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Abstract

Given a “Green function” G on a locally compact space X with count-
able base, a Borel set A in X is called G-semipolar, if there is no measure
ν 6= 0 supported by A such that Gν :=

∫
G(·, y) dν(y) is a continuous real

function on X. Introducing an intrinsic Hausdorff measure mG using G-
balls B(x, ρ) := {y ∈ X : G(x, y) > 1/ρ}, it is shown that every set A in X
with mG(A) < ∞ is contained in a G-semipolar Borel set. This is of in-
terest, since G-semipolar sets are semipolar in the potential-theoretic sense
(countable unions of totally thin sets, hit by a corresponding process at most
countably many times), if G is a genuine Green function.

The result has immediate consequences for classical potential theory, Riesz
potentials and the heat equation (where it solves an open problem). More
generally, it is applied to metric measure spaces (X, d, µ), where a continuous
heat kernel with upper and lower bounds of the form t−α/βΦj(d(x, y)t−1/β),
j = 1, 2, is given. Then the intrinsic Hausdorff measure on X is equivalent
to an ordinary Hausdorff measure mα−β. For the corresponding space-time
structure on X×R, the intrinsic Hausdorff measure turns out to be equivalent
to an anisotropic Hausdorff measure mα,β.
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1 Introduction

In 1985, S.J. Taylor and N.A. Watson published a paper on a Hausdorff measure
classification of polar sets for the heat equation

n∑
i=1

∂2u

∂x2i
− ∂u

∂t
= 0

on Rn+1; see [30]. To that end they introduced an anisotropic (parabolic) mea-
sure mP of Hausdorff type (their notation is P − Λn −m) defined as follows. For
ρ > 0, x′ ∈ Rn+1, A ⊂ Rn+1 and δ > 0, let

(1.1) P (0, ρ) :=
[
−ρ/2, ρ/2

]n×[−ρ2/2, ρ2/2], P (x′, ρ) := x′ + P (0, ρ),
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mδ
P (A) := inf

{ ∞∑
j=1

(
diamP (x′j, ρj)

)n
: A ⊂

∞⋃
j=1

P (x′j, ρj), diamP (x′j, ρj) < δ

}
,

mP (A) := lim
δ→0

mδ
P (A).

They showed that A is polar if mP (A) = 0 ([30, Theorem 1]), and noted that Borel
sets A ⊂ Rn × {0} of strictly positive finite n-dimensional Lebesgue measure are
nonpolar, but satisfy mP (A) < ∞. Since such sets are semipolar, they raised the
problem, if every set A in Rn+1 satisfying mP (A) <∞ is semipolar.

In this paper, we shall give an affirmative answer to this question. In fact, we shall
prove such a result in the abstract setting of locally compact space X with countable
base, where we consider function kernels G having simple regularity properties which
are satisfied by Green functions for a wide class of elliptic or parabolic second order
partial differential operators (leading to harmonic spaces; see, for example, [13,
Section 7]) as well as for rather general jump processes (leading to balayage spaces;
see [5]). Special attention is given to an application on metric measure spaces; see
Section 7.

The reader who is not familiar with or not interested in this generality may
suppose that we mainly consider the case of the heat equation, classical potential
theory, and Riesz potentials.

The clue will be the introduction of an intrinsic measure mG of Hausdorff type
using G-balls

B(x, ρ) := {y ∈ X : G(x, y) > ρ−1}, x ∈ X, ρ > 0,

and defining, for sets A in X and δ > 0,

mδ
G(A) := inf

{ ∞∑
j=1

ρj : A ⊂
∞⋃
j=1

B(xj, ρj), 0 < ρj < δ

}
, mG(A) := lim

δ→0
mδ
G(A).

A Borel set A in X will be called G-semipolar if there is no measure µ 6= 0 on X
such that µ(X \ A) = 0 and Gµ :=

∫
G(·, y) dµ(y) is a continuous real function.

Under simple assumptions on the regularity of G we shall prove the following;
see properties (i) – (iii) in Section 3 and Theorem 3.3.

THEOREM 1.1. If a set A in X satisfies mG(A) < ∞, then it is contained in
a G-semipolar Borel set.

In fairly general potential-theoretic settings, semipolar sets (countable unions of
totally sets, sets which a corresponding process hits (almost surely) at most count-
ably many times) can be characterized by not supporting continuous real potentials.
Therefore, assuming that G is a genuine Green function, we have the following con-
sequence; see properties (i′)– (iv) in Section 4 and Corollary 4.2.

COROLLARY 1.2. If A is a set in X such that mG(A) <∞, then A is semipolar.

Whereas the proof of Theorem 1.1 is rather involved and the characterization of
semipolar sets is very subtle, there are many situations, where it is easy to see that
every set A in X satisfying mG(A) = 0 is contained in a (G-)polar Borel set; see
Corollaries 3.6 and 4.4.
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In classical potential theory on Rn, every semipolar set is polar. In the case
n ≥ 3, Theorem 1.1 reduces to the well known fact that sets A in Rn having finite
(n− 2)-dimensional Hausdorff measure are polar: It suffices to take

G(x, y) := |x− y|2−n, x, y ∈ Rn,

and to observe that G-balls B(x, ρ) are Euclidean balls with center x and radius ρn−2.
In the case n = 2, Theorem 1.1 implies that sets A in R2 having finite φ-Hausdorff
measure, where φ(t) := log+ t−1, are polar; cf., for example, [1, Theorem 5.9.4].

Taking, for the heat equation,

(1.2) G(x′, y′) := G0(x
′ − y′), x′, y′ ∈ Rn+1,

where

(1.3) G0(x
′) := 1(0,∞)(t) · t−n/2 exp

(
−|x|

2

4t

)
, x′ = (x, t) ∈ Rn ×R,

we shall prove (Corollary 5.4) that,

(1.4) (2n)−nmP ≤ mG ≤ (2/n)n/2mP .

So Corollaries 1.2 and 4.4 show that sets A in Rn+1 are semipolar, polar respectively
if mP (A) <∞, mP (A) = 0 respectively.

In the space-time setting given by general heat kernels (x, y, t) 7→ pt(x, y) on
metric measure spaces (X, d, µ) the intrinsic Hausdorff measure will be equivalent
to an anisotropic Hausdorff measure mα,β on X ′ := X ×R; see Section 7.

In detail, our paper is organized as follows. We start with a short Section 2
on comparison of measures of Hausdorff type on arbitrary sets. In Section 3, we
prove Theorem 3.3 and show that sets A with mG(A) = 0 are contained in G-
polar Borel sets. In Section 4, we apply our general results to harmonic spaces and
balayage spaces (diffusions and jump processes). In Section 5, we briefly discuss the
results in the standard settings of classical potential theory, heat equation and Riesz
potentials. In Section 6, we prove results for rather general space-time settings. In
Section 7, we finally apply our results to heat kernels on metric measure spaces
covering diffusions and jump processes on manifolds and fractals.

2 Comparison of measures of Hausdorff type

To prove (1.4) and similar estimates it will be helpful to have a general comparison
result for measures of Hausdorff type. To that end let us consider an arbitrary set X
and let F denote the set of all mappings F which associate to all x ∈ X and ρ > 0
some subset F (x, ρ) of X. For all F ∈ F , η > 0 and A ⊂ X, we define

mδ
η,F (A) := inf

{ ∞∑
j=1

ρηj : A ⊂
∞⋃
j=1

F (xj, ρj), xj ∈ X, 0 < ρj < δ

}
, δ > 0,

and
mη,F (A) := lim

δ→0
mδ
η,F (A).
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PROPOSITION 2.1. Let η, η̃ ∈ (0,∞), F, F̃ ∈ F and κ > 0 such that, for all
x ∈ X and ρ > 0, there exists z ∈ X with F (x, ρ) ⊂ F̃ (z, κρη/η̃). Then

mη̃,F̃ ≤ κη̃mη,F .

Proof. Let A ⊂ X, xj ∈ X and 0 < ρj < δ, j ∈ N, such that A ⊂
⋃∞
j=1 F (xj, ρj).

Then there are zj ∈ X such that A ⊂
⋃∞
j=1 F̃ (zj, κρ

η/η̃
j ). Taking δ̃ := κδη̃/η we

conclude that

mδ̃
η̃,F̃

(A) ≤
∞∑
j=1

(κρ
η/η̃
j )η̃ = κη̃

∞∑
j=1

ρηj .

This implies that

mδ̃
η̃,F̃

(A) ≤ κη̃mδ
η,F (A).

The proof is completed letting δ tend to 0.

3 Hausdorff measure with respect to a kernel

Let X be a locally compact space with countable base and let G be a positive
numerical function on X ×X having the following properties:

(i) For every y ∈ X, G(·, y) is lower semicontinuous and lim supx→y G(x, y) =∞.

(ii) G is continuous outside the diagonal ∆ and Borel measurable on ∆.

(iii) For every compact K in X, there exists a compact L in X such that G is
bounded on (X \ L)×K.

LetM(X) denote the set of all (positive Radon) measures on X. For µ ∈M(X),
we define

Gµ(x) :=

∫
G(x, y) dµ(y), x ∈ X.

By (i) and Fatou’s lemma, these functionsGµ are lower semicontinuous. This implies
that, for µ, ν ∈M(X) such that ν ≤ µ and Gµ is continuous and real, the function
Gν is continuous and real.

The following definitions are justified by characterizations of polar and semipo-
lar sets related to the Laplace equation, the heat equation, harmonic spaces and
balayage spaces (associated with diffusions and jump processes), where positive con-
stants are superharmonic and there exists a Green function.

DEFINITIONS 3.1. Let us say that a Borel set A in X is G-polar if there is no
measure µ 6= 0 such that µ(X \ A) = 0 and Gµ is bounded.

Let us say that a Borel set A in X is G-semipolar if there is no measure µ 6= 0
such that µ(X \ A) = 0 and Gµ is continuous and real.

REMARKS 3.2. 1. A Borel set A is G-semipolar if there is no measure µ 6= 0
such that µ(X \A) = 0 and Gµ is continuous and bounded, which implies that every
G-polar set is G-semipolar.

Indeed, suppose that A is not G-semipolar. Then there exists a measure µ 6= 0
such that µ(X \ A) = 0 and Gµ is continuous and real. Of course, we may choose

4



a compact K in A such that µ(K) > 0. Let ν = 1Kµ. Then Gν is continuous and
real. In particular, Gν is bounded on every compact in X. Choosing a compact
neighborhood L of K such that G is bounded by some constant a on (X \ L)×K,
we obtain that Gν(x) =

∫
G(x, y) dν(y) ≤ aν(K) <∞ for every x ∈ X \ L.

2. If Aj, j ∈ N, are Borel sets in X, then the union A :=
⋃∞
j=1Aj is G-semipolar

if and only if every Aj is G-semipolar.
Indeed, suppose that the setsAj, j ∈ N, areG-semipolar and consider µ ∈M(X)

such that µ(X \ A) = 0 and Gµ is continuous and real. Defining µj := 1Ajµ we
know that µj(X \ Aj) = 0 and Gµj is continuous and real, hence µj = 0 for j ∈ N.
So µ = 0, and we see that A is G-semipolar. The converse is trivial.

We define G-balls B(x, ρ) by

B(x, ρ) := {y ∈ X : G(x, y) > ρ−1}, x ∈ X, ρ > 0.

Let us observe that obviously, for all such balls B(x, ρ) (which, by (ii), are Borel
sets) and measures ν on X,

(3.1) ν(B(x, ρ)) ≤ ρ

∫
B(x,ρ)

G(x, y) dν(y) ≤ ρGν(x).

Moreover, we define an intrinsic Hausdorff measure mG as follows. For every sub-
set A of X, let

mδ
G(A) := inf

{ ∞∑
j=1

ρj : A ⊂
∞⋃
j=1

B(xj, ρj), xj ∈ X, 0 < ρj < δ
}
, δ > 0,

mG(A) := lim
δ→0

mδ
G(A).

Let us note right away that, for every subset A of X,

(3.2) mG(A) = mG(Ã) for some Borel set Ã containing A.

If k ∈ N and αk := m
1/k
G (A) <∞, we choose a covering of A by G-balls B(xjk, ρjk),

j ∈ N, with ρjk < 1/k and
∑∞

j=1 ρjk < αk + 1/k, and define Ak :=
⋃∞
j=1B(xjk, ρjk).

Taking Ak := X otherwise, the set Ã :=
⋂∞
k=1Ak has the desired property.

Our main result is the following.

THEOREM 3.3. If a set A in X satisfies mG(A) < ∞, then it is contained in
a G-semipolar Borel set.

In its proof we shall use the following simple generalization of the Lebesgue
dominated convergence theorem (straightforward application of Fatou’s lemma both
to the sequence (fn) and the sequence (gn − fn)1{gn<∞}).

LEMMA 3.4. Let (Y,A, λ) be a measure space and let fn, gn be A-measurable
functions on Y such that 0 ≤ fn ≤ gn, the sequence (fn) converges pointwise to f ,
the sequence (gn) converges pointwise to g, and limn→∞

∫
gn dλ =

∫
g dλ <∞. Then

limn→∞
∫
fn dλ =

∫
f dλ.
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Proof of Theorem 3.3. By (3.2), it suffices to consider a Borel set A in X.
a) Suppose that A is not G-semipolar. Then we may choose µ0 ∈ M(X) such

that µ0(A) > 0, µ0(X \A) = 0, and Gµ0 is continuous and real. Let K be a compact
in A such that µ0(K) > 0, and define µ := 1Kµ0. By (i), lim supx→y G(x, y) = ∞,
and hence

(3.3) µ({y}) = 0 for every y ∈ X.

b) Now let us fix a decreasing continuous function ϕ on [0,∞] such that ϕ = 1
on [0, 1] and ϕ = 0 on [2,∞]. For x ∈ X and ρ > 0, let

µx,ρ := ϕ

(
1

ρG(x, ·)

)
µ and pρ(x) := Gµx,ρ(x).

Then

(3.4) 1B(x,ρ)µ ≤ µx,ρ ≤ 1B(x,2ρ)µ and pρ(x) ≤ pσ(x) if ρ ≤ σ.

Since µ({x}) = 0, by (3.3), and since
⋂
ρ>0B(x, 2ρ) is either empty or {x}, we see,

in particular, that pρ(x) ↓ 0 as ρ ↓ 0.
Next we claim that all functions pρ are continuous. To that end let us fix ρ > 0,

x0 ∈ X, and ε > 0. Since µ({x0}) = 0, we may choose a continuous function
0 ≤ ψ ≤ 1 which equals 1 on a neighborhood V0 of x0 and satisfies G(ψµ)(x0) < ε.
Then G(ψµ) is continuous and real. So there exists a compact neighborhood K0

of x0 in V0 such that G(ψµ) < ε on K0. For every x ∈ K0, let

ϕx := (1− ψ)ϕ

(
1

ρG(x, ·)

)
, µx := ϕxµ, q(x) := Gµx(x).

Then 0 ≤ ϕx ≤ 1 and, for every x ∈ K0,

(3.5) pρ(x)− q(x) = G(ψµx,ρ)(x) ≤ G(ψµ)(x) < ε.

To finish the proof of our claim let us finally fix a sequence (xn) in K0 converging
to x0. If y ∈ X \ V0, then

lim
n→∞

G(xn, y) = G(x0, y) and lim
n→∞

ϕxn(y) = ϕx0(y).

If y ∈ V0, then ϕxn(y) = 0 = ϕx0(y) for every n ∈ N. Hence the sequence
(ϕxnG(xn, ·)) converges pointwise to ϕx0G(x0, ·). Since limn→∞Gµ(xn) = Gµ(x0)
and Gµ(x0) is finite, we thus conclude, by Lemma 3.4, that

lim
n→∞

q(xn) = q(x0).

If n is large enough, then |q(xn)− q(x0)| < ε, and |pρ(xn)− pρ(x0)| < 3ε, by (3.5).
c) By (iii), there exist a compact neighborhood L of K and a > 0 such that

G ≤ a on (X \ L)×K. By Dini’s theorem, there exists a decreasing sequence (τn)
such that 0 < τn < 1/n and

(3.6) Gµx,τn(x) = pτn(x) < 2−n, x ∈ L,
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for every n ∈ N. For the moment, let us fix k ∈ N, x ∈ L , 0 < ρ < τk and define

ν :=
k∑

n=1

µx,τn .

By (3.1) and (3.6), ν(B(x, ρ)) ≤ ρGν(x) < ρ. By (3.4), µx,τn(B(x, τn)) = µ(B(x, τn))
for every 1 ≤ n ≤ k. Thus

(3.7) kµ(B(x, ρ)) =
k∑

n=1

µx,τn(B(x, ρ)) = ν(B(x, ρ)) < ρ.

d) Again let k ∈ N and let us fix 0 < δ < min{τk, a−1}. Let us consider xj ∈ X
and 0 < ρj < δ, j ∈ N, such that the sets B(xj, ρj) cover K. If j ∈ N such that
xj ∈ X \L, then G(xj, y) ≤ a < δ−1 < ρ−1j for all y ∈ K, and thus B(xj, ρj)∩K = ∅.
So we may assume that xj ∈ L for every j ∈ N. Then, by (3.7),

kµ(K) ≤ k
∞∑
j=1

µ(B(xj, ρj)) <
∞∑
j=1

ρj.

Thus mδ
G(K) ≥ kµ(K). This shows that mG(K) =∞, and hence mG(A) =∞.

To deal with G-polar sets, we define, for sets A in X,

c(A) := sup{ν∗(A) : ν ∈M(X), Gν ≤ 1}

(ν∗(A) denoting the outer measure of A). If A is universally measurable, then

c(A) := sup{ν(A) : ν ∈M(X), ν(X \ A) = 0, Gν ≤ 1}

(it suffices to note that whenever ν ∈ M(X) such that Gν ≤ 1, then ν ′ := 1Aν
satisfies Gν ′ ≤ 1 and ν ′(A) = ν(A)). In particular, a Borel set A in X is G-polar if
and only if c(A) = 0.

PROPOSITION 3.5. For every set A in X, c(A) ≤ mG(A).

Proof. Let ν ∈ M(X) such that Gν ≤ 1, and let xj ∈ X and ρj > 0, j ∈ N, such
that A ⊂

⋃∞
j=1B(xj, ρj). Then, by (3.1),

ν∗(A) ≤
∞∑
j=1

ν(B(xj, ρj)) ≤
∞∑
j=1

ρjGν(xj) ≤
∞∑
j=1

ρj.

This clearly implies that c(A) ≤ mG(A).

COROLLARY 3.6. If a set A in X satisfies mG(A) = 0, then it is contained in
a G-polar Borel set.
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4 Application to harmonic spaces and balayage

spaces

Let (X,H) be a P-harmonic space or, more generally, let (X,W) be a balayage
space; see [4, 5, 22, 8]. Let us assume that the constant function 1 is superharmonic
and that we have a (Green) function G : X × X → [0,∞] having the following
properties (note that (i′) implies (i) from Section 3):

(i′) For every y ∈ X, the function G(·, y) is a potential on X which has superhar-
monic support {y} and satisfies lim supx→y G(x, y) =∞.

(ii) G is continuous outside the diagonal ∆ and Borel measurable on ∆.

(iii) For every compact K in X, there exists a compact L in X such that G is
bounded on (X \ L)×K.

(iv) For every continuous real potential p on X having compact superharmonic
support there exists a measure µ ∈M(X) such that

p = Gµ :=

∫
G(·, y) dµ(y).

In the case of a harmonic space (X,H), property (iii) follows from (i′) and (ii).
Indeed, let K be a compact in X and let L be any compact neighborhood of X.
Then G is bounded on ∂L ×K by some a > 0, and hence G ≤ a on (X \ L) ×K,
by the minimum principle; see [5, III.6.6].

Let us recall that, for all subsets A of X and superharmonic functions u ≥ 0,
the reduced function RA

u , defined to be the infimum of all positive superharmonic
functions majorizing u on A, is harmonic on X \ A, and that its greatest lower
semicontinuous minorant R̂A

u (the balayage of u on A) is superharmonic on X.
A subset A of X is called polar if R̂A

1 = 0 (or, equivalently, if R̂A
u = 0 for every

superharmonic function u ≥ 0 on X). It is called semipolar if it is a countable
union of sets Tj, j ∈ N, which are totally thin, that is, such that, for every x ∈ X,

there exists a superharmonic function u ≥ 0 on X with R̂
Tj
u (x) < u(x). Of course,

every polar set is totally thin and hence semipolar. Moreover, it is immediately seen
that countable unions of polar (semipolar) sets are polar (semipolar) and that every
subset of a polar (totally thin, semipolar) set is polar (totally thin, semipolar).

PROPOSITION 4.1. Let A be a Borel set in X. Then A is semipolar if and only
if A is G-semipolar.

Proof. Immediate consequence of (iv) and [5, VI.8.8] (using Remark 3.2,2).

COROLLARY 4.2. If A ⊂ X satisfies mG(A) <∞, then A is semipolar.

Proof. Theorem 3.3 and Proposition 4.1.

To get a corresponding result for polar sets let us suppose from now on in this
section that the following holds:

(∗) For every compact K in X, the potential R̂K
1 is harmonic on X \K.
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We observe that (∗) does not hold in general; see [5, V.9.1] for an example of
a balayage space and a compact K such that R̂K

1 is not harmonic on X \K.
However, (∗) is satisfied in the case of a harmonic space, since RK

1 is harmonic
on X\K, and hence R̂K

1 = RK
1 on X\K. It also holds in the case of a balayage space,

where every semipolar set is polar (since then the semipolar sets {R̂K
1 < RK

1 } are
polar and harmonic measures do not charge polar sets; see [5, VI.5.11 and VI.5.6]).

Moreover, we assume that G has the following property:

(iv′) For every bounded potential p with compact superharmonic support there
exists a measure µ ∈M(X) such that p = Gµ.

Clearly, (iv′) implies (iv), since, by the minimum principle, every continuous real
potential p with compact superharmonic support K is bounded by its maximum
on K; see [5, III.6.6].

Conversely, by [24, Theorem 4.1], (iv′) is a consequence of (iv) if, for every x ∈ X,
the function G(x, ·) is lower semicontinuous at x and, if x is finely isolated (and not
isolated), continuous at x.

PROPOSITION 4.3. Every G-polar Borel set in X is polar.

Proof. Let A be a Borel set in X which is not polar. By [5, VI.5.5], there exists
a compact K in A such that K is not polar, that is, R̂K

1 6= 0. Of course, R̂K
1 ≤ 1.

By (iv′), R̂K
1 = Gµ for some µ ∈ M(X). By (∗), R̂K

1 is harmonic on X \ K, and
hence µ(X \K) = 0, by (i′). Therefore A is not G-polar.

COROLLARY 4.4. If A ⊂ X satisfies mG(A) = 0, then A is polar.

Proof. Corollary 3.6 and Proposition 4.3.

5 Application to standard examples

5.1 Classical potential theory and Riesz potentials

Let X = R
n, 0 < β < n, 0 < β ≤ 2. If β = 2 (and n ≥ 3), let (Rn,H) be the

harmonic space associated with the Laplace operator. If β < 2, let (Rn,W) be the
balayage space, where every superharmonic function is an increasing limit of Riesz
potentials; see [5, Section V.4]. In both cases, the function G defined by

G(x, y) := |x− y|β−n, x, y ∈ Rn,

has the properties (i′), (ii), (iii) and (iv′) and every semipolar set is polar. Of course,
for all x ∈ Rn and ρ > 0,

{y ∈ Rn : G(x, y) > ρ−1} = {y ∈ Rn : |x− y| < ρn−β}.

Hence mG is the usual (n−β)-dimensional Hausdorff measure mtn−β on Rn. There-
fore Corollary 4.2 yields the following,

THEOREM 5.1. If a set A in Rn satisfies mtn−β(A) <∞, then A is polar.
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Applying Corollary 4.2 to classical Green functions GD on discs D in R2, we
obtain the following.

THEOREM 5.2. Let A ⊂ R2 and φ(t) := log+(1/t), t > 0. If mφ(A) <∞, then A
is polar (with respect to classical potential theory).

In particular, we have recovered known results dealing with classical or Riesz
potential theory; see [1, Theorem 5.9.4], [6, Theorem IV.1], [26, Theorem 3.14].

5.2 Heat equation

In this subsection we consider the harmonic space (Rn+1,H) associated with the
heat equation with Green function G defined by (1.2) and (1.3). Then G obviously
has the properties (i) – (iii) from Section 3, and property (iv′) follows from [31,
Corollary 6.39 and Theorem 6.34].

Let x′ ∈ Rn+1, ρ > 0. Then B(x′, ρ) = x′ + B(0, ρ), where B(0, ρ) denotes the
heat ball with center 0 and radius ρ2/n, that is,

(5.1) B(0, ρ) :=

{
(y,−s) : y ∈ Rn, 0 < s < ρ2/n, |y|2 < 2ns log

ρ2/n

s

}
;

in particular, B(0, ρ) is convex and contained in the cylinder{
(y,−s) : y ∈ Rn, 0 < s < ρ2/n, |y| < n1/2ρ1/n

}
;

see [31, page 2]. Hence, by our definition (1.1),

(5.2) B(x′, ρ) ⊂ P (x′, 2n1/2ρ1/n).

Further, we claim that, defining z′ := (0, ρ2),

(5.3) P (−z′, ρ) ⊂ B(0, 2n/2ρn)

and hence, by translation invariance,

(5.4) P (x′, ρ) ⊂ B(x′ + z′, 2n/2ρn).

To prove (5.3) we only have to show that every vertex of P (−z′, ρ) is contained in
the convex set B(0, 2n/2ρn) which, by (5.1), is the set of all (y,−s) ∈ Rn+1 such that

(5.5) 0 < s < 2ρ2 and |y|2 < 2ns log
2ρ2

s
.

Such a vertex has the form (y,−s) with s = (k/2)ρ2, k ∈ {1, 3} and |y|2 = n(ρ/2)2,
hence it is contained in B(0, 2n/2ρn) if

1

4
< 2

k

2
log

4

k
, k ∈ {1, 3}.

This holds, of course, for k = 1. It also holds for k = 3 since already 4 log(4/3) =
log(256/81) >1. So (5.4) holds.

10



PROPOSITION 5.3. For every subset A of Rn+1,

mn,P (A) ≤ 2nnn/2mG(A) and mG(A) ≤ 2n/2mn,P (A).

Proof. By our definitions, mG = m1,B; see Section 2. Hence the first inequality
follows from (5.2) and Proposition 2.1 with F = B and η = 1, F̃ = P and η̃ = n,
κ = 2n1/2.

The second inequality follows from (5.4) and Proposition 2.1 with F = P and
η = n, F̃ = B and η̃ = 1, κ = 2n/2.

Let us next observe that, for mP from Section 1 and mn,P we have

(5.6) mP = nn/2mn,P .

Indeed, if δ > 0, then
√
nρ ≤ diamP (x′, ρ) ≤

√
nρ(1 + δ) for all x′ ∈ Rn+1 and

0 < ρ < δ, and hence

nn/2mδ
n,P ≤ mδ

P ≤ (1 + δ)nnn/2mδ
n,P ,

which clearly implies (5.6). So we may state Proposition 5.3 in the following way.

COROLLARY 5.4. For every subset A of Rn+1,

(2n)−nmP (A) ≤ mG(A) ≤ (2/n)n/2mP (A).

In particular, (1/2)mP ≤ mG ≤
√

2mP , if n = 1.

So Corollaries 4.2 and 4.4 yield the following, where the first statement is the
positive answer to the question raised in [30, page 330] and the second one is [30,
Theorem 1].

THEOREM 5.5. Let A be a subset of X.

1. If mP (A) <∞, then A is semipolar.

2. If mP (A) = 0, then A is polar.

Let us note that an analogous result to that in Theorem 5.5.2 was established in
[28, Theorem 3], where a modified heat kernel is investigated.

Now let us suppose that n = 1 and show that subsets of vertical lines in R2 are
polar if they are semipolar (as we already noticed, this is not true for subsets of
horizontal lines).

PROPOSITION 5.6. Every semipolar set A in {0} ×R is polar.

Proof. Let A be a semipolar set in {0}×R. By [5, VI.5.7.3], we may suppose that A
is a Borel set. We claim that every compact K in A is polar, and hence A is polar,
by [5, VI.5.5].

To that end suppose that A contains a compact K which is not polar, and let ν
be the thermal capacitary distribution of K ; see [31, Definition 7.33]. Then ν 6= 0,
ν is supported by K, and Gν ≤ 1. By Lusin’s theorem, there exists a compact K̃
in K such that ν̃ := 1K̃ν 6= 0 and the restriction of Gν to K̃ is continuous. Since
both Gν̃ and G(ν − ν̃) are lower semicontinuous, we see that also the restriction
of Gν̃ to K̃ is continuous. By [9, Theorem 5], this implies that Gν̃ is continuous
on R2. So K̃ is not semipolar, a contradiction.

Let us remark that a set in {0} × R is polar if and only if it has zero Riesz
1
2
-capacity; see [25, Theorem 2].
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6 Application to space-time processes

In this section we shall consider a space-time setting which is more general than for
the heat equation and which will be discussed in the situation of heat semigroups
on metric measure spaces in Section 7.

As in [23, Sections 7 and 8] we assume the following. Let X 6= ∅ be a locally
compact space with countable base, X ′ := X ×R, and let B+(X), B+(X ′) denote
the set of all Borel measurable positive numerical functions on X, X ′ respectively.
We suppose that we have a measure µ on X, not charging points, and a strictly
positive continuous real function (x, y, t) 7→ pt(x, y) on X × X × (0,∞) satisfying
the Chapman-Kolmogorov equations:

(CK) For all s, t ∈ (0,∞) and x, y ∈ X,

ps+t(x, y) =

∫
ps(x, z)pt(z, y) dµ(z).

For t > 0, f ∈ B+(X) and x ∈ X, let

Ptf(x) :=

∫
pt(x, y)f(y) dµ(y).

Then P := (Pt)t>0 is a semigroup on X. Let EP denote the corresponding cone of
excessive functions, that is,

EP := {u ∈ B+(X) : sup
t>0

Ptu = u}.

We suppose that, in addition, the following holds.

(E) 1 ∈ EP.

(C) For all x0, y0 ∈ X,

lim sup
(x,t)→(x0,0)

pt(x, x0) =∞ and lim
(x,y,t)→(x0,y0,0)

pt(x, y) = 0, if x0 6= y0.

(KL) For all compacts K in X, T > 0 and ε > 0, there exists a compact L in X
such that

‖1X\L pt(·, y)‖L1(µ) + ‖1X\L pt(·, y)‖∞ < ε for all (y, t) ∈ K × (0, T ].

In [23] we were supposing that also the dual function (x, y, t) 7→ pt(y, x) has
the properties above. However, since this played a role only starting with [23,
Lemma 8.5], we shall not need that here.

Let T := (Tt)t>0 denote the semigroup of uniform translation to the left, that is,
Tt(r, ·) := εr−t. We define

P
′ := P⊗T

which means that P′ = (P ′t)t>0, where, for all t > 0, f ∈ B+(X ′) and (x, r) ∈ X ′,

P ′tf(x, r) := Ptf(·, r − t)(x).

Clearly, P′ is a semigroup on X ′. Let EP′ denote its cone of excessive functions.
Then, by [23, Proposition 8.1] and (E), the following holds; cf. also [5, Section V.5].
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PROPOSITION 6.1. (X ′, EP′) is a balayage space, 1 ∈ EP′.

We define G′ : X ′ ×X ′ → [0,∞) by

G′((x, r), (y, s)) :=

{
pr−s(x, y), if r > s,

0, if r ≤ s.

THEOREM 6.2. The function G′ has the properties (i′), (ii), (iii) and (iv′) of
Section 4.

Proof. By (C), the function G′ is continuous outside the diagonal in X ′ × X ′ and
lower semicontinuous on X ′×X ′. Hence G′ satisfies (ii). Moreover, (i′) holds, by [23,
Proposition 8.4].

Property (iii) is a consequence of (KL), (CK) and (E). Indeed, let K ′ be a
compact in X ′. Then there exist a compact K in X, t0 ∈ R, and T > 0, such that
K ′ is contained in K × [t0, t0 + T ]. By (KL), there exists a compact L in X such
that

(6.1) pt(x, y) ≤ 1 for all x ∈ X \ L, y ∈ K and t ∈ (0, T ].

Let a ≥ 1 be such that pT ≤ a on the compact L×K. By (6.1), pT ≤ 1 on (X\L)×K.
Therefore pT ≤ a on X ×K and hence

(6.2) ps(x, y) =

∫
ps−T (x, z)pT (z, y) dµ(z) ≤ aPs−T1(x) ≤ a

for all x ∈ X, y ∈ K and s > T . Defining L′ := L× [t0, t0 + T ] and combining (6.1)
and (6.2), we obtain that G′ ≤ a on (X ′ \ L′)×K ′.

To see that G′ has the property (iv′) we recall that the potential kernel V ′ of P′

is proper and, defining m := µ⊗ λR,

V ′f(x, r) =

∫ ∞
0

P ′tf(x, r) dt =

∫ ∞
0

Ptf(·, r − t)(x) dt

=

∫ ∞
0

(∫
X

pt(x, y)f(y, r − t) dµ(y)
)
dt

=

∫
G′((x, r), (y, s))f(y, s) dm(y, s)

for every f ∈ B+(X ′); see [23, page 674].
Let q be a potential for the balayage space (X ′, EP′). By [5, II.3.11], there

exist bounded functions fn ∈ B+(X ′) such that V ′fn ↑ q as n → ∞. Defining
µn := fnm we hence know that G′µn ↑ q. Moreover, we note that every balayage
space contains only countably many finely isolated points; see [5, III.7.2]. Hence
there is no point (x, r) ∈ X ×R which is finely isolated, since otherwise all points
(x, t), t ∈ R, would be finely isolated. By [24, Theorem 1.1], we finally conclude
that there exists µ′ ∈ M(X ′) such that q = G′µ′; cf. also [23, Remark 8.7] and the
references therein.

Since (X ′, EP′) is a balayage space, there exists a Hunt process X′ on X ′ with
transition semigroup P′, the space-time process associated with (x, y, t) 7→ pt(x, y)
and µ; see [5, Theorem IV.8.1] and its proof. So, by Corollary 4.2, we have the
following result.
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COROLLARY 6.3. If A is a subset of X ′ such that mG′(A) <∞, then there exists
a Borel set Ã containing A which is semipolar, that is, the process X′ hits the set Ã
at most countably many times.

7 Application to heat kernels on metric measure

spaces

Let (X, d) be a separable metric space, X 6= ∅, where balls D(x, r) := {d(·, x) < r}
are relatively compact, let µ be a positive Radon measure on X with full support,
and suppose that we have a continuous positive real function

(7.1) (x, y, t) 7→ pt(x, y) on X ×X × (0,∞)

such that the following holds:

(CK) Chapman-Kolmogorov equations : For all s, t ∈ (0,∞) and x, y ∈ X,

ps+t(x, y) =

∫
ps(x, z)pt(z, y) dµ(z).

(E) For every x ∈ X,

sup
t>0

∫
pt(x, y) dµ(y) = 1.

(B) There exist constants α, β > 0 and positive decreasing real functions Φ1, Φ2

on [0,∞) such that Φ1(1) > 0,
∫∞
0
σα−1Φ2(σ) dσ <∞ and

(7.2)
1

tα/β
Φ1

(
d(x, y)

t1/β

)
≤ pt(x, y) ≤ 1

tα/β
Φ2

(
d(x, y)

t1/β

)
for all x, y ∈ X and t > 0.

REMARKS 7.1. 1. See [17, (1.5) and (H0) on p. 2067] for assumption (B) and [21]
as well as [16, Theorem 2.10] for conditions implying the continuity of (7.1). For the
definition of an abstract heat kernel, the relation to Dirichlet forms and a discussion
of various examples see [18]. For manifolds, (E) follows from [12, (7.50) and (7.53)
in Theorem 7.13].

2. A striking fact is the following dichotomy; see [20, Theorem 4.1]. Suppose
that we have an abstract heat kernel satisfying (7.2) with functions of the form
Φj(σ) = CjΦ(cjσ), where Cj, cj ∈ (0,∞) and Φ: [0,∞)→ [0,∞) is decreasing with
Φ(σ0) > 0 for some σ0 > 0. Then, under mild additional assumptions on X and
pt(x, y), either β ≥ 2 and (7.2) holds with

(7.3) Φ(σ) = exp
(
−σ

β
β−1
)
,

leading to sub-Gaussian lower and upper bounds, or (7.2) holds with

(7.4) Φ(σ) = (1 + σ)−(α+β),
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leading to stable-like lower and upper bounds. In the case (7.3) the corresponding
process will be a diffusion, in the case (7.4) it will be a jump process.

3. A special case for sub-Gaussian bounds is, of course, the classical Gauss-
Weierstrass kernel on X = R

n (with d(x, y) = |x − y| and Lebesgue measure µ),
where α = n, β = 2, C1 = C2 = (4π)−n/2 and c1 = c2 = 1/4. See also [27] and
[10] for two-sided Gaussian bounds (sub-Gaussian bounds with c1 = c2) for heat
kernels on manifolds. Many further examples for sub-Gaussian bounds (with β > 2)
are given by fractal spaces like Sierpinski gaskets and carpets; see [2] and [3]. For
properties which in the setting of regular local Dirichlet forms are equivalent to
two-sided sub-Gaussian bounds we refer the reader to [21], [14] and [19].

4. A special case with stable-like bounds is the β-stable heat kernel given by
the fractional Laplacian (−∆)β/2 on Rn with α = n and 0 < β < min{2, n}. More
generally, subordination applied to heat kernels with Gaussian bounds leads to heat
kernels with stable-like bounds; see [29] and [11] for further examples obtained
by subordination. For a direct approach on d-sets see [7]. Moreover, see [15] for
properties characterizing the existence of two-sided stable like bounds in the setting
of regular Dirichlet forms having a jumping part (but no killing part).

Let us now verify the properties (C) and (KL) introduced in the previous section.
To that end we define

(7.5) ϕ2(σ) := σαΦ2(σ), σ > 0,

and observe that taking σ := d(x, y)t−1/β the upper bound qt(x, y) in (7.2) can be
written as

(7.6) qt(x, y) = t−α/βΦ2(σ) = d(x, y)−αϕ2(σ).

Moreover, we note that limσ→∞ ϕ2(σ) = 0 and hence, in particular,

M := sup{ϕ2(σ) : 0 ≤ σ <∞} <∞.

Indeed, let Ik := [2k, 2k+1] and γk := inf ϕ2(Ik), k ∈ N. Clearly,
∫
Ik
ϕ2(σ)σ−1 dσ ≥

γk/2 for every k ∈ N, and hence the integrability of σα−1Φ2 implies that limk→∞ γk =
0. Since Φ2 is decreasing and σα ≤ 4ατα for all σ, τ ∈ Ik ∪ Ik+1, we obtain that
ϕ2 ≤ 4αγk on Ik+1, k ∈ N. Thus limσ→∞ ϕ2(σ) = 0.

LEMMA 7.2. Property (C) of Section 6 holds.

Proof. The lower estimate in (7.2) yields that limt→0 pt(x0, x0) =∞ for all x0 ∈ X.
Since limσ→∞ ϕ2(σ) = 0, (7.2) and (7.6) imply that lim(x,y,t)→(x0,y0,0) pt(x, y) = 0,
whenever x0, y0 are different points in X.

LEMMA 7.3. Let K be a compact in X and ε > 0. Then there exist T > 0 and
a compact L in X such that, for t > 0, x ∈ X and y ∈ K,

(7.7) pt(x, y) < ε, whenever t > T or x ∈ X \ L.

Proof. There exist y0 ∈ X and R > 0 such that K ⊂ D(y0, R). Let us choose
T,N ∈ (0,∞) such that T−α/βΦ2(0) < ε and N−αM < ε. Let L be the closure
of D(x0, R +N) and t > 0, x ∈ X, y ∈ K.

If t > T , then pt(x, y) < ε, by (7.2) and our choice of T . If x ∈ X \ L, then
d(x, y) > N , and hence pt(x, y) < ε, by (7.6) and our choice of N .

15



Having (E) and the lower bound in (B), we obtain that, taking cµ := Φ1(1)−1,

(7.8) µ(D(x, r)) ≤ cµr
α for all x ∈ X and r > 0.

In particular, µ does not charge points and no point in X is isolated. Indeed, it
suffices to observe that, by the first inequality in (7.2),

1 ≥
∫
prβ(x, y) dµ(y) ≥ µ(D(x, r)) inf

y∈D(x,r)
prβ(x, y) ≥ µ(D(x, r))r−αΦ1(1)

(cf. the first lines of the proof for [17, Theorem 3.2]).

LEMMA 7.4. Property (KL) of Section 6 holds.

Proof. Let K be a compact in X, T > 0 and ε > 0. We fix y0 ∈ X and R ≥ 1 such
that K ⊂ D(y0, R) and define

Dj := D(y0, 2
jR), j ∈ N.

Since σα−1Φ2 is integrable, there exists k ∈ N such that, defining σk := 2k−2R/T 1/β,

(7.9) 23α+1cµ

∫ ∞
σk

ϕ2(σ)
dσ

σ
< ε/2.

By Lemma 7.3, we may assume that pt(x, y) < ε/2 whenever y ∈ K, x ∈ X \ Dk

and t > 0 . We claim that the closure L of Dk has the desired properties.
So let us fix 0 < t ≤ T and y ∈ K. If j ∈ N and x ∈ Dj+1 \ Dj, then

d(x, y) ≥ 2j−1R, and hence, by the monotonicity of Φ2 and (7.8),∫
Dj+1\Dj

pt(x, y) dµ(x) ≤ 1

tα/β
Φ2

(
2j−1R

t1/β

)
· cµ
(
2j+1R

)α
= 4αcµϕ2

(
2j−1R

t1/β

)
.

If b ∈ (0,∞), then ϕ2(2b) = (2b)αΦ2(2b) ≤ 2α+1σαΦ2(σ) · (b/σ) for every σ ∈ [b, 2b],
and therefore, integrating on [b, 2b],

ϕ2(2b) ≤ 2α+1

∫ 2b

b

ϕ2(σ)
dσ

σ
.

Since 2k−2R/t1/β ≥ σk, we conclude that∫
X\Dk

pt(x, y) dµ(x) ≤ 4αcµ

∞∑
j=k

ϕ2

(
2j−1R

t1/β

)
≤ 23α+1cµ

∫ ∞
σk

ϕ2(σ)
dσ

σ
< ε/2.

Thus (KL) holds.

7.1 Semipolar sets in X ′ = X ×R
Having verified the properties (C) and (KL) we may apply the results from Section 6.
Let us first recall the definitions

P ′tf(x, r) :=

∫
pt(x, y)f(y, r − t) dµ(y), t > 0, (x, r) ∈ X ′, f ∈ B+(X ′),
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and

G′((x, r), (y, s)) :=

{
pr−s(x, y), if r > s,

0, if r ≤ s,
(x, r), (y, s) ∈ X ′.

Then we know the following; see Proposition 6.1, Theorem 6.2 and Corollary 6.3.

THEOREM 7.5. 1. P′ = (P ′t)t>0 is a sub-Markov semigroup on X ′ such that
(X ′, EP′) is a balayage space with 1 ∈ EP′.

2. There exists a Hunt process X′ on X ′ with transition semigroup P′.

3. G′ is a Green function for (X ′, EP′) satisfying (i′), (ii), (iii), (iv′) of Section 4.

4. Every set A in X ′ with mG′(A) < ∞ is contained in a Borel set which is
semipolar, that is, which the process X′ hits at most countably many times.

Moreover, we shall see that mG′ is equivalent to an anisotropic Hausdorff mea-
sure mα,β. To that end we first recall that in our setting, for x′ ∈ X ′ and ρ > 0,

B(x′, ρ) = {y′ ∈ X ′ : G′(x′, y′) > 1/ρ}

and that mG′ = m1,B; see Section 2. That is, for every set A in X ′,

mG′(A) = lim
δ→0

inf
{ ∞∑
j=1

ρj : A ⊂
∞⋃
j=1

B(x′j, ρj), x
′
j ∈ X ′, 0 < ρj < δ

}
.

We now consider cylinders Zβ(x′, ρ) in X ′ given, for x′ = (x, r) ∈ X ′ and ρ > 0, by

Zβ(x′, ρ) :=
{

(y, s) ∈ X ′ : d(x, y) < ρ and |r − s| < ρβ
}

and define, for subsets A of X ′ and δ > 0,

mδ
α,β(A) := inf

{ ∞∑
j=1

ραj : A ⊂
∞⋃
j=1

Zβ(x′j, ρj), x
′
j ∈ X ′, 0 < ρj < δ

}
,

,
mα,β(A) := lim

δ→0
mδ
α,β(A).

PROPOSITION 7.6. There exists C > 0 such that, for all x′ ∈ X ′ and ρ > 0,

(7.10) B(x′, ρ) ⊂ Zβ(x′, (Cρ)1/α).

In particular, mα,β ≤ CmG′.

Proof. Let x′ = (x, r) ∈ X ′, ρ > 0 and y′ = (y, s) in B(x′, ρ). Then t = r − s > 0
and, taking σ := d(x, y)t−1/β,

1/ρ < G′(x′, y′) = pt(x, y) ≤ t−α/βΦ2(σ) = d(x, y)−αϕ2(σ).

So t < (Φ2(0)ρ)β/α and d(x, y) < (Mρ)1/α. That is, (7.10) holds with C :=
max{Φ2(0),M}. An application of Proposition 2.1 completes the proof.
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PROPOSITION 7.7. There exists κ > 0 such that, for all x′ ∈ X ′ and ρ > 0,
there is a point z′ ∈ X ′ such that

(7.11) Zβ(x′, (κρ)1/α) ⊂ B(z′, ρ).

In particular, κmG′ ≤ mα,β.

Proof. We choose η ∈ (0, 1) such that (3η)α/β < Φ1(0) and define κ := ηα/β. Let
x′ = (x, r) ∈ X ′, ρ > 0, z′ := (x, r + 2ηρβ/α) and y′ = (y, s) ∈ Zβ(x′, (κρ)1/α). Then
|r − s| < (κρ1/α)β = ηρβ/α and t := (r + 2ηρβ/α)− s ∈ (ηρβ/α, 3ηρβ/α). Hence

σ :=
d(x, y)

t1/β
<

(κρ)1/α

(ηρβ/α)1/β
= 1

and
G′(x′, y′) = pt(x, y) ≥ t−α/βΦ1(σ) ≥ (3η)−α/βρ−1Φ1(1) > ρ−1.

So y′ ∈ B(x′, ρ) proving (7.11). Again an application of Proposition 2.1 completes
the proof.

In particular, Theorem 7.5 and Proposition 7.7 yield the following.

COROLLARY 7.8. Every set A in X ′ with mα,β(A) <∞, is contained in a Borel
set which is semipolar, that is, which the process X′ hits at most countably many
times.

7.2 Semipolar sets in X

To complete the paper let us show that we may also generalize our results for classical
potential theory and Riesz potentials to our setting of heat semigroups on metric
measure spaces. To that end we assume in this section that β < α, define

G(x, y) :=

∫ ∞
0

pt(x, y) dt, x, y ∈ X,

and introduce constants c, C ∈ (0,∞) by

c :=
β

α− β
Φ1(1) and C := β

∫ ∞
0

σα−β Φ2(σ)
dσ

σ
.

PROPOSITION 7.9. G has the properties (i) – (iii) of Section 3 and

(7.12) cd(x, y)−(α−β) ≤ G(x, y) ≤ Cd(x, y)−(α−β), x, y ∈ X.

Proof. Since Φ1(0) ≥ Φ1(1) > 0, we know that G = ∞ on the diagonal of X ×X.
Considering x, y ∈ X, x 6= y, and taking σ := d(x, y)t−1/β we have

dσ

dt
= − 1

β
t−1σ = − 1

β
d(x, y)−βσβ+1,

and hence, using (7.6),∫ ∞
0

qt(x, y) dt = βd(x, y)−(α−β)
∫ ∞
0

σα−βΦ2(σ)
dσ

σ
= Cd(x, y)−(α−β).
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By (7.2), we thus conclude that G(x, y) ≤ Cd(x, y)−(α−β) and

G(x, y) ≥ βd(x, y)−(α−β)
∫ 1

0

σα−βΦ1(σ)
dσ

σ
≥ cd(x, y)−(α−β).

In particular, (i) and (iii) hold. Moreover, the continuity of G outside the diagonal
of X ×X follows immediately, by Lemma 3.4.

Defining mα−β := mα−β,F with F (x, ρ) := D(x, ρ), Theorem 3.3 and Corol-
lary 3.6 already yield the following.

THEOREM 7.10. Let A be a subset X.

1. If mα−β(A) <∞, then A is contained in a G-semipolar Borel set.

2. If mα−β(A) = 0, then A is contained in a G-polar Borel set.

Further, an easy consequence of (7.8) and (7.12) is the following estimate.

PROPOSITION 7.11. Let Cµ := 2α(2β−1)−1cµC. Then, for all x ∈ X and R > 0,∫
D(x,R)

G(x, y) dµ(y) ≤ CµR
β.

Proof. Let x ∈ X. For every r > 0,∫
D(x,r)\D(x,r/2)

d(x, y)−(α−β) dµ(y) ≤
(r

2

)−(α−β)
µ(D(x, r)) ≤ 2α−βcµr

β,

and hence, for every R > 0,∫
D(x,R)

G(x, y) dµ(y) ≤ 2α−βcµC
∞∑
j=0

(2−jR)β = CµR
β.

For every t > 0, let

Ptf(x) :=

∫
pt(x, y)f(y) dµ(y), f ∈ B+(X), x ∈ X.

By [23, Lemma 8.2], P := (Pt)t>0 is a strong Feller sub-Markov semigroup on X
mapping C0(X) into C0(X) and satisfying limt→0 Ptf = f for every f ∈ C0(X).

Let V denote the potential kernel of P, that is, for every f ∈ B+(X),

V f :=

∫ ∞
0

Ptf dt = G(fµ).

PROPOSITION 7.12. If f is a bounded function in B+(X) with compact support,
then V f ∈ C0(X).
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Proof. Given such a function f , there exist x0 ∈ X and R > 0 such that f is
bounded by a multiple af0 of f0 := 1D(x0,R). Since both V f and V (af0 − f) are
lower semicontinuous, it hence suffices to show that V f0 ∈ C0(X).

For all N > 0 and x ∈ X \D(x0, R +N)),

G(f0µ)(x) ≤ Cµ

∫
D(x0,R)

d(x, y)−(α−β) dµ(y) ≤ CµN
−(α−β)µ(D(x0, R)).

So V f0 = G(f0µ) vanishes at infinity.
Next let x ∈ X and ε > 0. By Proposition 7.11, there exists r > 0 such that

V 1D(z,2r)(z) < ε/3 for every z ∈ X. Let

g := 1D(x0,R)\D(x,r).

By the continuity of G outside the diagonal, the function V g is continuous and real
on D(x, r). So there exists 0 < δ < r such that |V g(z) − V g(x)| < ε/3 for every
z ∈ D(x, δ). Finally, let us fix z ∈ D(x, δ). Then D(x, r) ⊂ D(z, 2r), and hence

|V f0(z)− V f0(x)| < ε

3
+ |V g(z)− V g(x)|+ ε

3
< ε.

Thus V f is continuous at x.

Let us choose a sequence (gk) in C0(X) such that
⋃∞
k=1{gk > 0} = X. There

exist ak > 0 such that gk + V gk ≤ ak, k ∈ N. Then g :=
∑∞

k=1 2−ka−1k gk ∈ C0(X),
g > 0 and u := V g ∈ EP ∩ C0(X), u > 0. So the kernel V is proper and we obtain
the following; see, for example, [22, Corollary 2.3.8,2].

COROLLARY 7.13. (X,EP) is a balayage space.

Moreover, we know that there exists a Hunt process X on X with transition
semigroup P; see [5, IV.8.1].

PROPOSITION 7.14. For every y ∈ X, the function G(·, y) is a potential on X
with superharmonic support {y}.

Proof. Let y ∈ X. It is straightforward to show that G(·, y) ∈ EP. Indeed, it suffices
to note that, by Fubini’s theorem and (CK),

PsG(·, y)(x) =

∫ ∞
0

Pspt(·, y)(x) dt =

∫ ∞
0

ps+t(x, y) dt =

∫ ∞
s

pt(x, y) dt

for all x ∈ X and s > 0. Moreover, clearly

inf{v ∈ EP : v ≥ G(·, y) outside a compact in X} = 0

that is, G(·, y) is a potential. To show that G(·, y) is harmonic on X \ {y} let us fix
x ∈ X, x 6= y, and a relatively compact open neighborhood U of x such that y /∈ U .
Let µUx be the harmonic measure for U and x, that is, for every v ∈ EP,∫

v dµUx = RX\U
v (x) := inf{w(x) : w ∈ EP, w ≥ v on X \ U},
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and µUx is supported by X \ U . Clearly,
∫
G(·, y) dµUx ≤ G(x, y).

Suppose that
∫
G(·, y) dµUx < G(x, y). Then, by continuity of G outside the

diagonal, there exists r > 0 such that D(y, r) ∩ U = ∅ and
∫
G(·, z) dµUx < G(x, z)

for every z ∈ D(y, r). Since µ(D(y, r)) > 0, integration with respect to µ on D(y, r)
and Fubini’s theorem yield that the function v := V 1D(y,r) ∈ EP satisfies

(7.13)

∫
v dµUx < v(x).

However, by [5, II.7.1],∫
v dµUx = RX\U

v (x) ≥ RD(y,r)
v (x) = v(x)

contradicting (7.13). Thus
∫
G(·, y) dµUx = G(x, y) completing the proof.

We claim that no point is finely isolated. So let y ∈ X. Clearly, R
{y}
1 ≤ aG(·, y)

for every a > 0, and hence R
{y}
1 = 1{y}. Knowing already that y is not isolated we

obtain that R̂
{y}
1 (y) = lim infz→y R

{y}
1 (z) = 0. This implies that {y} is not finely

isolated, since R̂
{y}
1 (y) is also the fine lower limit of R

{y}
1 at y; see [5, III.5.9].

By [24, Theorem 1.1], we hence obtain that G has property (iv) from Section 4.
Proposition 7.14 and (7.12) show that also (i′), (ii) and (iii) hold. By Theorem 7.10
and Proposition 4.1, we therefore conclude the following.

COROLLARY 7.15. Every set A in X with mα−β(A) <∞, is contained in a Borel
set which is semipolar, that is, which the process X hits at most countably many
times.
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