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1 Introduction

1.1 Setting, backgrounds and motivation

Our subject is solutions of the stochastic Itô–McKean–Vlasov, or, for short, McKean–
Vlasov’s equation in Rd

dXt = B[t,Xt, µt]dt+ Σ[t,Xt, µt]dWt, t ≥ 0, X0 = x0, (1)

in a particular situation called “true McKean–Vlasov case” under the convention

B[t, x, µ] =

∫
b(t, x, y)µ(dy), Σ[t, x, µ] =

∫
σ(t, x, y)µ(dy), (2)

and under certain non-degeneracy assumptions. Here W is a standard d1-dimensional
Wiener process, b and σ are vector and matrix Borel functions of corresponding di-
mensions d and d× d1, µt is the distribution of the process X at time t. The initial
data x0 may be random but independent of W ; a non-random value is also allowed.
Historically, Vlasov’s idea, proposed originally in 1938 and contained in the reprinted
paper [32], called mean field interaction in mathematical physics and stochastic anal-
ysis, assumes that for a large multiparticle ensemble with “weak interaction” between
particles, this interaction for one particle with others may be effectively replaced by
an averaged field. A class of equations of type (1) was proposed by M. Kac [15] as
a stochastic “toy model” for the Vlasov kinetic equation of plasma. The systematic
study of such equations was started by McKean [21]. The reference [26] provides
an introduction to the whole area with links to the paper [8] as the most important
preceding background deterministic paper.

McKean–Vlasov’s equations, being clearly more involved than Itô’s SDEs, arise in
multi-agent systems (see [2, 3]), as well as in some other areas of high interest such as
filtering (see [5]). These processes also very closely relate to so called self-stabilizing
processes (diffusions, in particular), which is, actually, another name for non-linear
diffusions in the “ergodic” situation, (see [11]). In what concerns “propagation of
chaos” for the equation (1), we refer the reader to [26] and [4, Theorem 4.3]. In
the authors’ view, it may be fruitful to separate different aspects, including time
discretization and “propagation of chaos” for multiparticle case, and to consider
approximations differently from the basic existence and uniqueness issues; the latter
are the main subjects of the present paper.

Note that even existence and uniqueness – as usual in stochastic analysis, weak or
strong – does require further studies. E.g., many control problems lead to discontin-
uous coefficients. So, establishing existence and uniqueness under minimal regularity
of the coefficients is in a big demand.
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As to earlier works in this area, one of the most important papers is [9] where
the martingale problem for a similar McKean-Vlasov SDE is tackled. It is not very
easy to compare our regularity assumptions with those in [9] because the latter are
given not directly in terms of coefficients (cf. with (2.1) in the Assumption I from
[9]). We do not assume continuity with respect to the state variable x replcing it
by the non-degeneracy of the diffusion matrix. Neither our linear growth bound is
comparable directly with the Lyapunov type conditions in [9]. More general growth
conditions were studied in [4]; however, here also our regularity conditions admit just
measurable coefficients in x and, hence, overall, our results are not covered by [4]
either. One of the first works on McKean–Vlasov equations with irregular coefficients
was [23]; yet, this paper considers another class of equations, namely, with divergent
operators, and so does not relate directly to the present paper.

Our goal is to establish weak existence analogues to Krylov’s weak existence for
Itô’s equations which is more general than in earlier papers. A more general equation
is tackled with a possibly non-square matrix σ, which may be useful in applications
and which case was not covered in [4]. Further, we propose a different method
which could be of interest in some other settings. In the homogeneous case and
under less general conditions, using a different technique, weak existence and weak
uniqueness was established in [13] and [14]. In [30] there is a result on strong existence
for the equation similar to (1) only with a unit matrix diffusion; however, strong
and weak uniqueness, along with “propagation of chaos”, i.e., with convergence of
particle approximations, is established there under restrictive additional assumptions
on the drift which include Lipschitz and some other conditions. In the present paper,
weak and strong uniqueness is established for bounded and measurable drifts under
additional assumptions on the (variable) diffusion coefficient. In applications where
some additional regularization by white noise is often required it may be useful to
have a result for references with dimensions d1 ≥ d rather than just for d1 = d. This
case is rarely tackled in the literature and it is not easy to find a suitable reference;
this was the main reason why we included this extension. Despite the widespread
intuitive belief that for weak solutions or weak uniqueness everything which may be
desired only depends on the matrix σσ∗, in fact, conditions in the McKean–Vlasov
case usually do require certain properties of σ, not σσ∗ (cf., for example, [9]). Hence,
results for d1 ≥ d may not necessarily follow automatically from those for d1 = d.
Unlike the setting in the paper [4], we allow non-homogeneous coefficients depending
on time; a formal reduction to a homogeneous case by considering a couple (t,Xt)
would require unnecessary additional conditions due to the degeneracy. Our method
of proof is also different from that used in [4]: we use explicitly Skorokhod’s single
probability space approach as well as Krylov’s integral estimates for Itô’s processes.
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Strong existence in our paper is derived from strong existence for “ordinary” or
“linearized” Itô’s equations with a fixed flow (µt). The famous Yamada–Watanabe
principle (see [12], [20], [33], [34]) concerning weak existence and pathwise uniqueness
here has a remote analogue in terms of the equivalence of weak and strong uniqueness,
yet, under additional assumptions. In all results of the paper it is assumed that the
drift – and in the Theorem 1 diffusion as well – satisfies a linear growth bound
condition. The linear growth is useful because of numerous applications where, at
least, the drift is often unbounded; further extensions on a faster non-linear growth
usually require Lyapunov type conditions, which are not considered in this paper.

1.2 The structure of the paper

The structure of the paper is as follows. In the Section 2 weak existence is estab-
lished. The Theorem 1 there mimics Krylov’s weak existence result for Itô’s SDEs
from [16] for a homogeneous case, and from [18] for a non-homogeneous case; cf. also
[31]. No regularity of the coefficients is assumed with respect to the state variable x.
The proof is split into two unequal parts. The first is devoted to the case under a bit
restrictive additional assumption on the diffusion; the second part extends the con-
sideration to the general situation, i.e. to a not necessarily quadratic and symmetric
diffusion matrix. Section 3 is devoted to strong solutions and to weak and strong
uniqueness. Weak uniqueness and strong uniqueness are established simultaneously
under identical (for weak and for strong uniqueness) sets of conditions. The latter do
involve some restriction on the diffusion coefficient which should not depend on the
measure in the Theorem 2. For a completeness of the paper, a classical Skorokhod’s
lemma on convergence of stochastic integrals, as well as two other indispensable
auxiliary lemmata also by Skorokhod are provided in the Appendix (the Section 4).

2 Weak existence

2.1 Main results

Before we turn to the main results, let us recall the definitions and a fact from
functional analysis.

Definition 1 The triple (Xt, µt,Wt) is called solution of the equation (1) iff (Wt)
is a d1-dimensional Wiener process with a filtration (Ft) such that for each t, Xt is
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Ft-measurable, Xt is continuous in t, and

P
(
Xt − x0 −

∫ t

0

B[s,Xs, µs]ds−
∫ t

0

Σ[s,Xs, µs]dWs = 0, t ≥ 0

)
= 1,

in which expression under the probability all integrals are well-defined, and µt is a
marginal distribution of Xt for each t ≥ 0.

This solution is called strong iff for each t the random variable Xt is measurable
with respect to the sigma-algebra FWt (sigma-algebra generated by Wiener process
W ); all other solutions are called weak.

Note that in the case of strong solution, it exists on any probability space with a d1-
dimensional Wiener process W . Following a tradition of Itô SDE theory and slightly
abusing a rigorous wording in the definition above, we will usually call solution just
the first component Xt of the triple (Xt, µt,Wt) yet with a compulsory property that
µt is a marginal distribution of Xt for each t.

Proposition 1 Suppose in case of (2) for each (t, x) the Borel coefficients b(t, x, y)
and σ(t, x, y) are bounded in y and integrable in x with respect to all (µt), t ≥ 0, where
µt are the marginal distributions of some (any) weak solution of the equation (1).
Then the functions b̃(t, x) := B[t, x, µt] and σ̃(t, x) := Σ[t, x, µt] are Borel measurable
in (t, x).

Proof. Let (Xt, µt,Wt) be solution of (1) on some probability space (Ω,F ,P) with
a d1-dimensional Wiener process W , and consider another independent solution
(ξt, µt,W

′
t) with the same marginal distribution µt of ξt, say, on another probabil-

ity space (Ω′,F ′,P′) with a d1-dimensional Wiener process W ′. Then the coefficient
B[t, x, µt] can be written as

B[t, x, µt] = E′b(t, x, ξt),

where E′ stands for expectation with respect to the probability measure P′. Now,
the function b(t, x, y) is Borel measurable in (t, x, y) by the assumption, and the
function ξt(ω

′) is B[0,∞) × F -measurable in (t, ω′) due to continuity of solution ξt
in t and its measurability in ω′ (cf., e.g., [19, Lemma 1.5.7]). Hence, the function
b̂(t, x, ω′) := b(t, x, ξt(ω

′)) is B[0,∞)× B(Rd)× F - measurable in (t, x, ω′). Further,
one of the statements of Fubini Theorem (cf. [19, Theorem 1.5.5]) claims that in this
case the function

E′b(t, x, ξt) =

∫
b(t, x, ξt(ω

′))P′(dω′) =

∫
b̂(t, x, ω′)P′(dω′)
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is B[0,∞) × B(Rd)-measurable, as required. Here we used the condition of bound-
edness of b in y which implies integrability∫∫

D

|b(t, x, ξt(ω′))|P′(dω′)dtdx <∞,

over any bounded Borel subset D ∈ B[0,∞) × B(Rd) which integrability is the as-
sumption of Fubini Theorem ([19, Theorem 1.5.5]).

Theorem 1 Let the initial value x0 have a finite fourth moment. For the problem
(1)– (2), suppose that the following two conditions are both satisfied. Firstly, the
functions b and σ admit linear growth condition in (x), i.e., there exists C > 0 such
that for any s, x, y,

|b(s, x, y)|+ ‖σ(s, x, y)‖ ≤ C(1 + |x|), (3)

where |·| stands for the Euclidean norm in Rd for b and ‖·‖ for the ‖σ‖ =
√∑

i,j σ
2
ij .

Secondly, the diffusion matrix σ is uniformly nondegenerate in the following sense:
there is a value ν > 0 such that for any probability measure µ,

inf
s,x,y

inf
|λ|=1

λ∗
(∫

σ(s, x, y)µ(dy)

)(∫
σ∗(s, x, y)µ(dy)

)
λ ≥ ν. (4)

Then the equation (1) has a weak solution, that is, a solution on some probability
space with a standard d1-dimensional Wiener process with respect to some filtration
(Ft, t ≥ 0).

Remark 1 Note that if d1 = d and if the matrix σ is quadratic and symmetric, then
the assumption (4) can be replaced by an easier and more frequently in use one,

inf
s,x,y

inf
|λ|=1

λ∗σ(s, x, y)λ ≥ ν. (5)

Note that the intuitive meaning of condition (4) in the simplest 1D (i.e., d1 =
d = 1) situation is that the diffusion coefficient is non-degenerate and cannot change
sign for any fixed (s, x) and varying y. It is plausible that any moment of order 2 + ε
for x0 suffices for all the statements (except the Theorem 2 under the linear growth
condition on the drift where an exponential moment will be required), but we do not
pursue this goal here. Under the additional assumption of boundedness of b and σ,
the fourth moment of the initial value x0 is not necessary and can be further relaxed.
On weak uniqueness there will be a remark in the last section.
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2.2 Proof of Theorem 1.

1. Firstly we establish the Theorem under a more restrictive assumption that d1 = d,
and that the matrix σ is symmetric and satisfies the condition (5). Exactly this was
assumed in [18] for Itô’s equations where, in addition, the coefficients were assumed
bounded. None of these two restrictions is actually necessary, which was, of course,
very well-known to the author of [18] and which extensions were covered in other
publications; yet, some efforts are required to relax them here for the McKean-Vlasov
equation setting.

In the end of the present proof, the restriction (5) will be dropped. To explain the
motivation of this approach note that under the relaxed assumption (4) of the The-
orem, a smoothing which would keep the non-degeneracy of the diffusion coefficient
is to be found.

The proof is based on Krylov’s integral estimate for non-degenerate Itô processes
(i.e. for those possessing a stochastic differential but not necessarily a solution of
any SDE) with bounded coefficients,

E
∫ T

0

f(t,Xt)dt ≤ N‖f‖Ld+1
,

see [18, Chapter 2]. Here the constant N may depend on d, T and the bounds for
sup–norm of coefficients and of the inverse σσ∗. This estimate will be applied to a
couple (Xt, ξt),

E
∫ T

0

f(t,Xt, ξt)dt ≤ N‖f‖L2d+1
, (6)

where the process ξt is an independent copy of the process Xt and, hence, has exactly
the same distribution (not only the same marginals); the constant N in the latter
inequality depends on the same norms as earlier but now the dimension is 2d.

Similarly to the Itô case the standard hint is to smooth the coefficients so as to use
existence theorems which are known in the literature (in particular, for continuous
coefficients, see [9]), and then to pass to the limit by using Skorokhod’s convergence
on a single probability space method. So, let us smooth both coefficients with respect
to all variables, i.e., let

bn(t, x, y) = b(t, x, y) ∗ ψn(t) ∗ φn(x) ∗ φn(y), (7)

and
σn(t, x, y) = σ(t, x, y) ∗ ψn(t) ∗ φn(x) ∗ φn(y), (8)
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where ψn(t), φn(x), φn(y) are defined in a standard way, i.e., as non-negative C∞

functions with a compact support integrated to one, and so that this compact sup-
port squeezes to the origin of the corresponding variable as n → ∞; or, in other
words, that they are delta-sequences in the corresponding variables. While smooth-
ing, assume for definiteness that the coefficients b and σ are defined for any t < 0,
e.g., as zero vector function and the constant unity matrix Id×d, respectively. Note
that, of course, we may assume that for every n the smoothed coefficients remain
to be under the linear growth condition (3) with the same constant for each n (in
reality this constant may increase a little bit in comparison with C from (3), but still
remain uniformly bounded); also, under the assumption (5) the smoothed diffusion
remains uniformly nondegenerate with ellipticity constants independent of n.

2. In a standard way (see, e.g., [18], [25]) we get the estimates,

sup
0≤t≤T

E|Xn
t |2 ≤ CT (1 + E|x0|2), (9)

and also

sup
0≤s≤t≤T ; t−s≤h

E|Xn
t −Xn

s |2 ≤ CTh, (10)

with constants Ct, CT that do not depend on n. Recall that x0 ∈ Rd is the initial
value of the process X and that it may be random with a certain moment. Bounds
similar to (9) and (10) hold true also for the component ξn and naturally for W n.
These bounds suffice for the applicability of Skorokhod’s single probability space
theorem (see the Appendix 1, Lemma 2).

Note that by Doob’s inequality for stochastic integrals the bound (9) immediately
extends to the further bound useful in the sequel,

E sup
0≤t≤T

|Xn
t |2 ≤ C(E|x0|2 + CT + CT 2) exp(CT (T + 1)), (11)

where C does not depend on n. Further, similarly, the following higher moment
bounds can be established,

sup
0≤t≤T

E|Xn
t |4 ≤ CT (1 + E|x0|4), (12)

and

sup
0≤s≤t≤T ; t−s≤h

E|Xn
t −Xn

s |4 ≤ CTh
2, (13)
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also with a (new) constant CT that do not depend on n. In fact, similar a priori
bounds hold true for any power function assuming the appropriate initial moment,
although, this will not be used in this paper. The proof can be done following the
lines in [10, Theorem 1.6.4].

3. Let us introduce new processes ξn equivalent to Xn on some other – in-
dependent – probability space (i.e., we will consider both on the direct prod-
uct of the two probability spaces). Moreover, in the sequel by E3σn(s,Xn

s , ξ
n
s )

or E3σ(s,Xs, ξs) we denote expectation with respect to the third variable ξns ,
or ξs i.e., conditional expectation given the second variable Xn

s or Xs; in
other words, E3σn(s,Xn

s , ξ
n
s ) =

∫
σn(s,Xn

s , y)µξ
n

s (dy), where µξ
n

s stands for the
marginal distribution of ξns ; likewise, E3(σn(s,Xn

s , ξ
n
s )− σn(s,Xs, ξs)) means simply∫

σn(s,Xn
s , y)µξ

n

s (dy)−
∫
σn(s,Xn

s , y)µξs(dy), where µξs is the marginal distribution

of ξs, and, finally, E3|σn(s,Xn
s , ξ

n
s )−σ(s,Xs, ξs))|2 is understood as

∫
|σn(s,Xn

s , y)−

σn(s,Xn
s , y

′)|2µξn,ξs (dy, dy′), where µξ
n,ξ
s (dy, dy′) denotes the marginal distribution of

the couple (ξns , ξs).

Now, due to the estimates (9)–(10) and by virtue of Skorokhod’s Theorem about
a single probability space and convergence in probability (see the Lemma 1 in the
Appendix, or [25, §6, ch. 1], or [18, Lemma 2.6.2], without loss of generality we may
and will assume that not only µn =⇒ µ, but also on some probability space for any t,

(X̃n
t , ξ̃

n
t , W̃

n
t )

P→ (X̃t, ξ̃t, W̃t), n→∞,

for some equivalent random processes (X̃n, ξ̃n, W̃ n), generally speaking, over a sub-
sequence. Slightly abusing notations, we will denote initial values still by x0 without
tilde. Also, without loss of generality we may and will assume that each process
(ξ̃nt , t ≥ 0) for any n ≥ 1 is independent from (X̃n, W̃ n), as well as their limit ξ̃t may
be chosen independent of the limits (X̃, W̃ ) (this follows from the fact that on the
original probability space ξn is independent of (Xn,W n) and on the new probability
space their joint distribution remains the same; hence, independence of ξ̃n is also
valid and in the limit this is still true). See the details in the proof of the Theorem
2.6.1 in [18]. We could have also introduced Wiener processes for ξnt and ξ̃nt , but they
will not show up in this proof. For what follows, let us fix some arbitrary T > 0 and
consider t in the interval [0, T ].
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Due to the inequality (13), the same inequality holds for X̃n, W̃ n,

sup
0≤s≤t≤T ; t−s≤h

E|X̃n
t − X̃n

s |4 ≤ CTh
2. (14)

Due to Kolmogorov’s continuity theorem this means that all processes X̃n may be
regarded as continuous, and W̃ n can be assumed also continuous by the same reason.
Further, due to the independence of the increments of W n after time t of the sigma-
algebra σ(Xn

s ,W
n
s , s ≤ t), the same property holds true for W̃ n and σ(X̃n

s , W̃
n
s , s ≤ t),

as well as for W̃ n and for the completions of the sigma-algebras σ(X̃n
s , W̃

n
s , s ≤ t)

which we denote by F (n)
t . Also, the processes X̃n are adapted to the filtration

(F (n)
t ). So, all stochastic integrals which involve X̃n and W̃ n are well defined. The

same relates to the processes ξ̃n.
Hence, again by using Skorokhod’s lemma on convergence on a unique probability

space – see the Lemma 1 in the Appendix – we may choose a subsequence n′ → ∞
so as to pass to the limit in the equation

X̃n′

t = x0 +

∫ t

0

E3bn
′
(s, X̃n′

s , ξ̃
n′

s ) ds+

∫ t

0

E3σn
′
(s, X̃n′

s , ξ̃
n′

s )dW̃ n′

s ,

in order to get

X̃t = x0 +

∫ t

0

E3b(s, X̃s, ξ̃s)ds+

∫ t

0

E3σ(s, X̃s, ξ̃s) dW̃s,

or, equivalently,

X̃t = x0 +

∫ t

0

B[s, X̃s, µs] ds+

∫ t

0

Σ[s, X̃s, µs] dW̃s.

This requires some additional explanation because we want to use Krylov’s bounds
stated for uniformly bounded coefficients while in our setting they may grow in-
finitely. However, in fact, we can use these bounds because the processes we deal
with are uniformly bounded in probability with suitable a priori bounded moments.
The details are provided below.

First of all, recall that a priori bounds (9) – (14) hold true with constants not
depending on n. Now, by Skorokhod’s theorem on some probability space we have
some equivalent processes (X̃n′

t , ξ̃
n′
t , W̃

n′
t ) and a limiting triple (X̃t, ξ̃t, W̃t) such that

for any t,

(X̃n′

t , ξ̃
n′

t , W̃
n′

t )
P→ (X̃t, ξ̃t, W̃t).
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By virtue of the a priori bounds for W̃ n, the process W̃t is continuous and it is a
Wiener process. Also, the limits are adapted to the corresponding filtration F̃t :=∨
nF

(n)
t and W̃t is continuous and it is a Wiener process with respect to this filtration.

In particular, related Lebesgue and stochastic integrals are all well defined. Moreover,
by virtue of the uniform estimates (13), the limit (X̃t, ξ̃t) may be also regarded as
continuous due to Kolmogorov’s continuity theorem because the a priori bounds (8)–
(12) remain valid for the limiting processes X̃, ξ̃. In particular, it is useful to note
for the sequel that

sup
0≤t≤T

E|X̃t|2 ≤ CT (1 + E|x0|2). (15)

4. Let us now show that∫ t

0

E3bn
′
(s, X̃n′

s , ξ̃
n′

s )ds
P→
∫ t

0

E3b(s, X̃s, ξ̃s)ds, (16)

and ∫ t

0

E3σn
′
(s, X̃n′

s , ξ̃
n′

s )dW̃ n′

s
P→
∫ t

0

E3σ(s, X̃s, ξ̃s)dW̃s, n′ →∞. (17)

We are to explain how to use Krylov’s estimate for Itô processes with bounded
coefficients while in our case they may be unbounded.

Due to the inequality (11), for any ε > 0 there exists R such that for any n,

P( sup
0≤t≤T

|X̃n
t | ≥ R) < ε.

The same holds true for ξ̃n (since they are equivalent). Hence, for any ε > 0 there
exists R > 0 such that for any n,

P( sup
0≤t≤T

(|X̃n
t | ∨ |ξ̃nt |) ≥ R− 1) < ε

(the reason for using R− 1 instead of R will be clear in the proof), or, equivalently,

P(γn,R−1 ≤ T ) < ε, (18)

where
γn,R := inf(t ≥ 0 : sup

0≤t≤T
(|X̃n

t | ∨ |ξ̃nt |) ≥ R).
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The same holds true for the limiting process (X̃t, ξ̃t) by virtue of its continuity due
to Kolmogorov’s continuity theorem, that is, for any ε > 0 there exists R > 0 such
that (to have R− 1 instead of R will be convenient shortly)

P( sup
0≤t≤T

(|X̃t| ∨ |ξ̃t|) ≥ R− 1) < ε,

or, equivalently,
P(γR−1 ≤ T ) < ε, (19)

where
γR := inf(t ≥ 0 : sup

0≤s≤t
(|X̃s| ∨ |ξ̃s|) ≥ R).

In the sequel it will be convenient to define

γXR := inf(t ≥ 0 : sup
0≤s≤t

|X̃s| ≥ R), & γξR := inf(t ≥ 0 : sup
0≤s≤t

|ξ̃s| ≥ R),

and similarly

γXn,R := inf(t ≥ 0 : sup
0≤s≤t

|X̃n
s | ≥ R), & γξn,R := inf(t ≥ 0 : sup

0≤s≤t
|ξ̃ns | ≥ R).

Note that
1(γR > T ) = 1(γXR > T )1(γξR > T ),

and similarly

1(γR ∧ γn,R > T ) = 1(γXR ∧ γXn,R > T )1(γξR ∧ γ
ξ
n,R > T ).

Denote R̃ := R − 1. Then, given any ε > 0, and slightly abusing notations by
replacing n′ by n, for any t ≤ T by virtue of Chebyshev–Markov’s inequality we
conclude that for any c > 0 there exists R̃ such that

E1(γn,R̃ ∧ γR̃ ≤ T ) < ε.

Further at one place we will need more precise estimates (see (9)):

P(γn,R−1 ≤ T ) ≤
E sup0≤t≤T (|X̃t|2 ∨ |ξ̃t|2)

(R− 1)2
≤ C(1 + E|x0|2)

(R− 1)2
, (20)
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by virtue of the Chebyshev–Markov inequality. Now, we estimate,

P
(∣∣∣∣∫ t

0

E3bn
′
(s, X̃n′

s , ξ̃
n′

s ) ds−
∫ t

0

E3b(s, X̃s, ξ̃s) ds

∣∣∣∣ > c

)
≤ P(γn,R̃ ∧ γR̃ ≤ T )

+P
(
γX
n,R̃
∧ γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )

(
bn(s, X̃n

s , ξ̃
n
s )− b(s, X̃s, ξ̃s)

)
ds| > c

)
.

Here the first term does not exceed ε if R is large enough, uniformly with respect to
n. Further, let us fix some n0 and let n > n0. We have for any t ≤ T ,

P
(
γX
n,R̃
∧ γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )

(
bn(s, X̃n

s , ξ̃
n
s )− b(s, X̃s, ξ̃s)

)
ds| > c

)

≤ P
(
γX
n,R̃
∧ γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )

(
bn(s, X̃n

s , ξ̃
n
s )− bn0(s, X̃n

s , ξ̃
n
s )
)
ds| > c

3

)

+P
(
γX
n,R̃
∧ γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )

(
bn0(s, X̃n

s , ξ̃
n
s )− bn0(s, X̃s, ξ̃s)

)
ds| > c

3

)

+P
(
γX
n,R̃
∧ γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )

(
bn0(s, X̃s, ξ̃s)− b(s, X̃s, ξ̃s)

)
ds| > c

3

)
=: I1 + I2 + I3. (21)

Denote

gn,n0(s, x, ξ) := bn(s, x, ξ)− bn0(s, x, ξ), gn0(s, x, ξ) := bn0(s, x, ξ)− b(s, x, ξ).

Then the first summand I1 may be estimated by Chebyshev–Markov’s inequality as

I1 ≤ 3

c
E1(γX

n,R̃
> T, γX

R̃
> T )

∫ T

0

E31(γξ
n,R̃
∧ γξ

R̃
> T )|bn(s, X̃n

s , ξ̃
n
s )− bn0(s, X̃n

s , ξ̃
n
s )| ds

(22)

=
3

c
EE31(γn,R̃ > T, γR̃ > T )

∫ T

0

|gn,n0(s, X̃n
s∧γn,R̃

, ξ̃ns∧γn,R̃
)| ds.

Here the couple (X̃n
s∧γn,R̃

, ξ̃ns∧γn,R̃
) is a stopped diffusion with coefficients bounded by

norm in state variables (x, ξ) by the value CR̃ uniformly with respect to n, and with
the diffusion coefficient uniformly non-degenerate.
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Denote by b̂n,R̃[s, x, µ] and σ̂n,R̃[s, x, µ] smooth (e.g., C1) bounded vector and

matrix functions in x respectively, with σ̂n,R̃[s, x, µ] uniformly nondegenerate, such
that

b̂n,R̃[s, x, µ] = bn[s, x, µ], σ̂n,R̃[s, x, µ] = σn[s, x, µ], |x| ≤ R̃.

Let (X̂n
s ) = (X̂n,R̃

s ) be a (strong) solution of the Ito equation,

dX̂n
t = b̂n,R̃[t, X̂n

t , µ
n
t ] dt+ σ̂n,R̃[t, X̂n

t , µ
n
t ] dW̃ n

t , X̂n
0 = x0, (23)

where µnt is still the marginal distribution of Xn
t and X̃n

t . Let also ξ̂n be an equivalent
independent copy of the process X̂n

t . Note that on [0, t∧ γn,R̃] the processes X̃n and

X̂n coincide (see [19, Theorem 6.2.1(v)]). Then the bound for I1 in the second line
of (22) may be rewritten as

I1 ≤ 3

c
EE31(γn,R̃ > T, γR̃ > T )

∫ T

0

|gn,n0(s, X̂n
s∧γn,R̃

, ξ̂ns∧γn,R̃
) ds

(24)

≤ 3

c
E1(γn,R̃ > T )

∫ T

0

|gn,n0(s, X̂n
s , ξ̂

n
s )| ds.

The values of the function gn,n0(s, x, ξ) outside the set {(x, ξ) : (|x| ∨ |ξ|) ≤ R̃} are
not relevant to the evaluation of the expression in the second line of (24). So, without
losing of generality we may assume for our goal that gn,n0(s, x, ξ) vanishes outside of
this ball. Then, by Krylov’s estimate (see the Theorem 2.4.1 or the Theorem 2.3.4
in [18]) we obtain,

I1 ≤ 3

c
E
∫ T

0

|gn,n0(s, X̂n
s , ξ̂

n
s )| ds ≤ N

(∫ T

0

∫
|x|≤R̃

∫
|ξ|≤R̃

|gn,n0(s, x, ξ)|2d+1 dxdξds

) 1
2d+1

=
3N

c

(∫ T

0

∫
|x|≤R̃

∫
|ξ|≤R̃

|bn(s, x, ξ)− bn0(s, x, ξ)|2d+1 dxdξds

) 1
2d+1

≤ 3N

c

(∫ T

0

∫
|x|≤R̃

∫
|ξ|≤R̃

|bn(s, x, ξ)− b(s, x, ξ)|2d+1 dxdξds

) 1
2d+1

+
3N

c

(∫ T

0

∫
|x|≤R̃

∫
|ξ|≤R̃

|bn0(s, x, ξ)− b(s, x, ξ)|2d+1 dxdξds

) 1
2d+1

→ 0, n, n0 →∞,

by virtue of the well-known property of mollified functions. Hence, the term I1 goes
to zero as n→∞ since this term does not depend on n0.

14



Further, the second term I2 admits the estimate (for any 0 ≤ t ≤ T ),

I2≤P
(
γX
n,R̃
∧γX

R̃
> T ; |

∫ t

0

E31(γξ
n,R̃
∧γξ

R̃
>T )

(
bn0(s, X̃n

s , ξ̃
n
s )ds−bn0(s, X̃s, ξ̃s)

)
ds|> c

3

)

≤ 3

c
EE31(γn,R̃ > T, γR̃ > T )

∫ T

0

|bn0(s, X̃n
s , ξ̃

n
s )− bn0(s, X̃s, ξ̃s)| ds,

which tends to zero as n → ∞ due to the Lebesgue bounded convergence theorem.

Indeed, on the set (γn,R̃ > T, γR̃ > T ), the random variable

∫ T

0

|bn0(s, X̃n
s , ξ̃

n
s ) −

bn0(s, X̃s, ξ̃s)| ds is bounded, and∫ T

0

|bn0(s, X̃n
s , ξ̃

n
s )− bn0(s, X̃s, ξ̃s)| ds→ 0, n→∞,

in probability.

To tackle the third term I3, the indicators 1(γR̃ > T ) are not enough and we
need some new auxiliary function. Let R > 1 and let 0 ≤ w(x, ξ) ≤ 1 be any
continuous function which equals 1 for every |x| ∨ |ξ| ≤ R − 1 (= R̃) and zero for
every |x| ∨ |ξ| > R. Then we have,

I3 =P
(
γX
n,R̃
∧γX

R̃
>T ; |

∫ t

0

E31(γξ
n,R̃
∧γξ

R̃
>T )

(
bn0(s, X̃s, ξ̃s)ds−b(s, X̃s, ξ̃s)

)
ds|> c

3

)

≤ 3

c
EE31(γR̃ > T )

∫ T

0

|bn0(s, X̃s, ξ̃s)− b(s, X̃s, ξ̃s)| ds

≤ 3

c
E
∫ T

0

w(X̃s, ξ̃s)|gn0(s, X̃s, ξ̃s)| ds. (25)

We want to show that the right hand side (the last term) in (25) goes to zero, firstly,
as n0 → ∞, and secondly, as R → ∞. (Strangely, the indicators 1

(
γn,R̃ ∧ γR̃ > T

)
are not of a real help here, although, new similar ones will appear shortly, see below.)
The values of the function gn0(s, x, ξ) outside the set {(x, ξ) : (|x| ∨ |ξ|) ≤ R̃} are
not relevant for the evaluation of the expression in the right hand side of (25). So,
without losing of generality we may assume that gn0(s, x, ξ) vanishes outside this
ball. Thus, in particular, we can also accept that gn0(s, x, ξ) is uniformly bounded.
Take any ε > 0 and choose and fix for a while R so large that

TC(1 + E|x0|2)R̃−1 < ε. (26)

15



The reason for this choice will be clarified shortly. For any function g(s, x, ξ) ∈

L :=

(
g (Borel measurable) : sup

s,x,ξ

|g(s, x, ξ)|
1 + |x|

≤ C

)
for a fixed C > 0 let us show the

bound,

E
∫ T

0

w(X̃s, ξ̃s)|g(s, X̃s, ξ̃s)| ds ≤ C
√
ε+N‖g‖L2d+1([0,T ]×BR×BR), (27)

with some C > 1. First of all note that it suffices to establish this inequality with
(C − 1)

√
ε instead of C

√
ε only for continuous functions g vanishing outside the set

[0, T ] × BR × BR), of course, assuming that the constant N does not depend on
the regularity of g. Indeed, such (continuous) functions are, clearly, dense in the

class LR in the L2d+1 norm. So, choosing g̃ ∈ C and sup
s,x,ξ

|g(s, x, ξ)|
1 + |x|

≤ C so that

‖g̃− g‖L2d+1([0,T ]×BR×BR) <
√
ε/N , and provided that the desired estimate with C

√
ε

replaced by (C − 1)
√
ε is valid for g̃, we immediately get (27) for g with C

√
ε.

In order to establish the bound with some C and N

E
∫ T

0

w(X̃s, ξ̃s)|g(s, X̃s, ξ̃s)| ds ≤ C
√
ε+N‖g‖L2d+1([0,T ]×BR×BR) (28)

for g ∈ C([0, T ]× BR × BR)
⋂
L) such that sups,x,ξ

|g(s,x,ξ)|
1+|x| ≤ C, return to the pre-

limiting “smoothed” diffusions (X̃k, ξ̃k). We estimate, using for one of the terms the

16



replacement X̂ and ξ̂ (see (23)),

E
∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

≤ E1(γk,R̃ > T )

∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

+E1(γk,R̃ ≤ T )

∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

= E1(γk,R̃ > T )

∫ T

0

w(X̂k
s , ξ̂

k
s )|g(s, X̂k

s , ξ̂
k
s )| ds

+E1(γk,R̃ ≤ T )

∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

≤ N‖g‖L2d+1([0,T ]×BR×BR)

+
(
P(γk,R̃ ≤ T )

)1/2

(
E
(∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

)2
)1/2

,

where the first integral with 1(γk,R̃ > T ) and X̂, ξ̂ was estimated by Krylov’s

bound while to the second one with 1(γk,R̃ ≤ T ) and X̃, ξ̃ we applied the Cauchy–
Bunyakovsky–Schwarz inequality. Finally, for R large enough

P(γk,R̃ ≤ T ) ≤ ε

(see (18)), while by Jensen’s inequality,

E
(∫ T

0

w(X̃k
s , ξ̃

k
s )|g(s, X̃k

s , ξ̃
k
s )| ds

)2

≤ T

∫ T

0

E
(
w(X̃k

s , ξ̃
k
s )|g(s, X̃k

s , ξ̃
k
s )|
)2

ds

≤ TC

∫ T

0

E
(

1 + |X̃k
s |2 + |ξ̃ks )|2

)
ds ≤ C̃ <∞,

with some C̃ due to (15) and (26). The bound (28) for g ∈ LC follows now by virtue
of the Fatou Lemma as k →∞. Hence, (27) for any g ∈ L holds true. This implies
that

lim
R→∞

lim sup
n0→∞

sup
n

I3 = 0.
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The convergence (16) is, thus, proved.

5. Now let us consider convergence of stochastic integrals in (17). Our goal is an
estimate similar to that for the drift and Lebesgue integrals above:

P(|
∫ t

0

E3σn(s, X̃n
s , ξ̃

n
s )dW n

s −
∫ t

0

E3σ(s, X̃s, ξ̃s)dW̃s| > c) < Cε, (29)

for any c, ε > 0 and n large enough. In principle, the task is similar to the convergence
of Lebesgue integrals tackled in the previous steps. Hence, we mainly show how to
tackle the additional obstacle due to different Wiener processes dWs and dW n

s in
the stochastic integrals. Fortunately, we have a tool for this which is Skorokhod’s
Lemma 2 from the Appendix below. However, it is not applicable directly because
our processes may be unbounded, so we should overcome this with the help of the
estimate (18) which reduces the problem to bounded processes.

By virtue of [19, Theorem 6.2.1(v)] and similarly to the calculus for Lebesgue
integrals in the previous steps, yet using second moments instead of the first ones by
the evident reason we estimate,

P(|
∫ t

0

E3σn(s, X̃n
s , ξ̃

n
s )dW̃ n

s −
∫ t

0

E3σ(s, X̃s, ξ̃s)dW̃s| > c)

≤ c−2E
∣∣∣∣∫ t

0

E3σn(s, X̃n
s , ξ̃

n
s )dW̃ n

s −
∫ t

0

E3σ(s, X̃s, ξ̃s)dW̃s

∣∣∣∣2
≤ CE

∣∣∣∣∫ t

0

E3σn(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σ(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
+CE

∣∣∣∣∫ t

0

E3σn(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σn(s, X̃n
s , ξ̃

n
s )dW̃ n

s

∣∣∣∣2
+CE

∣∣∣∣∫ t

0

E3σ(s, X̂s, ξ̂s)dW̃s −
∫ t

0

E3σ(s, X̃s, ξ̃s)dW̃s

∣∣∣∣2
=: S1 + S2 + S3.

Here the term S3 can be evaluated as follows (notations taken from the previous
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step):

S3 ≤ 2CE
∣∣∣∣∫ t

0

E31(γR̃ < s)σ(s, X̃s, ξ̃s)dW̃s

∣∣∣∣2 + 2CE
∣∣∣∣∫ t

0

E31(γR̃ < s)σ(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
= 2CE

∫ t

t∧γX
R̃

Tr
(
E31(γξ

R̃
< s)σ(s, X̃s, ξ̃s)

)(
E31(γξ

R̃
< s)σ(s, X̃s, ξ̃s)

)∗
ds

+2CE
∫ t

t∧γX
R̃

Tr
(
E31(γξ

R̃
< s)σ(s, X̂s, ξ̂s)

)(
E31(γξ

R̃
< s)σ(s, X̂s, ξ̂s)

)∗
ds

≤ CE
∫ t

t∧γX
R̃

(1 + |X̃s|2) ds+ CE
∫ t

t∧γX
R̃

(1 + |X̂s|2) ds→ 0, R̃→∞,

as in the previous step for the drift. Quite similarly, for S2 we have,

S2≤CE
∣∣∣∣∫ t

0

E31(γn,R̃<s)σ(s, X̃n
s , ξ̃

n
s )dW̃ n

s

∣∣∣∣2+CE
∣∣∣∣∫ t

t

E31(γn,R̃<s)σ(s, X̂n
s , ξ̂

n
s )dW̃ n

s

∣∣∣∣2
≤CE

∫ t

t∧γX
n,R̃

(1 + |X̃n
s |2) ds+ CE

∫ t

t∧γX
n,R̃

(1 + |X̂n
s |2) ds→ 0, R̃→∞.

For the term S1 which only contains diffusions X̂ and ξ̂ with bounded coefficients,
we finally estimate,

E
∣∣∣∣∫ t

0

E3σn(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σ(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
≤ 3E

∣∣∣∣∫ t

0

E3σn(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σn0(s, X̂n
s , ξ̂

n
s )dW̃ n

s

∣∣∣∣2
+3E

∣∣∣∣∫ t

0

E3σn0(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σn0(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
+3E

∣∣∣∣∫ t

0

E3σn0(s, X̂s, ξ̂s)dW̃s −
∫ t

0

E3σ(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
=3E

∫ t

0

Tr
(
E3(σn(s, X̂n

s , ξ̂
n
s )−σn0(s, X̂n

s , ξ̂
n
s ))
)(

E3(σn(s, X̂n
s , ξ̂

n
s )−σn0(s, X̂n

s , ξ̂
n
s ))
)∗
ds

+3E
∣∣∣∣∫ t

0

E3σn0(s, X̂n
s , ξ̂

n
s )dW̃ n

s −
∫ t

0

E3σn0(s, X̂s, ξ̂s)dW̃s

∣∣∣∣2
+3E

∫ t

0

Tr
(
E3(σn0(s, X̂s, ξ̂s)−σ(s, X̂s, ξ̂s))

)(
E3(σn0(s, X̂s, ξ̂s)−σ(s, X̂s, ξ̂s))

)∗
ds

=: S11 + S12 + S13.
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Here S11 and S13 are small as R̃ → ∞ by virtue of Krylov’s bound for diffusions
with bounded coefficients like for the drift in the previous step, due to the second
moment estimates above and because γn,R̃ →∞ uniformly in probability as R̃→∞.
We have skipped the functions similar to gn,n0 from the previous step which work
here in a totally similar way. Finally, the term S12 goes to zero as n → ∞ by
the Skorokhod Lemma 2 (see the Appendix) along with the Lebesgue’s integrable
convergence Theorem. This proves the desired bound (29).

So, we have established both (16) and (17), and thus, weak solution of the equa-
tion (1)–(2) exists in the case of d1 = d and under the assumption (5) instead of (4).
Recall that once µt is the distribution of ξt, and distributions of ξt and Xt coincide,
then µt is also the distribution of Xt.

6. Now we will show under the general assumption of continuity of the coefficients
with respect to µ how to drop the assumption (5) and, in particular, how to drop
the condition d1 = d. We will use a hint from [31, section 4]; however, due to a more
involved structure of the equation and its coefficients in this paper, it is desirable to
repeat the details here.

There is a non-rigorous view that for SDE solutions everything related to weak
solutions and weak uniqueness depends only on the matrix σ∗σ and not on σ itself.
However, this view is not precise. Firstly, for strong solutions this is certainly not true
because regularity such as Lipschitz condition or even a simple continuity may fail
for badly chosen square root, let us forget about non-Borel square roots. Secondly,
even for weak solutions in the absence of non-degeneracy and if the square root is
not continuous, there is no guarantee that weak solution exists for any square root.
Recall that existing results about weak solutions and weak uniqueness – see, e.g.,
[4, 9] – impose conditions on σ and not on σσ∗. Hence, we find it not sufficient to
refer to the “common knowledge” and have to show the calculus.

Denote Σ̃[t, x, µ] :=
√
A[t, x, µ], where A[t, x, µ] := Σ[t, x, µ]Σ∗[t, x, µ], and sup-

pose that there exists a (weak) solution X̃ of the equation,

X̃t = x+

∫ t

0

B[s, X̃s, µs]ds+

∫ t

0

Σ̃[s, X̃s, µs]dW̃s, (30)

with some d-dimensional Wiener process (W̃t, t ≥ 0) on some probability space and
where µs stands for the distribution of X̃s.
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Existence of this weak solution will be justified in the next step of the proof
with the help of the Riesz – Dunford (Cauchy) formula for a function of a positive
self-adjoint matrix (see, e.g., [7, VII.3.9]),√

A[t, x, µ] =
1

2πi

∮
Γ

λ1/2(λ− A[t, x, µ])−1 dλ. (31)

where the contour Γ ⊂ C is to be chosen in a way so that its interior contains all the
eigenvalues of the (elliptic) matrix A[s, x, ·], say, for x from some compact set; due to
the locally uniform ellipticity it is possible to choose Γ in a unique way for all (s, x, µ),
at least, for all x from any compact and then the desired weak continuity follows
directly from the right hand side of (31) with the help of the standard stopping times.

Further, without loss of generality we may and will assume that on the same
probability space there exists another independent d1-dimensional Wiener process
(W̄t, t ≥ 0). Let I denote a d1 × d1-dimensional unit matrix and let

p[s, x, µ] := Σ̃[s, x, µ]−1 Σ[s, x, µ]. (32)

Note that the matrix Σ̃[s, x, µ] is symmetric and that

p∗p[s, x, µ] = Σ∗[s, x, µ](Σ̃∗[s, x, µ])−1Σ̃[s, x, µ]−1 Σ[s, x, µ]

= Σ∗[s, x, µ](A)−1[s, x, µ]Σ[s, x, µ],

p∗[s, x, µ]p[s, x, µ]p∗[s, x, µ]p[s, x, µ]

= Σ∗[s, x, µ](A)−1[s, x, µ]Σ[s, x, µ]Σ∗[s, x, µ](A)−1[s, x, µ]Σ[s, x, µ]

= Σ∗(A)−1(A)A)−1Σ[s, x, µ] = Σ∗(A)−1Σ[s, x, µ],

and let

W 0
t :=

∫ t

0

p∗[s, X̃s, µs] dW̃s +

∫ t

0

(I − p∗[s, X̃s, µs]p[s, X̃s, µs]) dW̄s.

Notice that

Σ[s, x, µ]p∗[s, x, µ] = a[s, x, µ](a[s, x, µ])−1/2 = (a[s, x, µ])1/2,

Σ[s, x, µ]p∗[s, x, µ]p[s, x, µ] = (a[s, x, µ])1/2p[s, x, µ]

= (a[s, x, µ])1/2(a[s, x, µ])−1/2Σ[s, x, µ] = Σ[s, x, µ].
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Due to the multivariate Lévy characterization theorem this implies that W 0 is a
d1-dimensional Wiener process, since its matrix angle characteristic (also known as
a matrix angle bracket) equals

〈W 0,W 0〉t =

∫ t

0

p∗p[s, X̃s, µs] ds+

∫
(I − p∗p[s, X̃s, µs])

∗(I − p∗p[s, X̃s, µs]) ds

=

∫
(p∗p[s, X̃s, µs] + I − 2p∗p[s, X̃s, µs] + p∗pp∗p[s, X̃s, µs]) ds

=

∫
(I − p∗p[s, X̃s, µs] + p∗pp∗p[s, X̃s, µs]) ds

=

∫
(I − Σ∗(A)−1Σ[s, X̃s, µs] + Σ∗(A)−1(A)(A)−1Σ[s, X̃s, µs]) ds =

∫ t

0

I ds = t I.

Next, due to the stochastic integration rules (see [12]),∫ t

0

Σ[s, X̃s, µs] dW
0
s =

∫
Σp∗[s, X̃s, µs] dW̃ +

∫
Σ(I − p∗p)[s, X̃s, µs] dW̄

(33)

=

∫
(A)1/2[s, X̃s, µs] dW̃ =

∫
Σ̃[s, X̃s, µs] dW̃ = X̃t − x−

∫ t

0

B[s, X̃s, µs] ds.

In other words, (X̃,W 0) is a (weak) solution of the equation (1). It remains to
notice that since we did not change measures, µs is still the distribution of X̃s by the
assumption.

7. Now it remains to show independently of the previous step existence of weak
solution to the equation (30), with Σ̃[t, x, µ] :=

√
A[t, x, µ], where

A[t, x, µ] := Σ[t, x, µ]Σ∗[t, x, µ] =

(∫
σ(t, x, y)µ(dy)

)(∫
σ∗(t, x, y)µ(dy)

)
.

Assume for a minute that all coefficients σ and b are bounded. Then a unique contour
Γ in (31) may be chosen such that the equation (30) can be rewritten as

X̃t = x+

∫ t

0

B[s, X̃s, µs]ds+

∫ t

0

(
1

2πi

∮
Γ

λ1/2(λ− A[s, X̃s, µs])
−1 dλ

)
dW̃s. (34)

Correspondingly, when we mollify σ in the last variable, the smoothed equations look

X̃n
t = x+

∫ t

0

B [s, X̃n
s , µ

n
s ]ds+

∫ t

0

1

2πi

∮
Γ

λ1/2(λ− An[s, X̃n
s , µ

n
s ])−1 dλ dW̃ n

s ,
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or, equivalently,

X̃n
t = x+

∫ t

0

E3b(s, X̃n
s , ξ̃

n
s )ds

+

∫ t

0

(
1

2πi

∮
Γ

λ1/2

(
λ−
∫
E3σ(s, X̃n

s , ξ̃
n
s −z)φn(z)dz×

(35)

×
∫

E3σ∗(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

)−1

dλ

)
dW̃ n

s ,

where, as usual, (ξ̃n) are independent and equivalent to (X̃n) processes and E3

means expectation with respect to the “third variable”. The equation (35) has a
(strong) solution due to smoothness of the coefficients. Note that here the matrix σ
is mollified, not σσ∗, and only with respect to the third variable. This is important
because the smoothed diffusion remains non-degenerate which is used in Krylov’s
bounds. Because of this smoothing (and due to the non-degeneracy), the equation
(35) has a weak solution according to the part II of the Theorem which is already
proved; in fact, smoothing of the drift could have been also performed here but
it is not necessary in this variant. Convergence (over a subsequence) of the term∫ t

0
B [s, X̃n

s , µ
n
s ] ds =

∫ t
0
E3b[s, X̃n

s , ξ̃
n
s ] ds to the limiting one

∫ t
0
B[s, X̃s, µs] ds follows

from the same calculus as earlier in the step 1.4, based on the non-degeneracy,
Krylov’s estimates, and stopping times. A bit more involved is the stochastic term,∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz×

×
∫

E3σ∗(s, X̃n
s , ξ̃

n
s− z)φn(z)dz

))−1

dλ dW̃ n
s .

We will evaluate the difference between this term and its desirable limit by splitting
into the following three parts analogous to the step 1.5:

I1 =

∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s ,
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I2 =

∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3σ∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s,

and

I3 =

∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3σ∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s

−
∫ t

0

1

2πi

∮
Γ

λ1/2
(
λ−
(
E3σ(s, X̃s, ξ̃s)E3σ∗(s, X̃s, ξ̃s)

))−1

dλ dW̃s.

Let us start with the term I1, probably the most instructive and intuitive, although,
not the most complicated. Using the formula for the resolvent difference

(λ− A1)−1 − (λ− A2)−1 = (λ− A1)−1(A2 − A1)(λ− A2)−1, λ 6∈ sp(A1) ∪ sp(A2),

and choosing the contour Γ so that ‖(λ − Ai)−1‖ (as well as |λ| itself) is uniformly
bounded on it for i = 1, 2, where A1 stands for the matrix

E3

(∫
σσ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

)
,

and A2 for

E3

(∫
σσ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z) dz

)
,
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we estimate (constants C may change from line to line),

E‖
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s ‖2

≤E
∫ t

0

‖ 1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

))−1

dλ

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ‖2ds

≤ CE
∫ t

0

|
∮

Γ

‖
(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

))−1

−
(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

‖dλ|2ds

≤ CE
∫ t

0

‖
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn(z)dz

)

−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

)
‖2
L2d+1

ds

≤ CE
∫ t

0

‖
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn(z)dz−

∫
E3σ(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

)
‖L2d+1

ds

≤ N

(
‖
∫
σ(s, x, ξ−z)φn(z)dz−σ(s, x, ξ)‖L2d+1

+‖
∫
σ(s, x, ξ−z)φn0(z)dz−σ(s, x, ξ)‖L2d+1

)
,

where L2d+1 stands in both lines for the integral norms of order 2d + 1 in the vari-
ables (s, x, ξ) of the expressions ‖ . . . ‖L2d+1

. Hence, again with the help of Krylov’s
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estimates and usual stopping times – which should be added in a usual way to the
calculus above – the issue is reduced to the convergence in Lp norms of the differences
between the mollified functions and their originals. It is true that the corresponding
norm of these differences tends to zero on any compact domain, while probability
that our solutions exit this domain on a finite interval of time is small if the domain is
chosen large enough. Overall, this justifies the convergence E‖I1‖2 → 0, n, n0 →∞.

In the case of unbounded coefficients the countour Γ, generally speaking, may
not be chosen uniform for all values of x, but only for all x from any compact. This
suffices for the calculus as above with stopping times as in the step 1.5.

Now let us show that I2 → 0 in square mean as n → ∞, for each n0. This is a
little more involved than usually with this kind of term because we did not smooth
in the second variable (so as to keep the diffusion non-degenerate) and because no
continuity is assumed with respect to it. Yet, we will use the same trick as above
along with Krylov’s bounds. Although the matrix function σ is already mollified
with respect to the third variable, let us smooth it again in all the variables. We
will not specify the kernels now (the old ones ψn, φn can be used) and just denote
the result as σδ(s, x, ξ) which is continuous in all variables and assumed close to σ
in the L2d+1 norm. So we estimate, again assuming for a minute that the contour Γ
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can be chosen unique for all s, x,

E‖
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3σ∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s‖2

≤ 3E‖
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3σ∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σδ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3(σδ)∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s ‖2

+3E‖
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σδ(s, X̃n
s , ξ̃

n
s −z)φn0(z)dz

∫
E3(σδ)∗(s, X̃n

s , ξ̃
n
s −z)φn0(z)dz

))−1

dλ dW̃ n
s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σδ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3(σδ)∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s‖2

+3E‖
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σδ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3(σδ)∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s

−
∫ t

0

1

2πi

∮
Γ

λ1/2

(
λ−
(∫

E3σ(s, X̃s, ξ̃s−z)φn0(z)dz

∫
E3σ∗(s, X̃s, ξ̃s−z)φn0(z)dz

))−1

dλ dW̃s‖2

=: 3(I21 + I22 + I23).

Here by Krylov’s bounds,

I21 ≤ N‖σ − σδ‖2
L4d+2

→ 0, δ → 0.

Further,
I22 → 0, n→∞,
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by Skorokhod’s Lemma, see the Appendix. Finally,

I23 ≤ N‖σ − σδ‖2
L4d+2

,

by virtue of Fatou’s lemma if we firstly establish this Krylov type bound for continu-
ous functions and (X̃n, ξ̃

n) and then approximate the difference σ−σδ by continuous
functions in L4d+2. This shows that, indeed, for each n0

E|I2|2 → 0, n→∞.

Again, in the case of unbounded coefficients the countour Γ may not be chosen
uniform for all values of x, but only for all x from any compact. However, this suffices
for the calculus as above with stopping times as in the step 5.

The last term I3 is estimated quite similarly to I23: we smooth the matrix function
σ in all variables, write Krylov’s bounds for the pre-limiting processes (X̃n, ξn), and
pass to the limit by Fatou’s lemma. The same remark about locally uniform choice
of Γ and stopping times applies. Therefore, we also have,

E|I3|2 → 0, n→∞,

as desired. Hence, we may conclude that there exists a weak solution of the equation
(30). The proof of the Theorem 1 is thus completed.

3 Strong solutions; strong and weak uniqueness

3.1 On strong existence

In this section it is shown that strong solution of the equation (1)–(2) exists under
appropriate conditions. Emphasize that we do not claim strong uniqueness in this
theorem, but only strong existence in the sense of the Definition 1. We also notice
for interested readers that in [29] the assumption of continuity in time was dropped
in comparison to [28]; so, just a certain (local) Lipschitz condition suffices for our
aim.

Proposition 2 Let E|x0|4 < ∞. Let the coefficients b and σ satisfy all conditions
of the Theorem 1 and the nondegeneracy assumption (5), and let just σ be Lipschitz
in x uniformly with respect to s and locally with respect to y,

‖σ(t, x, y)− σ(t, x′, y)‖ ≤ C(1 + |y|2)|x− x′|. (36)
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Then the equation (1)–(2) has a strong solution and, moreover, every solution
is strong and, in particular, solution may be constructed on any probability space
equipped with a d1-dimensional Wiener process.

This result is likely to be a common knowledge. However, the authors were unable
to find an exact reference which is desirable. So, for completeness as well as for the
convenience of the reader a brief sketch of the proof is presented below.

1. First of all, note that that weak solutions exist and that the a priori bounds
(9)–(13) are valid.

Considerations are based on the results from [28] and [29] about strong solutions
for SDEs for a Borel measurable drift which is assumed bounded or with a linear
growth in both papers. Since weak solution does exist, whatever is its distribution
µ, the process X may be considered as an ordinary SDE with coefficients depending
on time,

b̃(t, x) = B[t, x, µt], σ̃(t, x) = Σ[t, x, µt],

and, hence,
dXt = b̃(t,Xt)dt+ σ̃(t,Xt)dWt, X0 = x. (37)

Recall that according to the Corollary 1, the new coefficients b̃(t, x) and σ̃(t, x) are
Borel measurable.

2. Now in order to establish strong existence it suffices to verify that the new
coefficient and σ̃ satisfies linear growth in x condition uniform in time, and Lipschitz
condition in x, and is uniformly nondegenerate, or that both b̃ and σ̃ are Lipschitz
in x in the second case.

(1) In the case 1 we have, for any T > 0 and 0 ≤ t ≤ T ,

|b̃(t, x)| = |B[t, x, µt]| = |
∫
b(t, x, y)µt(dy))|

≤ C|
∫

(1 + |x|)µt(dy))| = C (1 + |x|).

Similarly, it also follows that

‖σ̃(t, x)‖ ≤ C

∫
(1 + |x|)µt(dy)) = C (1 + |x|).
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Further, we estimate, by virtue of the moment estimate (9),

|σ̃(t, x)− σ̃(t, x′)| = |Σ[t, x, µt]− Σ[t, x′, µt]|

= |
∫
σ(t, x, y)µt(dy))−

∫
σ(t, x′, y)µt(dy))|

≤ C |x− x′|
∫

(1 + |y|2)µt(dy)) ≤ CT |x− x′|.

The uniform nondegeneracy of σ – and, hence, also of σσ∗ – follows from the
inequality (5) by integration with respect to µt.

These properties suffice for the local strong uniqueness of solution of the equa-
tion (2) by virtue of the results from [28]. However, because weak solution is
well-defined for all values of time, strong uniqueness is global. According to the
Yamada–Watanabe principle ([33]), any solution of the equation (2) is strong.
So, any solution of the original equation (1) is also strong.

(2) In the case (2), Lipschitz conditions on both diffusion and drift are checked
similarly. Now, under the set of conditions 2 of the Proposition, the equation
(2) has a strong solution Xt due to Itô’s Theorem. Hence, Xt is also a strong
solution of the equation (1). This completes the proof of the Proposition 2.

Remark 2 Notice that as a solution of the “linearized” equation (37), X is pathwise
unique, but so far it is not known if this implies the same property for X as a
solution of (1), unless weak uniqueness for the equation (1) has been established. In
a restricted framework this will be done in the Theorem 2 below.

Remark 3 In the case of dimension one, Lipschitz condition may be relaxed to
Hölder of order 1/2 and, actually, a little bit further by using techniques from [33]
and [27]. Under the additional assumption of boundedness of b and σ, the fourth
moment of the initial value x0 is not necessary and can be further relaxed as in the
Theorem 1.

3.2 Strong and weak uniqueness: main result

In this section it will be shown that in certain cases weak uniqueness implies strong
uniqueness for the equation (1) – (2), and both properties will be established un-
der appropriate conditions. This result – the Theorem 2 below – requires only a
Borel measurability of the drift with respect to the state variable x, although, it
assumes that diffusion σ does not depend on y along with Lipschitz condition in x
and nondegeneracy. The drift may be unbounded in the state variable x.
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Theorem 2 Let E exp(r|x0|2) < ∞ for some r > 0, and let the functions b and σ
be Borel measurable, and

σ(s, x, y) ≡ σ(s, x),

that is, σ does not depend on the variable y; let σ satisfy the non-degeneracy as-
sumption (5); let d1 = d, the matrix σ be quadratic, symmetric and invertible, and
let there exist C > 0 such that the function

B̃[s, x, µ] := σ−1(s, x)B[s, x, µ]

satisfies the linear growth condition: there is C > 0 such that for all x ∈ Rd,

sup
s,µ
|B̃[s, x, µ]| ≤ C(1 + |x)). (38)

Also assume that the matrix-function σ(t, x) satisfies the following Lipschitz condition
(for simplicity) which guarantees that the equation

dX0
t = σ(t,X0

t ) dWt, X0
0 = x0, (39)

has a unique strong solution for any x (see [28, 29]):

sup
t≥0

sup
x,x′:x′ 6=x

‖σ(t, x)− σ(t, x′)‖
|x− x′|

<∞. (40)

Then solution of the equation (1)–(2) is weakly and strongly unique; this solution is
strong.

Remark 4 Just for weak uniqueness – without strong one – the assumption (40)
may be relaxed to the uniform continuity for any t of σσ∗(t, ·) if d > 1, or even
dropped completely if d = 1.

Remark 5 Note that under the condition (40), not only the equation (39) but any
equation with the same diffusion and a Borel measurable drift with a linear growth
assumption in x will have a strong solution. It concerns both solutions of the equation
(1) and its “linearized” version (37).

Emphasize that no regularity on the function b is needed in either variable. Also,
a linear growth condition on the drift in x is equivalent to the condition (38); the
latter was assumed in order to make the presentation more explicit. The price for
the no regularity and linear growth is a special form of σ which may not depend on
the “measure variable” y; in particuar, in such a case Σ(t, x) = σ(t, x), and we will
use the lower case to denote the diffusion coefficient in the remaining sections.
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Remark 6 Under the additional assumption of boundedness of b̃ exponential mo-
ment of the initial value x0 is not necessary and can be replaced by the fourth moment
as in the Theorem 1 or even weaker.

Remark 7 Instead of Lipschitz condition (40), it suffices if diffusion coefficient σ
belongs to the Sobolev class σ(t, x) ∈ W 0,1

2d+2,loc. More general conditions on Sobolev
derivatives for σ can be found in [28, Theorem 1] and [29], and any of them can
be used in our Theorem 2 above. Note that in the latter reference σ is assumed
Lipschitz but it is shown that continuity is necessary only with respect to the state
variable x, which is also applied to the conditions from [28]. As usual, even more
relaxed conditions on sigma can be stated in the case of dimension one as in [28,
Theorem 2].

3.3 Proof of Theorem 2

Denote by X0
t the unique (strong) solution of the Itô equation (39). Note that

dWt = σ−1(t,X0
t )dX0

t .

1. Recall that under the assumptions of the theorem, any solution of the equation
(1)–(2) is strong by virtue of the Proposition 2. Hence, it suffices to show weak
uniqueness, after which strong uniqueness for this equation will follow from strong
uniqueness for the “linearised” equation (37). We will show this weak uniqueness
by contradiction. Suppose there are two solutions X1 and X2 of the equation (1)
with distributions µ1 and µ2 respectively in the space of trajectories C[0,∞;Rd].
Without loss of generality, we may and will assume that both processes X1 and X2

are realized on the same probability space and with the same Wiener process:

dX1
t = σ(t,X1

t ) dWt +B[t,X1
t , µ

1
t ] dt, X1

0 = x, (41)

and
dX2

t = σ(t,X2
t ) dWt +B[t,X2

t , µ
2
t ] dt, X2

0 = x, (42)

respectively. This is possible because any solution of this equation is strong and,
hence, exists on any probability space with a Wiener process of the required dimen-
sion. This is not necessary for the proof and could have been avoided if we only
aimed to prove weak uniqueness, see the Remark 4. Yet, under the present setting
it will be shown that firstly µ1 = µ2 and secondly X1 = X2 a.s. Note that both X1

and X2 are Markov processes ([17]).
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Both solutions (X i, µi) in the weak sense may be obtained from the same Wiener
process W via Girsanov’s transformations using the following stochastic exponents:

γiT = exp(

∫ T

0

B̃[s,X0
s , µ

i
s] dWs −

1

2

∫ T

0

|B̃[s,X0
s , µ

i
s]|2 ds), i = 1, 2,

where b̃(t, x, y) := σ−1(t, x) b(t, x, y), B̃[t, x, µ] := σ−1(t, x)B[t, x, µ], |B̃| stands for
the modulus of the vector B̃, and B̃[s,X0

s , µ
i
s] dWs is understood as a scalar product,∑d

j=1 B̃
j[s,X0

s , µ
i
s]dW̃

j
s .

It is well-known that in the case of bounded B̃ the random variables γiT , i = 1, 2,
are probability densities due to Girsanov’s theorem (see, e.g., [19, Theorem 6.8.8]).
So, till the step 4 we assume B̃ bounded; note that in this case we have,

|B[s, x, µ]−B[s, x, ν]| ≤ C‖µ− ν‖TV . (43)

The calculus with a bounded B is needed so as to explain the idea which will be
further expanded to the case without this restriction. Also this will justify the
statement in the Remark 6.

Denote

W̃ 1
t := Wt −

∫ t

0

B̃[s,X0
s , µ

1
s] ds, 0 ≤ t ≤ T.

This is a new Wiener process on [0, T ] under the probability measure P γ1 defined
by its density as (dP γ1/dP )(ω) = γ1

T . Then, on the same interval [0, T ], on the
probability space with a Wiener process (Ω,F , (W̃ 1

t , Ft),Pγ
1
), the process (X0

t , 0 ≤
t ≤ T ) satisfies the equation,

dX0
t = σ(t,X0

t )dW̃ 1
t + σ(t,X0

t )B̃[t,X0
t , µ

1
t ]dt

(44)

= σ(t,X0
t )dW̃ 1

t +B[t,X0
t , µ

1
t ] dt,

with the initial condition X0
0 = x0. In other words, the process X0 on [0, T ] satisfies

the equation (41), just with another Wiener process and under another probability
measure. However, given µ1

t , 0 ≤ t ≤ T , this solution considered as a solution of
Itô’s – or “linearized” – equation is strongly unique [28, 29]. As a consequence,
they are also weakly unique; note that this is the reason for the Remark 4 along
with the calculus in the next steps. So, the pair (X0

t , W̃
1
t , 0 ≤ t ≤ T ) has the

same distribution under the measure Pγ1 as the pair (X1
t ,Wt, 0 ≤ t ≤ T ) under the
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measure P. Therefore, the marginal distribution of X0
t under the measure Pγ1 equals

µ1
t , i.e., the couple (X0

t , µ
1
t ) under Pγ1 solves the McKean–Vlasov equation (1), that

is, it is equivalent to the pair (X1
t , µ

1
t , 0 ≤ t ≤ T ) under the measure P.

Note for the sequel that dW̃ 1
t admits a representation

dW̃ 1
t = σ−1(t,X0

t ) dX0
t − σ−1(t,X0

t )B[t,X0
t , µ

1
t ] dt = σ−1(t,X0

t )dX0
t − B̃[t,X0

t , µ
1
t ] dt,

or, equivalently,
σ−1(t,X0

t )dX0
t = dW̃ 1

t + B̃[t,X0
t , µ

1
t ] dt.

Similarly, let

W̃ 2
t := Wt −

∫ t

0

B̃[s,X0
s , µ

2
s] ds, 0 ≤ t ≤ T.

This is a new Wiener process on [0, T ] under the probability measure P γ2 defined by
its density as (dP γ2/dP )(ω) = γ2. Then, on the interval [0, T ], on the probability
space with a Wiener process (Ω,F , (W̃ 2

t , Ft),Pγ
2
), the process (X0

t , 0 ≤ t ≤ T )
satisfies the equation,

dX0
t = σ(t,X0

t )dW̃ 2
t +B[t,X0

t , µ
2
t ] dt,

with the initial condition X0
0 = x0. In other words, the process X0 on [0, T ] satisfies

the equation (42), just with another Wiener process and under another measure.
However, given µ2

t , 0 ≤ t ≤ T , this solution considered as a solution of Itô’s equation
is weakly unique. Therefore, the couple (X0

t , µ
2
t ) under the probability measure

Pγ2 solves the McKean–Vlasov equation (1), that is, it is equivalent to the pair
(X2

t , µ
2
t , 0 ≤ t ≤ T ) under the measure P.

2. This provides us a way to write down the density of the distribution of X1 on
(Ω,F ,P) with respect to the distribution of X2 on (Ω,F ,P) on the interval of time
[0, T ]. We have, for any measurable A ⊂ C[0, T ;Rd],

µ1
0,T (A) := P(X1 ∈ A) = Pγ1(X0 ∈ A) = Eγ11(X0 ∈ A) = Eγ1

T1(X0 ∈ A), (45)

and

µ2
0,T (A) := P(X2 ∈ A) = Pγ2(X0 ∈ A) = Eγ21(X0 ∈ A) = Eγ2

T1(X0 ∈ A). (46)
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So, on the sigma-algebra FWT we obtain,

µ2
[0,T ](dX)

µ1
[0,T ](dX)

(X0) =
γ2
T

γ1
T

(X0) = exp(

∫ T

0

B̃[s,X0
s , µ

2
s]dWs −

1

2

∫ T

0

|B̃[s,X0
s , µ

2
s]|2ds)

× exp(−
∫ T

0

B̃[s,X0
s , µ

1
s]dWs +

1

2

∫ T

0

|B̃[s,X0
s , µ

1
s]|2ds)

= exp(

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])dWs −

1

2

∫ T

0

[|B̃[s,X0
s , µ

2
s]|2 − |B̃[s,X0

s , µ
1
s]|2]ds)

= exp(

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])σ

−1(s,X0
s )dX0

s )

× exp(−1

2

∫ T

0

[|B̃[s,X0
s , µ

2
s]|2 − |B̃[s,X0

s , µ
1
s]|2]ds))

= exp(

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])(dW̃

1
s + B̃[s,X0

s , µ
1
s] dt

× exp(−1

2

∫ T

0

[|B̃[s,X0
s , µ

2
s]|2 − |B̃[s,X0

s , µ
1
s]|2]ds))

= exp(

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]) dW̃

1
s −

1

2

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds).

Further, due to (45) and (46) the measure µi is an image of Pγi under the mapping
X0 for i = 1, 2. So,

v(t) := ‖µ1
[0,t] − µ2

[0,t]‖TV ≤ ‖P γ1|FW
t
− P γ2|FW

t
‖TV . (47)

Since the two measures P γ1 and P γ1 on FWt are equivalent with the density

dP γ2

dP γ1

∣∣∣
FW

t

(ω) =
γ2
t

γ1
t

(ω),

the total variation distance between them equals (denoting ρt = γ2
t /γ

1
t ),

1

2
‖P γ2|FW

t
−P γ1|FW

t
‖TV =

∫
Ω

(
1− γ2

t

γ1
t

(ω) ∧ 1

)
Pγ1(dω) = 1−Eγ1ρt∧1 ≤

√
Eγ1ρ2

t − 1.
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Let us justify the last inequality for completeness, dropping the sub-index t:

1− Eγ1(ρ ∧ 1) = Eγ1(1− ρ ∧ 1)

≤
√

Eγ1(1− ρ ∧ 1)2 =
√
Eγ1(1− ρ1(ρ ≤ 1)− 1(ρ > 1))2

=
√

Eγ1(1(ρ ≤ 1)− ρ1(ρ ≤ 1))2 =
√

Eγ11(ρ ≤ 1)(ρ− 1)2

≤
√

Eγ1(ρ− 1)2 =
√

Eγ1ρ2 − 1,

as required. We used the Cauchy–Bunyakovsky–Schwarz inequality. So, due to (47),

v(t) ≤ 2
√

Eγ1ρ2
t − 1. (48)
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Now, again by virtue of the Cauchy–Bunyakovsky–Schwarz inequality,

Eγ1ρ2
T = Eγ1 exp(−2

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])dW̃

1
s

−
∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds)

= Eγ1 exp(−2

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])dW̃

1
s

−4

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds)

× exp(+3

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds)

≤
(
Eγ1 exp(−4

∫ T

0

(B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s])dW̃

1
s

−8

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds)

)1/2

×
(
Eγ1 exp(6

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds)

)1/2

≤ (=)

√
Eγ1 exp

(
6

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds

)
. (49)

(NB: The last inequality is always true; for a bounded B̃ it is, apparently, an equality.)

3. We estimate, B̃ being bounded,

Eγ1 exp

(
6

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds

)
(50)

≤ Eγ1 exp

(
6‖B̃‖2

B

∫ T

0

‖µ1
s − µ2

s‖2
TV ds

)
.

Here the value under the expectation is non-random; hence, the symbol of this ex-
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pectation may be dropped. Therefore, we have with C = 6‖b‖2
B,

v(T ) ≤ 2

√
exp

(
C

∫ T

0

v(s)2ds

)
− 1. (51)

Recall that v(t) ≤ 2, and the function v increases in t. Let us choose α0 > 0 small
so that for any 0 ≤ α ≤ α0,

exp(α)− 1 ≤ 2α, (52)

and take T ≤ α0/(4C). Then C

∫ T

0

v(s)2 ds ≤ CTv(T )2 ≤ 4CT ≤ α0. So,

v(T ) ≤ 2

√
exp

(
C

∫ T

0

v(s)2 ds

)
− 1 ≤ 2

√
2CTv(T )2 = 2

√
2CTv(T ). (53)

If we choose T so small that 2
√

2CT < 1, that is, T < 1/(8C), then it follows that
v(T ) = 0. Hence, v(T ) = 0 for any T < min(1/(8C), α0/(4C)). Let us fix some
T > 0 satisfying this inequality.

Further, we conclude by induction that

v(2T ) = v(3T ) = . . . = 0. (54)

Indeed, assume that v(kT ) = 0 is already established for some integer k > 0. Rede-
fine the stochastic exponents:

γikT,(k+1)T = exp(+

∫ (k+1)T

kT

B̃[s,X0
s , µ

i
s] dWs−

1

2

∫ (k+1)T

kT

|B̃[s,X0
s , µ

i
s]|2 ds), i = 1, 2,

and re-denote

W̃ 1
t := Wt −

∫ t

kT∧t
B̃(s,X0

s , µ
1
s) ds, 0 ≤ t ≤ (k + 1)T.

Then W̃ 1
t is a new Wiener process on [kT, (k+ 1)T ] starting at WkT under the prob-

ability measure P γ1 defined by its density as (dP γ1/dP )(ω) = γ1
kT,(k+1)T . Repeating

the calculus leading to (49), (50), and (51), and having in mind the induction as-
sumption v(kT ) = 0, we obtain with the same constant C,

v((k + 1)T ) ≤

√√√√exp

(
C

∫ (k+1)T

kT

v(s)2ds

)
− 1, (55)
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which straightforward implies

v((k + 1)T ) ≤
√

2CTv((k + 1)T )2 =
√

2CTv((k + 1)T ). (56)

As earlier, the condition T < min(1/(2C), 1/(αC)) (see (52)) guarantees that

v((k + 1)T ) = 0,

as required. This completes the induction (54).

Hence, solution is weakly unique on the whole R+. As noticed above, strong
uniqueness also follows. For bounded b̃ the statements of the Theorem 2 as well as
of the Remark 6 are justified.

4. Now let us return to the inequality (49) and explain how to drop the additional
assumption of boundedness of B̃, and also how to deal with a localised version of (43).
First of all, prior to (49) we have to show that γi, i = 1, 2, are, indeed, probability
densities for which it suffices to show uniform integrability for T > 0 small enough:
for example, it suffices to check that

E(γi)2
T <∞, i = 1, 2.

Via the estimates similar to (49) by virtue of Cauchy–Bunyakovsky–Schwarz, this
problem is reduced to the question whether or not the following expression is finite:

E(γi)2 ≤
(
E exp(4

∫ T

0

B̃[s,X0
s , µ

i
s] dWs − 8

∫ T

0

|B̃[s,X0
s , µ

i
s]|2 ds))

)1/2

×
(
E exp(6

∫ T

0

|B̃[s,X0
s , µ

i
s]|2 ds)

)1/2

≤
(
E exp(6

∫ T

0

|B̃[s,X0
s , µ

i
s]|2 ds)

)1/2

≤
(
E exp(C

∫ T

0

(1 + |X0
s |2) ds)

)1/2

. (57)

In the last inequality the assumption on the linear growth of B̃ was used.

Suppose for instant that the finiteness of the last expectation in the last line
of (57) has been shown; then, by standard induction arguments with conditional
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expectations it follows that both γiT are, indeed, probability densities for any T > 0.
Hence, the calculus leading to (48) and (49) is valid and we have,

v(t) = ‖µ1
[0,t] − µ2

[0,t]‖TV ≤
√

Eγ1ρ2 − 1,

and

Eγ1ρ2 ≤

√
Eγ1 exp

(
6

∫ T

0

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]|2ds

)
.

It is a general fact which does not use any boundedness of b in any variable but only
in the last variable is,

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]| ≤ sup

y
|b̃(s,X0

s , y)|‖µ2
s − µ1

s‖TV . (58)

Due to the linear growth assumption (38), the inequality (58) implies

|B̃[s,X0
s , µ

2
s]− B̃[s,X0

s , µ
1
s]| ≤ C(1 + |X0

s |)‖µ1
s − µ2

s‖TV . (59)

Hence, by virtue of (58) we obtain

Eγ1ρ2 ≤ Eγ1 exp

(
6

∫ T

0

[C(1 + |X0
s |)‖µ1

s − µ2
s‖TV ]2ds

)
(60)

≤ Eγ1 exp

(
6C2v(T )2

∫ T

0

(1 + |X0
s |2 ds)

)
.

Recall that the process X0 satisfies the equation (44) on [0, T ] with respect to the
measure Pγ1 . We want to show that given C, the right hand side in (60) is finite for
any T small enough. For this end, denote 6C2v(T )2 := r ≥ 0. We would like to show
that for any fixed constant K > 0 (K = 24C2 suffices), the value

Eγ1 exp

(
r

∫ T

0

(1 + |X0
s |2 ds)

)
is finite for 0 ≤ r < K, and differentiable with respect to r, and that this derivative
is non-negative and small uniformly in r ∈ [0, K) if T > 0 is small enough.

It suffices to show the same properties – still for small enough T – for the function

ψ(r) = E exp

(
r

∫ T

0

(1 + |X1
s |2 ds)

)
, (61)
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where X1 solves the equation (44) on [0, T ] with respect to the original measure P,
because X1 solves the same equation with respect to the measure P as the process
X0 with respect to the measure Pγ1 on [0, T ].

First of all, note that this claim is true for the function

ψ̃(r) = E exp

(
r

∫ T

0

(1 + |Ws|2 ds)
)

(see, for example, [1]). Further, denote

β(s, x) = B̃[s, x, µ1
s], (62)

and

λt := exp(−
∫ t

0

β(s,X1
s ) dWs −

1

2

∫ t

0

β2(s,X1
s ) ds)

This λt is a probability density for t ≤ T with any T > 0 which is, at least, small
enough, since this random variable has the same distribution with respect to P as
γ−1
t with respect to the measure Pγ1 on [0, T ] and since we know that γ−1

t is a
probability density of the measure P with respect to Pγ1 . Note that with respect
to the measure PλT the process X1 solves the equation without drift (39) with a
corresponding Wiener process

W̃t := Wt +

∫ t

0

β(s,X1
s ) ds, 0 ≤ t ≤ T,

due to Girsanov’s theorem. Naturally, we have also

Wt = W̃t −
∫ t

0

β(s,X1
s ) ds, 0 ≤ t ≤ T.

Now let us estimate the function ψ from (61),

ψ(r) = E exp

(
r

∫ T

0

(1 + |X1
s |2 ds)

)
= EλTλ−1

T exp

(
r

∫ T

0

(1 + |X1
s |2 ds)

)
(63)

≤
(
EλT exp(2

∫ T

0

β(s,X1
s ) dWs +

∫ T

0

β2(s,X1
s ) ds)

)1/2(
EλT exp

(
2r

∫ T

0

(1 + |X1
s |2 ds)

))1/2

=

(
EλT exp(2

∫ T

0

β(s,X1
s ) dW̃s −

∫ T

0

β2(s,X1
s ) ds)

)1/2(
EλT exp

(
2r

∫ T

0

(1 + |X1
s |2 ds)

))1/2

.
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Our local goal is to show that both multipliers in the last line of the last formula are
finite. We have for the first multiplier (dropping the square root),

EλT exp(2

∫ T

0

β(s,X1
s ) dW̃s −

∫ T

0

β2(s,X1
s ) ds)

= E exp(2

∫ T

0

β(s,X0
s ) dWs −

∫ T

0

β2(s,X0
s ) ds)

= E exp(2

∫ T

0

β(s,X0
s ) dWs − 4

∫ T

0

β2(s,X0
s ) ds+ 3

∫ T

0

β2(s,X0
s ) ds)

≤
(
E exp(4

∫ T

0

β(s,X0
s ) dWs − 8

∫ T

0

β2(s,X0
s ) ds)

)1/2(
E exp(6

∫ T

0

β2(s,X0
s ) ds)

)1/2

≤
(
E exp(6

∫ T

0

β2(s,X0
s ) ds)

)1/2

, (64)

due to the well-known fact that for any adapted integrand β the process(
exp(4

∫ t

0

β(s,X0
s ) dWs − 8

∫ T

0

β2(s,X0
s ) ds), t ≥ 0

)
is a supermartingale and ex-

pectation E exp(4

∫ t

0

β(s,X0
s ) dWs − 8

∫ T

0

β2(s,X0
s ) ds) may not exceed one (see,

e.g., [19]).

Note that the task to show that the right hand side in (64) is finite is similar to the
problem about finiteness of the last expectation in (57) for T > 0 small enough. So,
we show both simultaneously. The idea is that after some random time change and
by using comparison theorems, this task can be reduced to the problem of evaluating
the expression (

E exp(CT (1 + sup
0≤s≤T

|W 0
s |2))

)1/2

for a standard Wiener process, which expression can be precisely computed.

5. Random time change. In case of d > 1, let us apply Ito’s formula to |X0
t | =√∑d

k=1(X0,k
t )2. For simplicity and slightly abusing notations, let us drop the index

0 in the notation for the k-component of the process X0
t , i.e., write it – only in this

small subsection – just as Xk
t instead of the full X0,k

t ; to the same end of simplicity,
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let us denote
σt := σ(t,X0

t ), at := σtσ
∗
t .

Note that the cases d > 1 and d = 1 require separate considerations. We have,

dX0
t = σ(t,X0

t ) dWt ≡ σt dWt;

so,

dX0,k
t =

∑
j

σkjt dW
j
t .

Hence, since for each t we have P(X0
t = 0) = 0, we may write,

d|X0
t | = d

√√√√ d∑
k=1

(X0,k
t )2 =

1

2

(
d∑
`=1

(X0,`
t )2

)−1/2(∑
k

2X0,k
t

∑
j

σkjt dW
j
t

)

+
1

|X0
t |
∑
k

[
1− (X0,k

t )2

|X0
t |2

]∑
j

(σkjt )2 dt− 1

|X0
t |
∑

k,`: k 6=`

X0,k
t X0,`

t

|X0
t |2

∑
j

σkjt σ
`j
t dt

=
∑
j

(∑
k

X0,k
t

|X0
t |
σkjt

)
dW j

t +
1

|X0
t |

[
Tr at −

∑
k,`

ak`t
X0,k
t X0,`

t

|X0
t |2

]
dt

=

(
X0
t

|X0
t |

)∗
σt dWt +

1

|X0
t |

[
Tr at −

(
at

X0
t

|X0
t |
,
X0
t

|X0
t |

)]
dt.

Note that here the “drift”

Bt := |X0
t |−1

[
Tr at −

(
at

X0
t

|X0
t |
,
X0
t

|X0
t |

)]
is uniformly bounded by some non-random value on the event (ω : |X0

t | ≥ 1) (as
well as on (ω : |X0

t | ≥ c) for any positive constant c), say,

sup
ω

sup
t

sup
x: |x|≥1

|x|−1

[
Tr at −

(
at

x

|x|
,
x

|x|

)]
1(ω : |X0

t | ≥ 1) ≤ K,

while the “diffusion”

(
X0
t

|X0
t |

)∗
σt is a random vector which is adapted, bounded and

non-degenerate, that is, there exists (non-random) C0 > 0 such that

C−1
0 ≤

∣∣∣∣( X0
t

|X0
t |

)∗
σt

∣∣∣∣2 ≤ C0. (65)
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Let τ(t) :=

∫ t

0

∣∣∣∣( X0
s

|X0
s |

)∗
σs

∣∣∣∣−2

ds and χ(t) := τ−1(t) (the inverse function). Then,

the functions τ and χ are well-defined and the process

Ŵt :=

∫ χ(t)

0

(
X0
s

|X0
s |

)∗
σs dWs

is a one-dimensional Wiener process (see [22]). Denote

X̂t := |X0
χ(t)|, B̂t := Bχ(t). (66)

Both processes X̂t and B̂t are adapted with respect to the filtration Fχ(t), which
sigma-algebra is also well-defined because each χ(t) is a stopping time. Then the
process X̂t has a stochastic differential (see [22])

dX̂t = dŴt + B̂tχ
′(t) dt ≡ dŴt + B̂t

∣∣∣∣( X0
t

|X0
t |

)∗
σt

∣∣∣∣−2

dt. (67)

Note that there is no local time at zero here: this is because the process which starts
outside the origin in dimension d ≥ 2 does not touch the origin on any finite interval
of time.

Now, simultaneously with the process (|X̂t|, t ≥ 0) consider a (unique) solution
of the non-sticky reflecting SDE on the half-line [1,+∞),

dZt = dŴt + C1 dt+ dφt, Z0 ≥ |X̂0| ∨ 1, (68)

where φt is a local time at one, see [22], and C1 ≥ KC0, with C0 from (65).

The processes (X0
t ), (|X0

t |), (Wt), (Ŵ 0
t ), (Zt) are all defined on the same proba-

bility space (recall that solution of the equation (68) is, of course, strong, and, hence,
exists on any probability space with a Wiener process). An easy comparison then
shows

P(Zt ≥ X̂t, t ≥ 0) = 1. (69)

Indeed, Z0 ≥ X̂0, and Itô’s formula applied to (X̂t − Zt)21(X̂t − Zt ≥ 0) shows that

d(X̂t − Zt)21(X̂t − Zt ≥ 0)

= 2(X̂t − Zt)1(X̂t − Zt ≥ 0)(dŴt + B̂tχ
′(t) dt− dŴt − C0 dt− dφt) ≤ 0,
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which confirms (69).

Also note that due to (65) and (66),

sup
0≤s≤t

|X0
t | ≤ sup

0≤s≤C0t
X̂s. (70)

Hence, by virtue of the assumption (38) and of the definition (62), the right hand
side in (64) admits a bound,

E exp(6

∫ T

0

β2(s,X0
s ) ds) ≤ E exp(6C2

∫ T

0

(1 + |X0
s |2 ds)

(71)

≤ E exp(6C2T (1 + sup
0≤s≤C0T

|Zs|)2).

Now the evaluation of (71) can be completed, for example, as follows. Consider
an SDE on R1,

dVt = dŴt +KC0sign(Vs) dt, V0 = Z0 (= |x0|).

Here sign(a) = 1(a > 0) − 1(a < 0). By Ito’s formula for the modulus [22], the
process |Vt| satisfies an SDE

d|Vt| = dW̄t +KC0 dt+ dψ0
t

with a new local time ψ0
t at zero and a new Wiener process W̄t =

∫ t
0

sign(Vs) dŴs (by
Lévy’s theorem since P(Vt = 0) = 0 for each t and so the bracket 〈

∫ ·
0

sign(Vs)
2 ds〉t = t

a.s.), which has a weakly unique solution. So, its distribution in the space of trajec-
tories coincides with that of the process (Zt − 1, t ≥ 0). Hence, for any monotonic
increasing Borel function g,

Eg( sup
0≤s≤C0T

|Z0
s |) ≤ Eg( sup

0≤s≤C0T
(|Vs|+ 1)) ≤ Eg(1 +KC0T + |X0|+ sup

0≤s≤C0T
|W̄s|).

Thus, we obtain,

E exp(6C2T (1 + sup
0≤s≤C0T

|Z0
s |)2) ≤ E exp(18C2T (1 + |X0|2 + sup

0≤s≤C0T
|W̄ 0

s |)2)

(72)

≤ exp(18C2T )E exp(18C2T |X0|2)E exp(18C2T sup
0≤s≤C0T

|W̄ 0
s |)2),
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or, equivalently (since all Wiener processes are equal in distributions),

E exp(6C2T (1 + sup
0≤s≤C0T

|Z0
s |)2)

(73)

≤ exp(18C2T )E exp(18C2T |x0|2)E exp(18C2T sup
0≤s≤C0T

|W 0
s |)2).

Let us now complete this analysis by considering the case d = 1 which is a bit
easier, although, it involves local time from the very beginning. Let C0 be a constant
such that

C−1
0 ≤ inf

t,x
σ2(t, x) ≤ sup

t,x
σ2(t, x) ≤ C0.

Denote σt := σ(t,Xt). Let τ(t) :=

∫ t

0

|σs|−2 ds and χ(t) := τ−1(t). Then, as in the

case d > 1, the functions τ and χ are well-defined and the process

Ŵt :=

∫ χ(t)

0

sign(X0
s )σs dWs

is a one-dimensional Wiener process (see [22]). The process X0
χ(t) has a stochastic

differential,
dX0

χ(t) = dŴt,

i.e., Ŵt − x0 is a new Wiener process [22]. Denote

X̂t := |X0
χ(t)|. (74)

The process X̂t is adapted to the filtration Fχ(t) and it has a stochastic differential
(see [22])

dX̂t = dŴt + dφt, (75)

with a local time φt at zero. Moreover, its distribution in the space of trajectories
coincides with that of |Ŵt|. The inequality (70) is valid. Hence, for any monotonic
increasing Borel function g,

Eg( sup
0≤s≤C0T

|X0
s |) ≤ Eg( sup

0≤s≤C0T
(|Ŵs|+ 1)).
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Thus, we obtain a bound similar to that in the case d > 1:

E exp(6C2T (1 + sup
0≤s≤C0T

|X0
s |)2) ≤ E exp(6C2T (1 + |X0|+ sup

0≤s≤C0T
|W̄s|)2)

(76)

≤ exp(18C2T )E exp(18C2T |x0|2)E exp(12C2T sup
0≤s≤C0T

|Ws|)2),

or, equivalently (since all Wiener processes are equal in distributions),

E exp(6C2T (1 + sup
0≤s≤C0T

|X0
s |)2)

(77)

≤ exp(18C2T )E exp(18C2T |x0|2)E exp(18C2T sup
0≤s≤C0T

|W 0
s |)2).

6. Now, we have,

P( sup
0≤s≤T

|W 0
s | > x) ≤ 4P(W 0

T > x) (x > 0),

that is, the density of sup0≤s≤T |W 0
s | is f(x) = 2(2πT )−1/2 exp(−x2/(2T )), x > 0.

Hence, we estimate, with CT < 2T1,

E exp(CT (1 + sup
0≤s≤T1

|W 0
s |2)) =

∫ ∞
0

exp(CT (1 + y2))
2√

2πT1

exp(−y2/(2T1)) dy

= exp(CT )

∫ ∞
0

2√
2πT

exp(−y2((2T )−1 − CT )) dy

≤ exp(CT )

∫ ∞
0

2√
2πT1

exp(−y2((2T1)−1)) dy = exp(CT ) <∞.

For the sequel, note that for any 0 < T2 < T1 and CT < 2(T1 − T2), due to the
same estimate above we have,

E exp(CT (1 + sup
T2≤s≤T1

|W 0
s −WT2|2)) ≤ exp(CT ) <∞ (78)

As a consequence, the functions in the right hand sides of (73) and (77) are finite
for T > 0 small enough. Similarly for the second multiplier in the last line of (63),

EλTX0
exp

(
2r
∫ T

0
(1 + |X1

s |2 ds)
)

= EX0
exp

(
2r
∫ T

0
(1 + |X0

s |2 ds)
)
≤ exp(CrT + CrT |X0|2),
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with some C > 0, if rT is small enough. Thus, the function ψ (see (61)) is finite for
r from some finite range 0 ≤ r < K. Hence, it is easy to see that it is differentiable
in r with a bounded derivative within this range. In particular, since ψ(0) = 1, for
r > 0 close to zero we obtain,

ψ(r) ≤ 1 + Cr(1 + E|X0|2).

Also, it follows that all expressions in (57) for small enough T > 0 are finite.
So, in particular, both γiT are, indeed, probability densities for small T > 0 under
the linear growth condition (38), too. Hence, we can return to the inequalities (48)
earlier established for bounded b̃, and by virtue of (60) we get,

v(T ) ≤
√
Eγ1ρ2

T − 1 ≤
√
CTv(T )2,

with some constant C which constant may depend on the initial distribution (or
value). Therefore, v(T ) = 0 for T > 0 small enough.

7. Note that since E exp(c0|x0|2) < ∞ then due to the estimates (73) and (77) and
the bound (78) from the previous steps, for any t there exists c > 0 such that

E exp(c sup
0≤s≤t

|Xs|2) <∞.

Denote
N := {t ≥ 0 : v(t) = 0}.

The previous steps show that sup(N ) > 0 and that 0 ∈ N . Note that t ∈ N =⇒
s ∈ N , 0 ≤ s ≤ t. Recall that v(t) ≤

√
Eγ1ρ2

t − 1 (see (48)) where the right hand
side is clearly continuous in t. Moreover, as it follows from (60),

v(t)2 ≤ Eγ1ρ2
t − 1 ≤ Eγ1 exp

(
6

∫ t

0

[C(1 + |X0
s |)‖µ1

s − µ2
s‖TV ]2ds

)
− 1,

which implies that the set N is closed.

On the other hand, consider any N ∈ (0, sup(N )). Recall that
E exp(c sups≤N |X0

s |2) < ∞ with some positive c. Hence, the calculus similar to
the one in the previous steps shows that v(t) = 0 in some small right neighbourhood
of N . In other words, the set on the positive half-line R+ where v(t) = 0 is non-
empty, closed and open in R+. Thus, it coincides with R+ itself. In other words, for
all t ≥ 0,

v(t) = 0,

which finishes the proof of the Theorem 2.
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4 Appendix

Lemma 1 (Skorokhod (on unique probability space and convergence))
Let ξnt (t ≥ 0, n = 0, 1, . . .) be some d-dimensional stochastic processes defined on
some probability space and let for any T > 0, ε > 0 the following hold true:

lim
c→∞

sup
n

sup
t≤T

P(|ξnt | > c) = 0,

and
lim
h↓∞

sup
n

sup
t,s≤T ; |t−s|≤h

P(|ξnt − ξns | > ε) = 0,

Then there exists a subsequence n′ → ∞ and a new probability can be constructed
with processes ξ̃n

′
t , t ≥ 0 and ξ̃t, t ≥ 0, such that all finite-dimensional distributions

of ξ̃n
′
· coincide with those of ξn

′
· and such that for any ε > 0 and t ≥ 0,

P(|ξ̃n′

t − ξ̃t| > ε)→ 0, n′ →∞.

See [25, Ch.1, §6].

Lemma 2 (Skorokhod) Let fn : R × Ω → R (n ≥ 0) be uniformly bounded ran-
dom processes on some probability space; let (W n (n ≥ 0)) be a sequence of (one-
dimensional) Wiener processes on the same probability space, and let all Itô’s stochas-

tic integrals

∫ T

0

fns dW
n
s , n ≥ 0 be well-defined. Assume that for any ε > 0,

lim
h→0

sup
n

sup
|s−t|≤h

P{|fns − fnt | > ε} = 0, (79)

and let for each s ∈ [0, T ]

(fns ,W
n
s )

P→ (f 0
s ,W

0
s ).

Then ∫ T

0

fns dW
n
s

P→
∫ T

0

f 0
s dW

0
s .

See [25, Ch.2, §3, Theorem], where W n are allowed to be more general martingales
with brackets converging to that of a Wiener process.
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