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Abstract

In diffusion models, few suitably chosen financial securities allow
to complete the market. As a consequence, the efficient allocations
of static Arrow–Debreu equilibria can be attained in Radner equilib-
ria by dynamic trading. We show that this celebrated result generi-
cally fails if there is Knightian uncertainty about volatility. A Radner
equilibrium with the same efficient allocation as in an Arrow–Debreu
equilibrium exists if and only if the discounted net trades of the equi-
librium allocation display no ambiguity in the mean. This property is
violated generically in endowments, and thus Arrow–Debreu equilib-
rium allocations are generically unattainable by dynamically trading
few long–lived assets.
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1 Introduction

A fundamental result of financial economics establishes equivalence between
Arrow–Debreu and Radner equilibria if asset markets are dynamically com-
plete. When information is generated by a d–dimensional Brownian motion,
d suitably chosen assets suffice to span a dynamically complete market. In
such a setting, the rather heroic Arrow–Debreu equilibria, where all trade
takes place on a perfect market for contingent claims at time zero, and
no trade ever takes place afterwards, and the more realistic Radner equi-
libria, where agents dynamically trade long–lived financial assets, lead to
the same allocation. Such equivalence of static and dynamic equilibria for
diffusion models has been established in different settings and at different
levels of generality. For continuous–time models, see, e.g., Duffie and Huang
(1985), Duffie and Zame (1989), Karatzas, Lehoczky, and Shreve (1990),
Dana and Pontier (1992), Zitkovic (2006), Anderson and Raimondo (2008),
Riedel and Herzberg (2013), Hugonnier, Malamud, and Trubowitz (2012),
Kramkov (2015) and Ehling and Heyerdahl-Larsen (2015). The basic ideas
in discrete time date back to Arrow’s papers from 1953 and 1971; Magill
and Quinzii (1998) and Duffie (1992) are good textbook treatments of the
subject.
In this paper, we show that the celebrated equivalence generically fails under
Knightian uncertainty about volatility. We place ourselves in a framework
in which market spanning is as easy as possible. Even then, Arrow–Debreu
equilibria will usually not be implementable by a dynamic market if there is
Knightian uncertainty in individual endowments. Asset markets thus remain
substantially dynamically incomplete.
In which sense do we make it easy for the market to be complete? First, we
consider a model in which a d–dimensional Brownian motion with ambigu-
ous volatility generates the economy’s information flow. Brownian motion
is the basic diffusion; one cannot expect to obtain the result for more gen-
eral diffusion processes if it fails for Brownian motion. Second, as in the
Duffie–Huang–approach, we consider nominal asset markets. The nominal
asset structure allows for an exogenously chosen asset structure. The market
is thus free to choose the financial asset structure. If there is no spanning
in this setting, one cannot expect spanning in the more demanding real as-
set setting where security prices are endogenously determined in equilibrium
and linked to consumption prices via the real dividend structure. Third,
we consider a setting where aggregate endowment is ambiguity–free. This is
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the archetypical starting point for an economic analysis of insurance proper-
ties of competitive markets. In this setting, an efficient economic institution
should lead to an ambiguity–free allocation for ambiguity–averse individuals.
Indeed, we show that efficient (and thus, Arrow–Debreu equilibrium) alloca-
tions in this Knightian economy provide full insurance against uncertainty.
We thus extend analogous results of Billot, Chateauneuf, Gilboa, and Tallon
(2000), Dana (2002), Tallon (1998), and de Castro and Chateauneuf (2011)
to the continuous–time setting with non–dominated sets of priors.
The paper proceeds as follows. In the next section, we set up the continuous–
time model with volatility uncertainty by using the concepts developed
mainly by Shige Peng (2010 for an overview) and discuss some issues re-
lated to models with non–dominated priors. Section 3 discusses existence of
Arrow–Debreu equilibria; without existence, the question of implementation
would be void. In our framework with uncertainty–free aggregate endow-
ments, every Arrow–Debreu equilibrium in a corresponding expected utility
economy where all agents use the same prior P is also an equilibrium under
Knightian uncertainty. As a by–product, we obtain indeterminacy of equi-
libria, as in other Knightian settings, such as Tallon (1998), Dana (2002),
Rigotti and Shannon (2005), or Dana and Riedel (2013)1. Section 4 stud-
ies the possibility of implementation in the so–called Bachelier model where
the risky (or, in this Knightian setting, maybe better: uncertain) asset is
given by the Brownian motion itself because this case is particularly trans-
parent. Indeed, in the classic case, the martingale representation theorem
yields directly the portfolio strategies that finance the Arrow–Debreu (net)
consumption plans. We study under what condition this result holds in an
uncertain world. It turns out that implementation is possible if and only if

1Existence is not a trivial application of the well–known results on existence of general
equilibrium for Banach lattices. Under volatility uncertainty, the natural commodity space
consists of bounded and quasi–continuous functions. A mapping is quasi–continuous if it is
continuous in nearly all its domain. The property of quasi–continuity comes for free in the
probabilistic setting: Lusin’s theorem establishes the fact that any measurable function on
a nice topological space is quasi–continuous. Under volatility uncertainty, this equivalence
between measurability and quasi–continuity no longer holds true. We are thus led to
study a new commodity space which has not been studied so far in general equilibrium
theory. Compare also the discussion of this space in the recent contributions Epstein and
Ji (2013), Vorbrink (2014), and Beissner (2014). For this commodity space, the available
existence theorems do not immediately apply. The abstract question of existence must
thus be dealt with separately, but we leave the general question of existence for the future
as it is not the main concern of this paper.
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the value of net trades is mean ambiguity–free, i.e. if the expected value of net
trades is the same for all priors. A crucial role in the proof plays the recent
martingale representation theorem for G–Brownian motion derived in Soner,
Touzi, and Zhang (2011). Finally, we show that generically, implementation
will be impossible under Knightian uncertainty about volatility when there
is no aggregate uncertainty in the economy. The set of economies for which
implementation fails is prevalent in the set of economies parametrized by ini-
tial endowments. The notion of prevalence is an extension of the idea of full
Lebesgue measure in finite–dimensional contexts. It has been developed in
Hunt, Sauer, and Yorke (1992) and Anderson and Zame (2001). In contrast
to topological notions of large and small sets, it has the advantage to coin-
cide with the notion of full Lebesgue measure in finite dimensions. Section
5 proves the main result and Section 6 concludes. Appendix A collects the
proofs of Section 3. Appendix B discusses more general asset dynamics.

2 The Economy under Knightian Uncer-

tainty

2.1 Setting

We consider an economy over the time interval [0, T ] with finitely many
agents i ∈ I = {1, . . . , I}. The state space Ω = C[0, T ]d consists of all
continuous functions on [0, T ] with values in Rd for d ∈ N. Ω is endowed
with the usual topology of uniform convergence. We denote by F the Borel
σ–field on Ω. Let Bt(ω) = ω(t) denote the canonical process for ω ∈ Ω, and
denote by F = (Ft)t≤T the canonical filtration induced by B.

Let 0 < σk ≤ σk, k = 1, . . . , d and Σ =
∏d

k=1[σk, σk]. Let P be the set of
probability measures P on (Ω,F) such that B is a martingale under P with
respect to F, the covariation between Bk and Bl is zero for k 6= l, and we have

for the quadratic variation 〈Bk〉 of B the inequality
(
σk
)2
t ≤ 〈Bk〉t ≤

(
σk
)2
t

for all t ∈ [0, T ] P–a.s. The process B is then a d–dimensional G–Brownian
motion. The components B1, . . . , Bd are independent with unknown volatil-
ity in the bounds [σk, σk], k = 1, . . . , d. We refer to Peng (2006), Denis, Hu,
and Peng (2011) and Section 2 of Soner, Touzi, and Zhang (2011) for further
details on G–Brownian motion.
The set of priors P is not dominated by a single probability measure. In such
a context, sets that are conceived as null by the agents cannot be identified
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with null sets under a single probability measure. We say an event holds
P quasi–surely (q.s.) if it holds almost surely under all P ∈ P . Let N :=
{X : F-measurable and X = 0 P-q.s.} be the set of (negligible) payoffs with
respect to P that do not charge any P ∈ P . Let L0 denote the space of
N -equivalence classes of FT–measurable payoffs. We say that X has a P-
q.c. version if there is a quasi–continuous2 function Y : Ω→ R with X = Y
P–q.s. We denote by ‖X‖∞ = inf{M ≥ 0 : |X| ≤M P-q.s.} the quasi–sure–
supremum norm. The commodity space consists of all quasi–surely bounded,
quasi–continuous (q.c.), FT–measurable functions:

H = L∞P = {X ∈ L0 : X has a P-q.c. version and ‖X‖∞ <∞} . (2.1)

As shown in Theorem 27 of Denis, Hu, and Peng (2011), the space L∞P is
obtained by closing the space Cb(Ω) of bounded and continuous functions on
Ω under the norm ‖X‖∞. The consumption set H+ consists of quasi-surely
nonnegative functions in H.
For X ∈ H, we denote by EP [X] the linear expectation under P ∈ P . We
introduce the sublinear expectation

E[X] = sup
P∈P

EP [X] (2.2)

and the superlinear expectation E[X] = infP∈P E
P [X] = −E[−X] .

2.2 Martingales and their Representation

Define Pt,P =
{
P ′ ∈ P : P ′ = P on Ft

}
for every t ∈ [0, T ] and P ∈ P . Let

Ht ⊂ H denote the subspace of Ft–measurable payoffs. For all X ∈ H there
exists Et[X] ∈ Ht such that

Et[X] = esssupPP ′∈Pt,P E
P ′

[X|Ft], P -a.s. for every P ∈ P . (2.3)

The conditional expectations (Et) satisfy the law of iterated expectations
Es ◦ Et = Es, s ≤ t. We also have the constants preserving property in the

2Knightian uncertainty requires a reconsideration of some measure theoretic results.
Under risk, a measurable function is “almost” continuous in the sense that for every ε > 0
there is an open set O with probability at least 1− ε such that the function is continuous
on O; this is Lusin’s theorem. Under non–dominated Knightian uncertainty, this Lusin
property, or quasi–continuity, does not come for free from measurability, and one needs
to impose it. We refer to Epstein and Ji (2013) and Denis, Hu, and Peng (2011) for the
financial and measure–theoretic background.
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conditional sense, i.e. EtX = X for every X ∈ Ht, see again Denis, Hu, and
Peng (2011).

Following Denis, Hu, and Peng (2011), we introduce the norm ‖·‖2 = (E|·|2)
1
2

and the Banach space L2
P as the closure of Cb(Ω) under ‖ · ‖2.

Definition 2.1 An F-adapted process X = (Xt) ∈ L2
P is an E-martingale if

Xs = Es[Xt] P-q.s. for all s ≤ t. We call X a symmetric E-martingale if
X and −X are both E-martingales.

Denote by M the closure of piecewise constant processes
∑

k≥0 ηtk1[tk,tk+1)

with ηtk ∈ Hd, under the norm

‖η‖M = E[

∫ T

0

d〈B〉tηt · ηt]1/2 = E[

∫ T

0

d∑
k=1

(ηkt )2d〈Bk〉t]1/2 .

For F–progressively measurable processes (Xt), we introduce the norm

||X||S =
(
E[supt∈[0,T ] X

2
t ]
)1/2

and let

S =
{

(Kt) : F-prog. measurable with cont. paths P-q.s., ||K||S <∞
}
.(2.4)

The following result, Theorem 5.1 in Soner, Touzi, and Zhang (2011), is
crucial for the proof of Theorem 4.2.

Theorem 2.2 (Martingale Representation Theorem under E) For every
X ∈ L2

P there exists a unique pair (η,K) ∈ M × S such that (−Kt) is
an increasing E–martingale, K0 = 0, and for all t ∈ [0, T ]

Et[X] = E0[X] +

∫ t

0

ηsdBs −Kt P-q.s. (2.5)

2.3 Standing Assumptions on the Primitives

Agents’ preferences are given by ambiguity–averse utility functionals U i :
H+ → R of the form

U i(c) = E[ui(c)]

for a Bernoulli utility function ui : [0,∞) → R. The endowment of agent
i ∈ I is denoted by ei ∈ H+. Aggregate endowment is e =

∑
i∈I e

i.
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We call E =
(
(Ω,F ,P) ,H, (U i, ei)i∈I

)
the Knightian economy. For a fixed

probability measure P ∈ P , we denote by

U i,P (c) = EP [ui(c)] (c ∈ L∞(P )+)

the expected utility under P . In an expected utility economy, the commodity
space is the space L∞(P ) of all measurable, P–a.s. bounded functions. We

call EP =
(

(Ω,F , P ) , L∞(P ),
(
U i,P , ei

)
i∈I

)
the expected utility economy.

Assumption 1 The Bernoulli utility functions ui : [0,∞) → R, i ∈ I
are strictly concave, strictly increasing, twice continuously differentiable on
(0,∞), and satisfy the Inada condition limx↓0

dui

dx
(x) =∞.

Individual endowments ei are quasi–surely bounded away from zero.

In the following, we consider a situation where the market can potentially
insure individuals against their individual uncertainty because (Knightian)
uncertainty disappears in the aggregate.

Definition 2.3 X ∈ H is (P–)ambiguity–free if X has the same probability
distribution under all priors P ∈ P. X is (P–)mean ambiguity–free if for all
P,Q ∈ P we have EP [X] = EQ[X].

We will use either of the following assumptions in the sequel.

Assumption 2 The economy E =
(
(Ω,F ,P) ,H,

(
U i, ei

)
i∈I

)
has no aggre-

gate risk, that is, aggregate endowment e =
∑

i∈I e
i is P–ambiguity–free.

Assumption 3 The economy E has no aggregate uncertainty, that is, ag-
gregate endowment e =

∑
i∈I e

i is P–quasi–surely constant.

Obviously, Assumption 3 implies Assumption 2. Note that we do allow for
Knightian uncertainty at the individual level. We do not assume that indi-
vidual endowments are risk– or uncertainty–free.
In the economic literature, economies with no aggregate uncertainty are the
benchmark case to study welfare properties of markets and economic insti-
tutions, see Billot, Chateauneuf, Gilboa, and Tallon (2000) for a case study
under Knightian uncertainty. When there is no uncertainty in the aggregate,
but uncertainty at the individual level, a good social institution should allow
ambiguity–averse agents to achieve full insurance. We will see in the next
section that full insurance holds true in Arrow–Debreu equilibrium.
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3 Existence and Structure of Arrow–Debreu

Equilibria

In a first step, we study existence and structure of Arrow–Debreu equilibria.
We will see that existence can be reduced to existence of Arrow–Debreu
equilibria in expected utility economies if endowments are ambiguity–free.
Existence of an Arrow–Debreu equilibrium for EP has been shown by Bewley
(1969) and Bewley (1972) for general utility functions; for expected utility,
see Dana (1993) or Mas-Colell and Zame (1991).
An Arrow–Debreu equilibrium for E (for EP for some P ∈ P) consists of a
positive, continuous linear functional Ψ : H→ R (a positive linear functional
on L∞(P )) and an allocation c = (ci)i∈I ∈ HI

+ such that markets clear,∑
i∈I c

i = e P–quasi surely (P–almost surely), and agents maximize utility
subject to their budget constraint, i.e. for i ∈ I and d ∈ H+ with U i(d) >
U i(ci) we have Ψ(d) > Ψ(ei).

Theorem 3.1 Under Assumption 1 and 2, Arrow–Debreu equilibria exist.

The proofs of this section are deferred to Appendix A.
It is well known that equilibria need not be unique. For our purpose, this is
not important as we are going to characterize all equilibria in the following.
By the first welfare theorem, every Arrow–Debreu equilibrium allocation is
efficient. Recall that an allocation c = (ci)i∈I ∈ HI

+ is efficient if it is feasible,∑
i∈I c

i ≤ e P-q.s., and there is no other feasible allocation d = (di)i∈I ∈ HI
+

with U i(di) > U i(ci) for all i ∈ I. An allocation c = (ci)i∈I is called full
insurance if all ci are quasi–surely constant.

Theorem 3.2 Let Assumption 1 hold true. Let c be an Arrow–Debreu equi-
librium allocation of E.

1. Under Assumption 2,

(a) c is ambiguity–free;

(b) there is an Arrow–Debreu equilibrium price functional Ψ for c that
can be represented as

Ψ(d) = EP [ψd]

for some probability measure P ∈ P and a function ψ ∈ H+ which
is ambiguity–free, quasi–surely bounded and bounded away from
zero.
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2. Under Assumption 3,

(a) c is full insurance;

(b) there is an Arrow–Debreu equilibrium price functional Ψ for c that
can be represented as

Ψ(d) = EP [d]

for some probability measure P ∈ P.

4 (Non–)Implementability

We tackle the main question of this paper: can Arrow–Debreu equilibria be
implemented by trading a few long–lived assets dynamically over time? Un-
der risk, the answer is affirmative: Duffie and Huang (1985) show how to
construct dynamically complete financial markets that support the equilib-
rium allocation. Subsequently, the literature has provided positive answers
for the more complex case of asset structures where the asset prices are de-
termined endogenously in equilibrium3. The aim of this section is to show
that generically, the answer is negative under Knightian uncertainty about
volatility.
Let us describe the financial market. There is a riskless asset S0

t = 1. More-
over, the price of the other d assets is given by our d-dimensional G–Brownian
motion St = Bt. This is the asset price model of Bachelier, the natural can-
didate for a dynamically complete market. We discuss more general specifi-
cations in Appendix B.
A trading strategy consists of a process (θ1, . . . , θd) ∈M, the space of admis-
sible integrands for G–Brownian motion (see Peng (2006) or Denis, Hu, and
Peng (2011) for details on stochastic integration for G–Brownian motion).

3In that case, the question of Radner implementability is much more complex and
was only recently solved by Anderson and Raimondo (2008), Hugonnier, Malamud, and
Trubowitz (2012), Riedel and Herzberg (2013) and Kramkov (2015). If the asset market
is potentially complete in the sense that sufficiently many independent dividend streams
are traded, then one can obtain endogenously dynamically complete asset markets in
sufficiently smooth Markovian economies. For non–smooth economies and non–Markovian
state variables, the question is still open. As we focus on the limits of implementability
under Knightian uncertainty, we consider the case of an exogenous asset structure as in
Duffie and Huang (1985). If one cannot even implement the Arrow–Debreu equilibrium
in this case, one cannot expect to implement in the more complex situations either.
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The gains from trade are

Gθ
t =

∫ t

0

θudSu =
∑

1≤k≤d

∫ t

0

θkudS
k
u q.s. (4.1)

We call θ admissible if the gains from trade Gθ
T are quasi–surely bounded

from below. A spot consumption price ψ is a quasi–surely bounded, nonneg-
ative FT–measurable function. A consumption plan is an element ci ∈ H+.
A budget–feasible plan (ci, θi) is a pair of a consumption plan ci and an
admissible trading strategy θi with

(ci − ei)ψ = Gθi

T q.s. (4.2)

Definition 4.1 1. A Radner equilibrium (ψ, (ci, θi)i∈I) consists of a spot
consumption price ψ and budget–feasible plans (ci, θi)i∈I such that mar-
kets clear, i.e. ∑

i∈I

ci = e,
∑
i∈I

θi = 0 q.s.,

and for each agent i ∈ I there is no budget–feasible plan (d, η) with
U i(ci) < U i(d).

2. Let (Ψ, c) be an Arrow–Debreu equilibrium for the economy E with
Ψ(·) = EP [ψ·] for some P ∈ P and a nonnegative FT–measurable func-
tion ψ. We say that (Ψ, c) is implementable (in the Bachelier model)
if there exists a Radner equilibrium of the form (ψ, (ci, θi)i∈I).

The following theorem characterizes implementability.

Theorem 4.2 1. Suppose Assumption 2 holds true. Let (Ψ, c) be an
Arrow–Debreu equilibrium for the economy E with Ψ(d) = EP [ψd] for
a quasi–surely bounded positive function ψ ∈ H+ and some P ∈ P.

(Ψ, c) is implementable if and only if the values of net trades ξi =
ψ(ci − ei) are mean–ambiguity–free for each i ∈ I.

2. Suppose Assumption 3 holds true. Let (Ψ, c) be an Arrow–Debreu equi-
librium for the economy E with Ψ(d) = EPd for some P ∈ P.

(Ψ, c) is implementable if and only if net trades ξi = ci − ei are mean–
ambiguity–free for each i ∈ I.

10



The proof is given in Section 5. Let us consider a concrete example.

Example 4.3 Let e(ω) ≡ 1, I = 2, d = 1, T = 1, and ui = log for i = 1, 2.
Assume e1 = (exp(B1) ∧ 3

4
) ∨ 1

2
and e2 = 1 − e1. By Theorem 3.2, Arrow–

Debreu equilibrium allocations are full insurance, i.e. constant, and the price
functional is given by d 7→ Ψ(d) = EP [d] for some P ∈ P. In this case, the
expected value of net trades ξi = ci − ei depends on the particular measure
P ∈ P. For example, let P σ ∈ P denote the measure where B has constant
volatility σ. Then

EPσe1 =
1

2
Φ

(
− log 2

σ

)
+ eσ

2/2

(
Φ

(
log(3/4)

σ
− σ

)
− Φ

(
−σ − log 2

σ

))
+

3

4
Φ

(
− log(3/4)

σ

)
where Φ is the standard normal distribution. This expression depends on σ
and thus, the net trades are not mean–ambiguity–free. Radner implementa-
tion is therefore impossible.

The previous example suggests that the Radner implementation of Arrow–
Debreu equilibria might be the exception rather than the rule, in general. In
the next step, we clarify this question under Assumption 3. We know from
our analysis that all Arrow–Debreu equilibria fully insure all agents in such a
setting. We claim that “for almost all” economies, or “generically”, Radner
implementation is impossible.
The notion of null set has a natural meaning in the finite–dimensional context
because one can define negligible sets as Lebesgue null sets. A generalization
to infinite–dimensional spaces has been provided by Hunt, Sauer, and Yorke
(1992) and Anderson and Zame (2001). Let C ⊂ H be convex and completely
metrizable in the relative topology. A universally measurable subset E ⊂ C
is (finitely) shy in C if there is a finite–dimensional subspace V of H such
that for Lebesgue measure λV on V we have

1. λV (C + h) > 0 for some h ∈ H

2. λV (E + h) = 0 for all h ∈ H .

The set C \E is called prevalent in C. The concept of shyness coincides with
the usual notion of zero Lebesgue measure in finite–dimensional contexts and
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is thus an appropriate generalization to infinite–dimensional settings where
no Lebesgue measure exists.
In the following, we fix aggregate endowment e = 1 and consider the class of
economies parametrized by individual endowments in the set

A =

{
(ei)i=1,...,I−1 ∈ HI−1

+ : δ ≤ min
j=1,...,I−1

ej, δ ≤ 1−
I−1∑
j=1

ej for some δ > 0

}
.

We thus keep the uncertainty structure (Ω,F ,P), the space H, and the
utility functions U i, i ∈ I fixed. As aggregate endowment is kept fixed to 1,
we vary the initial endowments of the first I − 1 agents since the endowment
eI = 1−

∑I−1
j=1 of the last agent is then fixed. Note that A is the countable

union of closed convex sets and thus a completely metrizable Borel set.

Definition 4.4 Let Assumption 3 hold true. We say that an economy E with
endowments (ei)i=1,...,I−1 ∈ A does not allow for implementation if there is
no implementable Arrow–Debreu equilibrium (Ψ, c). Otherwise, we say that
E allows for implementation.

Theorem 4.5 Under Assumption 3, Arrow–Debreu equilibria are generi-
cally not implementable. More precisely: the set

R = {(ei)i=1,...,I−1 ∈ A : the economy E with endowments (ei)i=1,...,I−1

allows for implementation}

is shy in A.

The proof relies on the intuitively plausible fact that the subspace of all
mean–ambiguity–free functions X ∈ H is “small” when the set of priors P is
non–trivial (see Lemma 5.2 below).

5 Proofs of the Main Theorems

As a preparation, the following corollary of Theorem 2.2 characterizes mean
ambiguity free random variables.
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Corollary 5.1 The space M of mean ambiguous–free random variables is a
‖ · ‖∞–closed subspace of H. We have

M =
{
X ∈ H : X = E[X] +

∫ T

0

ηsdBs P-q.s. for some η ∈M
}
.

For X ∈M, the process (Et[X]) is a symmetric E–martingale.

Proof: The sublinear expectation E is 1–Lipschitz–continuous with respect
to ‖ · ‖∞. For a sequence (Xn) ⊂ M and X ∈ H with ‖Xn −X‖∞ → 0, we
thus have E[Xn] → E[X] and E[−Xn] → E[−X]. Hence, X is also mean
ambiguity–free, and M is ‖ · ‖∞–closed.
Now letX ∈M and set Y = −X. As Et is sublinear, we have Et[Y ] ≥ −Et[X]
q.s. Hence Z := Et[Y ] + Et[X] ≥ 0 q.s. Since X ∈ M, we conclude with the
help of sublinearity and the law of iterated expectations that

E[Z] = E [Et[Y ] + Et[X]] ≤ E [Et[Y ]] + E[Et[X]] = E[Y ] + E[X] = 0 .

Hence, Z = 0 q.s., and so (Et[X]) is a symmetric E–martingale. Theorem
5.5 of Soner, Touzi, and Zhang (2011) establishes the representation X =

E[X] +
∫ T

0
ηsdBs for some η ∈ M. On the other hand, if X ∈M has such a

representation as a stochastic integral, it is mean ambiguity–free. 2

5.1 Proof of Theorem 4

We only need to prove part 1. Part 2. follows by exactly the same arguments
by setting ψ = 1.
We start with the implication ⇒. Let (c, ψ · P ) be an Arrow-Debreu equi-
librium. Suppose we have an implementation in the Bachelier model with
trading strategies θi. The Radner budget constraint gives

ξi = Gθi

T =

∫ T

0

θitdBt P-q.s.

By Corollary 5.1, ξi is mean ambiguity–free.
We come to the converse implication⇐. Let (Ψ, c) be an Arrow–Debreu equi-
librium for the economy E with Ψ(d) = EP [ψd] for a quasi–surely bounded
positive function ψ ∈ H+ and some P ∈ P . We need to show that imple-
mentation is possible if each value of net trade ξi is mean ambiguity–free.
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We proceed in three steps. In step 1 we introduce the candidate trading
strategies for agent i ∈ I; we show market clearing in step 2. Finally, step 3
shows that these strategies are optimal given the dynamic budget constraint.

1. Let the value of the net trade ξi be mean ambiguity–free for all agents
i ∈ I. The Arrow–Debreu budget constraint gives E[ξi] = EP ξi = 0.
By Corollary 5.1, the process t 7→ Et[ξi] is a symmetric E-martingale
and we have

Et[ξi] =

∫ t

0

θirdSr, P-q.s.

and

ξi =

∫ T

0

θitdSt P-q.s

for some θi ∈M. The processes θi are candidates for trading strategies
in a Radner equilibrium with spot consumption price ψ.

2. By market–clearing in an Arrow–Debreu equilibrium, we have

0 =
∑
i∈I

ξi =

∫ T

0

∑
i∈I

θitdBt P-q.s .

As stochastic integrals that are zero have a q.s. zero integrand (confer,
e.g., Proposition 3.3 in Soner, Touzi, and Zhang (2011)), we conclude
that

∑
i∈I θ

i = 0 P-quasi surely.

3. It remains to check that the consumption–portfolio strategy (ci, θi) is
optimal for agent i under the Radner–budget constraint. Suppose there
is a trading strategy (d, η) with

ψ(d− ei) =

∫ T

0

ηtdSt P-q.s.

By Corollary 5.1, we have ψ(d− ei) ∈M with E[ψ(d− ei)] = 0 and we
then get

Ψ(d− ei) = EP [ψ(d− ei)] = E
[∫ T

0

ηtdSt

]
= 0 ,

and d is thus budget–feasible in the Arrow–Debreu model. We conclude
that U i(d) ≤ U i(ci).

This completes the proof.
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5.2 Proof of Theorem 4.5

We start with a crucial preliminary lemma.

Lemma 5.2 Let C = {Y ∈ H : δ ≤ Y ≤ 1 − δ for some δ > 0}. Then
MC = M ∩ C is a shy set in C.

Proof: C is a convex subset of H which is a countable union of closed sets,
and thus a completely metrizable Borel set. By Corollary 5.1, M is a closed
subspace of H; thus MC is convex and the countable union of closed sets, so
universally measurable. By Corollary 5.1, each X ∈MC has the form

X = x+

∫ T

0

ηtdBt

for some x ∈ R and some η ∈M.
We proceed by checking the two properties for (finite) shyness (Definition
2.3 in Anderson and Zame (2001)). Let

Kt = 〈B1〉t − t
(
σ1
)2
. (5.1)

The process K is a decreasing E–martingale ?Chapter IV, Example

1.3]peng2007g2. We have −T
(

(σ1)
2 − (σ1)

2
)
≤ KT ≤ 0 q.s. Note

that KT is not mean ambiguity–free because we have E[KT ] = 0 and

E[−KT ] = −T
(

(σ1)
2 − (σ1)

2
)
. Our “test space” V is the one–dimensional

subspace of H generated by K. The Lebesgue measure on V is denoted by
λV . Lebesgue measure on the real numbers is denoted by λ.

1. There is a X ∈ H with λV

(
C +X

)
> 0.

We take X = 0. Let L :=
(
T
(

(σ1)
2 − (σ1)

2
))−1

. Then

C ∩ V = {aK : −L < a < 0} .

Hence,
λV (C) = λ((−L, 0)) > 0 .
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2. For all X ∈ H we have λV

(
MC +X

)
= 0.

Let X ∈ H. By Theorem 2.2, we have

X = E[X] +

∫ T

0

ηXs dBs −KX
T

for some ηX ∈M and some KX ∈ S. For Z ∈ V ∩ (MC +X), we have
then Z = aKT for some a ∈ R and, using Corollary 5.1 for Z,

Z = z +

∫ T

0

ηZs dBs +X = z + E[X] +

∫ T

0

(ηXs + ηZs )dBs −KX
T

for some ηZ ∈M. Hence, we obtain

aKT = z + E[X] +

∫ T

0

(ηXs + ηZs )dBs −KX
T .

As the decomposition in the martingale representation theorem (The-
orem 2.2) is unique, this entails z + EX = 0, ηX + ηZ = 0, and
aKT = −KX

T . In particular, there can be at most one real number
a with this property. We conclude that λV (MC +X) = 0.

2

Proof of Theorem 4.5: Consider an economy with endowments
(ei)i=1,...,I−1 ∈ A (and recall that eI = 1 −

∑I−1
j=1 e

j). In view of Theorem
4.2.2, an Arrow–Debreu equilibrium of the economy is given by an allocation
cα for some α ∈ ∆ and a price functional of the form Ψ(d) = EPd for some
P ∈ P .
By part 2.(a) of Theorem 3.2, ciα is constant. By Theorem 4.2, implementabil-
ity thus fails if there is a i ∈ I with ei ∈Mc = H \M. Therefore,

R ⊆MA := {(ei)i=1,...,I−1 ∈ A : ei ∈M for all i = 1, . . . , I − 1} .

It is thus sufficient to show that MA is shy in A (by Fact 1 in Anderson and
Zame (2001), subsets of shy sets are shy).
In the case I = 2, we can directly apply Lemma 5.2 since then A = C and
MA = MC . For I > 2, we repeat the argument of Lemma 5.2 with the test
space V I−1 where V is the one–dimensional subspace of H generated by KT

as in Lemma 5.2. 2
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6 Concluding Remarks

This paper establishes a crucial difference of risk and Knightian uncertainty.
Under risk, dynamic trading of few long–lived assets suffices to implement the
efficient allocations of Arrow–Debreu equilibria as dynamic Radner equilibria
if the number of traded assets is equal to the number of sources of uncertainty.
This result generically fails under Knightian volatility uncertainty even if
we allow the market to choose the asset structure and without aggregate
uncertainty.
This shows a crucial difference of volatility uncertainty to other cases of un-
certainty. For stochastic volatility models in which the volatility is modeled
as an additional diffusion process as, e.g., in the Heston (1993) model, a
suitably chosen option on volatility usually allows to complete the market
(compare Davis (2004), Romano and Touzi (1997), Davis and Ob lój (2008),
and Schwarz (2017)).
With Knightian uncertainty and ambiguity–averse agents, such a completion
is usually impossible. Knightian uncertainty about volatility is also very
different from Knightian uncertainty about the drift process as in Chen and
Epstein (2002). With drift uncertainty, the class of priors is dominated by
one single reference measure and one would be able to replicate the result of
Duffie and Huang.4

Our result has important economic implications. To give an example, with
heterogeneous agents, one cannot expect to obtain an efficient allocation in
financial market equilibria. The consumption–based capital asset pricing
model as derived in Epstein and Ji (2013) which is based on the existence of
a representative agent would thus need to be amended suitably in the case
of heterogeneous agents.
In Appendix B, we also discuss possible extensions of our results beyond the
Bachelier model.

A Proofs of Section 3

We recall underlying results for expected utility economies from Dana (1993).
For weights αi ≥ 0 and ω ∈ Ω, denote by cα(ω) the maximizer of

∑
i∈I α

iui(ci)
over {c ∈ RI

+ :
∑

i∈I c
i = e(ω)}. The so–called α–efficient allocation cα is

4Although this task has not been carried out formally, as far as we know.
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characterized by the first–order conditions

αi
dui

dx
(ciα(ω)) = αj

duj

dx
(cjα(ω)) =: ψα(ω) (A.1)

for agents with strictly positive weights αi, αj > 0; agents i with weight
αi = 0 have ciα(ω) = 0, of course. As an implicit function, efficient allocations
cα = (c1

α, . . . , c
I
α) and the corresponding state price ψα are continuous in e.

Set ∆ = {α ∈ RI
+ :
∑

i αi = 1} and denote by O = (cα)α∈∆ the set of efficient
allocations in EP . The definition of O does not depend on the particular
P ∈ P as the α–efficient allocations are defined pointwise.
Our strategy of proof is to pick an equilibrium in EP for an arbitrary P ∈
P and to show that this equilibrium is an equilibrium in E . In general,
equilibrium allocations in EP are determined only P–almost surely. For E ,
we need however that market clearing occurs quasi–surely. The allocations
cα in (A.1) are defined pointwise for all ω ∈ Ω. In particular, we have∑

i∈I c
i
α(ω) = e(ω) for all ω, hence also quasi–surely.

Proof of Theorem 3.1: We first show that the allocations cα ∈ O
belong to our commodity space H. From 0 ≤ ciα ≤ e, we see that ciα is
quasi–surely bounded. As ciα can be written as a continuous function of
aggregate endowment e, ciα is also quasi–continuous. Under Assumption 2, e
is ambiguity–free; as a continuous function of e, ciα is also ambiguity–free.
Pick any P ∈ P . Due to our Assumption 1, the assumptions (i) to (iv) in
?p.954]Dana93 are satisfied. For Assumptions (i) (strict concavity and mono-
tonicity), (ii) (twice continuous differentiability), and (iv) (Inada condition),
this is immediate. For Assumption (ii), note that our Bernoulli utility func-
tions are independent of the state ω; by concavity, they are bounded by some
linear function. Hence, Assumption (ii) of Dana is also satisfied. Since en-
dowments are bounded away from zero by Assumption 1, Assumption (E)
in ?p.954]Dana93 is also satisfied. We can thus apply Theorem 2.5 of Dana
(1993): there exists an α ∈ ∆ and an equilibrium (Ψ, c) in EP with c = cα
P -a.s. and Ψ(X) = EP [ψαX] for X ∈ L∞(P ). The state price ψα is a
continuous function of e, and hence bounded q.s. By (A.1), ψα is strictly
positive. Due to Assumption 1, individual endowments ei are bounded away
from zero quasi–surely. Hence, we have Ψ(ei) > 0 for all i ∈ I. As a conse-
quence, αi > 0 since otherwise ciα = 0 would be dominated by some strictly
positive consumption plan (e.g., choose x > 0 with EP [ψαx] = Ψ(ei). By
Assumption 1, U i(x) = ui(x) > ui(0)).
We claim that (Ψ, c) is an equilibrium in E .
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Note that Ψ is well–defined on H ⊂ L∞(P ). Since
∑

i∈I c
i
α(ω) = e(ω) for

all ω; cα clears the market for every ω ∈ Ω, hence quasi–surely. The bud-
get constraint Ψ(ci) = Ψ(ei) is satisfied because (Ψ, c) is an Arrow–Debreu
equilibrium in EP .
It remains to show that ciα maximizes utility in E subject to the budget con-
straint. Let d be budget–feasible for agent i. As cα is an Arrow–Debreu equi-
librium in the expected utility economy EP , we have EP [ui(ciα)] ≥ EP [ui(d)].
As ciα is ambiguity–free, we have U i(ciα) = EP [ui(ciα)]. Therefore,

U i(d) ≤ EP [ui(d)] ≤ EP [ui(ciα)] = U i(ciα) .

2 As a preparation for the proof of Theorem 3.2, we now show that
the allocations in O are also efficient in the Knightian economy E . This is
not obvious as, in general, different measures in P could be the “worst case”
measure for different agents and efficient allocations would thus depend on
those worst–case measures. Our result hinges on Assumption 2.

Proposition A.1 1. Under Assumption 2, the efficient allocations in the
Knightian economy E coincide with the allocations in O = (cα)α∈∆.
Each cα is ambiguity–free.

2. Under Assumption 3, each cα is full insurance.

Proof: Let d ∈ O be an efficient allocation. By apply-
ing the separation theorem, one can show that d maximizes the
weighted sum of utilities

∑
i∈I α

iU i(ci) for some α ∈ ∆. Set Γ =
{ω ∈ Ω : ∃i ∈ I with di(ω) 6= ciα(ω)} . As the Bernoulli utility functions ui

are strictly concave by Assumption 1 and by definition of cα, we have∑
i∈I

αiui(di(ω)) <
∑
i∈I

αiui(ciα(ω))

for all ω ∈ Γ. Assume that Γ is not a polar set. Then there is P ∈ P with
P (Γ) > 0. Therefore, we have

EP
[∑
i∈I

αiui(di)
]
< EP

[∑
i∈I

αiui(ciα)
]
.

Since cα is ambiguity–free, EP [
∑

i∈I α
iui(ciα)] =

∑
i∈I α

iU i(ciα). On the other
hand, by ambiguity–aversion,∑

i∈I

αiU i(ciα) ≤ EP
[∑
i∈I

αiui(di)
]
,
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and we obtain a contradiction. We thus conclude that Γ is a polar set and
thus d = cα quasi–surely.
From Proposition 2.2. of Dana (1993) (see also our discussion above), we
know that cα is a continuous function of aggregate endowment e; under
Assumption 2, cα is thus ambiguity–free, and under Assumption 3, cα is
quasi–surely constant, or full insurance. � 2

Proof of Theorem 3.2: Let (Ψ, c) be an Arrow–Debreu equilibrium of
E . By the first welfare theorem, c is efficient. By Proposition A.1, there exist
α ∈ ∆ with c = cα and cα is ambiguity–free. This proves 1 (a). If we impose
even Assumption 3, Proposition A.1 shows that cα is full insurance, proving
2 (a).
For part 1 (b), note that we have αi > 0 for all i ∈ I, as individual endow-
ments are strictly positive. Otherwise, ciα = 0 which is dominated by the
strictly positive individual endowment ei (Assumption 1). Due to the first
oder condition of individual utility maximization, any equilibrium price func-
tional Ψ is colinear with some supergradient of U i at ciα. For any i ∈ I, the
set of supergradients contains all linear functionals of the form d

dx
ui(ciα) · P ,

where P is a minimizer in the set of priors. Since ui(ciα) is ambiguity–free,
EP [ui(ciα)] is constant on P and hence every element in P is a minimizer of
the multiple prior expected utility. From (A.1), αi d

dx
ui(ciα) = ψα which is

independent of i and ambiguity–free by 1(a).
By Assumption 1, marginal utilities d

dx
ui are continuous and decreasing.

Since cα is a continuous function of aggregate endowment e, and since e
is bounded away from zero, ψα is quasicontinuous and bounded. Since e is
also bounded and marginal utilities d

dx
ui are decreasing, ψα is also bounded

away from zero. We thus obtain a price functional of the form

Ψ(d) = EP [ψαd]

such that (c,Ψ) is an Arrow–Debreu equilibrium.
For part 2(b), note that ψα is constant, since cα is full insurance. Hence,
without loss of generality, we can replace the price functional Ψ(d) = EP [ψαd]
by Ψ(d) = EP [d]. 2

B Beyond the Bachelier Model

The Bachelier model we presented allows for negative values of the price pro-
cess. Theorem 4.2 is still valid, when our G-Brownian motion B = B+ +B−
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of the Bachelier model is decomposed into the positive B+ and negative
part B−. The trading strategies are then given by θk,+t = θkt 1{Bkt ≥0} and

θk,−t = −θkt 1{Bkt <0} where θk denotes the fractions invested in the k-th uncer-
tain assets of Theorem 4.2. In the same fashion, as mentioned in Section 5
of Duffie and Huang (1985), the number of assets becomes 2 · d+ 1.
Theorem 4.2 is still valid if we replace the process B with a symmetric E–
martingale of the form Mt = M0+

∫ t
0
VtdBt, such that Vt ∈ Hd×d

+ with V ij
t = 0

and V ii q.s. bounded away from zero.
It suffices to show that every stochastic integral of the form

∫ T
0
θsdBs for

some θ ∈ M can be written as
∫ T

0
θsdBs =

∫ T
0
θMs dMs for some suitable

θM ∈M. The proof then follows the same lines as the proof of Theorem 4.2,
by substituting B with M . The obvious candidate is θM,k

t = θkt /V
kk
t . We

need to show that the stochastic integral
∫ T

0
θMt dMt is well–defined. Note

that θM ∈M because V kk is bounded away from zero q.s.
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meilleure des risques,” in Économétrie, Colloques Internationaux du Centre
National de la Recherche Scientifique. Centre National de la Recherche
Scientifique.

(1971): Essays in the Theory of Risk Bearing. Markham Publishing
Co., Chicago.

Beissner, P. (2014): “Microeconomic Theory of Financial Economics under
Volatility Uncertainty,” Ph.D. thesis, Bielefeld University.

Bewley, T. (1969): “A Theorem on the Existence of Competitive Equilibria
in a Market with a Finite Number of Agents and Whose Commodity Space
is L∞,” in Studies in Economic Theory, ed. by M. Khan, and N. Yannelis,
vol. 1, pp. 74–101. Springer, 1991, New York, Heidelberg.

21



(1972): “Existence of Equilibria in Economies with Infinitely Many
Commodities,” Journal of Economic Theory, 4, 514–540.

Billot, A., A. Chateauneuf, I. Gilboa, and J. Tallon (2000): “Shar-
ing Beliefs: Between Agreeing and Disagreeing,” Econometrica, 68, 685–
694.

Chen, Z., and L. Epstein (2002): “Ambiguity, Risk and Asset Returns in
Continuous Time,” Econometrica, 70, 1403–1443.

Dana, R. (1993): “Existence and Uniqueness of Equilibria when Preferences
Are Additively Separable,” Econometrica, 61, 953–957.

(2002): “On Equilibria when Agents Have Multiple Priors,” Annals
of Operations Research, 114, 105–112.

Dana, R., and M. Pontier (1992): “On the Existence of an Arrow-Radner
Equilibrium in the Case of Complete Markets. A Remark,” Mathematics
of Operations Research, 17(1), 148–163.

Dana, R., and F. Riedel (2013): “Intertemporal Equilibria with Knight-
ian Uncertainty,” Journal of Economic Theory, 148(2013), 1582–1605.

Davis, M. (2004): “Complete-Market Models of Stochastic Volatility,” Pro-
ceedings of the Royal Society A, 460, 11–26.
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