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Abstract In this paper, we study the reflected solutions of one-dimensional backward stochastic differential

equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In

order to derive the uniqueness of reflected G-BSDEs, we apply a “martingale condition” instead of the Skorohod

condition. Similar to the classical case, we prove the existence by approximation via penalization. We then

give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear

partial differential equation and option pricing of American types under volatility uncertainty.
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1 Introduction

El Karoui et al. [4] introduced the problem of backward stochastic differential equation (BSDE) with

reflection, which means that the solution to a BSDE is required to be above a certain given continuous

boundary process, called the obstacle. For this purpose, an additional continuous increasing process

should be included in the equation. Furthermore, this additional process should be chosen in a minimal

way so that it satisfies the Skorohod condition. It is worth noting that the solution is the value function

of an optimal stopping problem.

Due to the importance in BSDE theory and in applications, the reflected problem has attracted a

great deal of attention since 1997. Many scholars tried to relax the conditions on the generator and the

obstacle process. Hamadene [6] and Lepeltier and Xu [14] proposed a generalized Skorohod condition and

studied the case where the obstacle process is discontinuous. Cvitanic and Karaztas [2] and Hamadene

and Lepeltier [7] proved the existence and uniqueness when there are two reflecting obstacles. They also
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established the connection between this problem and Dynkin games. Matoussi [17] and Kobylanski et

al. [13] extended the results to the case where the generator is not a Lipschitz function.

We should point out that the classical BSDE can only provide a probabilistic interpretation for the solu-

tion of quasilinear PDEs. In addition, this BSDE cannot be applied to pricing path-dependent contingent

claims in the uncertain volatility model (UVM). Motivated by these facts, Peng [19, 20] systematically

introduced a time-consistent fully nonlinear expectation theory. One of the most important cases is the

G-expectation theory (see [23] and the references therein). In this framework, a new type of Brownian

motion and the corresponding stochastic calculus of Itô’s type were constructed. It has been widely used

to study the problems of model uncertainty, nonlinear stochastic dynamical systems and fully nonlinear

PDEs.

The backward stochastic differential equation driven by G-Brownian motion (i.e., G-BSDE) can be

written in the following way:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d⟨B⟩s −
∫ T

t

ZsdBs − (KT −Kt).

The solution of this equation consists of a triplet of processes (Y,Z,K). The existence and uniqueness of

the solution are proved in [8]. In [9], the corresponding comparison theorem, Feynman-Kac formula and

related topics were established.

In this paper, we study the case where the solution of a G-BSDE is required to stay above a given

stochastic process, called the lower obstacle. An increasing process should be included in this equation to

push the solution above the obstacle. According to the classical case studied by [4], one may expect that

the solution of a reflected G-BSDE is a quadruple of processes {(Yt, Zt,Kt, Lt), 0 6 t 6 T} such that

(1) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d⟨B⟩s −

∫ T

t
ZsdBs − (KT −Kt) + LT − Lt;

(2) (Y,Z,K) ∈ Sα
G(0, T ) and Yt > St, 0 6 t 6 T ;

(3) {Lt} is continuous and increasing, L0 = 0 and
∫ T

0
(Yt − St)dLt = 0.

A shortcoming of this formulation is that, as an example provided in Remark 3.7, the solution of (1)–(3)

is not unique. Our crucial observation is that, in fact, we can define a nondecreasing process At = Lt−Kt

such that A is continuous and {−
∫ ·
0
(Ys−Ss)dAs} is a G-martingale. So we apply a “martingale condition”

instead of the classical Skorohod condition and reformulate this problem as the following. A triplet of

processes (Y, Z,A) is called a solution of a reflected G-BSDE if the following properties hold:

(a) (Y,Z,A) ∈ Sα
G(0, T ) and Yt > St;

(b) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d⟨B⟩s −

∫ T

t
ZsdBs + (AT −At);

(c) {−
∫ t

0
(Ys − Ss)dAs}t∈[0,T ] is a nonincreasing G-martingale.

Here, we denote by Sα
G(0, T ) the collection of processes (Y, Z,A) such that Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ),

A is a continuous nondecreasing process with A0 = 0 and A ∈ Sα
G(0, T ). Under some appropriate assump-

tions, we can prove that the solution of the above reflected G-BSDE is unique. In proving the existence

of this problem, we use the approximation method via penalization. This is a constructive method in

the sense that the solution of the reflected G-BSDE is proved to be the limit of a sequence of penalized

G-BSDEs. One of the difficulties in the proof of the existence is that the classical dominated convergence

theorem cannot be applied to our G-framework. Additionally, a sequence bounded in Mp
G(0, T ) is no

longer weakly compact. This main difficulty in carrying out this construction is to prove the convergence

property in some appropriate sense. It turns out that the well-known monotonic convergence theorem

(see [18]) cannot be applied and we must find a new method to overcome this difficulty. We have found

a new approach involving a uniformly continuous property in Sp
G(0, T ) to overcome this challenge. This

approach is also applicable to many other appropriate situations.

In comparison with [4], an important difference is that, if all coefficients of SDEs and reflected BSDEs

are deterministic functions of the state variable, as in Section 6, then the solution Y of the corresponding

reflected BSDE is a viscosity solution of an obstacle problem of a fully nonlinear parabolic PDE of (6.2).

There has been tremendous interest in developing the obstacle problem for PDEs since it has wide

applications to mathematical finance (see [5]) and mathematical physics (see [24]). We then obtain a new
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type of probabilistic interpretation for the viscosity solution of an obstacle problem of PDE via reflected

BSDE.

The rest of the paper is organized as follows. In Section 2, we present some notation and results as

preliminaries. The problem is formulated in detail in Section 3 and we state some a priori estimates from

which we derive some integrability properties and the uniqueness of the solution. In Section 4, we apply

the approximation method via penalization to prove the existence of the solution. We list some conver-

gence properties of the solutions to the penalized G-BSDEs. Our main results are shown and proved in

Section 5. Furthermore, we prove a comparison theorem similar to that in [9], specifically for nonreflected

G-BSDEs. In Section 6, we give the relation between reflected G-BSDEs and the corresponding obstacle

problems for fully nonlinear parabolic PDEs. Finally, we use the results of the previous sections to study

the pricing problem for American contingent claims under model uncertainty in Section 7. In Appendix A,

we introduce the optional stopping theorem under G-framework used for the pricing problem.

2 Preliminaries

We recall some basic notions and results of G-expectation, which are needed in the sequel. More relevant

details can be found in [8, 9, 21–23].

2.1 G-expectation

Definition 2.1. Let Ω be a given set and let H be a vector lattice of real valued functions defined

on Ω, namely c ∈ H for each constant c and |X| ∈ H if X ∈ H. H is considered as the space of random

variables. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the following properties:

for all X,Y ∈ H, we have

(i) monotonicity: if X > Y , then Ê[X] > Ê[Y ];

(ii) constant preserving: Ê[c] = c;

(iii) sub-additivity: Ê[X + Y ] 6 Ê[X] + Ê[Y ];

(iv) positive homogeneity: Ê[λX] = λÊ[X] for each λ > 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random variable

in (Ω,H, Ê). We call Y = (Y1, . . . , Yd), Yi ∈ H a d-dimensional random vector in (Ω,H, Ê).

Let ΩT = C0([0, T ];Rd), the space of Rd-valued continuous functions on [0, T ] with ω0 = 0, be endowed

with the supremum norm. Let B = (Bi)di=1 be the canonical process. For each T > 0, set

Lip(ΩT ) := {φ(Bt1 , . . . , Btn) : n > 1, t1, . . . , tn ∈ [0, T ], φ ∈ Cb,Lip(Rd×n)},

where Cb,Lip(Rd×n) denotes the set of bounded Lipschitz functions on Rd×n.

Denote by Sd the collection of all d× d symmetric matrices. For each given monotonic and sublinear

function G : Sd → R, we can construct a G-expectation Ê as well as the conditional G-expectation Êt.

We call (ΩT , Lip(ΩT ), Ê) the G-expectation space. The canonical process B is the d-dimensional G-

Brownian motion under this space. In this paper, we suppose that G is non-degenerate, i.e., there exists

some σ2 > 0 such that G(A)−G(B) > 1
2σ

2tr[A−B] for any A > B.

Let B be the d-dimensional G-Brownian motion. For each fixed a ∈ Rd, {Ba
t } := {⟨a,Bt⟩} is a

1-dimensional Ga-Brownian motion, where Ga : R → R satisfies

Ga(p) = G(aaT)p+ +G(−aaT)p−, p ∈ R.

Let πN
t = {tN0 , . . . , tNN}, N = 1, 2, . . . , be a sequence of partitions of [0, t] such that µ(πN

t ) = max{|tNi+1

− tNi | : i = 0, . . . , N − 1} → 0, the quadratic variation process of Ba is defined by

⟨Ba⟩t = lim
µ(πN

t )→0

N−1∑
j=0

(Ba
tNj+1

−Ba
tNj
)2.
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For a, ā ∈ Rd, we can define the mutual variation process of Ba and Bā by

⟨Ba, Bā⟩t :=
1

4
[⟨Ba+ā⟩ − ⟨Ba−ā⟩].

Denote by Lp
G(ΩT ) the completion of Lip(ΩT ) under the norm ∥ξ∥Lp

G
:= (Ê[|ξ|p])1/p for p > 1. For all

t ∈ [0, T ], Êt[ · ] is a continuous mapping on Lip(ΩT ) with respect to the norm ∥ · ∥Lp
G
. Therefore, it can

be extended continuously to the completion Lp
G(ΩT ). Denis et al. [3] proved the following representation

theorem of G-expectation on L1
G(ΩT ).

Theorem 2.2 (See [3, 10]). There exists a weakly compact set P ⊂ M1(ΩT ), the set of all probability

measures on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ L1
G(ΩT ).

P is called a set that represents Ê.

Let P be a weakly compact set that represents Ê. For this P, we define the capacity

c(A) := sup
P∈P

P (A), A ∈ B(ΩT ).

Definition 2.3. A set A ⊂ B(ΩT ) is polar if c(A) = 0. A property holds “quasi -surely” (q.s.) if it

holds outside a polar set.

In the following, we do not distinguish the two random variables X and Y if X = Y q.s.

For ξ ∈ Lip(ΩT ), let E(ξ) = Ê[supt∈[0,T ] Êt[ξ]]. For convenience, we call E the G-evaluation. For

p > 1 and ξ ∈ Lip(ΩT ), define ∥ξ∥p,E = [E(|ξ|p)]1/p and denote by Lp
E(ΩT ) the completion of Lip(ΩT )

under ∥ · ∥p,E . The following estimate between the two norms ∥ · ∥Lp
G
and ∥ · ∥p,E will be frequently used

in this paper.

Theorem 2.4 (See [25]). For any α > 1 and δ > 0, Lα+δ
G (ΩT ) ⊂ Lα

E (ΩT ). More precisely, for any

1 < γ < β := (α+ δ)/α, γ 6 2, we have

∥ξ∥αα,E 6 γ∗{∥ξ∥α
Lα+δ

G

+ 141/γCβ/γ∥ξ∥
(α+δ)/γ

Lα+δ
G

}, ∀ ξ ∈ Lip(ΩT ),

where Cβ/γ =
∑∞

i=1 i
−β/γ , γ∗ = γ/(γ − 1).

2.2 G-Itô calculus

Definition 2.5. Let M0
G(0, T ) be the collection of processes in the following form: for a given partition

{t0, . . . , tN} = πT of [0, T ],

ηt(ω) =

N−1∑
j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, . . . , N − 1. For each p > 1 and η ∈ M0
G(0, T ), let the norms be

∥η∥Hp
G

:= {Ê[(
∫ T

0
|ηs|2ds)p/2]}1/p, ∥η∥Mp

G
:= (Ê[

∫ T

0
|ηs|pds])1/p and denote by Hp

G(0, T ) and Mp
G(0, T )

the completions of M0
G(0, T ) under the norms ∥ · ∥Hp

G
and ∥ · ∥Mp

G
, respectively.

For two processes ξ ∈ M1
G(0, T ) and η ∈ M2

G(0, T ), the G-Itô integrals (
∫ t

0
ξsd⟨Bi, Bj⟩s)06t6T and

(
∫ t

0
ηsdB

i
s)06t6T are well-defined (see [16,23]). Similar to the classical Burkholder-Davis-Gundy inequal-

ity, the following property holds.

Proposition 2.6 (See [9]). If η ∈ Hα
G(0, T ) with α > 1 and p ∈ (0, α], then supu∈[t,T ] |

∫ u

t
ηsdBs|p

∈ L1
G(ΩT ) and

σpcpÊt

[(∫ T

t

|ηs|2ds
)p/2]

6 Êt

[
sup

u∈[t,T ]

∣∣∣∣ ∫ u

t

ηsdBs

∣∣∣∣p] 6 σ̄pCpÊt

[(∫ T

t

|ηs|2ds
)p/2]

,

where 0 < cp < Cp < ∞ are constants.
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Let S0
G(0, T ) = {h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)}. For p > 1 and η ∈

S0
G(0, T ), set ∥η∥Sp

G
= {Ê[supt∈[0,T ] |ηt|p]}1/p. Denote by Sp

G(0, T ) the completion of S0
G(0, T ) under the

norm ∥ · ∥Sp
G
. We have the following continuity property for any Y ∈ Sp

G(0, T ) with p > 1.

Lemma 2.7 (See [15]). For Y ∈ Sp
G(0, T ) with p > 1, we have, by setting Ys := YT for s > T ,

F (Y ) := lim sup
ε→0

(
Ê
[

sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Yt − Ys|p
]) 1

p

= 0.

We now introduce some basic results of G-BSDEs. Consider the following type of G-BSDE (here we

use the Einstein convention)

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

gij(s, Ys, Zs)d⟨Bi, Bj⟩s −
∫ T

t

ZsdBs − (KT −Kt), (2.1)

where f(t, ω, y, z), gij(t, ω, y, z) : [0, T ]× ΩT × R× Rd → R satisfying the following properties:

(H1′) there exists some β > 1 such that for any y, z, f(·, ·, y, z), gij(·, ·, y, z) ∈ Mβ
G(0, T );

(H2) there exists some L > 0 such that

|f(t, y, z)− f(t, y′, z′)|+
d∑

i,j=1

|gij(t, y, z)− gij(t, y
′, z′)| 6 L(|y − y′|+ |z − z′|).

For simplicity, we denote by Sα
G(0, T ) the collection of processes (Y,Z,K) such that Y ∈ Sα

G(0, T ),

Z ∈ Hα
G(0, T ;Rd), K is a decreasing G-martingale with K0 = 0 and KT ∈ Lα

G(ΩT ).

Theorem 2.8 (See [8]). Assume that ξ ∈ Lβ
G(ΩT ) and f, gij satisfy (H1′) and (H2) for some β > 1.

Then, for any 1 < α < β, (2.1) has a unique solution (Y,Z,K) ∈ Sα
G(0, T ).

We also have the comparison theorem for G-BSDE.

Theorem 2.9 (See [9]). Let (Y l
t , Z

l
t,K

l
t)t6T , l = 1, 2, be the solutions of the following G-BSDEs:

Y l
t = ξl +

∫ T

t

f l(s, Y l
s , Z

l
s)ds+

∫ T

t

glij(s, Y
l
s , Z

l
s)d⟨Bi, Bj⟩s + V l

T − V l
t −

∫ T

t

Zl
sdBs − (Kl

T −Kl
t),

where processes {V l
t }06t6T are assumed to be right-continuous with right limit (RCLL), quasi-surely,

such that Ê[supt∈[0,T ] |V l
t |β ] < ∞, f l, glij satisfy (H1′) and (H2), ξl ∈ Lβ

G(ΩT ) with β > 1. If ξ1 > ξ2,

f1 > f2, g1ij > g2ij, for i, j = 1, . . . , d, V 1
t − V 2

t is an increasing process, then Y 1
t > Y 2

t .

3 Problem of reflected BSDE driven by G-Brownian motion and some a
priori estimates

For simplicity, we consider the G-expectation space (Ω, L1
G(ΩT ), Ê) with ΩT = C0([0, T ],R) and σ̄2 =

Ê[B2
1 ] > −Ê[−B2

1 ] = σ2. Our methods and results still hold for the case d > 1. We are given the following

data: the generators f and g, the obstacle process {St}t∈[0,T ] and the terminal value ξ, where f and g

are maps f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R2 → R.
We will make the following assumptions: there exists some β > 2 such that

(H1) for any y, z, f(·, ·, y, z), g(·, ·, y, z) ∈ Mβ
G(0, T );

(H2) |f(t, ω, y, z)− f(t, ω, y′, z′)|+ |g(t, ω, y, z)− g(t, ω, y′, z′)| 6 L(|y − y′|+ |z − z′|) for some L > 0;

(H3) ξ ∈ Lβ
G(ΩT ) and ξ > ST , q.s.;

(H4) there exists a constant c such that {St}t∈[0,T ] ∈ Sβ
G(0, T ) and St 6 c, for each t ∈ [0, T ];

(H4′) {St}t∈[0,T ] has the following form:

St = S0 +

∫ t

0

b(s)ds+

∫ t

0

l(s)d⟨B⟩s +
∫ t

0

σ(s)dBs,

where {b(t)}t∈[0,T ] and {l(t)}t∈[0,T ] belong to Mβ
G(0, T ) and {σ(t)}t∈[0,T ] belongs to Hβ

G(0, T ).
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Let us now introduce our reflected G-BSDE with a lower obstacle. A triplet of processes (Y,Z,A) is

called a solution of reflected G-BSDE with a lower obstacle if for some 1 < α 6 β the following properties

hold:

(a) (Y,Z,A) ∈ Sα
G(0, T ) and Yt > St, 0 6 t 6 T ;

(b) Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds+

∫ T

t
g(s, Ys, Zs)d⟨B⟩s −

∫ T

t
ZsdBs + (AT −At);

(c) {−
∫ t

0
(Ys − Ss)dAs}t∈[0,T ] is a nonincreasing G-martingale.

Here, we denote by Sα
G(0, T ) the collection of processes (Y, Z,A) such that Y ∈ Sα

G(0, T ), Z ∈ Hα
G(0, T ), A

is a continuous nondecreasing process with A0 = 0 and A ∈ Sα
G(0, T ). For simplicity, we mainly consider

the case where g ≡ 0 and l ≡ 0. Similar results still hold for the cases g, l ̸= 0. Now, we give a priori

estimates for the solution of the reflected G-BSDE with a lower obstacle.

Proposition 3.1. Let f satisfy (H1) and (H2). Assume

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs + (AT −At),

where (Y, Z,A) ∈ Sα
G(0, T ) with α > 1. Then, there exists a constant C := C(α, T, L, σ) > 0 such that

for each t ∈ [0, T ],

Êt

[(∫ T

t

|Zs|2ds
)α

2
]

6 C

{
Êt

[
sup

s∈[t,T ]

|Ys|α
]
+
(
Êt

[
sup

s∈[t,T ]

|Ys|α
])1/2

(
Êt

[(∫ T

t

|f(s, 0, 0)|ds
)α])1/2}

, (3.1)

Êt[|AT −At|α] 6 C

{
Êt

[
sup

s∈[t,T ]

|Ys|α
]
+ Êt

[(∫ T

t

|f(s, 0, 0)|ds
)α]}

. (3.2)

Proof. The proof is similar to that of Proposition 3.5 in [8]. So we omit it.

Proposition 3.2. For i = 1, 2, let ξi ∈ Lβ
G(ΩT ), f

i satisfy (H1) and (H2) for some β > 2. Assume

Y i
t = ξi +

∫ T

t

f i(s, Ys, Zs)ds−
∫ T

t

Zi
sdBs + (Ai

T −Ai
t),

where (Y i, Zi, Ai) ∈ Sα
G(0, T ) for some 1 < α < β. Set Ŷt = Y 1

t − Y 2
t , Ẑt = Z1

t − Z2
t . Then, there exists

a constant C := C(α, T, L, σ) such that

Ê

[(∫ T

0

|Ẑ|2ds
)α

2
]
6 Cα

{(
Ê
[

sup
t∈[0,T ]

|Ŷt|α
])1/2 2∑

i=1

[(
Ê
[

sup
t∈[0,T ]

|Y i
t |α

])1/2

+

(
Ê

[(∫ T

0

|f i(s, 0, 0)|ds
)α])1/2]

+ Ê
[

sup
t∈[0,T ]

|Ŷt|α
]}

.

Proof. The proof is similar to that of Proposition 3.8 in [8]. So we omit it.

Remark 3.3. Note that in the above two propositions, we do not assume (Y, Z,A) and (Y i, Zi, Ai),

i = 1, 2 to be the solutions of reflected G-BSDEs.

Proposition 3.4. For i = 1, 2, let ξi ∈ Lβ
G(ΩT ) with ξi > Si

T , where

Si
t = Si

0 +

∫ t

0

bi(s)ds+

∫ t

0

σi(s)dBs.

Here, {bi(s)} ∈ Mβ
G(0, T ), {σi(s)} ∈ Hβ

G(0, T ) for some β > 2. Let f i satisfy (H1) and (H2). Assume

that (Y i, Zi, Ai) ∈ Sα
G(0, T ) for some 1 < α < β are the solutions of the reflected G-BSDEs corresponding

to ξi, f i and Si. Set Ỹt = (Y 1
t − S1

t ) − (Y 2
t − S2

t ). Then, there exists a constant C := C(α, T, L, σ)

such that

|Y i
t |α 6 CÊt

[
|ξi|α + sup

s∈[t,T ]

|Si
s|α +

∫ T

t

|λ̄i,0
s |αds

]
,
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|Ỹt|α 6 CÊt

[
|ξ̃|α +

∫ T

t

(|λ̂s|α + |ρ̂s|α + |Ŝs|α)ds
]
,

where ξ̃ = (ξ1−S1
T )−(ξ2−S2

T ), λ̂s = |f1(s, Y 2
s , Z

2
s )−f2(s, Y 2

s , Z
2
s )|, ρ̂s = |b1(s)−b2(s)|+ |σ1(s)−σ2(s)|,

Ŝs = S1
s − S2

s and λ̄i,0
s = |f i(s, 0, 0)|+ |bi(s)|+ |σi(s)|.

Proof. We only show the second inequality, since the first one can be proved in a similar way.

For any ε > 0, set f̂t = f1(t, Y 1
t , Z

1
t )− f2(t, Y 2

t , Z
2
t ), f̂

1
t = f1(t, Y 1

t , Z
1
t )− f1(t, Y 2

t , Z
2
t ), Ât = A1

t −A2
t ,

Z̃t = (Z1
t −σ1(t))− (Z2

t −σ2(t)), εα = ε(1−α/2)+ and Ȳt = |Ỹt|2+ εα. Applying Itô’s formula to Ȳ
α
2

t ert,

where r > 0 will be determined later, we get

Ȳ
α/2
t ert +

∫ T

t

rersȲ α/2
s ds+

∫ T

t

α

2
ersȲ α/2−1

s (Z̃s)
2d⟨B⟩s

= (εα + |ξ̃|2)α/2erT + α

(
1− α

2

)∫ T

t

ersȲ α/2−2
s (Ỹs)

2(Z̃s)
2d⟨B⟩s −

∫ T

t

αersȲ α/2−1
s ỸsZ̃sdBs

+

∫ T

t

αersȲ α/2−1
s Ỹs(f̂s + b1(s)− b2(s))ds+

∫ T

t

αersȲ α/2−1
s ỸsdÂs

6 (εα + |ξ̃|2)α/2erT +

∫ T

t

αersȲ
α−1
2

s {|f̂1
s + b1(s)− b2(s)|+ λ̂s}ds

+ α

(
1− α

2

)∫ T

t

ersȲ α/2−1
s (Z̃s)

2d⟨B⟩s − (MT −Mt), (3.3)

where Mt =
∫ t

0
αersȲ

α/2−1
s (ỸsZ̃sdBs − (Ỹs)

+dA1
s − (Ỹs)

−dA2
s). We claim that {Mt} is a G-martingale.

Indeed, note that Ỹt = Y 1
t − S1

t + S2
t − Y 2

t 6 Y 1
t − S1

t . Consequently, (Ỹt)
+ 6 (Y 1

t − S1
t )

+ = Y 1
t − S1

t .

Then, we obtain

0 > −
∫ T

t

(Ỹs)
+dA1

s > −
∫ T

t

(Y 1
s − S1

s )dA
1
s.

Thus, we can conclude that

0 > Êt

[
−

∫ T

t

(Ỹs)
+dA1

s

]
> Êt

[
−
∫ T

t

(Y 1
s − S1

s )dA
1
s

]
= 0.

It follows that the process {K1
t } = {−

∫ t

0
(Ỹs)

+dA1
s} is a nonincreasing G-martingale. Set

K2
t = −

∫ t

0

(Ỹs)
−dA2

s.

Both {K1
t } and {K2

t } are nonincreasing G-martingales, so is {
∫ t

0
αersȲ

α/2−1
s (dK1

s + dK2
s )}, which yields

that {Mt}t∈[0,T ] is a G-martingale. From the assumption of f1, we derive that∫ T

t

αersȲ
α−1
2

s |f̂1
s + b1(s)− b2(s)|ds

6
∫ T

t

αersȲ
α−1
2

s {L(|Ỹs|+ |Z̃s|) + (L ∨ 1)(|Ŝs|+ |ρ̂s|)}ds

6
(
αL+

αL2

σ2(α− 1)

)∫ T

t

ersȲ α/2
s ds+

α(α− 1)

4

∫ T

t

ersȲ α/2−1
s (Z̃s)

2d⟨B⟩s

+ (L ∨ 1)

∫ T

t

αersȲ
α−1
2

s {|Ŝs|+ |ρ̂s|}ds. (3.4)

By Young’s inequality, we have∫ T

t

αersȲ
α−1
2

s {|λ̂s|+ |Ŝs|+ |ρ̂s|}ds
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6 3(α− 1)

∫ T

t

ersȲ α/2
s ds+

∫ T

t

ers{|λ̂s|α + |ρ̂s|α + |Ŝs|α}ds. (3.5)

By (3.3)–(3.5) and setting r = 3(L ∨ 1)(α− 1) + αL+ αL2

σ2(α−1) + 1, we get

Ȳ
α/2
t ert + (MT −Mt) 6 C

{
(εα + |ξ̃|2)α/2erT +

∫ T

t

ers(|λ̂s|α + |ρ̂s|α + |Ŝs|α)ds
}
.

Taking conditional expectation on both sides and then letting ε ↓ 0, we have

|Ỹt|α 6 CÊt

[
|ξ̃|α +

∫ T

t

(|λ̂s|α + |ρ̂s|α + |Ŝs|α)ds
]
.

The proof is completed.

Proposition 3.5. Let (ξ, f, S) satisfy (H1)–(H4). Assume that (Y, Z,A) ∈ Sα
G(0, T ), for some 2 6

α < β, is a solution of the reflected G-BSDE with data (ξ, f, S). Then there exists a constant C :=

C(α, T, L, σ, c) > 0 such that

|Yt|α 6 CÊt

[
1 + |ξ|α +

∫ T

t

|f(s, 0, 0)|αds
]
.

Proof. For any r > 0, set Ỹt = |Yt − c|2. Applying Itô’s formula to Ỹ
α/2
t ert, noting that St 6 c and A

is a nondecreasing process, we have

Ỹ
α/2
t ert +

∫ T

t

rersỸ α/2
s ds+

α

2

∫ T

t

ersỸ α/2−1
s Z2

sd⟨B⟩s

= |ξ − c|αerT +

∫ T

t

αersỸ α/2−1
s (Ys − c)f(s, Ys, Zs)ds+ α

(
1− α

2

)∫ T

t

ersỸ α/2−2
s (Ys − c)2Z2

s ⟨B⟩s

−
∫ T

t

αersỸ α/2−1
s (Ys − c)ZsdBs +

∫ T

t

αersỸ α/2−1
s (Ys − c)dAs

6 |ξ − c|αerT +

∫ T

t

αersỸ
α−1
2

s |f(s, Ys, Zs)|ds+ α

(
1− α

2

)∫ T

t

ersỸ α/2−1
s Z2

s ⟨B⟩s − (MT −Mt),

where Mt =
∫ T

t
αersỸ

α/2−1
s (Ys − c)ZsdBs −

∫ T

t
αersỸ

α/2−1
s (Ys − Ss)dAs. By Condition (c), M is a

G-martingale. By the assumption of f and Young’s inequality, we get∫ T

t

αersỸ
α−1
2

s |f(s, Ys, Zs)|ds 6
∫ T

t

αersỸ
α−1
2

s [|f(s, c, 0)|+ L|Ỹs|+ L|Zs|]ds

6
(
αL+

αL2

σ2(α− 1)

)∫ T

t

ersỸ α/2
s ds+ (α− 1)

∫ T

t

ersỸ α/2
s ds

+
α(α− 1)

4

∫ T

t

ersỸ α/2−1
s Z2

s ⟨B⟩s +
∫ T

t

ers|f(s, c, 0)|αds. (3.6)

Setting r = α+ αL+ αL2

σ2(α−1) and by the above analysis, we have

Ỹ
α/2
t ert +MT −Mt 6 |ξ − c|αerT +

∫ T

t

ers|f(s, c, 0)|αds.

Taking conditional expectation on both sides yields that

|Yt − c|α 6 CÊt

[
|ξ − c|α +

∫ T

t

|f(s, c, 0)|αds
]
.

Noting that for p > 1, we have |a+ b|p 6 2p−1(|a|p + |b|p). Then, the proof is completed.
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Proposition 3.6. Let (ξ1, f1, S1) and (ξ2, f2, S2) be two sets of data, each one satisfying the as-

sumptions (H1)–(H4). Let (Y i, Zi, Ai) ∈ Sα
G(0, T ) be the solutions of the reflected G-BSDEs with data

(ξi, f i, Si), i = 1, 2, respectively, with 2 6 α < β. Set Ŷt = Y 1
t − Y 2

t , Ŝt = S1
t − S2

t , ξ̂ = ξ1 − ξ2. Then,

there exists a constant C := C(α, T, L, σ, c) > 0 such that

|Ŷt|α 6 C

{
Êt

[
|ξ̂|α +

∫ T

t

|λ̂s|αds
]
+
(
Êt

[
sup

s∈[t,T ]

|Ŝs|α
]) 1

α

Ψ
α−1
α

t,T

}
,

where λ̂s = |f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )| and

Ψt,T =
2∑

i=1

Êt

[
sup

s∈[t,T ]

Ês

[
1 + |ξi|α +

∫ T

t

|f i(r, 0, 0)|αdr
]]

.

Proof. Set Ẑt = Z1
t −Z2

t , f̂t = f1(t, Y 1
t , Z

1
t )− f2(t, Y 2

t , Z
2
t ) and f̂1

t = f1(t, Y 1
t , Z

1
t )− f1(t, Y 2

t , Z
2
t ). For

any r > 0, by applying Itô’s formula to Ȳ
α/2
t ert = (|Ŷt|2)α/2ert, we have

Ȳ
α/2
t ert +

∫ T

t

rersȲ α/2
s ds+

∫ T

t

α

2
ersȲ α/2−1

s (Ẑs)
2d⟨B⟩s

= |ξ̂|αerT + α

(
1− α

2

)∫ T

t

ersȲ α/2−2
s (Ŷs)

2(Ẑs)
2d⟨B⟩s −

∫ T

t

αersȲ α/2−1
s ŶsẐsdBs

+

∫ T

t

αersȲ α/2−1
s Ŷsf̂sds+

∫ T

t

αersȲ α/2−1
s ŶsdÂs

6 |ξ̂|αerT + α

(
1− α

2

)∫ T

t

ersȲ α/2−1
s (Ẑs)

2d⟨B⟩s +
∫ T

t

αersȲ α/2−1
s ŜsdÂs

+

∫ T

t

αersȲ
α−1
2

s {|f̂1
s |+ |λ̂s|}ds− (MT −Mt), (3.7)

where Mt =
∫ t

0
αersȲ

α/2−1
s ŶsẐsdBs −

∫ t

0
αersȲ

α/2−1
s (Ŷs − Ŝs)

−dA2
s −

∫ t

0
αersȲ

α/2−1
s (Ŷs − Ŝs)

+dA1
s. By

a similar analysis as in the proof of Proposition 3.4, we conclude that {Mt}t∈[0,T ] is a G-martingale. By

Young’s inequality and the assumption of f1, similar to (3.4) and (3.5), we have∫ T

t

αersȲ
α−1
2

s {|f̂1
s |+ |λ̂s|}ds 6

α(α− 1)

4

∫ T

t

ersỸ α/2−1
s Z2

s ⟨B⟩s +
∫ T

t

ers|λ̂s|αds

+

(
α− 1 + αL+

αL2

σ2(α− 1)

)∫ T

t

ersỸ α/2
s ds.

Set r = α+ αL+ αL2

σ2(α−1) . Taking conditional expectation on both sides of (3.7), we obtain

|Ŷt|α 6 C

{
Êt

[
|ξ̂|α +

∫ T

t

|λ̂s|αds
]
+ Êt

[ ∫ T

t

Ȳ α/2−1
s |Ŝs|d(A1

s +A2
s)

]}
.

By applying Hölder’s inequality, we get

Êt

[ ∫ T

t

Ȳ α/2−1
s |Ŝs|d(A1

s +A2
s)

]
6 Êt

[
sup

s∈[t,T ]

Ȳ α/2−1
s |Ŝs|(|A1

T −A1
t |+ |A2

T −A2
t |)

]
6

(
Êt

[
sup

s∈[0,T ]

|Ŝs|α
]) 1

α
(
Êt

[
sup

s∈[t,T ]

Ȳ α/2
s

])α−2
α

( 2∑
i=1

Êt[|Ai
T −Ai

t|α]
) 1

α

.

From Propositions 3.1 and 3.5, we finally get the desired result.

Remark 3.7. One may formulate a solution of reflected G-BSDE as a quadruple {(Yt, Zt,Kt, Lt), 0

6 t 6 T} satisfying Conditions (1)–(3) in the introduction. But the following example shows that the

uniqueness is false in this formulation.

Let f = −1, g = 0, ξ = 0 and S = 0. It is easy to check that (0, 0, 0, t) and (0, 0, 1
σ̄2−σ2 (σ

2t

− ⟨B⟩t), 1
σ̄2−σ2 (σ̄

2t− ⟨B⟩t)) are solutions of the reflected G-BSDE with data (0,−1, 0, 0) satisfying Con-

ditions (1)–(3).



10 Li H et al. Sci China Math January 2018 Vol. 61 No. 1

4 Penalized method and convergence properties

In order to derive the existence of the solution to the reflected G-BSDE with a lower obstacle, we apply

the approximation method via penalization. In this section, we first state some convergence properties

of solutions to the penalized G-BSDEs, which will be needed in the sequel.

For f and ξ satisfying (H1)–(H3), {St}t∈[0,T ] satisfying (H4) or (H4′), we now consider the following

family of G-BSDEs parameterized by n = 1, 2, . . . ,

Y n
t = ξ +

∫ T

t

f(s, Y n
s , Zn

s )ds+ n

∫ T

t

(Y n
s − Ss)

−ds−
∫ T

t

Zn
s dBs − (Kn

T −Kn
t ). (4.1)

Now, let Ln
t = n

∫ t

0
(Y n

s − Ss)
−ds. Then, (Ln

t )t∈[0,T ] is a nondecreasing process. By defining Ln
t =

n
∫ t

0
(Y n

s − Ss)
−ds, the G-BSDE (4.1) is written as

Y n
t = ξ +

∫ T

t

f(s, Y n
s , Zn

s )ds−
∫ T

t

Zn
s dBs − (Kn

T −Kn
t ) + (Ln

T − Ln
t ). (4.2)

We now establish a priori estimates on the sequences (Y n, Zn,Kn, Ln).

Lemma 4.1. There exists a constant C = C(α, T, L, σ) independent of n, such that for 1 < α < β,

Ê
[

sup
t∈[0,T ]

|Y n
t |α

]
6 C, Ê[|Kn

T |α] 6 C, Ê[|Ln
T |α] 6 C, Ê

[(∫ T

0

|Zn
t |2dt

)α
2
]
6 C.

Proof. For simplicity, we first consider the case S ≡ 0. The proof of the other cases will be given in

the remark. For any r, ε > 0, set Ỹt = (Y n
t )2 + εα, where εα = ε(1 − α/2)+. Note that for each a ∈ R,

a× a− 6 0. Applying Itô’s formula to Ỹ
α/2
t ert yields that

Ỹ
α/2
t ert +

∫ T

t

rersỸ α/2
s ds+

∫ T

t

α

2
ersỸ α/2−1

s (Zn
s )

2d⟨B⟩s

= (|ξ|2 + εα)
α
2 erT + α

(
1− α

2

)∫ T

t

ersỸ α/2−2
s (Y n

s )2(Zn
s )

2d⟨B⟩s +
∫ T

t

αersỸ α/2−1
s Y n

s dLn
s

+

∫ T

t

αersỸ α/2−1
s Y n

s f(s, Y n
s , Zn

s )ds−
∫ T

t

αersỸ α/2−1
s (Y n

s Zn
s dBs + Y n

s dKn
s )

6 (|ξ|2 + εα)
α
2 erT + α

(
1− α

2

)∫ T

t

ersỸ α/2−2
s (Y n

s )2(Zn
s )

2d⟨B⟩s

+

∫ T

t

αersỸ α/2−1/2
s |f(s, Y n

s , Zn
s )|ds− (MT −Mt),

where Mt =
∫ T

t
αersỸ

α/2−1
s (Y n

s Zn
s dBs + (Y n

s )+dKn
s ) is a G-martingale. Similar to (3.6), we have∫ T

t

αersỸ
α−1
2

s |f(s, Y n
s , Zn

s )|ds 6
∫ T

t

ers|f(s, 0, 0)|αds+ α(α− 1)

4

∫ T

t

ersỸ α/2−1
s (Zn

s )
2d⟨B⟩s

+

(
α− 1 + αL+

αL2

σ2(α− 1)

)∫ T

t

ersỸ α/2
s ds.

Set r = α+ αL+ αL2

σ2(α−1) . We derive that

Ỹ
α/2
t ert +MT −Mt 6 (|ξ|2 + εα)

α
2 erT +

∫ T

t

ers|f(s, 0, 0)|αds.

Taking conditional expectation on both sides and then letting ε → 0, we obtain

|Y n
t |α 6 CÊt

[
|ξ|α +

∫ T

t

|f(s, 0, 0)|αds
]
.
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By Theorem 2.4, for 1 < α < β, there exists a constant C independent of n such that Ê[supt∈[0,T ] |Y n
t |α]

6 C. By Proposition 3.1, we have

Ê

[(∫ T

0

|Zn
s |2ds

)α
2
]
6 Cα

{
Ê
[

sup
t∈[0,T ]

|Y n
t |α

]
+
(
Ê
[

sup
t∈[0,T ]

|Y n
t |α

]) 1
2

(
Ê

[(∫ T

0

|f(s, 0, 0)|ds
)α]) 1

2
}
,

Ê[|Ln
T −Kn

T |α] 6 Cα

{
Ê
[

sup
t∈[0,T ]

|Y n
t |α

]
+ Ê

[(∫ T

0

|f(s, 0, 0)|ds
)α]}

,

where the constant Cα depends on α, T, σ and L. Thus, we conclude that there exists a constant C

independent of n, such that for 1 < α < β,

Ê

[(∫ T

0

|Zn
t |2dt

)α
2
]
6 C, Ê[|Ln

T −Kn
T |α] 6 C.

Since Ln
T and −Kn

T are non-negative, it follows that

Ê[|Kn
T |α] 6 C, Ê[|Ln

T |α] = nαÊ

[(∫ T

0

(Y n
s )−s

)α]
6 C.

This completes the proof.

Remark 4.2. If the obstacle process {St}t∈[0,T ] satisfies (H4), set Ỹ n
t = Y n

t − c. It is simple to

check that

Ỹ n
t = ξ − c+

∫ T

t

f(s, Ỹ n
s + c, Zn

s )ds+

∫ T

t

n(Ỹ n
s − (Ss − c))−ds−

∫ T

t

Zn
s dBs − (Kn

T −Kn
t ).

By an analysis similar to the proof of Lemma 4.1, we derive that

|Ỹ n
t |α 6 CÊt

[
|ξ − c|α +

∫ T

t

|f(s, c, 0)|αds
]
.

If S satisfies (H4′), for simplicity we suppose that l ≡ 0. Let Ỹ n
t = Y n

t − St and Z̃n
t = Zn

t − σ(t), we

can rewrite (4.1) as follows:

Ỹ n
t = ξ − ST +

∫ T

t

[f(s, Ỹ n
s + Ss, Z̃

n
s + σ(s)) + b(s)]ds+ n

∫ T

t

(Ỹ n
s )−ds−

∫ T

t

Z̃n
s dBs − (Kn

T −Kn
t ).

Using the same method, we get |Ỹ n
t |α 6 CÊt[|ξ − ST |α +

∫ T

t
|f(s, Ss, σ(s)) + b(s)|αds].

Thus, we conclude that in the above two cases, for 1 < α < β, there exists a constant C independent

of n such that Ê[supt∈[0,T ] |Y n
t |α] 6 C. By Proposition 3.1, we have

Ê[|Kn
T |α] 6 C, Ê[|Ln

T |α] = nαÊ

[(∫ T

0

(Y n
s − Ss)

−ds

)α]
6 C, and Ê

[(∫ T

0

|Zn
t |2dt

)α
2
]
6 C.

Lemma 4.1 implies that (Y n − S)− → 0 in M1
G(0, T ). The following lemma which corresponds to [4,

Lemma 6.1] shows that this convergence holds in Sα
G(0, T ), for 1 < α < β. This is of vital importance to

prove the convergence property for (Y n).

Lemma 4.3. For some 1 < α < β, we have limn→∞ Ê[supt∈[0,T ] |(Y n
t − St)

−|α] = 0.

Proof. We now consider the following G-BSDEs parameterized by n = 1, 2, . . . ,

ynt = ξ +

∫ T

t

f(s, Y n
s , Zn

s )ds+

∫ T

t

n(Ss − yns )ds−
∫ T

t

zns dBs − (knT − knt ).

By applying G-Itô’s formula to e−ntynt , we get

ynt = entÊt

[
e−nT ξ +

∫ T

t

ne−nsSsds+

∫ T

t

e−nsf(s, Y n
s , Zn

s )ds

]
.



12 Li H et al. Sci China Math January 2018 Vol. 61 No. 1

By Theorem 2.9, we have for all n > 1, Y n
t > Y 1

t and

Y n
t − St > ynt − St = Êt

[
S̃n
t +

∫ T

t

en(t−s)f(s, Y n
s , Zn

s )ds

]
,

where S̃n
t = en(t−T )(ξ − St) +

∫ T

t
nen(t−s)(Ss − St)ds. It follows that

(Y n
t − St)

− 6 (ynt − St)
− 6 Êt

[
|S̃n

t |+
∣∣∣∣ ∫ T

t

en(t−s)f(s, Y n
s , Zn

s )ds

∣∣∣∣].
Applying Hölder’s inequality yields that∣∣∣∣ ∫ T

t

en(t−s)f(s, Y n
s , Zn

s )ds

∣∣∣∣ 6 1√
2n

(∫ T

0

f2(s, Y n
s , Zn

s )ds

)1/2

6 C√
n

(
sup

s∈[0,T ]

|Y n
s |2 +

∫ T

0

(f2(s, 0, 0) + |Zn
s |2)ds

)1/2

.

By Lemma 4.1, for 1 < α < β, we have

Ê

[
sup

t∈[0,T ]

∣∣∣∣ ∫ T

t

en(t−s)f(s, Y n
s , Zn

s )ds

∣∣∣∣α] → 0, as n → ∞. (4.3)

For ε > 0, it is straightforward to show that

|S̃n
t | =

∣∣∣∣en(t−T )(ξ − St) +

∫ T

t+ε

nen(t−s)(Ss − St)ds+

∫ t+ε

t

nen(t−s)(Ss − St)ds

∣∣∣∣
6 en(t−T )|ξ − St|+ e−nε sup

s∈[t+ε,T ]

|St − Ss|+ sup
s∈[t,t+ε]

|Ss − St|.

For T > δ > 0, from the above inequality we obtain

sup
t∈[0,T−δ]

|S̃n
t | 6 e−nδ sup

t∈[0,T−δ]

|ξ − St|+ e−nε sup
t∈[0,T−δ]

sup
s∈[t+ε,T ]

|St − Ss|+ sup
t∈[0,T−δ]

sup
s∈[t,t+ε]

|Ss − St|

6 e−nδ
(

sup
t∈[0,T ]

|St|+ |ξ|
)
+ 2e−nε sup

t∈[0,T ]

|St|+ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ss − St|.

It is easy to check that for each fixed ε, δ > 0,

Ê
[

sup
t∈[0,T−δ]

|S̃n
t |β

]
6 C

{
(e−nβε + e−nβδ)Ê

[
sup

t∈[0,T ]

|St|β + |ξ|β
]
+ Ê

[
sup

t∈[0,T ]

sup
s∈[t,t+ε]

|Ss − St|β
]}

→ CÊ
[

sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ss − St|β
]
, as n → ∞. (4.4)

For 1 < α < β and 0 < δ < T , we have

Ê
[

sup
t∈[0,T ]

|(Y n
t − St)

−|α
]

6 Ê
[

sup
t∈[0,T−δ]

|(Y n
t − St)

−|α
]
+ Ê

[
sup

t∈[T−δ,T ]

|(Y n
t − St)

−|α
]

6 Ê

[
sup

t∈[0,T−δ]

{
Êt

[
|S̃n

t |+
∣∣∣∣ ∫ T

t

en(t−s)f(s, Y n
s , Zn

s )ds

∣∣∣∣]}α]
+ Ê

[
sup

t∈[T−δ,T ]

|(Y 1
t − St)

−|α
]

6 C

{
Ê
[

sup
t∈[0,T−δ]

Êt

[
sup

u∈[0,T−δ]

|S̃n
u |α

]]
+ Ê

[
sup

t∈[0,T−δ]

Êt

[
sup

u∈[0,T ]

∣∣∣∣ ∫ T

u

en(t−s)f(s, Y n
s , Zn

s )ds

∣∣∣∣α]]}
+ Ê

[
sup

t∈[T−δ,T ]

|(Y 1
t − St)

−|α
]
=: I + Ê

[
sup

t∈[T−δ,T ]

|(Y 1
t − St)

−|α
]
. (4.5)
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By Lemma 2.7, noting that Y 1−S ∈ Sα
G(0, T ) and (Y 1

T −ST )
− = 0, we obtain limδ→0 Ê[supt∈[T−δ,T ] |(Y 1

t

− St)
−|α] = 0. By Theorem 2.4, (4.3) and (4.4), we derive that

I 6 C
{
Ê
[

sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ss − St|β
]
+

(
Ê
[

sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Ss − St|β
])α/β}

, as n → ∞.

Now, first let n → ∞ and then let ε, δ → 0 in (4.5). By Lemma 2.7, the above analysis again proves that

for 1 < α < β, limn→∞ Ê[supt∈[0,T ] |(Y n
t − St)

−|α] = 0. The proof is completed.

Now, we show the convergence property of sequence (Y n)∞n=1.

Lemma 4.4. For some β > α > 2, we have limn,m→∞ Ê[supt∈[0,T ] |Y n
t − Y m

t |α] = 0.

Proof. Without loss of generality, we may assume S ≡ 0 in (4.1). For any r > 0, set Ŷt = Y n
t −Y m

t , Ẑt =

Zn
t − Zm

t , K̂t = Kn
t −Km

t , L̂t = Ln
t − Lm

t , Ȳt = |Ŷt|2 and f̂t = f(t, Y n
t , Zn

t )− f(t, Y m
t , Zm

t ). By applying

Itô’s formula to Ȳ
α/2
t ert, we get

Ȳ
α/2
t ert +

∫ T

t

rersȲ α/2
s ds+

∫ T

t

α

2
ersȲ α/2−1

s (Ẑs)
2d⟨B⟩s

= α

(
1− α

2

)∫ T

t

ersȲ α/2−2
s (Ŷs)

2(Ẑs)
2d⟨B⟩s +

∫ T

t

αersȲ α/2−1
s ŶsdL̂s

+

∫ T

t

αersȲ α/2−1
s Ŷsf̂sds−

∫ T

t

αersȲ α/2−1
s (ŶsẐsdBs + ŶsdK̂s)

6 α

(
1− α

2

)∫ T

t

ersȲ α/2−2
s (Ŷs)

2(Ẑs)
2d⟨B⟩s +

∫ T

t

αersȲ
α−1
2

s |f̂s|ds

−
∫ T

t

αersȲ α/2−1
s Y n

s dLm
s −

∫ T

t

αersȲ α/2−1
s Y m

s dLn
s − (MT −Mt),

where Mt =
∫ t

0
αersȲ

α/2−1
s (ŶsẐsdBs + (Ŷs)

+dKm
s + (Ŷs)

−dKn
s ) is a G-martingale. Similar to (3.4),

we have∫ T

t

αersȲ
α−1
2

s |f̂s|ds 6
(
αL+

αL2

σ2(α− 1)

)∫ T

t

ersȲ α/2
s ds+

α(α− 1)

4

∫ T

t

ersȲ α/2−1
s (Ẑs)

2d⟨B⟩s.

Let r = 1 + αL+ αL2

σ2(α−1) . By the above analysis, we have

Ȳ
α/2
t ert + (MT −Mt) 6 −

∫ T

t

αersȲ α/2−1
s Y n

s dLm
s −

∫ T

t

αersȲ α/2−1
s Y m

s dLn
s .

Taking conditional expectation on both sides of the above inequality, we conclude that

Ȳ
α/2
t ert 6 Êt

[
−
∫ T

t

αersȲ α/2−1
s Y n

s dLm
s −

∫ T

t

αersȲ α/2−1
s Y m

s dLn
s

]
. (4.6)

Observe that

Êt

[
−
∫ T

t

αersȲ α/2−1
s Y m

s dLn
s

]
6 αerT Êt

[ ∫ T

t

Ȳ α/2−1
s n(Y n

s )−(Y m
s )−ds

]
6 CÊt

[ ∫ T

0

n|(Y n
s )−|α−1(Y m

s )−ds

]
+CÊt

[ ∫ T

0

n|(Y m
s )−|α−1(Y n

s )−ds

]
.

From (4.6) and taking expectation on both sides, we deduce that

Ê
[

sup
t∈[0,T ]

|Y n
t − Y m

t |α
]
6 CÊ

[
sup

t∈[0,T ]

{
Êt

[ ∫ T

0

(n+m)|(Y n
s )−|α−1(Y m

s )−ds

]
+ Êt

[ ∫ T

0

(n+m)|(Y m
s )−|α−1(Y n

s )−ds

]}]
. (4.7)
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For 2 6 α < β, there exist α′, p, q, r, p′, q′ > 1, such that 1
p + 1

q + 1
r = 1, 1

p′ +
1
q′ = 1, (α− 2)α′p < β,

α′q < β, α′r < β, (α−1)α′p′ < β and α′q′ < β. Applying Lemmas 4.1, 4.3 and Hölder’s inequality, there

exists a constant C independent of m and n such that

Ê

[(∫ T

0

n|(Y n
s )−|α−1(Y m

s )−ds

)α′]
6 Ê

[
sup

s∈[0,T ]

{|(Y n
s )−|(α−2)α′

|(Y m
s )−|α

′
}
(∫ T

0

n(Y n
s )−ds

)α′]

6
(
Ê
[

sup
s∈[0,T ]

|(Y n
s )−|(α−2)α′p

]) 1
p
(
Ê
[

sup
s∈[0,T ]

|(Y m
s )−|α

′q
]) 1

q

(
Ê

[(∫ T

0

n(Y n
s )−ds

)α′r]) 1
r

6 C
(
Ê
[

sup
s∈[0,T ]

|(Y m
s )−|α

′q
]) 1

q

, (4.8)

and

Ê

[(∫ T

0

m|(Y n
s )−|α−1(Y m

s )−ds

)α′]
6 Ê

[
sup

s∈[0,T ]

|(Y n
s )−|(α−1)α′

(∫ T

0

m(Y m
s )−ds

)α′]

6
(
Ê
[

sup
s∈[0,T ]

|(Y n
s )−|(α−1)α′p′

]) 1
p′
(
Ê

[(∫ T

0

m(Y m
s )−ds

)α′q′]) 1
q′

6 C
(
Ê
[

sup
s∈[0,T ]

|(Y n
s )−|(α−1)α′p′

]) 1
p′
. (4.9)

Then, by Theorem 2.4 and Lemma 4.3, (4.7)–(4.9) yield that

lim
n,m→∞

Ê
[

sup
t∈[0,T ]

|Y n
t − Y m

t |α
]
= 0.

The proof is completed.

5 Existence and uniqueness of reflected G-BSDE with a lower obstacle

Theorem 5.1. Suppose that ξ, f satisfy (H1)–(H3) and S satisfies (H4) or (H4′). Then, the reflected

G-BSDE with data (ξ, f, S) has a unique solution (Y,Z,A). Moreover, for any 2 6 α < β we have

Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ) and A ∈ Sα
G(0, T ).

Proof. The uniqueness of the solution is a direct consequence of the priori estimates in Propositions 3.2,

3.4 and 3.6.

To prove the existence, it suffices to prove the S ≡ 0 case. Recalling penalized G-BSDEs (4.1), set

Ŷt = Y n
t − Y m

t , Ẑt = Zn
t − Zm

t , K̂t = Kn
t − Km

t , L̂t = Ln
t − Lm

t and f̂t = f(t, Y n
t , Zn

t ) − f(t, Y m
t , Zm

t ).

By Lemma 4.4, there exists Y ∈ Sα
G(0, T ) satisfying limn→∞ Ê[supt∈[0,T ] |Yt − Y n

t |α] = 0. Applying Itô’s

formula to |Ŷt|2, we get

|Ŷt|2 +
∫ T

t

|Ẑs|2d⟨B⟩s =
∫ T

t

2Ŷsf̂sds−
∫ T

t

2ŶsdK̂s +

∫ T

t

2ŶsdL̂s −
∫ T

t

2ŶsẐsdBs

6 2L

∫ T

t

[|Ŷs|2 + |Ŷs||Ẑs|]ds−
∫ T

t

2ŶsdK̂s +

∫ T

t

2ŶsdL̂s −
∫ T

t

2ŶsẐsdBs.

Note that for each ε > 0,

2L

∫ T

t

|Ŷs||Ẑs|ds 6 L2/ε

∫ T

t

|Ŷs|2ds+ ε

∫ T

t

|Ẑs|2ds.
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Choosing ε < σ2, we have∫ T

0

|Ẑs|2ds 6 C

(∫ T

0

|Ŷs|2ds−
∫ T

0

ŶsdK̂s +

∫ T

0

ŶsdL̂s −
∫ T

0

ŶsẐsdBs

)
6 C

(
sup

s∈[0,T ]

|Ŷs|2 + sup
s∈[0,T ]

|Ŷs|(|Kn
T |+ |Km

T |+ |Ln
T |+ |Lm

T |)−
∫ T

0

ŶsẐsdBs

)
. (5.1)

By Proposition 2.6, for any ε′ > 0, we obtain

Ê

[(∫ T

0

ŶsẐsdBs

)α
2
]
6 CÊ

[(∫ T

0

Ŷ 2
s Ẑ

2
sds

)α
4
]

6 C
(
Ê
[

sup
t∈[0,T ]

|Ŷt|α
])1/2

(
Ê

[(∫ T

0

|Ẑs|2ds
)α

2
])1/2

6 C

4ε′
Ê
[

sup
t∈[0,T ]

|Ŷt|α
]
+ Cε′Ê

[(∫ T

0

|Ẑs|2ds
)α

2
]
.

Applying Lemma 4.1 and Hölder’s inequality, choosing a small enough ε′, it follows from (5.1) that

Ê

[(∫ T

0

|Zn
s − Zm

s |2ds
)α

2
]
6 C

{
Ê
[

sup
t∈[0,T ]

|Ŷt|α
]
+
(
Ê
[

sup
t∈[0,T ]

|Ŷt|α
])1/2}

.

It is straightforward to show that limn,m→∞ Ê[(
∫ T

0
|Zn

s − Zm
s |2ds)α

2 ] = 0. Then, there exists a process

{Zt} ∈ Hα
G(0, T ) such that Ê[(

∫ T

0
|Zs − Zn

s |2ds)α/2] → 0 as n → ∞. Set An
t = Ln

t − Kn
t . It is easy to

check that (An
t )t∈[0,T ] is a nondecreasing process and

An
t −Am

t = Ŷ0 − Ŷt −
∫ t

0

f̂sds+

∫ t

0

ẐsdBs.

By applying Proposition 2.6 and the assumption of f , it follows that

Ê
[

sup
t∈[0,T ]

|An
t −Am

t |α
]
6 CÊ

[
sup

t∈[0,T ]

|Ŷt|α +

(∫ T

0

|f̂s|ds
)α

+ sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

ẐsdBs

∣∣∣∣α]

6 C

{
Ê
[

sup
t∈[0,T ]

|Ŷt|α
]
+ Ê

[(∫ T

0

|Ẑs|2ds
)α/2]}

→ 0, as n, m → ∞.

Then, there exists a nondecreasing process (At)t∈[0,T ] satisfying that limn→∞ Ê[supt∈[0,T ] |At−An
t |α] = 0.

In the following, it remains to prove that Yt > 0, t ∈ [0, T ] and {−
∫ t

0
YsdAs}t∈[0,T ] is a nonincreasing G-

martingale. For the first statement, it can be easily deduced from Lemma 4.3. Set K̃n
t :=

∫ t

0
YsdK

n
s . Since

Yt > 0, for any 0 6 t 6 T and Kn is a decreasing G-martingale, then K̃n is a decreasing G-martingale.

Note that

sup
t∈[0,T ]

∣∣∣∣− ∫ t

0

YsdAs − K̃n
t

∣∣∣∣ 6 sup
t∈[0,T ]

{∣∣∣∣− ∫ t

0

YsdAs +

∫ t

0

YsdA
n
s

∣∣∣∣+ ∣∣∣∣ ∫ t

0

(Y n
s − Ys)dA

n
s

∣∣∣∣
+

∣∣∣∣ ∫ t

0

(Y n
s − Ys)dK

n
s

∣∣∣∣+ ∣∣∣∣ ∫ t

0

−Y n
s n(Y n

s )−ds

∣∣∣∣}
6 sup

t∈[0,T ]

{∣∣∣∣ ∫ t

0

Ỹ m
s d(An

s −As)

∣∣∣∣+ ∣∣∣∣ ∫ t

0

(Ys − Ỹ m
s )d(An

s −As)

∣∣∣∣}
+ sup

t∈[0,T ]

|Ys − Y n
s |[|An

T |+ |Kn
T |] + sup

t∈[0,T ]

(Y n
s )−|Ln

T |

=: I + II + III + IV,
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where Ỹ m
t =

∑m−1
i=0 Ytmi

I[tmi ,tmi+1)
(t) and tmi = iT

m , i = 0, 1, . . . ,m. By a simple calculation, we have

Ê[I] 6
m−1∑
i=0

Ê
[

sup
s∈[0,T ]

|Ys|(|An
tmi+1

−Atmi+1
|+ |An

tmi
−Atmi

|)
]

6
(
Ê
[

sup
s∈[0,T ]

|Ys|2
])1/2 m−1∑

i=0

{(Ê[|An
tmi+1

−Atmi+1
|2])1/2 + (Ê[|An

tmi
−Atmi

|2])1/2},

Ê[II] 6
(
Ê
[

sup
s∈[0,T ]

|Ys − Ỹ m
s |2

])1/2

{(Ê[|An
T |2])1/2 + (Ê[|AT |2])1/2},

Ê[III] 6
(
Ê
[

sup
s∈[0,T ]

|Ys − Y n
s |2

])1/2

{(Ê[|An
T |2])1/2 + (Ê[|Kn

T |2])1/2},

Ê[IV ] 6
(
Ê
[

sup
s∈[0,T ]

|(Y n
s )−|2

])1/2

(Ê[|Ln
T |2])1/2.

Then, for each fixed m, letting n approach infinity, we conclude that

lim
n→∞

Ê

[
sup

t∈[0,T ]

∣∣∣∣− ∫ t

0

YsdAs − K̃n
t

∣∣∣∣] 6 C
(
Ê
[

sup
t∈[0,T ]

|Ys − Ỹ m
s |2

])1/2

.

By [8, Lemma 3.2], letting m approach infinity, we get limn→∞ Ê[supt∈[0,T ] | −
∫ t

0
YsdAs − K̃n

t |] = 0. It

follows that {−
∫ t

0
YsdAs} is a nonincreasing G-martingale.

Furthermore, we have the following result.

Theorem 5.2. Suppose that ξ, f and g satisfy (H1)–(H3), S satisfies (H4) or (H4′). Then, the

reflected G-BSDE with data (ξ, f, g, S) has a unique solution (Y, Z,A). Moreover, for any 2 6 α < β we

have Y ∈ Sα
G(0, T ), Z ∈ Hα

G(0, T ) and A ∈ Sα
G(0, T ).

Proof. The proof is similar to that of Theorem 5.1.

We next prove a comparison theorem, similar to that of [9] for non-reflected G-BSDEs. The proof is

based on the approximation method via penalization.

Theorem 5.3. Let (ξ1, f1, g1, S1) and (ξ2, f2, g2, S2) be two sets of data. Suppose Si satisfies (H4)

or (H4′), and ξi, f i and gi satisfy (H1)–(H3) for i = 1, 2. We furthermore assume the following:

(i) ξ1 6 ξ2, q.s.;

(ii) f1(t, y, z) 6 f2(t, y, z), g1(t, y, z) 6 g2(t, y, z), ∀ (y, z) ∈ R2;

(iii) S1
t 6 S2

t , 0 6 t 6 T , q.s.

Let (Y i, Zi, Ai) be the solutions of the reflected G-BSDE with data (ξi, f i, gi, Si), i = 1, 2, respectively.

Then

Y 1
t 6 Y 2

t , 0 6 t 6 T q .s.

Proof. We consider the following G-BSDEs parameterized by n = 1, 2, . . . ,

ynt = ξ1 +

∫ T

t

f1(s, yns , z
n
s )ds+

∫ T

t

g1(s, yns , z
n
s )d⟨B⟩s +

∫ T

t

n(yns − S1
s )

−ds−
∫ T

t

zns dBs − (Kn
T −Kn

t ).

By an analysis similar to the proof of Theorem 5.1, it follows that limn→∞ Ê[supt∈[0,T ] |Y 1
t − ynt |α]

= 0, where 2 6 α < β. Noting that (Y 2, Z2, A2) is the solution of the reflected G-BSDE with data

(ξ2, f2, g2, S2) and Y 2
t > S2

t , 0 6 t 6 T , we have

Y 2
t = ξ2 +

∫ T

t

f2(s, Y 2
s , Z

2
s )ds+

∫ T

t

g2(s, Y 2
s , Z

2
s )d⟨B⟩s +

∫ T

t

n(Y 2
s − S2

s )
−ds−

∫ T

t

Z2
sdBs + (A2

T −A2
t ).

Applying Theorem 2.9 yields Y 2
t > ynt , for all n ∈ N. Letting n → ∞, we conclude that Y 2

t > Y 1
t .
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Remark 5.4. Actually, the process A can be represented as the sum of two nondecreasing processes A1

and A2 such that
∫ T

0
(Ys − Ss)dA

2
s = 0, and for any 0 6 s 6 t 6 T ,

Ês

[ ∫ t

0

(Sr − Yr)dA
1
r

]
=

∫ s

0

(Sr − Yr)dA
1
r. (5.2)

Indeed, set A1
t =

∫ t

0
I{Ys>Ss}dAs, A

2
t =

∫ t

0
I{Ys=Ss}dAs. It is easy to check that A = A1 + A2 and A2

satisfies the Skorohod condition. We now show that A1 satisfies (5.2). Set K̃t :=
∫ t

0
(Ss − Ys)dAs. By

Theorem 5.1, K̃ is a decreasing G-martingale and K̃t ∈ Lp
G(Ωt) for some 1 < p < β

2 , ∀ t ∈ [0, T ].

Choose a sequence of bounded, non-negative and Lipschitz continuous functions (φn(x))
∞
n=1 such that

φn(x) ↑ I{x>0}. Set

K̄n
t :=

∫ t

0

φn(Ys − Ss)dK̃s =

∫ t

0

(Ss − Ys)φn(Ys − Ss)dAs.

Applying [8, Lemma 3.4], we obtain that K̄n is a decreasing G-martingale. Furthermore, we have∫ t

0

φn(Ys − Ss)dK̃s ↓
∫ t

0

(Ss − Ys)dA
1
s ∈ L1∗

G (Ωt),

where L1∗

G (Ωt) is defined in Appendix A. By the extended conditional G-expectation defined in [11], we

derive that

Ês

[ ∫ t

0

(Sr − Yr)dA
1
r

]
= lim

n→∞
Ês

[ ∫ t

0

(Sr − Yr)φn(Yr − Sr)dAr

]
= lim

n→∞

∫ s

0

(Sr − Yr)φn(Yr − Sr)dAr

=

∫ s

0

(Sr − Yr)dA
1
r.

6 Relation between reflected G-BSDEs and obstacle problems for nonlinear
parabolic PDEs

In this section, we give a probabilistic representation for the solution of an obstacle problem for a fully

nonlinear parabolic PDE using the reflected G-BSDE mentioned in the above sections. For this purpose,

we put the reflected G-BSDE in a nonlinear Markovian framework.

For each 0 6 t 6 T and ξ ∈ Lp
G(Ωt;Rd), p > 2, let {Xt,ξ

s , t 6 s 6 T} be the unique Rd-valued solution

of the SDE driven by G-Brownian motion (here we use the Einstein convention):

Xt,ξ
s = x+

∫ s

t

b(r,Xt,ξ
r )dr +

∫ s

t

lij(r,X
t,ξ
r )d⟨Bi, Bj⟩r +

∫ s

t

σi(r,X
t,ξ
r )dBi

r. (6.1)

For any (t, x) ∈ [0, T ]× Rd, we assume that the data (ξt,x, f t,x, gt,x, St,x) of the reflected G-BSDE takes

the following form:

ξt,x = ϕ(Xt,x
T ), f t,x(s, y, z) = f(s,Xt,x

s , y, z),

St,x
s = h(s,Xt,x

s ), gt,xij (s, y, z) = gij(s,X
t,x
s , y, z),

where b : [0, T ] × Rd → Rd, lij : [0, T ] × Rd → Rd, σi : [0, T ] × Rd → Rd, ϕ : Rd → R, f, gij :

[0, T ] × Rd × R × Rd → R and h : [0, T ] × Rd → R are deterministic functions and satisfy the following

conditions:

(A1) lij = lji and gij = gji for 1 6 i, j 6 d;

(A2) b, lij , σi, f , gij and h are continuous in t;
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(A3) there exist a positive integer m and a constant L such that

|b(t, x)− b(t, x′)|+
d∑

i,j=1

|lij(t, x)− lij(t, x
′)|+

d∑
i=1

|σi(t, x)− σi(t, x
′)| 6 L|x− x′|,

|ϕ(x)− ϕ(x′)| 6 L(1 + |x|m + |x′|m)|x− x′|,

|f(t, x, y, z)− f(t, x′, y′, z′)|+
d∑

i.j=1

|gij(t, x, y, z)− gij(t, x
′, y′, z′)|

6 L[(1 + |x|m + |x′|m)|x− x′|+ |y − y′|+ |z − z′|];

(A4) h is Lipschitz continuous w.r.t. x and bounded from above, h(T, x) 6 ϕ(x) for any x ∈ Rd;

(A4′) h belongs to the space C1,2
Lip([0, T ]×Rd) and h(T, x) 6 ϕ(x) for any x ∈ Rd, where C1,2

Lip([0, T ]×Rd)

is the space of all functions of class C1,2([0, T ]×Rd) whose partial derivatives of order less than or equal

to 2 and itself are Lipschitz continuous functions with respect to x.

We have the following estimates of G-SDEs, which come from [23, Chapter V].

Proposition 6.1 (See [23]). Let ξ, ξ′ ∈ Lp
G(Ωt;Rd) and p > 2. Then we have, for each δ ∈ [0, T − t],

Êt

[
sup

s∈[t,t+δ]

|Xt,ξ
s −Xt,ξ′

s |p
]
6 C|ξ − ξ′|p,

Êt[|Xt,ξ
t+δ|

p] 6 C(1 + |ξ|p),

Êt

[
sup

s∈[t,t+δ]

|Xt,ξ
s − ξ|p

]
6 C(1 + |ξ|p)δp/2,

where the constant C depends on L,G, p, d and T .

Proof. For the reader’s convenience, we give a brief proof here. It is easy to check that {Xt,ξ
s }s∈[t,T ],

{Xt,ξ′

s }s∈[t,T ] ∈ Mp
G(0, T ;Rd). By Proposition 2.6, we have

Êt

[
sup

s∈[t,t+δ]

|Xt,ξ
s −Xt,ξ′

s |p
]

6 CÊt

[
|ξ − ξ′|p +

∫ t+δ

t

|Xt,ξ
s −Xt,ξ′

s |pds+ sup
s∈[t,t+δ]

∣∣∣∣ ∫ s

t

(σ(r,Xt,ξ
r )− σ(r,Xt,ξ′

r ))dBr

∣∣∣∣p]

6 C

{
|ξ − ξ′|p + Êt

[ ∫ t+δ

t

|Xt,ξ
s −Xt,ξ′

s |pds
]
+ Êt

[(∫ t+δ

t

|Xt,ξ
s −Xt,ξ′

s |2ds
)p/2]}

6 C

{
|ξ − ξ′|p +

∫ t+δ

t

Êt

[
sup

r∈[t,s]

|Xt,ξ
r −Xt,ξ′

r |p
]
ds

}
.

By Gronwall’s inequality, we get the first inequality. The others can be proved similarly.

It follows from the previous results that for each (t, x) ∈ [0, T ] × Rd, there exists a unique triple

(Y t,x
s , Zt,x

s , At,x
s )s∈[t,T ], which solves the following reflected G-BSDE:

(i) Y t,x
s = ϕ(Xt,x

T ) +
∫ T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r )dr +
∫ T

s
gij(r,X

t,x
r , Y t,x

r , Zt,x
r )d⟨Bi, Bj⟩r −

∫ T

s
Zt,x
r dBr

+At,x
T −At,x

s , t 6 s 6 T ;

(ii) Y t,x
s > h(s,Xt,x

s ), t 6 s 6 T ;

(iii) {At,x
s } is nondecreasing and continuous, and {−

∫ s

t
(Y t,x

r − h(r,Xt,x
r ))dAt,x

r , t 6 s 6 T} is a non-

increasing G-martingale.

We now consider the following obstacle problem for a parabolic PDE:{
min(−∂tu(t, x)− F (D2

xu,Dxu, u, x, t), u(t, x)− h(t, x)) = 0, (t, x) ∈ (0, T )× Rd,

u(T, x) = ϕ(x), x ∈ Rd,
(6.2)

where

F (D2
xu,Dxu, u, x, t) = G(H(D2

xu,Dxu, u, x, t)) + ⟨b(t, x), Dxu⟩
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+ f(t, x, u, ⟨σ1(t, x), Dxu⟩, . . . , ⟨σd(t, x), Dxu⟩),
H(D2

xu,Dxu, u, x, t) = ⟨D2
xuσi(t, x), σj(t, x)⟩+ 2⟨Dxu, lij(t, x)⟩

+ 2gij(t, x, u, ⟨σ1(t, x), Dxu⟩, . . . , ⟨σd(t, x), Dxu⟩).

We need to consider solutions of the above PDE in the viscosity sense. The best candidate to define

the notion of viscosity solution is by using the language of sub- and super-jets (see [1]).

Definition 6.2. Let u ∈ C((0, T ) × Rd) and (t, x) ∈ (0, T ) × Rd. We denote by P2,+u(t, x) (the

“parabolic superjet” of u at (t, x)) the set of triples (p, q,X) ∈ R× Rd × Sd satisfying

u(s, y) 6 u(t, x) + p(s− t) + ⟨q, y − x⟩+ 1

2
⟨X(y − x), y − x⟩+ o(|s− t|+ |y − x|2).

Similarly, we define P2,−u(t, x) (the “parabolic subjet” of u at (t, x)) by P2,−u(t, x) := −P2,+(−u)(t, x).

Then, we give the definition of the viscosity solution of the obstacle problem (6.2).

Definition 6.3. It can be said that u ∈ C([0, T ] × Rd) is a viscosity subsolution of (6.2) if u(T, x)

6 ϕ(x), x ∈ Rd, and at any point (t, x) ∈ (0, T )× Rd, for any (p, q,X) ∈ P2,+u(t, x),

min(u(t, x)− h(t, x),−p− F (X, q, u(t, x), x, t)) 6 0.

It can be said that u ∈ C([0, T ]× Rd) is a viscosity supersolution of (6.2) if u(T, x) > ϕ(x), x ∈ Rd, and

at any point (t, x) ∈ (0, T )× Rd, for any (p, q,X) ∈ P2,−u(t, x),

min(u(t, x)− h(t, x),−p− F (X, q, u(t, x), x, t)) > 0.

u ∈ C([0, T ]×Rd) is said to be a viscosity solution of (6.2) if it is both a viscosity sub- and supersolution.

We now define

u(t, x) := Y t,x
t , (t, x) ∈ [0, T ]× Rd. (6.3)

It is important to note that u(t, x) is a deterministic function. We claim that u is a continuous function.

For simplicity, we only consider the case where g = 0 in the next three lemmas. The results still hold for

the other cases.

Lemma 6.4. Let Assumptions (A1)–(A3) and (A4′) hold. For each t ∈ [0, T ], x1, x2 ∈ Rd, we have

|u(t, x1)− u(t, x2)| 6 C(1 + |x1|m∨2 + |x2|m∨2)|x1 − x2|.

Proof. From Proposition 3.4, since u(t, x) is a deterministic function, we have

|u(t, x1)− u(t, x2)|2 6 C

{
Ê

[
|(ϕ(Xt,x1

T )− h(T,Xt,x1

T ))− (ϕ(Xt,x2

T )− h(T,Xt,x2

T ))|2

+

∫ T

t

|f(s,Xt,x1
s , Y t,x1

s , Zt,x1
s )− f(s,Xt,x2

s , Y t,x1
s , Zt,x1

s )|2ds

+

∫ T

t

|b1(s)− b2(s)|2 + |l1ij(s)− l2ij(s)|2 + |σ1
i (s)− σ2

i (s)|2

+ |h(s,Xt,x1
s )− h(s,Xt,x2

s )|2ds
]
+ |h(t, x1)− h(t, x2)|2

}
, (6.4)

where for k = 1, 2,

bk(s) = ∂sh(s,X
t,xk
s ) + ⟨b(s,Xt,xk

s ), Dxh(s,X
t,xk
s )⟩,

lkij(s) = ⟨Dxh(s,X
t,xk
s ), lij(s,X

t,xk
s )⟩+ 1

2
⟨D2

xh(s,X
t,xk
s )σi(s,X

t,xk
s ), σj(s,X

t,xk
s )⟩,

σk
i (s) = ⟨σi(s,X

t,xk
s ), Dxh(s,X

t,xk
s )⟩.
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Set X̂t
s = Xt,x1

s −Xt,x2
s . By Assumptions (A3), (A4′) and Proposition 6.1, we have

|u(t, x1)− u(t, x2)|2 6 C

{
Ê

[(
1 +

2∑
k=1

|Xt,xk

T |m
)2

|X̂t
T |2

]
+

∫ T

t

Ê

[(
1 +

2∑
k=1

|Xt,xk
s |m

)2

|X̂t
s|2

]
ds

+

∫ T

t

Ê

[(
1 +

2∑
k=1

|Xt,xk
s |2

)2

|X̂t
s|2

]
ds+

∫ T

t

Ê[|X̂t
s|2]ds+ |x1 − x2|2

}
6 C(1 + |x1|2m∨4 + |x2|2m∨4)

{(
Ê
[

sup
s∈[t,T ]

|X̂t
s|4

])1/2

+ |x1 − x2|2
}

6 C(1 + |x1|2m∨4 + |x2|2m∨4)|x1 − x2|2.

The proof is completed.

Lemma 6.5. Let Assumptions (A1)–(A4) hold. For each t ∈ [0, T ], x, x′ ∈ Rd, we have

|u(t, x1)− u(t, x2)|2 6 C{(1 + |x1|2m + |x2|2m)|x1 − x2|2 + (1 + |x1|m+1 + |x2|m+1)|x1 − x2|}.

Proof. From Propositions 3.6 and 6.1, by an analysis similar to the proof of the above lemma, we get

the desired result.

Lemma 6.6. The function u(t, x) is continuous in t.

Proof. We only need to prove the case where (A1)–(A3) and (A4′) hold. The case that (A1)–(A4) hold

can be proved in a similar way. We define Xt,x
s := x, Y t,x

s := Y t,x
t , Zt,x

s := 0 and At,x
s := 0 for 0 6 s 6 t.

Then, we define the obstacle

S̃t,x
u =

h(t, x) +

∫ u

t

b̃(s,Xt,x
s )ds+

∫ u

t

l̃ij(s,X
t,x
s )d⟨Bi, Bj⟩s +

∫ u

t

σ̃i(s,X
t,x
s )dBi

s, u ∈ (t, T ],

h(t, x), u ∈ [0, t],

where

b̃(s,Xt,x
s ) = ∂sh(s,X

t,x
s ) + ⟨b(s,Xt,x

s ), Dxh(s,X
t,x
s )⟩,

l̃ij(s,X
t,x
s ) = ⟨Dxh(s,X

t,x
s ), lij(s,X

t,x
s )⟩+ 1

2
⟨D2

xh(s,X
t,x
s )σi(s,X

t,x
s ), σj(s,X

t,x
s )⟩,

σ̃i(s,X
t,x
s ) = ⟨σi(s,X

t,x
s ), Dxh(s,X

t,x
s )⟩.

It is easy to check that (Y t,x
s , Zt,x

s , At,x
s )s∈[0,T ] is the solution to the reflected G-BSDE with data (ϕ(Xt,x

T ),

f̃ t,x, S̃t,x), where f̃ t,x(s, y, z) := I[t,T ](s)f(s,X
t,x
s , y, z). Fixing x ∈ Rd, for 0 6 t1 6 t2 6 T , by Proposi-

tion 3.4, we have

|u(t1, x)− u(t2, x)|2 = |Y t1,x
0 − Y t2,x

0 |2

6 C

{
Ê

[
|(ϕ(Xt1,x

T )− h(T,Xt1,x
T ))− (ϕ(Xt2,x

T )− h(T,Xt2,x
T ))|2

+ |h(t1, x)− h(t2, x)|2 +
∫ T

0

|λ̂t1,t2(s)|2 + |ρ̂t1,t2(s)|2

+ |h(s,Xt1,x
s )− h(s,Xt2,x

s )|2ds
]}

,

where

λ̂t1,t2(s) = |I[t1,T ](s)f(s,X
t1,x
s , Y t2,x

s , Zt2,x
s )− I[t2,T ](s)f(s,X

t2,x
s , Y t2,x

s , Zt2,x
s )|,

and

ρ̂t1,t2(s) = |I[t1,T ](s)b̃(s,X
t1,x
s )− I[t2,T ](s)b̃(s,X

t2,x
s )|
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+ |I[t1,T ](s)l̃ij(s,X
t1,x
s )− I[t2,T ](s)l̃ij(s,X

t2,x
s )|

+ |I[t1,T ](s)σ̃i(s,X
t1,x
s )− I[t2,T ](s)σ̃i(s,X

t2,x
s )|.

Set X̂x
s = Xt1,x

s −Xt2,x
s . By Hölder’s inequality, Assumptions (A3) and (A4′), we deduce that

|u(t1, x)− u(t2, x)|2 6 C

{
Ê[(1 + |Xt1,x

T |m + |Xt2,x
T |m)2|X̂x

T |2] + |h(t1, x)− h(t2, x)|2

+

∫ T

t2

Ê[(1 + |Xt1,x
s |m∨2 + |Xt2,x

s |m∨2)2|X̂x
s |2]ds

+

∫ t2

t1

Ê[1 + |Xt1,x
s |(2m+2)∨6 + |Y t2,x

s |2]ds
}
.

Note that X̂x
s = X

t2,X
t1,x
t2

s −Xt2,x
s , for s ∈ [t2, T ]. Applying Proposition 6.1, it follows that

|u(t1, x)− u(t2, x)| 6 C{(1 + |x|(m+1)∨3)|t2 − t1|
1
2 + |h(t2, x)− h(t1, x)|}.

The proof is completed.

We will use the approximation of the reflected G-BSDE by penalization. For each (t, x) ∈ [0, T ]×Rd,

n ∈ N, let {(Y n,t,x
s , Zn,t,x

s ,Kn,t,x
s ), t 6 s 6 T} denote the solution of the G-BSDE

Y n,t,x
s = ϕ(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y n,t,x

r , Zn,t,x
r )dr +

∫ T

s

gij(r,X
t,x
r , Y n,t,x

r , Zn,t,x
r )d⟨Bi, Bj⟩r

+ n

∫ T

s

(Y n,t,x
r − h(r,Xt,x

r ))−dr −
∫ T

s

Zn,t,x
r dBr − (Kn,t,x

T −Kn,t,x
s ), t 6 s 6 T.

We define un(t, x) := Y n,t,x
t , 0 6 t 6 T, x ∈ Rd. By [9, Theorem 4.5], un is the viscosity solution of the

parabolic PDE{
−∂tun(t, x)− Fn(D

2
xun(t, x), Dxun(t, x), un(t, x), x, t) = 0, (t, x) ∈ [0, T ]× Rd,

un(T, x) = ϕ(x), x ∈ Rd,
(6.5)

where Fn(D
2
xu,Dxu, u, x, t) = F (D2

xu,Dxu, u, x, t) + n(u− h(t, x))−.

Theorem 6.7. The function u defined by (6.3) is the unique viscosity solution of the obstacle prob-

lem (6.2).

Proof. From the results of the previous sections, for each (t, x) ∈ [0, T ]× Rd, we obtain

un(t, x) ↑ u(t, x), as n → ∞.

By [9, Proposition 4.2 and Theorem 4.5] and Lemmas 6.4–6.6, un and u are continuous. Then, by applying

Dini’s theorem, the sequence un uniformly converges to u on compact sets.

We first show that u is a subsolution of (6.2). For each fixed (t, x) ∈ (0, T ) × Rd, let (p, q,X) ∈
P2,+u(t, x). Without loss of generality, we may assume that u(t, x) > h(t, x). By [1, Lemma 6.1], there

exist sequences

nj → ∞, (tj , xj) → (t, x), (pj , qj , Xj) ∈ P2,+unj (tj , xj),

such that (pj , qj , Xj) → (p, q,X). Since un is the viscosity solution to (6.5), it follows that for any j,

−pj − Fnj (Xj , qj , unj (tj , xj), xj , tj) 6 0.

Noting the uniform convergence of un on compact sets, by the assumption that u(t, x) > h(t, x), we

derive that for a j large enough, unj (tj , xj) > h(tj , xj). Therefore, letting j approach infinity in the

above inequality yields −p−F (X, q, u(t, x), x, t) 6 0. Then, we conclude that u is a subsolution of (6.2).
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It remains to prove that u is a supersolution of (6.2). For each fixed (t, x) ∈ (0, T )×Rd, and (p, q,X) ∈
P2,−u(t, x). Noting that {Y t,x

s }s∈[t,T ] is the solution of reflected G-BSDE with data (ξt,x, f t,x, gt,x, St,x),

where St,x
s = h(s,Xt,x

s ), we have u(t, x) = Y t,x
t > h(t, x). Applying [1, Lemma 6.1] again, there exist

sequences

nj → ∞, (tj , xj) → (t, x), (pj , qj , Xj) ∈ P2,−unj (tj , xj),

such that (pj , qj , Xj) → (p, q,X). Since un is the viscosity solution to (6.5), we derive that for any j,

−pj − Fnj (Xj , qj , unj (tj , xj), xj , tj) > 0.

Therefore,

−pj − F (Xj , qj , unj (tj , xj), xj , tj) > 0.

Letting j → ∞ in the above inequality, we have −p− F (X, q, u(t, x), x, t) > 0, which implies that u is a

supersolution of (6.2). Thus, u is a viscosity solution of (6.2).

An analysis similar to the proof of Theorem 8.6 in [4] shows that there exists at most one solution

of the obstacle problem (6.2) in the class of continuous functions which grow at most polynomially at

infinity. The proof is completed.

7 American options under volatility uncertainty

Now, let us consider the financial market with volatility uncertainty. The market model M is introduced

in [26] consisting of two assets whose dynamics are given by

dγt = rγtdt, γ0 = 1,

dSt = rStdt+ StdBt, S0 = x0 > 0,

where r > 0 is a constant interest rate. The asset γ = (γt) represents a riskless bond. The stock price

is described by a geometric G-Brownian motion. Since the deviation of the process B from its mean is

unknown, this model shows the ambiguity under volatility uncertainty.

Definition 7.1 (See [26]). A cumulative consumption process C = (Ct) is a non-negative Ft-adapted

process with values in L1
G(ΩT ), and with nondecreasing, RCLL paths on (0, T ], and C0 = 0, CT < ∞,

q.s., where Ft = σ{Bs | 0 6 s 6 t}. A portfolio process π = (πt) is an Ft-adapted real valued process

with values in L1
G(ΩT ).

Definition 7.2 (See [26]). For a given initial capital y, a portfolio process π and a cumulative con-

sumption process C, consider the wealth equation

dXt = Xt(1− πt)
dγt
γt

+Xtπt
dSt

St
− dCt = rXtdt+ πtXtdBt − dCt

with initial wealth X0 = y. Or, equivalently,

γ−1
t Xt = y −

∫ t

0

γ−1
u dCu +

∫ t

0

γ−1
u XuπudBu, ∀ t 6 T.

If this equation has a unique solution X = (Xt) := Xy,π,C , it is called the wealth process corresponding

to the triple (y, π, C).

Definition 7.3 (See [26]). A portfolio/consumption process pair (π,C) is called admissible for an

initial capital y ∈ R if

(i) the pair obeys the conditions of Definitions 7.1 and 7.2;

(ii) (πtX
y,π,C
t ) ∈ M2

G(0, T );

(iii) the solution Xy,π,C
t satisfies Xy,π,C

t > −L, ∀ t 6 T , q.s., where L is a non-negative random variable

in L2
G(ΩT ).

We then write (π,C) ∈ A(y).
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We denote by Ts,t the set of all stopping times taking values in [s, t], for any 0 6 s 6 t 6 T . Then, the

American contingent claims may be defined by the following:

Definition 7.4 (See [12]). An American contingent claim is a financial instrument consisting of

(i) an expiration date T ∈ (0,∞);

(ii) the selection of an exercise time τ ∈ T0,T ;
(iii) a payoff Hτ at the exercise time.

We require that the payoff process {Ht}t∈[0,T ] satisfies (H4) or (H4′) in Section 3. Since the financial

market under volatility uncertainty is incomplete, it is natural to consider the superhedging price for the

American contingent claims.

Definition 7.5. Given an American contingent claim (T,H), we define the superhedging class

U := {y > 0 | ∃ (π,C) ∈ A(y) : for any stopping time τ,Xy,π,C
τ > Hτ , q.s.}.

The superhedging price is defined as hup := inf{y | y ∈ U}.
Theorem 7.6. Given the financial market M and an American contingent claim (T,H), we have

hup = Y0, where Y = (Yt) is the solution to the reflected G-BSDE with parameter (HT , f,H) where

f(y) = ry.

Proof. Let y ∈ U . By the definition of U , there exists a pair (π,C) ∈ A(y) such that for any stopping

time τ , Xy,π,C
τ > Hτ . Applying [16, Lemmas 3.4, 4.2 and 4.3], we derive that for any η ∈ M2

G(0, T ),

Ê[
∫ τ

0
ηsdBs] = 0. Then, we obtain

y = Ê

[
y +

∫ τ

0

γ−1
u Xy,π,C

u πudBu

]
> Ê

[
y +

∫ τ

0

γ−1
u Xy,π,C

u πudBu −
∫ τ

0

γ−1
u dCu

]
= Ê[γ−1

τ Xy,π,C
τ ] > Ê[γ−1

τ Hτ ].

It follows that hup > supτ∈T0,T
Ê[γ−1

τ Hτ ].

Now, we turn to prove the inverse inequality. Consider the following reflected G-BSDE:Yt = HT −
∫ T

t

rYsds−
∫ T

t

ZsdBs + (AT −At),

Yt > Ht.

By Theorem 5.1, there exists a unique solution (Y,Z,A) to the above equation. Let C = A, π = Z
Y .

Then Hτ 6 Yτ = XY0,π,C
τ , which implies Y0 ∈ U . It follows that hup 6 Y0. Applying Itô’s formula to

Ỹt = γ−1
t Yt, we conclude that Ỹ is a solution to the reflected G-BSDE with data (γ−1

T HT , 0, γ
−1H). By

the following proposition, we finally get the desired result.

Proposition 7.7. Let (Y, Z,A) be a solution of the reflected G-BSDE with data (ξ, f, S). Then, we have

Y0 = sup
τ∈T0,T

Ê

[ ∫ τ

0

f(s, Ys, Zs)ds+ SτI{τ<T} + ξI{τ=T}

]
.

Proof. Let τ ∈ T0,T . Note the fact that Ê[
∫ τ

0
ZsdBs] = 0. Then, we have

Y0 = Ê

[ ∫ τ

0

f(s, Ys, Zs)ds+ Yτ +Aτ

]
> Ê

[ ∫ τ

0

f(s, Ys, Zs)ds+ SτI{τ<T} + ξI{τ=T}

]
.

We are now in a position to show the inverse inequality. By the definition of the solution of the reflected

G-BSDE, we may define

Kt := −
∫ t

0

(Ys − Ss)dAs.
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Then, K is a nonincreasing G-martingale. Let

Dn = inf

{
0 6 t 6 T : Yt − St <

1

n

}
∧ T.

By Example A.4 in Appendix A, Dn is a ∗-stopping time for n > 1. It is easy to check that Dn → D,

where

D = inf{0 6 t 6 T : Yt − St = 0} ∧ T.

Noting that A is nondecreasing, by Theorem A.5, it follows that

0 = Ê[KDn ] = Ê

[
−
∫ Dn

0

(Ys − Ss)dAs

]
6 1

n
Ê[−ADn ] 6 0,

which yields Ê[−ADn ] = 0. By the continuity property of A, we have Ê[−AD] = 0. Then, it is easy to

check that

Y0 = Ê

[ ∫ D

0

f(s, Ys, Zs)ds+ SDI{D<T} + ξI{D=T}

]
.

Hence, the result follows.
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Appendix A

In this appendix, we introduce the extended conditional G-expectation and optional stopping theorem

under G-framework. More details can be found in [11].

Let (Ω, L1
G(Ω), Ê) be the G-expectation space and P be a weakly compact set that represents Ê. We set

L0(Ω) := {X : Ω → [−∞,∞] and X is B(Ω)-measurable},
L(Ω) := {X ∈ L0(Ω) : EP [X] exists for each P ∈ P}.

We extend G-expectation Ê to L(Ω) and still denote it by Ê. For each X ∈ L(Ω), we define

Ê[X] = sup
P∈P

EP [X].

Then, we give some notation

Lp(Ω) := {X ∈ L0(Ω) : Ê[|X|p] < ∞} for p > 1,

L1∗

G (Ω) := {X ∈ L1(Ω) : ∃Xn ∈ L1
G(Ω) such that Xn ↓ X, q.s.},

L
1∗∗
G (Ω) := {X ∈ L1(Ω) : ∃Xn ∈ L1∗

G (Ω) such that Xn ↑ X, q.s.},

L̄
1∗∗
G (Ω) := {X ∈ L1(Ω) : ∃Xn ∈ L

1∗∗
G (Ω) such that Ê[|Xn −X|] → 0}.

Set Ωt = {ω·∧t : ω ∈ Ω} for t > 0. Similarly, we can define L0(Ωt), L(Ωt), Lp(Ωt), L
1∗

G (Ωt), L
1∗∗
G (Ωt)

and L̄
1∗∗
G (Ωt), respectively. Then we can extend the conditional G-expectation to space L̄

1∗∗
G (Ω) and it

satisfies the following property.

Proposition A.1 (See [11]). For each X ∈ L̄
1∗∗
G (Ω), we have, for each P ∈ P,

Êt[X] = ess sup
Q∈P(t,P )

PEQ[X | Ft], P -a.s.,

where P(t, P ) = {Q ∈ P : EQ[X] = EP [X], ∀X ∈ Lip(Ωt)}.
We now give the definition of stopping times under the G-expectation framework.

Definition A.2. A random time τ : Ω → [0,∞) is called a ∗-stopping time if I{τ>t} ∈ L1∗

G (Ωt) for

each t > 0.

Definition A.3. For a given ∗-stopping time τ and ξ ∈ L̄
1∗∗
G (Ω), we define Êτ [ξ] := Mτ , where Mt =

Êt[ξ] for t > 0.

We then give an example of ∗-stopping time.
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Example A.4. Let (Xt)t∈[0,T ] be a d-dimensional right continuous process such that Xt ∈ L1
G(Ωt) for

t ∈ [0, T ]. For each fixed closed set F ∈ Rd, we define

τ = inf{t > 0 : Xt /∈ F} ∧ T.

Then, τ is a ∗-stopping time.

Now, we introduce the following optional stopping theorem under the G-framework.

Theorem A.5 (See [11]). Suppose that G is non-degenerate. Let Mt = Êt[ξ] for t 6 T , ξ ∈ Lp
G(ΩT )

with p > 1 and let σ and τ be two ∗-stopping times with σ 6 τ 6 T . Then, Mτ , Mσ ∈ L̄
1∗∗
G (Ω) and

Mσ = Êσ[Mτ ], q .s.
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