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On SPDE and backward filtering equations for
SDE systems (direct approach) – 2
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Abstract

A direct approach to linear backward filtering equations for SDE systems
is proposed. This preprint contains an extended and corrected version of the
paper 1995 in the LMS Lecture Notes [10] combined with another paper by
the author on the direct approach to linear SPDEs for SDEs [9]. The first
part of this extension was presented in [11]. In this part 2, a more general
diffusion filtering model with some mild inter-relation between the signal and
the observation components – via the same second Wiener process – leading
to a more general SPDE is presented.

1 Introduction

Filtering theory is one of the main sources of stochastic partial differential equations
(SPDE’s). In this paper the filtering problem for the two-dimensional stochastic
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differential equation system is considered,

dXt = f(Xt)dt+ σ(Xt)dw
1
t + σ2(Xt)dw

2
t , X0 = x,

(1)

dYt = h(Xt)dt+ dw2
t , Y0 = y, t ≥ 0,

where functions f and h are smooth and bounded (see the details below in the as-
sumptions), w1 and w2 are independent standard Wiener processes on some probabil-
ity space (Ω,F , (Ft, t ≥ 0),P). Note that non-degeneracy of (σ, σ2) is not assumed;
however, it may be required for the uniqueness of solution of the the problem (3)–(4)
below which uniqueness is not the goal of this paper (see, e.g., [4] concerning this
issue). Initial data X0 = x and Y0 = y are assumed non-random. (In fact, both
X0 and Y0 may be distributed being mutually independent with (w1, w2) and this
might be helpful in filtering, but we do not pursue this goal here.) The problem
is to describe the estimate of the unobservable signal process Xt via the observable
component Yt, 0 ≤ s ≤ t, which would be optimal in the mean–square sense, i.e.,

mt ≡ m0,t = E[g(Xt)|FYt ], t ≥ 0.

It will be also useful to let the variable t change from s to T (or to ∞). In this case,
initial data will be

Xs = x, Ys = y.

In fact, the answer is known even for more general situations, see [3, 4, 8], et al.
In particular, mt may be represented via backward stochastic differential equations,
which makes sense if we are interested in the optimal estimation for some fixed time
t; in this case we should find the solution of our backward SPDE and substitute there
the trajectory of our observation process.

In this paper we present a direct approach to such a representation, using a
similar idea for an equation without filtering, that is, for a completely observed SDE
trajectory. This preprint is an improved version of the paper [10] presented along
with the main lines of the calculus from [9]. The matter is that the standard way –
as in [4, 7, 8] – is to write down the SPDE, then establish existence and uniqueness of
solution in appropriate (Sobolev) classes, then apply Ito’s (or Ito–Wentzell’s) formula
and, hence, justify that this solution, indeed, coincides with the desired conditional
expectation. Apparently, this way assumes that somehow the equation should be
known in advance. What the direct approach provides is exactly how to derive
the equation “by hand” without reference to any big theory. Note that there is a
paper [5] with a very similar title; yet, this is a quite different direct approach, which
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also stems from Krylov’s idea of representing solutions of SDEs as solutions of linear
SPDEs, see [3], [8], [9]. The proof of the Theorem 1 actually contains some additional
information about convergence of discretised approximate solutions toward the limit.

The paper consists of three sections. Number one is the Introduction; the second
one contains the main result about filtering SPDEs as well as two auxiliary Lemmata;
for the proof of the Lemma 1 see [11] while the second Lemma is a well known result
with a reference provided; and the third section contains the proof of the main result
– the Theorem 1. The first part of this publication was a preprint [11] – already
mentioned a few lines earlier – devoted to a more elementary SDE system with
the signal X which also evolved functionally independently of the observations Y ,
but there was no dw2 term in the equation of the signal. In this part we allow
the term dw2 in the signal equation, yet the resulting SPDE remains only “in x
variable”; however, it also contains an additional gradient stochastic term with ?dYt
which makes this presentation more technically involved in comparison to the case
in [11] . We also keep both Lemmata (without proofs) for the readers’ convenience.
The author believes that replacing the preprint [11] would not be a reasonable step
because the latter more elementary version is less technical and, hence, offers a more
explicit presentation of the ideas. On the other hand, the present version covers a
much wider class of signals and, thus, also has a rights to be presented.

It should be also added a little about why this paper is written now. On the one
hand, a new and hopefully simple approach which does not require any big theory is
a good thing. Yet, the results established are known. However, on the other hand,
for new problems which emerge with the development of new engineering techniques
and devices, this “new” approach may be rather helpful. Hence, the paper is written
with a hope to be useful for further new problems such as filtering given information
at discrete moments of time. These new problems are postponed till further research.

2 Main result and auxiliary lemmata

Due to Girsanov’s theorem, process Yt, 0 ≤ t ≤ T is a Wiener process on some the
probability space with some new measure (Ω,F , (Ft, 0 ≤ t ≤ T ), P̃) (see below).

Theorem 1 (backward SPDE) Let σ, σ2, f, h ∈ C3
b . Then the process mt may be

represented as follows:

mT =
vg(0, x)

v1(0, x)
, (2)

where the processes vg and v1 satisfy the following linear backward stochastic differ-
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ential equation (the same for both functions):

−dvg(t, x) =

[
σ2(x) + σ2

2(x)

2
vgxx(t, x) + f(x)vgx(t, x)

]
dt

(3)

+ [h(x)vg(t, x) + σ2(x)vgx(t, x)] ? dYt, 0 ≤ t ≤ T,

with terminal data
vg(T, x) = g(x), x ∈ R1. (4)

Note that the denominator in (2) is strictly positive a.s. as a conditional expectation
of a strictly positive random variable with respect to some new probability measure.
This will be commented in the proof.

Here in (3)
∫
·?dYt means “backward” stochastic Ito integral, i.e., a normal “regular”

stochastic Ito integral with inverse time, see [3, 8]. It may be formally defined, for
example, by the formula∫ T

0

h(x)vg(t, x) ? dYt :=

∫ T

0

h(x)ṽg(t, x)dỸt,

(5)

Ỹt = YT − YT−t, ṽg(t, x) = vg(T − t, x),

where
∫ T
0
h(x)ṽg(t, x)dỸt is a standard Itô’s integral. (The only small nuance is that

this integral might be naturally defined up to the ± sign – which relates simply to
how a Wiener process in the inverse time is defined – and, clearly, this sign would
also affect the sign in the last term of the equation (3); this will be commented later.)
The function v1 has its terminal condition v1(T, x) ≡ 1 and satisfies the same SPDE

(3). Notice that the random function vg(t, x) is, in fact, Fw1,w2

t,T -adapted (not Fw1,w2

0,t -
adapted); therefore, the integral above makes sense exactly as a classical standard
Itô’s one (cf. [8, Theorem 6.3.1]). The system (3)–(4) is a parabolic SPDE with
random coefficients; see [8] about solutions of such equations.

Before the proof we recall one more Krylov and Rozovsky’s result – the Lemma
1 below – concerning multidimensional SDEs (see [3], [8], [9]).

Let (Zs,z
t , t ≥ s, s ≥ 0, z ∈ Rd) be the family of d-dimensional processes depend-

ing on the parameters (s, z) and satisfying the following multidimensional SDEs:

dZs,z
t = b(Zs,z

t )dt+ σ(Zs,z
t )dwt, t ≥ s, Zs,z

s = z, (6)
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where b is a bounded smooth d-dimensional vector, σ is a matrix d × d1, wt is a
d1-dimensional Wiener process, d, d1 ≥ 1; there are neither any other restrictions on
the values d and d1, nor any non-degenerabilty condition is assumed. We will use
the following different notations for the same value:

Zs,z
t ≡ Z(s, t, z),

and for t = T also
Zs,z
T = u(s, z).

Recall that here T is fixed throughout the text, and that the multidimensional setting
is essential: we will need it in the proof of the Theorem 1 with d = 2, d1 = 1.

Lemma 1 Let b, σ ∈ C3
b . Then the random field Zs,z

T is continuous in all vari-
ables (s, T, z). Moreover, continuous partial derivatives exist, the gradient vector
∂zZ

s,z
t =: Zz(s, t, z) and the Hessian matrix ∂2zzZ

s,z
t =: Zzz(s, t, z), and the process

u(s, z) satisfies an SPDE

−du(t, z) =

[
1

2
(σσ∗)ij(z)uzizj(t, z) + bi(z)uzi(t, z)

]
dt

(7)

+σij(z)uzi(t, z) ? dw
j
t ,

with a terminal condition
u(T, z) ≡ z. (8)

Here σ∗ means the matrix σ transposed, and the equation (7) holds true for each
component of the vector u(t, z) = (u1(t, z), . . . , ud(t, z))∗.

The direct approach to this result may be found in [9] and [11].

Further, we will use the Bayes representation for conditional expectations, also
known as Kallianpur–Striebel’s formula, see [8].

Lemma 2 Let the Borel functions h, g be bounded. Then the following representation
is valid a.s.:

mT =
Ẽ[g(XT )ρ−1|FYT ]

Ẽ[ρ−1|FYT ]
,

where Ẽ is the expectation with respect to the measure P̃: dP̃ = ρP , with

ρ ≡ ρ0T = exp

(
−
∫ T

0

h(Xt)dw
2
t −

1

2

∫ T

0

|h(Xt)|2dt
)
.

5



The rest in this section is a technical preparation to the proof of the main result.
Due to Girsanov’s theorem the process (w̃t = w2

t +
∫ t
0
h(Xs) ds, 0 ≤ t ≤ T ) is a

Wiener process on probability space (Ω,F , (Ft, 0 ≤ t ≤ T ), P̃), independent of w1.
On this space, our system (1) has the form

dXt = f(Xt, Yt)dt+ σ(Xt)dw
1
t + σ2(Xt)dw

2
t , X0 = x,

(9)

dYt = dw̃t, Y0 = y,

with two independent Wiener processes (w1, w̃). Replacing w2 by its expression via
w̃, we get,

dXt = f(Xt, Yt)dt+ σ(Xt)dw
1
t + σ2(Xt)(dw̃t − h(Xt) dt), X0 = x,

(10)

dYt = dw̃t, Y0 = y,

or, equivalently,

dXt = (f(Xt)− σ2(Xt)h(Xt))dt+ σ(Xt)dw
1
t + σ2(Xt)dw̃t, X0 = x,

(11)

dYt = dw̃t, Y0 = y,

or, if we denote h̄(x) = −σ2(x)h(x),

dXt = (f(Xt)− h̄(Xt))dt+ σ(Xt)dw
1
t + σ2(Xt)dw̃t, X0 = x,

(12)

dYt = dw̃t, Y0 = y,

or, with a new notation f̄(x) = f(x)− σ2(x)h(x),

dXt = f̄(Xt)dt+ σ(Xt)dw
1
t + σ2(Xt)dw̃t, X0 = x,

(13)

dYt = dw̃t, Y0 = y.

3 Direct proof of Theorem 1

1. Recall, under the new measure P̃,

dXt = f̄(Xt)dt+ σ(Xt)dw
1
t + σ2(Xt)dw̃t, X0 = x,
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dYt = dw̃t, Y0 = y.

We will also need a system with a variable initial time s:

dXt = f̄(Xt)dt+ σ(Xt)dw
1
t + σ2(Xt)dw̃t, Xs = x,

dYt = dw̃t, Ys = y, t ≥ s.

The solution of this system is denoted by (Xs,x
t , Y s,y

t ). What we are to prove is,

−dvg(t, x) =

[
σ2(x) + σ2

2(x)

2
vgxx(t, x) + f(x)vgx(t, x)

]
dt

+ [h(x)vg(t, x) + σ2(x)vgx(t, x)] ? dYt,

as 0 ≤ t ≤ T , with terminal data

vg(T, x) = g(x), x ∈ R1.

Note that this equation does not depend on y.

2. Denote

vg(s, x) = Ẽ[g(Xs,x
T )ρ−1

s,T |F
Y
s,T ].

The expression in the right hand side clearly does not depend on y, since the sigma-
algebra here is generated only by the increments of Y , which trajectory is indepen-
dent of the component X. Under the conditional expectation we have ρ−1, as well,
which also involves only the increments of w̃ ≡ Y and does not depend on the initial
state y either. Hence, the notation vg(s, x) is well justified.

The terminal condition is easily checked,

vg(T, x) = Ẽ[g(XT,x
T )ρ−1

T,T |F
Y
T,T ] = g(x).

Now, what we want to establish is precisely the following integral equality (for each
T > 0 and any 0 ≤ t0 ≤ T ):
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vg(t0, x)− vg(T, x)

=

∫ T

t0

[
σ2(x) + σ2

2(x)

2
vgxx(t, x) + f(x)vgx(t, x)

]
dt (14)

+

∫ T

t0

[h(x)vg(t, x) + σ2(x)vgx(t, x)] ? dw̃t.

Note that during the calculus for a while the “shifted” drift f̄(x) will show up;
however, at some point it will be transformed back to f(x).

Let us use the identity

vg(t0, x)− vg(T, x) =
N∑
i=1

(vg(ti−1, x)− vg(ti, x)),

for any partition t0 < t1 < . . . < tN = T . Consider one term from this sum: we have,

vg(ti−1, x)− vg(ti, x)

= Ẽ[ρ−1
ti−1,T

g(X(ti−1, T, x))|FYti−1,T
]− Ẽ[ρ−1

ti,T
g(X(ti, T, x))|FYti,T ]

= Ẽ[ρ−1
ti−1,T

g(X(ti−1, T, x))|F w̃ti−1,T
]− Ẽ[ρ−1

ti,T
g(X(ti, T, x))|F w̃ti,T ].

3. Using continuity of the family X(s, T, x) with respect to all variables and existence
of two continuous partial derivatives with respect to x (see [1]) we get a.s. by virtue
of Taylor’s expansion,

X(ti−1, T, x) = X(ti, T,X
ti−1,x
ti )

= X ti,x
T +Xx(ti, T, x)(X

ti−1,x
ti − x)

+
1

2
Xxx(ti, T, x)(X

ti−1

ti − x)2 + α1
i
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= X ti,x
T +Xx(ti, T, x)(f̄(x)∆ti + σ(x)∆w1

ti
+ σ2(x)∆w̃ti)

+
σ2(x) + σ2

2(x)

2
Xxx(ti, T, x)∆ti + α2

i ,

where ∆ti = ti−ti−1, ∆wjti = wjti−w
j
ti−1

, and |α1
i |+ |α2

i | = o(∆ti) in the mean-square
sense. We used, in particular, the almost sure convergence of the approximations to
the quadratic variation for stochastic integrals, which implies not only (∆w1

ti
)2 ≈ ∆ti,

but also (∆w̃ti)
2 ≈ ∆ti a.s. under P̃. As was mentioned earier, the drift coefficient

f̄ appears here. Hence, we have,

g(X(ti−1, T, x)) = g(X(ti, T,X
ti−1,x
ti ))

= g
(
X
ti−1,x
T +Xx(ti, T, x)(X

ti−1,x
ti − x)

+
1

2
Xxx(ti, T, x)(X

ti−1,x
ti − x)2 + α1

i

)
= g

(
X ti,x
T +Xx(ti, T, x)(f̄(x)∆ti + σ(x)∆w1

ti
+ σ2(x)∆w̃ti)

+
σ2(x) + σ2

2(x)

2
Xxx(ti, T, x)∆ti + α2

i

)
= g(X ti,x

T )

+gx(X
ti,x
T )

(
Xx(ti, T, x)(f̄(x)∆ti + σ(x)∆w1

ti
+ σ2(x)∆w̃ti) +

σ2(x) + σ2
2(x)

2
Xxx(ti, T, x)∆ti

)

+
σ2(x) + σ2

2(x)

2
gxx(X

ti,x
T )∆ti + o(∆ti).

Denote V (s, t, x) = g(X(s, t, x)). Then, assuming that g ∈ C2, we have,

Vx = gxXx; Vxx = gxXxx + gxxX
2
x,

where we dropped the arguments in gx, gxx, Xx, and Xxx for brevity. So,

g(X(ti−1, T, x)) = V (ti−1, T, x)
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= g(X ti,x
T )

+gx(X
ti,x
T )(Xx(ti, T, x)(f̄(x)∆ti + ∆w1

ti
+ σ2(x)∆w̃ti) +

σ2(x) + σ2
2(x)

2
Xxx(ti, T, x)∆ti)

+
σ2(x) + σ2

2(x)

2
(Xx(ti, T, x))2gxx(X

ti,x
T )∆ti + o(∆ti)

= V (ti, T, x) + Vx(ti, T, x)(f̄(x)∆ti + σ(x)∆w1
ti

+ σ2(x)∆w̃ti)

+
σ2(x) + σ2

2(x)

2
Vxx(ti, T, x)∆ti + o(∆ti).

This is an indication that conditional expectation of V = g(X) should satisfy the
same equation as for X itself – that is, in the case g(x) ≡ x – just with another
terminal condition.

4. Thus,

Ẽ[ρ−1
ti−1,T

g(X(ti−1, T, x))|F w̃ti−1,T
]

= Ẽ[ρ−1
ti−1,T

g(X(ti, T,X
ti−1,x
ti ))|F w̃ti−1,T

] = Ẽ[ρ−1
ti−1,T

V (ti−1, T, x)|F w̃ti−1,T
]

= Ẽ[ρ−1
ti−1,T

{V (ti, T, x) + Vx(ti, T, x)f̄(x)∆ti

+Vx(ti, T, x)(σ(x)∆w1
ti

+ σ2(x)∆w̃ti) +
σ2(x) + σ2

2(x)

2
Vxx(ti, T, x)∆ti}|F w̃ti−1,T

] + α3
i .

Here again, α3
i = o(∆ti) in the mean square sense, i.e., (E|α3

i |2)1/2 = o(∆ti).

5. Now, we would like to replace ρ−1
ti−1,T

by ρ−1
ti,T

. For this aim we apply the

Lemma 1 to the process (Xs,x
t , ρ−1

s,t , t ≥ s). More precisely, let us note that this
two-dimensional process satisfies the following SDE system:

dXs,x
t = f̄(Xs,x

t )dt+ σ(Xs,x
t )dw1

t + σ2(X
s,x
t )dw̃t, Xs,x

s = x,
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(15)

dρ−1
s,t = h(Xs,x

t )ρ−1
s,t dw̃t, ρ−1

s,s = 1,

with s ≤ t ≤ T . Indeed, ρ−1
s,t has the following representation:

ρ−1
s,t = exp

(∫ t

s

h(Xs,x
r )dw̃r −

1

2

∫ t

s

|h(Xs,x
r )|2dr

)
.

Let us consider a bit more general set of processes {(Xs,x
t , ρ−1,ξ

s,t )} which satisfy SDE’s

dXs,x
t = f̄(Xs,x

t )dt+ σ(Xs,x
t )dw1

t + σ2(X
s,x
t )dw̃t, Xs,x

s = x,

(16)

dρ−1,ξ
s,t = h(Xs,x

t )ρ−1,ξ
s,t dw̃t, ρ−1,ξ

s,s = ξ,

for s ≤ t ≤ T , with ξ > 0. In fact, Xs,x
t here is the same as earlier, and ρ−1,ξ

t has the
following representation:

ρ−1,ξ
s,t = ξ exp

(∫ t

s

h(Xs,x
r )dw̃r −

1

2

∫ t

s

|h(Xs,x
r )|2 dr

)
= ξρ−1

s,t . (17)

Recall that due to the Lemma 1,

−du(t, z) =

[
1

2
(σσ∗)ij(z)uzizj(t, z) + bi(z)uzi(t, z)

]
dt

+σij(z)uzi(t, z) ? dw
j
t ,

with (the argument x in σ, σ2, h are dropped for brevity)

(σσ∗)(x, ξ) =

(
σ σ2
0 hξ

)
×
(

σ 0
σ2 hξ

)
=

(
σ2 + σ2

2 σ2hξ
σ2hξ h2ξ2

)
.

Thus,

−dsρ−1,ξ
s,t

=

[
1

2
h2(x)ξ2(ρ−1,ξ

s,t )ξξ + σ2(x)h(x)ξ(ρ−1,ξ
s,t )ξx+

σ2(x) + σ2
2(x)

2
(ρ−1,ξ
s,t )xx + f̄(x)(ρ−1,ξ

s,t )x

]
dt
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+(ρ−1,ξ
s,t )x(σ(x) ? dw1

t + σ2(x) ? dw̃t) + h(x)ξ(ρ−1,ξ
s,t )ξ ? dw̃t.

=

[
1

2
h2(x)ξ2(ρ−1,ξ

s,t )ξξ + σ2(x)h(x)ξ(ρ−1
s,t )x +

σ2(x) + σ2
2(x)

2
(ρ−1,ξ
s,t )xx + f̄(x)ξ(ρ−1

s,t )x

]
dt

+ξ(ρ−1
s,t )x(σ(x) ? dw1

t + σ2(x) ? dw̃t) + h(x)ξρ−1
s,t ? dw̃t.

We used that (ρ−1,ξ
s,t )ξ = ρ−1

s,t and, hence, (ρ−1,ξ
s,t )ξx = (ρ−1

s,t )x; also, (ρ−1,ξ
s,t )x = ξ(ρ−1

s,t )x.
Recall that

f̄(x) + σ2(x)h(x) = f(x).

This allows us to transform f̄ in the expressions related to (ρ−1,ξ
s,t )ξ into f . However,

the term f̄ will still remain in the expressions related to V ; this will be tackled a bit
later. So, from the equality above and because (ρ−1,ξ

s,t )ξξ = 0, we get,

−dsρ−1,ξ
s,t =

[
σ2(x) + σ2

2(x)

2
(ρ−1,ξ
s,t )xx + f(x)ξ(ρ−1

s,t )x

]
dt

+(ρ−1,ξ
s,t )x(σ(x) ? dw1

t + σ2(x) ? dw̃t) + h(x)ξ(ρ−1
s,t ) ? dw̃t.

Note that due to the linear in ξ representation (17), all derivatives with respect to ξ
disappear from the expression in the right hand side. So, we may write

ρ−1,ξ
ti−1,T

− ρ−1,ξ
ti,T
≡ −∆ρ−1,ξ

ti

=

[
σ2(x) + σ2

2(x)

2
(ρ−1,ξ
ti,T

)xx + f(x)ξ(ρ−1
s,t )x

]
∆ti

+(ρ−1,ξ
ti,T

)xσ(x)∆w1
ti

+ (ρ−1,ξ
ti,T

)xσ2(x)∆w̃ti + h(x)ξρ−1
ti,T

∆w̃ti + α4
i ,

with a similar o(∆ti) property for α4
i as for previous α1

i , α
2
i , α

3
i . Below we will use

this assertion with ξ = 1, that is,

ρ−1
ti−1,T

− ρ−1
ti,T
≡ −∆ρ−1

ti

=

[
σ2(x) + σ2

2(x)

2
(ρ−1
ti,T

)xx + f(x)(ρ−1
ti,T

)x

]
∆ti

+(ρ−1
ti,T

)xσ(x)∆w1
ti

+ (ρ−1
ti,T

)xσ2(x)∆w̃ti + h(x)ρ−1
ti,T

∆w̃ti + α̃4
i ,
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with α̃4
i = o(∆ti), as usual, in the mean square sense.

6. Now, we obtain

Ẽ[ρ−1
ti,T
V (ti−1, T, x)|F w̃ti−1,T

]

= Ẽ
[{

V (ti, T, x) +

(
f̄(x)Vx(ti, T, x) +

σ2(x) + σ2
2(x)

2
Vxx(ti, T, x)

)
∆ti

+ Vx(ti, T, x)(σ(x)∆w1
ti

+ σ2(x)∆w̃ti)

}
×

×
{
ρ−1
ti,T

+

(
σ2(x) + σ2

2(x)

2
(ρ−1
ti,T

)xx + f(x)(ρ−1
ti,T

)x

)
∆ti

+ (ρ−1
ti,T

)xσ(x)∆w1
ti

+ (ρ−1
ti,T

)xσ2(x)∆w̃ti + h(x)ρ−1
ti,T

∆w̃ti + α5
i

}
|F w̃ti−1,T

]
,

where again, α5
i = o(∆ti) in the same sense. We multiply using the Itô calculus rules

((∆wt)
2 ≈ ∆t),

Ẽ[ρ−1
ti,T
V (ti−1, T, x)|F w̃ti−1,T

]

= Ẽ
[
V (ti−1, T, x)ρ−1

ti,T
|F w̃ti−1,T

]
+Ẽ

[
Vx(ti, T, x)ρ−1

ti,T

(
f̄(x) + σ2(x)h(x)

)
|F w̃ti−1,T

]
+Ẽ

[
V (ti, T, x)(ρ−1

ti,T
)xf(x)|F w̃ti−1,T

]
+Ẽ

[
σ2(x) + σ2

2(x)

2

(
Vxx(ti, T, x)ρ−1

ti,T
+ 2Vx(ti, T, x)(ρ−1

ti,T
)x + V (ti, T, x)(ρ−1

ti,T
)xx
)

∆ti|F w̃ti−1,T

]

+Ẽ
[{

V (ti, T, x) +

(
f̄(x)Vx(ti, T, x) +

σ2(x) + σ2
2(x)

2
Vxx(ti, T, x)

)
∆ti

+ Vx(ti, T, x)(σ(x)∆w1
ti

+ σ2(x)∆w̃ti)

}
×

13



×
{
ρ−1
ti,T

+

(
σ2(x) + σ2

2(x)

2
(ρ−1
ti,T

)xx + f(x)(ρ−1
ti,T

)x

)
∆ti

+ (ρ−1
ti,T

)xσ(x)∆w1
ti

+ (ρ−1
ti,T

)xσ2(x)∆w̃ti + h(x)ρ−1
ti,T

∆w̃ti + α5
i

}
|F w̃ti−1,T

]
,

7. Now, note that F w̃ti−1,T
= F w̃ti−1,ti

∨
F w̃ti,T and, moreover this σ-field is independent

from w1. Using the regular calculus for conditional expectations (cf. [8]), we get

Ẽ[V (ti, T, x)ρ−1
ti,T
|F w̃ti−1,T

] = Ẽ[V (ti, T, x)ρ−1
ti,T
|F w̃ti,T ],

and in the same manner we can replace σ-fields F w̃ti−1,T
by F w̃ti,T in all terms in the

previous step. Also, Ẽ
[
∆w1

ti
|F w̃ti−1,T

]
= 0 due to the independence of w1 and w̃

with respect to the measure P̃, and (∆w1
ti

)2 ≈ ∆ti as well as and (∆w̃ti)
2 ≈ ∆ti.

Hence, we obtain (during this calculus the last remaining term f̄ will be replaced by
f according to the rule f̄(x) = f(x)− σ2(x)h(x)),

Ẽ[V (ti, T, x)ρ−1
ti−1,T

|F w̃ti−1,T
] = Ẽ[V (ti, T, x)ρ−1

ti,T
|F w̃ti−1,T

]

+Ẽ
[
σ2(x) + σ2

2(x)

2
V (ti, T, x)(ρ−1

ti,T
)xx + (σ2(x) + σ2

2(x))Vx(ti, T, x)(ρ−1
ti,T

)x

+
σ2(x) + σ2

2(x)

2
Vxx(ti, T, x)ρ−1

ti,T
|F w̃ti−1,T

]
∆ti

+Ẽ[f(x)(Vx(ti, T, x)ρ−1
ti,T

+ V (ti, T, x)(ρ−1
ti,T

)x)|F w̃ti−1,T
]∆ti

+Ẽ
[
V (ti, T, x)

{
(ρ−1
ti,T

)x(σ(x)∆w1
ti

+ σ2(x)∆w̃ti) + h(x)ρ−1
ti,T

∆w̃ti
}

+ α5
i |F w̃ti−1,T

]
+Ẽ

[
ρ−1
ti,T

{
Vx(ti, T, x)(σ(x)∆w1

ti
+ σ2(x)∆w̃ti)

}
|F w̃ti−1,T

]
+ α6

i

= Ẽ[V (ti, T, x)ρ−1
ti,T
|F w̃ti−1,T

]∆ti + Ẽ
[
σ2(x) + σ2

2(x)

2
(V (ti−1, T, x)ρ−1

ti,T
)xx|F w̃ti−1,T

]
∆ti

+Ẽ[f(x)(V (ti, T, x)ρ−1
ti,T

)x|F w̃ti−1,T
]∆ti

14



+Ẽ
[{
V (ti, T, x)(ρ−1

ti,T
)x + Vx(ti, T, x)ρ−1

ti,T

}
σ(x)∆w1

ti
|F w̃ti−1,T

]
+Ẽ

[{
V (ti, T, x)(ρ−1

ti,T
)x + Vx(ti, T, x)ρ−1

ti,T

}
σ2(x)∆w̃ti |F

w̃
ti−1,T

]
+ α6

i

= Ẽ[V (ti, T, x)ρ−1
ti,T
|F w̃ti,T ]∆ti + Ẽ

[
σ2(x) + σ2

2(x)

2
(V (ti, T, x)ρ−1

ti,T
)xx|F w̃ti,T

]
∆ti

+Ẽ[f(x)(V (ti, T, x)ρ−1
ti,T

)x|F w̃ti,T ]∆ti

+Ẽ
[{
V (ti, T, x)(ρ−1

ti,T
)x + Vx(ti, T, x)ρ−1

ti,T

}
σ2(x)|F w̃ti,T

]
∆w̃ti + α6

i

= vg(ti, x) +
σ2(x) + σ2

2(x)

2
vgxx(ti, x)∆ti + f(x)vgx(ti, x)∆ti

+ (h(x)vg(ti, x) + σ2(x)vgx(ti, x)) ∆w̃ti + α6
i ,

with a similar property for α6
i : α

6
i = o(∆ti) in the mean square sense. In the last

equality in this calculus we have changed the order of integration and derivation with
respect to the x variable.

8. Therefore, we obtain the equality

vg(t0, x)− vg(T, x)

=
∑{

σ2(x) + σ2
2(x)

2
vgxx(ti, x) + f(x)vgx(ti, x)

}
∆ti

+
∑

(σ2(x)vgx(ti, x) + h(x)vg(ti, x)) ∆w̃ti + α7,

with α7 = o(1) in the mean square sense as supi ∆ti → 0. Letting supi ∆ti → 0, we
get from here the desired integral equality (14). The Theorem 1 is proved.
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