67]) with

| [ £l o <856l

t POQ

Step 2: f2
Let j € N arbitrary, fixed. We set

o
Pt (A

T, 16,V
= syt (S ) €0 0

a n
/fngbd 52k/¢1< t<§2k’ ))Aggo’jqbdv

and, by Lemma and since |£]" acts as a constant multiplier of order (27)7 on g ;,

1 1~ [ LliT,i&,v
I [ ¥ odvlsy, S5 w/11;w1(<&;5))|a¢ﬁwmm¢dwuh

2,k
Iy

= 52k ) |£|nft,x90($vv)

Hence,

< SUPr g~ Q06,8297
o @) "gog¢llre,

1 [ 52k \7
5@ <(2])5) (2 )H90J¢HL§“




PME WITH A FORCE 9

Hence,

2 o~ L (02 7
I Iio U”ng NZﬁ W (2 ) ||90,J¢||L§M
keN
< G165 77—&*? .
<67 @) gl

as
In conclusion, [ ffpdv € LIB/% " with

o
[ ol o, 507 ool

tqoo

Step 3: f3
Let j € N arbitrary, fixed. We set

|- ~ (L(iT,1&,v
fggk 5216]:,5@1901(&)1/11 <(52]§)> €)1 Fy.20pg1 (L, 2, 0)

1 1T, 1€, v
—Fiath Llir, i, v) ,f ) €1 Ft 200915 (t, 2, v)
T 52 62

Hence,

@
/f3k¢d 62k/w1< t<’52k’ )>A POog15 v

We observe

3.k 1 ~ E(@t,Vgg,v) 12
/fj ¢dv:_62k/av¢1 (52,6 Aa;Qng(ﬁdU

1 [ (L0, Vav)) 2
“g [0 () o

1 — i L(i >.£7 0 ‘C( g? )
- [ (51 (B ) Bz, )

a? ) 2
52k / h < TwE )> Atgrsddo
1T, 1€, v L _
o [ 7ot (00 () duttin i ol € ool 10) o

" Eaavv ) 2
52k/w (25 ) abaso an

By the Marcinkiewicz Multiplier Theorem (cf. [21, Theorem 5.2.4]) and ((2.6) we have that
OpL(iT,i€,v)|v|Y acts as a constant multiplier on L4 of order O((2/)*6#) on g¢; ;. Hence,
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using Lemma yields
|| / f?”%dvum
1T, 1€, v o
52k 2 ” / < 52k )> (avﬁ)('l'r, Zéa v)|v"Y

87 b
+ gl [0 (B2 ) oot ol

SUPT \§|~J’Q(7— €, 02 )’

o[ TgrpdvlLg

_Ur

(2905 [o] g1 g dollgg

< (5252
N
| sup, 5|~J|?2(Z ,§,028)]a L @ llgsd i
: <521 D <<;2: )q/ (2)N325)42) " [vl 9156l
+$ (é?;)ql( g1 lle
= (025 Y ol Tga gl + (6297 @) T guyo e

Hence, for 6 > 1 and using p € [0, 1],

A—
I / flodullps S (625) 7 20T ol g150l 1o

t,x,v
keN

(6297 (@) T g1

t,z,v

-2+ %4 n+A-27 1+ o) 27+
SO )T ol gl +6 T (2D lgri¢ |

t,z,v

1+3 A—
<67 ()T (o] Tgri¢llny

o lgdl, )
aﬁ /\77) ]
In conclusion, [ fipdv € LIB/% with

+ 9159 Ie,)-

t,x,v t,x,v

~1+5
H / Podoll wp,, S6 (g0

tqoo

Step 4: Conclusion
aﬁ aﬂ

n
Since Bjoo = Byloo we have

f=r+r
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— ~ 0175 0‘5 =
with fO € LPBpo, [l = 2+ 3 € LIBS " and, for 6 > 1,

an” ap <57Hf¢HLp (HJP)s

tPOO

17 epyy <67 lgodllzg,  + ol g1 i0llee . + lorsdllu . )-
LIB2,
We aim to conclude by real interpolation. We set, for z > 0,

- e El 2y
K(z, f) =mH{[[f || a5, ,7+Z|!f H .7 € LBy,
L? quo t Byl
aﬁ _ o . .
FeliBie " F=7"+7").

We first note the trivial estimate, since OC“T, —A=—71<0,

K )<l es ) < WFllzage < Wfollps oy 2> 0.
LIB,

Hence, it is enough to consider z < 1 in the estimates below. By the above estimates we
obtain that, for § > 1,

(lgo@lizg, , + ol 91,50l g

t,x,v

o

K(z, f) < o7 + 9159l ) + 267 Sl (e

We now equilibrate the first and the second term on the right hand side, that is, we set
57t = 267,
which yields

Hence, with

1-a a
0 = 1 =1- r
a(%—%—kl a(%—%)—kl

we obtain, for |z| <1,

7y < L0
K(z f) <2 (lgo¢llre, , + Hlv\ Yg18lleg,  + i@ N, + 1S Sllep, ugr))-

t,x,v
Consequently, for 7 € (0,0) and - = 1—77 +1,
”?”pT B sy aB B HZ_TK(Z f)| LE7(0,00)
(LB By rar

= 127K (2 D or 0,0y + 127K (2 DI (1 o0
<1275 01y Ulgo@lle, , + 10191560,

+lgrd Ny, , + 1follp, ugn)"™ + ||z‘THLpT(1 o) IF2IILs 1y
Slgodlzy  + ol gr5007  +llord'IIT;

Iy gy +1FOITS 1
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Let
s<st = (-0 A=)+ 0%
From [3, p. 98] we recall, for ¢ > 0,
E;IB(E*E{A*” — f)?BﬁiA* o Lngffj*A*n%

~ aB
and analogously for L¥ B,'~. Thus, using [4, Section 5.6 and Theorem 6.4.5] and choosing
€ > 0 small enough yields

P =p af » O{‘J—?—A—n—a aB_ .

s c } T T
(LtBtLOO ’LtBP,OO)TﬁD-r L (Bq,l 7B}o,l )T,Pr
Pr ps DPr S,Pr
SLYTBS < LyTWErr

Hence, choosing 7 € (0, 6) large enough and recalling (2.7)), for all p < p* with ]% = %—F

T

and all © C R% compact, we have

1 Fllzoorswenion S lgodlles . + ol Voryélizg. -+ lorid ey
+ 170l ugry + 1 Dlleg oy + 1 Pllep p1-
0
Remark 2.2. In the above averaging Lemma we do not require ¢ to have compact support,
nor I to be a bounded interval. We note that if I and supp ¢ are unbounded, then the
non-degeneracy condition (2.5)) entails a growth condition on L(i7, i, v).

This becomes clear when looking at specific examples, such as porous media equations with
nonlinearity B(u), which in kinetic form corresponds to (2.1]) with a = 0, b(v) = B'(v)Id.
In this case, |£(iT,i&,v)| > |€|?b(v) and thus

we(J;0) = sup [{v € supp ¢ : [L(iT,i€,v)| < 0}
Tv‘glN‘]

< EFF}'{U € supp ¢ : [b(v)| < 8l¢[ 7} < b7 (Byyy-2(0)) N supp 9.

Hence, in the case supp ¢ = R condition (2.5 becomes, roughly speaking, [b=1(B,(0))| <
r® for all r > 0.

2.2. Anisotropic parabolic-hyperbolic equations. In this section we consider parabolic-
hyperbolic equations of the type

(2.10) dyu + divA(u) — div(b(u)Vu) = S(t,z) on (0,T) x R?
u(0) =uy on R,
where
up € L'(R%), S € L([0,T] x RY), T >0,
(2.11) a:=A"e C(R;RHNCHR\ {0};RY),
b= (bji)jh-1..a € C(R: ST°4) 1 C(R \ {0}; 59°9).
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The corresponding kinetic form for

(2.12) flt 2, v) = x(u(t, 2),v)
reads (cf. [11])
(2.13) L0y, Vi, 0)f(t,x,v) = O f +a(v) - Vyf —div(b(v)Vf)

= Ouq + S(t, x>6u(t7a:):v (v)a
where ¢ € M™ and L is identified with the symbol
(2.14) L(iT,1€,v) := i1 + a(v) - 1§ + (b(v)E, §).

Kinetic/entropy solutions to are then defined analogously to [11, Definition 2.2]
cf. Appendix |B|below. The existence and uniqueness of entropy solutions to follows
along the lines of the respective arguments of [11] with additional arguments concerning
the forcing term to be found in [19]. We first establish the following a-priori bound

Lemma 2.3. Let u be the unique entropy solution to (2.10). Then, for all v € (—o0, 1)
there is a constant C = C(T,~) > 0 such that

T
(2.15) sup |lu(t )HL2 L+ 01— ’y)/ / |v| ™7 q dvdxdr
t€[0,7] 0 JRi+t

< C(Jluoll}2 + HSH %)

Moreover, for n € C(R) convex we hcwe

(2.16) sup / d:n—{—/ / v)q dvdxdr
t€[0,T] Rd+1

< / n(uo)dz + I locll Sl
R4 ’

Proof. Let uf € C®(RY) with u§ — wg in L'(RY), [[u§ 2+ < |luoll,2-~ and S° €
C2([0,T] x R?) with ||5¢]| 2— < ||S]|;2-~ and
t,x t,x
5S¢ — S in LY([0,T] x R%).

The unique entropy solution to ([2.10) is obtained as a vanishing viscosity limit (see [11]),
that is, we consider

(2.17) Ayus" + divA(us") — div(b(us")Vus") — nAus" = S€ on (0,T) x RY,
with u%(0) = uf and kinetic form
(2.18) L0, Vo, 0) [77 = nAg [ + 0uq™" + S5(L, @)zt )=0 (V),

where ¢>" = m®" + n®" is given by

2
W bR i b3 (z 00 Bl ) ,
k=1
and (3;;, was introduced in Section Then, following |11] (cf. also Appendix, one has

lim. 0 limy, o u®" — w in C([0,T]; L}), f&7 — f in thv and ¢*"7 —* ¢ in M. Due to
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weak lower semicontinuity of the left hand side of (2.15]) it is sufficient to prove ([2.15)) for
2.18

us", mSm M. Let n € C° be convex. We multiply (2.18]) by 7/(v) and integrate in v,z
to get

8t/77(u€”7)d$: /77/(u‘€’77)5"5(75,:lz)dsc—/77"(1))q5’77 dvdx

5/W(us’n)’ﬁdx+/]SE(t,x)|2Vdac—/n"(v)qg’"dvda:.

Then ) follows easily from the ﬁrst line of the inequality above. Using a standard
cut-off argument we may choose n = 1° € C*° with

()" (v) == (|v]* +8) 2.
Then 7% is convex and (1°)(v) < |v|'~7. Hence,
&t/n‘s(ue’”)dac—i—/(n‘s)”(v)q’f”7 dvd:cg/]u‘g”’\z_”d:c+/\S‘E(t,w)|2_7dx.
Letting § — 0 yields, by Fatou’s Lemma,

8t/|u5’"|2_7dx—|—//|v|_7q5”7 dvdm§/|u5’”

Gronwall’s inequality concludes the proof. O

Lemma 2.4. Let u be the unique entropy solution to (2.10) and v € C*(R) N Lip(R) be
a conver function with | (r)| < c|r|, for some ¢ > 0. Then

[ att.z, 00" )dvdodt < Clluolzy + 111y,

for some constant C' depending only on ¢ and sup, |¢'|(v).

2_7dx+/|55(t,x)|2_7dx.

Proof. We first note that multiplying (2.13]) with a smooth approximation of sgn(v), inte-
grating and taking the limit yields, for all ¢ > 0,

[t 0o < [ 1.0+ 1oy
From and a standard cut-off argument we further obtain
8t/w (t,2)) dm—@t/ftxv v)dvdz
/1,!)” q(t,x,v dvdm+/S (t, 2)' (u(t, z))dx.

Hence,

//1/1” q(t, z,v)dvdzdt < — /1/) //Sr:z: ,x))dzdr

< c/\u(O,a:)|dac—i—c/\u(T,a:)]d:c%—CHSHL%z
< C(lluollzy + 1Slzy,)-
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We may now apply Lemma [2.1] to obtain

Corollary 2.5. Let ug € L'(R%), S € L'([0,T] x R%), a, b satisfy [2.11)) and let u be the
entropy solution to (2.10). Further assume that the symbol L defined in (2.14) satisfies
(2.5), (2.6) for all v € [0,1) large enough. Then, for all

200 + 2)

56[ (ﬂ N), PG[lamv

all € CX(Ry), v € 10,1) large enough and O CC R?, there is a constant C > 0 such
that

@19) | [ rodvlsgomavssion < Clluoluy + ol + 1y, + 1137, + 1)

Proof. We will derive (2.19) on the level of the approximating equation (2.17)). By con-
vergence of the approximating solutions ©®" and lower-semicontinuity of the norm this is

sufficient. For notational simplicity we suppress the €, 7-dependency in the following, but
note that all estimates are uniform with respect to these parameters. As in |11, Section
7] we observe the bound (uniformly in g,n), for each ¢ € C*(Ry,), k=1,...,d,

HZ@ Bz, S luolly + ISl + 1.

We hence estimate, for any ¢ € C®°(R; x R% x R,)) and ¢ € C°(R,) such that oy = ¢,

d
/t IV f - b w\<2/ (Zaxlfom ) Zakj

t,x,v

d

d
3 [ (St )z
il i=1

k=1

d

d
(2.20) = Z/ (Z%Bﬁg ) Zak] )(t, @, u(t, z))
k=170% | \i=1
d d
<UD 0.8 (w) )zz IIZ% )tz u(t, )2,
k=1 =1

< lluollzy + 1815, +1.

We next note that due to (2.12) we have 9, f (¢, z,v) = —0,(t,5)— and thus f € L5, ° (BV,) C
L! . (BV,). Moreover,

t,xz;loc
(2.21) Iz, < lluollpy +1S1r;
and |f| < 1. Hence, f € L, ,NLgS, , and by interpolation we obtain that f € thloc(HUQ)

for all o € [0, 1) with
2.22) 1 oy S 1+ luollzy + 11y
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In order to apply Lemma.we hence have to localize f. Let ¢ € C2°((0,T) x RE x R,),
n° € C=(R) satisfy n°(v) € [0,1] for all v € R, |(1°)'| < %,

1 for |v| >4
0 for |v] §g

(2.23) n(v) = {

and set ¢? = ¢n®. For simplicity we suppress the d-index in the following. Set f := of €
L}, (WJ?), §:= ¢q. Then
0if = (= a(v) - VI +div(b(v)V ) + 0uq + Sy(t.a)=0(v)) + [Orp
(2.24) = (—a(v) - Vf + div(b(0)V f) + 8uG + ¢St a)=0 (V)
a(v) - fVe =2V [ - b(v)Ve — fdiv(b(v)Ve) = (0sp)q + [Orp.

Since ¢ is compactly supported and ¢ € M, we have ¢ € Mpy. Moreover, due to ([2.20))
and S € L;x we have

90 =080y (tz)—v (V) +a(v) - [V =2V f - b(v)Vp — fdiv(b(v) V)
— (Ovp)q + fOrp € My
with
(2.25) l9olntry < luollzy + ISl1zy + [Oupallatey + £ 60l

Let s €[0,557(8—A)) and p € [1, gzﬁ) Choose v € [0,1) large enough and r > 1 small

enough, such that s < (1 — 9) — A0 and p < ﬁ where § = =°~

+1 We may assume

w e LLNLZ", S e Li, N Lfgﬂ, otherwise there is nothing to be shown. By Lemma
we have

o2y + =) [ ol adodadr < ol + 512

We note that, due to (2.23)) and - we may assume a,b € C! without changing (2
We now apply Lemma . Ywithn=0,91=¢ f=f,q=1,p=2,0 €0, 2) large enough
T>0,0C R4 compact to obtain that there is a constant C' > 0 such that
1) 1 - 0 1)
| /fso S dv|| oo, rpwer(0) S 9601 Mmry + 1110177910 My + 11916 [IAtr

+ 10l ugry + 1Ol + 1 bller, ra-
By Lemma (2.22)), (2.21]) and ([2.25)) we obtain that
I [ 6% dolisqomawesion S luolley + Slsy + Iowgallsary + 1£60ul;_,

+ lluoll 77, + IS

L2” L2“f

We next consider the limit § — 0. Since |n°| < 1, the only nontrivial term appearing on the
right hand side is ||(3,7°)¢q|| pmpy, - Let ¥° be such that (¥°)" = |9,n°| and |4°(r)| < c|r|.
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Then ¢)° satisfies the assumptions of Lemma uniformly in § which yields the required

bound. Since ¢ is arbitrary, we conclude

2— 2—
| /f¢ ol (o wer(©0)) S lluollzy + [luoll 722y + 1512y, + HSHLfl + 1.

Example 2.6. Let ug € LY(RY), S € L}([0,T] x R%), mj,n; > 1, j = 1,
be the entropy solution to

n; 2 [mj] _ d
. t €T T - ) ’
(2.26) 8u+§ Oy u" g o7 ,u™l =8t x) on (0,T) xR

u(0) = up on R%

O

...,d and let u

We set m = min({m; : j =1,...,d}), m =max({m; : j =1,...,d}) and analogously n,

7. Then, for all

all g € CX(R,), v € [0,1) large enough and © cC R? there is a constant C' > 0 such that

220 | [ f6dulisoamoscon < C (ualzy + luoll5T, + 11y, + 1122, +1).

As a special case, for mj =nj; =m, j =1,...,d, we obtain (2.27) for all
2 m
0, — 1,2——).
sef0.2), pefa )
Proof. We have

d d
L i€ v) =i +i Y np™ e+ mylo™ g

j=1 j=1
= »Chyp<i7-a if, U) + ['par (67 U)'
Let I C R be a bounded set. Then, for |{| ~ J,
Qr(1,&0) ={vel: |L(ir,i&v)| <0}

d
C Q. (&0) ={vel: > myl™ g <6}
j=1
(2.28) Cl{vel: [v™1J? <6}

Thus,

1

o \ m-1
el s ()"
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ie. (2.5)) is satisfied with 8 = 2, a = % Moreover, due to (2.28)), for [£| ~ J, v €
Qﬁ(Tv 57 5) \ {0}7

|0u L (47,18, v)||v]" =

d d
iy nj(ng = 1)o7+ mj(m; — 1)0[””72]!fg‘\2‘|v|V
j=1 J=1

5 |v|ﬂ_2+7J + |U‘m—2+vj2

e e
Using 4, J > 1 we get
(2.29) 10y L (i, i€, v)|[o] < 67T 2R
i.e. (2.6)) is satisfied with A = 2 — 2m/\%:?+7, = mv%:?”. An application of Corollary

[2.5] with 7 close to one implies for all
. 2 (m An — 1>
s<S == | ——75 |,

all p < p* = % ,all ¢ € CX(R,), v € [0,1) large enough, O CC RY that there is a

constant C' > 0 and

|| / $é oo myawsson < Clluolly + wol23%, + ISl zy + ISI%57, +1).

O

Remark 2.7. In Example only the regularizing effect of the parabolic part is used. It
may be possible that in cases n; << m; the hyperbolic regularizing effect would dominate.
Since we are mostly interested in the parabolic regularization we do not consider this point
here. For related work on hyperbolic averaging we refer to [19).

3. ISOTROPIC CASE

In this section we consider parabolic-hyperbolic PDE with isotropic parabolic part, that
is,
(3.1)  Of(t,z,v) +a(v) Vif(t,z,v) —b(v)Agf(t,z,v) =: L(O, Vg, v)f(t, z,v)

= gO(tv €, /U) + a’vgl(ta €, U)?

where a : R — R% b: R — Ry U {0} are twice continuously differentiable. The operator
L is given by its symbol

L(17,i§,v) 1= Lpyp(iT,1€,0) + Lpar(§,v)
= i1 4 da(v) - € + b(v)|€)?.

In this isotropic case we may work with a more restrictive non-degeneracy condition, which
will allow to improve the order of integrability obtained in Example

Definition 3.1 (Isotropic truncation property). i. We say that a function m : Rg —
C is isotropic if m is radial, that is, it depends only on |¢|? .
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ii. Let m : Rg x R, — C be a Caratheodory function such that m(-,v) is isotropic for
all v € R. Then m is said to satisfy the isotropic truncation property if for every
bump function v supported on a ball in C, every bump function ¢ supported in
{€eC:1< ¢ <4} and every 1 <p < o0

Moafe) = 7 () o (262) 7,00

is an LE-multiplier for all v € R, J = 27, j € N and, for all r > 1,

<10, (J.8)|*
LQN! (J, )],

1325110

where

Qn(J,0) ={veR: |m(,g,v)’ € supp Y }.

Example 3.2. Consider
L(&,v) = [¢[*b(v),

for b: R — R U{0} being measurable. Then L satisfies the isotropic truncation property.

Proof. Let ¢, 1 be as in the definition of the isotropic truncation property. In order
to prove that M,y ; is an LP-multiplier we will invoke the Hormander-Mihlin Multiplier
Theorem [21, Theorem 5.2.7]. We note that

€| (&)
s g (55 ) (F57) <o

and

2

e (5) 0 (557)
<\§I2> |€? 2, (E ) (!5\2>¢ < (v )) L(&v) 2¢
T\ e Sk
|: <|£|2> |£|2 ( (g,U ) <|£‘2> ( ,U ) a ):| 261
J? 5 g ] IEP
~ ’6‘2 (57 ) 251
() o (557)
where @, 1/; are bump functions with the same support properties as ¢, ). Hence, induction

yields
o (5)0(452) 22 (5)(42) &

for all multi-indices o with |a| < [%] +1, where where ¢, 1)® are bump functions with the
same support properties as ¢, 1. The Hormander—-Mihlin Multiplier Theorem thus implies

that ,
§ L(¢,
o) (557) e
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for all 1 < p < oo with

I <‘§’22> 0 <£(§v)> [me < Cdpfseuﬂg ¢ (’i’;) W < <§ v)> :

where @, ¥ are bump functions as above. Hence,

|§‘2 'C(gvv) 7 [’(570)
e <JQ> v ( o ) o < Cay Jsﬁéllngw ( g ) '
(€,v >> i
<
Ly ™~ (/ J<S\?|Eyw ( 0 dv)

|£| L(§v)
[l 5 ) e
i :
< 1 _ < 1 -
= (/ JSS\?IIS)N §|2;<v>65uppwdv> S (/ IJ%;MU)ESupp'L[)d’U>

1

2 N: )
< (e YR e upp iy)" = e

Hence,

1

0

3.1. Averaging Lemma. Working with the isotropic truncation property allows to prove
a similar statement to Lemma 2.1} but without the restriction to p < 2. This leads to an
improved estimate on the 1ntegrab1hty of the solution.

Lemma 3.3. Let f € LZ/(Lf@) for 1 <p < oo, r €[1,00] solve, in the sense of distribu-
tions,

n n
(3.2) L0, Vo, v) ft, x,0) = AZ go(t, 7,v) + DyAZ g1(t, ,v) on Ry x RE x R,
with g; being Radon measures satisfying
_ LI(R; x R4 x R,), 1<qg<2
(33)  lool(t.z,) + [l (b o] 0 € 2 R X Re) 1=
Mry (R xR x Ry), ¢=1,

for somey >0,171>0,1<q<pand L(O,Vz,v) as in (3.1 with corresponding symbol
L(i7,i&,v) = Lpyp(i1,1€,v) + Lpar(&,v). Assume that L(iT,i€,v) satisfies the truncation
property uniformly in v € R. Let I C R be a not necessarily bounded interval, set

we(J;0) = sup 1Qc(7,850)|, Qe(7,656) ={v € I [L(i,i€,v)| <},
TER, EER,|€|~J

and suppose that the following non-degeneracy condition holds: There exist o, B > 0 such
that

0
(3.4) we(J;0) < (ﬁ)o‘ Vo>1, J>1.
Moreover, assume that there exist A > 0 and p € [0,1] such that, for all 6 > 1, J > 1,
(3.5) sup sup  |9pL(iT, i€, v)||v] < JrH

€|~ T vEQL(7,€;6)
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and C;—,ﬂ < A+ 1n. Assume that Lye, satisfies the isotropic truncation property with

5 «
(3.6) 22,0, (SO S (55)% V621, J =1

Then, for all ¢ € C°(I), s € [0,s*), p € [1,p*), T > 0, O CC R%, there is a constant
C > 0 such that

611 [ £t 000 dolusgoaaweson < Clladliy,, + el ool
ey, + 1Follpqapy +150lg s + 170l 7o)

with s* := (1 — 0)0‘75 + 0(%,6 — A —n), where § = 0, and p* are given by

+— =1

/

1 1- 6 1 1
€0.1), —: +- =
p p qg T

_a(%—%)—l—l T

Proof. The proof proceeds analogously to the one of Lemma 2.1l The only change appears
in the estimation of f°. We may assume that 1 is of the form Yo(ia + b) = g (a)3(b)
with 9f being locally supported bump functions. Hence,

o (L’(iT,;’f,U)) _ wé <£hyp(i;', i§,v)) ¢8 <£par§§,v)>

L ) 7- ) ﬁ ar b))
loa(gvn (X5 e < Dont5008 (Z2E

The isotropic truncation property and (3.6|) then imply

Jiercgrn (L)

and

0 \a
2]6)1"'

1
<192, (27,0)]F S (

Hence,

L(iT, i,
1] soduley, =1 [ 7o (D) R ool

L(iT, i€,

/ Iz e1(55 wo( f )ft,xf%lLf,z dv
L(iT, i€,

< [1Fen g (2750 o D) Frallwl 0l o

< e o (“5“) o

d \a
S (5l HfOQﬁHL;/Lf,Z'

The proof then proceeds as before, the only difference being that we do not have to restrict
to 1 < p < 2 and the modified definition of r,r’. O

0
0l
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3.2. Porous media equations. In this section we consider porous media equations with
a source of the type
(3.8) dyu — Aul™ = S(t,2) on (0,T) x RY,
u(0) = wo,
where up € LY(R%), S € L'([0,T] x RY), T > 0 and m > 1.
In [11] the kinetic form of (3.8) with S = 0 was introduced. Analogously, the kinetic form
to (3.8) reads, with f = x(u(t,z),v), ¢ € MT,
(3.9) @f+mww4Af:&g+5uxwmmﬂmoanwade

For the notion and well-posedness of entropy solutions to see Appendix l As before
let £(0, Vg, v)f = Ouf +mlv|™ LAf with symbol

=it + mlo|™ ¢

Example 3.4. Let ug € L'(RY), S € LY([0,T] x R%) and let u be the unique entropy
solution to (3.8]). Then, for all

2
— 1
€l0,-), pefl,m),
all v € (0,1) large enough, @ CcC R, there is a constant C' > 0 such that
l[ull Lo (o, 733w s 0 (0)) < C (HUOH?leL?*mLP)(Rg) + HSH?leL?*meP)([O,T}ng) + 1) .

Proof. Let s € [0, 2), p € [1,m). We have f € L}, , N Lg%, and thus f € LY(LY,) for all
5> 1 with

(3.10) 17117, )y S Wzt

This bound will replace the property f € Lt . lOC(HU 2) used in the proof of Corollary
which is possible due to Lemma [3.3] As a consequence, the localization of f performed
in Corollary is not required here. In order to apply we need to extend
to all time t € R, which can be done by multiplication with a smooth cut-off function
p € CX(0,T). Let n =0, a = ﬁ, B = 2 and choose 7 € [0,1) large enough and r > 1
small enough such that A =2 — 2"1;?{7 = 2(5;7 ) is such that

I
a B
(1—9)5;—90\"'77)— -

Y

(
2
m
> S

Where # = =. Next, choose p large enough, such that p* = m (milﬂ;) > p and note

1
m
=1,

77~ We can choose p, r such that p = 1'. Let go = 0p—y(t,2)S + fOrp, 91 = q.
In order to treat the possible singularity of 9,£ at v = 0 we proceed as in Corollary [2.5]
i.e. first cutting out the singularity, then controlling the respective error uniformly by
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Lemma 2.4, Note that £ satisfies (3.4), (3.5) on R\ {0} for all y € [0,1) and Ly, satisfies
(3-6)

the isotropic truncation property with . With these choices, Lemma with p = p,
q=1and ¢ =1 yields
lullzogoiav=ro) < 1omutearSlatey + I follzszy + 1o all sy
gz + 0 et oy + 17 2

SISz + luollzs + Mol allagry + 171z + 1fleg oy +1.
The fact that, for all n € [1, 00),
1£lzp, s = Nl gy, ol + ISl
and Lemma [2.3] thus imply
lull Lo (o, 17;w 0 (0)) < HUOHi%LgﬂnLg + HSHitl’szi;mef’z + 1
Since p* > p this yields the claim. O

Remark 3.5. We note that for ug € L. or S € Lt{x the kinetic measure ¢ does not
necessarily have finite mass (cf. e.g. [26]). Therefore, in the literature the cut-off ¢ €
C>*(R) in is required to be compactly supported, which prevents to deduce regularity
estimates for wu itself, unless u is bounded. Our arguments allow to avoid this restriction
since we work with the singular moments |v|~7¢ only, which are shown to be finite in
Lemma provided u € Li_ﬁy, S e L?ﬁ;v.

Remark 3.6. As it has been pointed out in the introduction, the results obtained in [16]
are restricted to fractional differentiability of an order less than one. This restriction is
inherent to the method used in [16]. More precisely, the estimates obtained in [16] are

(informally) based on testing (3.8) with fg Aul™ dr, integrating in space and time and
using Holder’s inequality, which leads to the energy inequality (neglecting constants)

(3.11) /0 ' / (Vul "5 2dwdr < / u2(0)dz.

The regularity estimates are then deduced from (3.11)) alone. In [16] these formal com-
putations are made rigorous, a careful treatment of boundary conditions is given and the

bound on fOT f (Vul™271)2dzdr is used to prove (T.2). Since (3.11)) only involves derivatives
of first order, it does not seem possible to deduce higher than first order differentiability
from this.

4. DEGENERATE PARABOLIC ANDERSON MODEL

We consider the degenerate parabolic Anderson model
(4.1) O = Opzul™ + 4 S on (0,T) x I,
u® =0 on 01,

with m € (1,2), I C R a bounded, open interval and S being a distribution only. As
for the parabolic Anderson model (cf [17,[18]), the particular example we have in mind is
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S = £ being spatial white noise. Accordingly, we assume that, locally on R,

_1_
(4.2) S € BoZy forall e > 0.

The choice of zero Dirichlet boundary data in (4.1]) is for simplicity only and the arguments
of this section can easily be adapted to the Cauchy problem. We will prove the following
regularity estimate for a weak (i.e. distributional) solution to (4.1).

Proposition 4.1. Let ug € Lm“( ). Then there exists a weak solution u to (4.1]) satis-
fying, for allp € [1,m), s € [0,31),
u € LP([0,T]; Wi (1)),
with, for all T >0, O CC I,
1wl oo,y wsp0)) S HUOHTnﬂl(I) 1S5, + 1,

for some > 2 and n € (%, 1] small enough.

The proof of the above Proposition is a consequence of establishing according uniform
regularity estimates (see Theorem below) for the approximating problem

(4.3) At = Oy (u¥)™ + 0S5 (2) om (0,T) x I,
u® =0 on 01,
where S¢ € C*°(R) with HSEHB_%_E < HSH _3-. and 5% — S locally in BOOOO for all

£ > 0. These estimates will be derived from the kinetic formulation of ( . Informally,
with x° := x(u®) the kinetic form reads, in the sense of distributions,

atX8 - m’”|m718xxxs + 5u5(t,x):vu€S€ + 0uq®
(4.4) = m|v|™ X’ + X°S° + 0ug" — By (xvS%) on (0,T) x I x R.
Definition 4.2. We say that u® € L'([0,T] x I) is an entropy solution to (4.3)) if

(i) for every a € (0, m] there is a constant K; > 0 such that

m+ta

(4.5) 102 () 2 021) < K.

(i1) x® = x(u®) satisfies (4.4), in the sense of distributions on (0,7") x I x R, for some
non-negative, finite measure ¢° such that,

q6 — m6 _|_ nE
with m® being a non-negative measure and n® given by

N = Oy—ye (Op (u®)

[m+1

2 ])2

and satisfying, for every a € (0, m] with Kj as in (i),

(4.6) / lv|* ¢ dtdzdv < K;.
[0,T]xR4xR
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Following the arguments of [11] it is not difficult to see that there is a unique entropy
solution u® to , see also Appendix The additional complication in the proof of well-
posedness due to the forcing has been resolved in [19] in the case of scalar conservation
laws. The same arguments may be applied here. Comparing to |11, Definition 2.2] it only
remains to show that the constant Kj in and can be chosen uniformly in €.

Lemma 4.3. Let @« > 0 and 7 = 2a2f;fm € (1,2]. Then, for some constant C =
C(a,m,T),
sup /]u \O‘de—i—/ / u®) e = 2dxdr<C/]u0|°‘+1dx—l—0||5’||wLT,.
t€[0,T]
and
(@) / 0|*~1qf drdady < c/ ol + CISI7 o
[0,T)xIxR I

Proof. In the following we present an informal derivation of the claimed energy estimates.
These arguments can be made rigorous by considering a vanishing viscosity approximation

Ot = 50,,us° + 8m(u8’5)[m] + ua"SSE(x) on (0,7) x I.
For simplicity we drop the ¢ in the notation. Testing (4.3 with ul* yields
O / lu|*Ttdr = (a + 1) /u[a}(amu[m] + uS)dz
I I

_A(a+1)am
(m+a)? J;
We further have, for 7 € [1,2) to be chosen later,

(axu[m?”‘})Qda:Jr/\uPHde
I

(4.8) /IIUI‘““SdfC S Mul* iy + 1815y

and, for every n > 0 and some C}, > 0,

Nl e < /I a7 dz = (a4 1)7 / o de

(4.9) - (a+1)7/]u[a—’"*§ ™72 0, da
o O[+].) /| a— m+2‘ ’a u[m+a]‘de
~m+a)y
(Oé+1)T r

_(era/C‘Ua 7;+2|2 |0y : “[?) da,

Thus, since 7 < 2 and choosing 7 small enough,

2(a+1)am mta
atlg,< 222 T 70 (32124
at/]‘u| o (m + a)? I(Bxu T

4(0{ + 1)T (af'm+2)(277—) ,
o eTo) )% g v
R 1 vt I
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a—r2n+2 ) (277'

Now we choose 7 such that ( o

)=a+1,ie since m—2 < a,

200 4 2

= 1. 2].
2a+3—m€( 2]

In conclusion,

o a5 2t
I ( St
4(a +
(m

1
L oMot 1) / julo Lz + S|, .

Gronwall’s inequality implies

t
/I lu(t) |+ L + /0 /I (ol ™) 2dadr < /I g |2+ ez + |ST) s

In order to establish (4.7) we note that on the approximative level u*° the kinetic form is
satisfied with ¢°° = §,_,c.s (6x(u€’5)[mTH})2. Thus,

/ ]v|°‘_1q‘€’6d7“da:dv = /(Bm(ua"s)[rr?a})thd:L‘
[0,T]xIxR I
S [ luolt e+ |07
I

Passing to the limit 6 — 0 yields (4.7]). O

Corollary 4.4. Let ug € L™TY(I). Then, there is a unique entropy solution u® to (4.3)
and u® satisfies Definition [{.3 with

Ky S lluoll 7 + 11815 +1

B”?

for some T > 2 and some n € (%, 1). In particular, the constants Ky in Deﬁm’tion can
be chosen uniformly in € and

€112
Ju HL2([0,T];H3(I)) < Ko

Proof. We apply Lemma with a € (0, m]. ([l

Theorem 4.5. Assume (4.2)) and let u® be the entropy solution to (4.3). Then, for all
p€[l,m), s€[0,31) we have

u® € LP([0, T Wi (D))
with, for all T >0, O CC I,
1|z o yweoy) < CllluolToia gy + 18150+ 1),

for some 7 > 2, C independent of ¢ > 0 and n € (%, 1) small enough.
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Proof. Let p € [1,m), s € [0, %%) For simplicity we drop the € in the notation. Rewriting
)s

(4.4) we obtain, for n € (%, 1
n o _ n _n n _
(4.10) Orx = m|v|™ L0 x + AZ Ay PxS +AZ0, Ar2q—AZD, A,
~——
i=go =:g1 =:g2

n n n
= m]v|m_18m)< + AZgo+ AZ20vg1 — A20yg2 on (0,T) x I x R.

n n
2 2

xvS

An elementary computation shows [x|/z1 wn1 < l[ulliwss. We next use embedding
»U x x

results for Besov spaces [3, Proposition 2.78], estimates for the paraproduct of functions
and distributions [28, Section 4.4.3, Theorem 1] and Corollary to obtain, for 6 > 0
small enough,

_n
@11) lgollz, , =182 * xSy, , S xSy gro S Iy myeelSlpon,

< Ml a2y 11 o S Nl + 18130 < K+ ISR
Moreover, using the same reasoning we obtain

_n _n
(412) ol gl = Mol A FxwSllyy = 1873 S Iny, S K+ 1S3

t,z,v

We choose a cut-off function and localize (4.10) as in the proof of Corollary Hence,
using (3.10)), we may apply Lemma with 7 sufficiently close to %, a=——,0=2
A = 2 — 2287 gmall enough by choosing v close to one, r > 1 small enough, p = 7/,

qzl,ng:;uchthat
(1-08% o0+ =02 —r—)
_ (32 y-ty Lo
— - (3+ G240l G-n) >

This yields, for all O CC I,

_n _n _n
[l oo, pwer @) S 18 2 XS M + 182 2 10l 74l M + 1017 A0 2 XVS | My
Ul 0y, + e o + 1.
Hence, since
Wl S, + 1 Wy, = el Il oy = ez,

we have, using (1), (E12),

el oo ryweson S Ko + 1813+ lhull gy, + llllzp, +1.

In fact, is not exactly of the form , since g1, go allow singular moments of
different order, i.e. v € (0,1) for g1, v = 1 for go. However, in the proof of Lemma the
terms involving go only lead to better behaved terms than g; and thus may be absorbed.
We next note that by the arguments of Lemma [1.3]

lullzy, S luolly +SIy -1 + 1 Nl S lluoll s + 151y +1
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for some 7 > 2. Hence, by Corollary [£.4] we obtain

lull o o,rwsn (o)) Slhuoll oty + 18150+ luollzy + lluoll s + [ISIF 1.~ +1

Sluoll ity + IS0 +1.

for some 7 > 2. OJ

Proof of Proposition[{.1 By Lemma [£.3] we have
¥l o gy + 192 (u5) ™ oo 1) < -

Hence, we also have [[ueS®||2,_15 < [[uf|[Z1.2 5% -12 < C. By (4.3) we obtain

100 | L2 o rysw 1.2y < C-
The Aubin-Lions compactness Lemma yields (for a subsequence)
u® —u in L*([0,T); L*(I)).

This allows to pass to the limit in the weak form of (4.3). Hence, Theorem finishes
the proof. O

APPENDIX A. TRUNCATION PROPERTY AND BASIC ESTIMATES

From |31, Definition 2.1] we recall the following definition.

Definition A.1. Let m be a complex-valued Fourier multiplier. We say that m has
the truncation property if, for any locally supported bump function ¢ on C and any
1 < p < oo, the multiplier with symbol 1/1(%5)) is an LP-multiplier as well as an Mpy -
multiplier uniformly in § > 0, that is, its LP-multiplier norm (M 7y -multiplier norm resp.)
depends only on the support and C! size of 1) (for some large | that may depend on m)
but otherwise is independent of 4.

We slightly deviate from the definition of the truncation property given in [31, Definition
2.1] since we require it to hold also for p = 1 and on Mypy. In [31, Section 2.4] it was
shown that multipliers corresponding to parabolic-hyperbolic PDE satisfy the truncation
property for p > 1. Accordingly we extend this property to our Definition in the following
example.

Example A.2. Let

m(1,&,v) = i1 +ia(v) - £ + (£, b(v)E)
for some measurable a : R - R4, b: R — SiXd. Then, m satisfies the truncation property
uniformly in v.

Proof. Following |31, Section 2.4] it remains to consider the cases p = 1 and Mpy. Arguing
as in [31}, Section 2.4] we can consider the cases m(7,&,v) = i +ia(v) - £ and m(7,&,v) =
(&,b(v)€) separately. By invariance under linear transformations, arguing again as in [31,
Section 2.4] it is enough to consider ¥(i&1), ¥(|€[?). Due to |21, Theorem 2.5.8] in order to
prove that these are L'-multipliers, we need to show that their inverse Fourier transforms
have finite L' norm, which is true since v is a bump function. Again by [21, Theorem
2.5.8] an operator is an L!-multiplier if and only if it is given by the convolution with a
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finite Borel measure. As such, it can be extended to a multiplier on My with the same
norm. ]

We next provide a basic LP estimate for symbols satisfying the truncation property uni-
formly. The following estimate is an extension of |31, Lemma 2.2] by making use of reg-
ularity in the v component of f. As pointed out in the introduction, this allows to avoid
bootstrapping arguments in the applications, which is crucial, since these bootstrapping
arguments do not allow to conclude a regularity of order more than one.

Lemma A.3. Assume that m(&,v) satisfies the truncation property uniformly in v. Let
©, ¢ be bounded, smooth functions, 1 be a smooth cut-off function and M,y be the Fourier
multiplier with symbol (&)Y (@) Then, for all1 <p <2, 0 >0,r € (
(1,00),

1+0'p”p ]

1
I [ Mutodolzy S 1ol sup [9m(E 01,
&€ supp ¢
where O, (§,0) = {v € supp ¢ : |m(&,v)| <d}. Moreover,
I [ Mosodvlsigy.. S 159)sr..

Proof. We first consider the case p = 2. Then

II/M¢f¢dv!L2<\/f o (5 foavlny
=11 ot (&) Foastuy 5 oy (52 lyeal ol
< sw (™S i D) el f6l 500y

&€ supp ¢

Note
1£61 200, = [ 1F0lgade = [ 11+ A5 Fof? dude

- / Fall 4 A fo]? dedv = / 1+ A5 Fo[ dudo
= [ 1701y do = 012 o

By Sobolev embeddings (cf. e. g [3, Theorem 1.66]) we have HJ? < LT for all r e
2, %] NR. Hence, for r € [%5,2] N (1,00) we have L, < H, o2, FIXTE[ 2N
(1, oo) arbltrary Then

I [ Mosoliz s sw ||¢( m(E,v >)\|L;|rf¢uwg,z)

&€ supp ¢

1420 1420

< o osup [Qn(€, 5)|; “f¢“L§(H3’2)'

£€ supp ¢
This finishes the proof in case of p = 2.
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Due to the truncation property (on L' and M7y ) uniform in v, we have, for all n > 1,

H / Myfodolln S 1f6lls,

and

u / My dvlpry < 1 6llnen

We now conclude by interpolation: From the above we have that M¢ fi=[Myfodvisa
bounded linear operator in L(L2(HS?); L2) N L(LY ,; L}). By complex interpolation, for
0 € (0,1), My is a bounded linear operator in L([L2(HJ?), L1 ,19; [L2, L}]s). Interpolation
of Banach space valued LP-spaces yields

2
1+0(2

o -1 o
[LA(HT?), LY Jo = Lo " ([H]?, L)
Next we note that, for n > 1,

(=005
[H?, Lilo = H, !
Hence,
) o2 #%—1) (1_9)071+9(2 1)
[LQC(I—IU7 )’ ng]g 2 Ly (Hv )
2
(L2, 130y = L7700
Let now p € (1,2). Let n > 1 be such that § = Tann (0,1), i.e. p= ﬁ%_l). Then,
in conclusion, for all ¢ > 0 and all r € [1+2(7’ 2] N (1, 00),
I [ Mosoal =1 [ Mosoall s
0
H ¢| L2 HU2 L2 HMQﬁ” Ln . 7} qubH 9(2 (I—G)G,W
Ly (Hv )
2
Ssup|Qm(£’6)|Tp/||f¢|| 20 —P=1_ p *
é‘ Lg(H p(2—n) )
Now given o > 0 we apply the above with o replaced by ¢’ := gg:z;a >0and n >1
small enough. Again choosing > 1 small enough, this yields the claim for all r €
(17,9 0 (1, 0). 0

APPENDIX B. ENTROPY SOLUTIONS FOR PARABOLIC-HYPERBOLIC PDE WITH A
SOURCE

In this section we recall some details on the concept of entropy /kinetic solutions and their
well-posedness for PDE of the type

(B.1) dyu + divA(u) — div (b(u)Vu) = S(t,z) on (0,T) x R?
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with

ug € LY(RY), S € L1(]0,T] x RY)
(B.2) a=A € L (R;RY)

)= Zaik(')akj(’)v ok € Lis.(R;RY).

We will use the terms kinetic and entropy solution synonymously. From [11] we recall

Definition B.1. We say that « € C([0,T]; L'(R%)) is an entropy solution to (B.1]) if
f = x(u) satisfies

i. for any non-negative v» € D(R), k =1,...,d,

Zaxlﬁ ) e L*([0,T] x RY)

ii. for any two non-negative functions 11,1 € D(R),

u(t, ) Zauﬁ Zauﬁ’ﬁ“” ,z))  ac.

iii. there are non-negative measures m,n € M such that, in the sense of distributions,
o f +a(v) Vef —div(b(v)Vef) = 0p(m +n) + dp—yr,2)S on (0,T) x RY x R,
where n is defined by

/w n(t,z,v)d i(Z%ﬁm (t,z) )2

k=1
for any ¢ € D(R) with ¢» >0
iv. we have
/(m +n)dzdt < p(v) € L (R),

where L is the space of L*°-functions vanishing for |v| — occ.

The proof of well-posedness of entropy solutions to (B.1]) follows along the same lines
of [11]. The additional difficulty of the force S in (B.1)) can be resolved as in |19, Theorem
10]. The construction of solutions relies on a smooth approximation of ug, S. This yields

Theorem B.2. Let ug € LY(R"), S € L'([0,T] x R™). Then there is a unique entropy

solution u to (B.1)) satisfying u € C([0,T]; L*(R™)). For two entropy solutions u', u? with
initial conditions ud,ud we have

sup [lu'(t) — w?(8)| 1 rny < llug — wgll ey + 11511 (0,77 xRn)-
te€[0,T]
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APPENDIX C. THE CASE m > 2

In this section we present a slight improvement on the results obtained in [16]. We consider
(C.1) dyu+ divA(u) — Aul™ = S(t,2) on (0,T) x RY
where
up € LY(RY), S € L1([0,T] x RY)

(C.2) a=A' € L5 (R:RY),

ul™ = |u|™ u with m > 2.
By [11] and Appendix [B| there is a unique entropy solution to (C.1)).
Lemma C.1. For each v > 0 there are ¢,,Cy > 0 such that

T
1+ m 1+ 1+
sup ()| 3] + cym / / (Vul 202z < Cy (o117, + ISIT1T,).
t€[0,T] 0 JRZ @ t,x

Proof. We present an informal derivation of the stated energy estimate. The rigorous
justification of these calculations is a simple consequence of first considering a vanishing
viscosity approximation and then using weak lower semicontinuity of the right hand side
of the inequality. We have, with A7 (u f A(v U['Y] dv,

&g/ Ju| "7 dx
R¢

=(1+7) / uPl (—=divA(u) + Aul™ + S(t,2)) dz
R4

T

=(1+ ’y)/ —uMdivA(u) + DA™ 4+ WDIS (8, 2) dae
R¢

<1 +’y)/ divAY (u) — L(vu[ 7 1) 4
R{

0] . Ity
B L s de
__47m(1+’7)/(

R¢

1+

N )2 dx +/ y|u|M T+ |S(t, )| de.
R4

T

(v +m)?

Gronwall’s inequality yields

t
/ ’u(t)|1+'vd$+47m(1+7)/ ev(t—S)/ (Val ™2 2dz
Rd (v+m)2 Jo Rd

t
Se”t/ |u0|1+7d:17—|—/ eV(t_S)/ 1S (s, z) ' dads.
Rd 0 Rd

In conclusion, for v > 0 we obtain that

1 1 1
Sup lu@l 1155 + cym / / (Vul 52z < 4 (Juoll 12, + ISI1 1)
S k]
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For p € [1,00), s € (0,1) we recall

| fRrsp :=sUp sup
>0 0<|z|<d

[ fat2) = @),

|2[®
and

11 = A1 + [f Ao
Theorem C.2. Let vy >0, m > 2 and ug € L'T(R%), S € L'*7([0,T] x RY). Then

T
1 1
| @ S Crmlluall 12, + ISIEE2,)

If, in addition, uo € L™ (RY), S € L™([0, T|xRY) thenu € L™ ([0, T]; N (RY))
with

C.3 m4y <C 1+~ S 1+~ m+y m+y )
(C.3) ”uHLmM([QT];NmiW’T”M(Rg)) = 'y,m(HUOHL}EH + |l HL%T + ”UOHL?H + ||S‘|L:ﬂ;r"/)

Proof. We again restrict to giving the informal derivation, the rigorous justification is
standard by considering a vanishing viscosity approximation first, then using lower semi-
continuity. From [16, Lemma 4.1] we recall the elementary inequality, for m > 2,

lr —s|™ < c|r[%] — 3[%”2 Vr,s € R,
for some ¢ > 0. Hence,
|Alu(z)|™ = |u(x + he) —u(@)[™ < clu(z + he)l2] —u(a)l5]]?
= APl (z) 2
and thus, using Lemma

T Ahy(t,z) ™
/ sup  sup # dxdt
0 e€RN |e|]=1h>0 R4 hm+y
T h m+y
= sup  sup ‘A (t :1:)’ dxdt
0 eeRN |e|]=1h>0
T
< c/ sup sup/ 2| AP ) P ddt
e€RN |e|=1 h>0 JR4

<c //|vuz~+ (t, 2)|2dwdt

1+ 1+
<y, m([luol| 11w + 115 11w)

This implies
4 + 1+ 1+
A v v
Lo e Gl + IS1)
Using Lemma with ~ replaced by m — 1 + v yields

+ + +
HuHToo,y[o T]; Lm+7(Rd)) < C ,7(Hu0||mm+7w + ”SHmm;—Yv)
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This implies that

+ 1+ 1+ + +
Jul ™ ) < Cy(luoll 57, + IS + Comy (o752, + 181752,
x t,x x t,x

]
Remark C.3 (Optimality of Theorem |C.2). For simplicity we consider the elliptic problem
(C.4) 0=Au™ +5 onR?

and note that the arguments leading to Theorem [C.2) can be applied here without essential
change. Assume that for some a € (0,1), p,p1,p2 € [1,00) we have

(C.5) [w) e @ay < CUSIT: gay + 11752 (gay)

for some constant C' > 0, all S € (LP* N LP2)(R%) and u being the corresponding solution
to (C-4).
Rescaling u(z) := nfiu(m:), S(z) = S(nz) yields (C.4) for 4, S. Moreover,

8O gy = 1P ),

Ner(RE)
”SHLPi(Rg) _1”5’”[/;0Z ]Rd)
Hence, (C.5)) applied to @ implies
2 _a)p
(C6) 00 gy < CnEPISIE, ) + ST )

Thus, if & > 2 we may let n — oo and get |u(-)[} Wen(ray = 0- Together with u € LY(R%)

this implies u = 0. Hence, a = % is the optimal regularity exponent for (C.5)).
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