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Quadratic forms and Sobolev spaces of fractional order

Kai-Uwe Bux, Moritz Kassmann and Tim Schulze

Abstract

We study quadratic functionals on L2(Rd) that generate seminorms in the fractional Sobolev
space Hs(Rd) for 0 < s < 1. The functionals under consideration appear in the study of Markov
jump processes and, independently, in recent research on the Boltzmann equation. The functional
measures differentiability of a function f in a similar way as the seminorm of Hs(Rd). The
major difference is that differences f(y) − f(x) are taken into account only if y lies in some
double cone with apex at x or vice versa. The configuration of double cones is allowed to be
inhomogeneous without any assumption on the spatial regularity. We prove that the resulting
seminorm is comparable to the standard one of Hs(Rd). The proof follows from a similar result
on discrete quadratic forms in Z

d, which is our second main result. We establish a general scheme
for discrete approximations of nonlocal quadratic forms. Applications to Markov jump processes
are discussed.

1. Introduction

The Sobolev–Slobodeckĭı space Hs(Rd), 0 < s < 1, can be defined as the set of all functions
f ∈ L2(Rd) such that the seminorm∫

Rd×Rd

(f(y) − f(x))2|x− y|−d−2s d(x, y) (1)

is finite, see the original work [14] or the monographs [1, 2, 12]. The normed space is complete
and, together with its modifications for domains in R

d, is of fundamental importance in the
field of Partial Differential Equations. In this article, we adopt the common notation from
Stochastic Analysis, where Hs(Rd) usually is denoted by Hα/2(Rd) with α = 2s ∈ (0, 2). The
corresponding stochastic process is called α-stable process, which explains the usage of α here.

We study seminorms on L2(Rd), which are very similar but smaller than (1) because we
consider differences f(y) − f(x) only if y lies in some double cone with apex at x. Below,
we explain where and why the corresponding quadratic forms appear naturally. In order to
formulate our main result, let us fix some notation. By V we denote a double cone in R

d

with apex at 0 ∈ R
d, symmetry axis v ∈ R

d, and apex angle ϑ ∈ (0, π
2 ]. Let V = (0, π

2 ] × P
d−1
R

denote the family of all such double cones. For x ∈ R
d, we define a shifted double cone by

V [x] = V + x. A mapping Γ : R
d → V is called a configuration. If Γ is a configuration with the

property that the infimum ϑ over all apex angles of cones in Γ(Rd) is positive, then Γ is called
ϑ-bounded. If in addition

{ (x, y) ∈ R
d × R

d | y − x ∈ Γ(x) } is a Borel set in R
d × R

d, (M)

then Γ is called ϑ-admissible. For x ∈ R
d and Γ a configuration, we define V Γ[x] = x + Γ(x).

One of our main results is the following theorem.
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Theorem 1.1. Let Γ be a ϑ-admissible configuration and α ∈ (0, 2). Let k : R
d × R

d →
[0,∞] be a measurable function satisfying k(x, y) = k(y, x) and

Λ−1
(
1V Γ[x](y) + 1V Γ[y](x)

)|x− y|−d−α � k(x, y) � Λ|x− y|−d−α, (2)

for almost all x and y, where Λ � 1 is some constant. Then, there is a constant c � 1 such that
for every ball B ⊂ R

d and for every f ∈ L2(B), the inequality∫
B×B

(f(x) − f(y))2|x− y|−d−α d(x, y) � c

∫
B×B

(f(x) − f(y))2k(x, y) d(x, y) (3)

holds.
The constant c depends on Λ, the dimension d, and ϑ. It is independent of k and Γ. For

0 < α0 � α < 2, the constant c depends on α0 but not on α.

Note that the reverse inequality in (3) trivially holds true. Moreover, note that f ∈ L2(B)
does, in general, not imply that any of the two terms in (3) is finite. The result, in particular,
says that the term on the right-hand side is infinite if the term on the left-hand side is infinite.

Remark 1.2. One strength of the theorem is that there are only two essential assumptions,
namely, that the infimum of the apex angles of double cones is required to be positive and that
the set

{ (x, y) ∈ R
d × R

d | y − x ∈ Γ(x) }
is a Borel set in R

d × R
d. Other than that, the symmetry axis of the double cone and the apex

angle might depend on the center in an arbitrary way. Note that the last condition (M) is
nothing else but the measurability of the function v : R

d × R
d → R, v(x, y) = 1V Γ[x](y), which

is important in light of (2).

A similar result like Theorem 1.1 has recently been provided in [9, Lemma A.6]. One
difference between the two results is that Theorem 1.1 provides comparability on every ball.
This property is important for applications, for example, for regularity results, cf. [7, Condition
(A)], and when studying function spaces over bounded sets, cf. Theorem 1.4. Another difference
concerns the class of cones considered. In our setup, it is generally not true that two double
cones x + Γ(x) and y + Γ(y) have a nonempty intersection. This is different in the framework
of [9], cf. Lemma A.5 therein. On the other hand, we consider classical double cones and not
more general union of rays.

The proof of our main result is based on discrete approximations of the quadratic forms
involved. We establish a general scheme of how to approximate a given nonlocal quadratic
form on L2(Rd) through a sequence of discrete quadratic forms. We provide a discrete analog
of Theorem 1.1 that implies Theorem 1.1. We hope the discrete result itself to be useful in
different fields, for example, when studying random walks in inhomogeneous or random media.
Let us formulate our main result in the discrete setup.

Theorem 1.3. Let Γ be a ϑ-bounded configuration and α ∈ (0, 2). Let ω : Z
d × Z

d → [0,∞]
be a function satisfying ω(x, y) = ω(y, x) and

Λ−1
(
1V Γ[x](y) + 1V Γ[y](x)

)|x− y|−d−α � ω(x, y) � Λ|x− y|−d−α (4)

for |x− y| > R0, where R0 > 0, Λ � 1 are some constants. There exist constants κ � 1, c � 1
such that for every R > 0, x0 ∈ R

d, and every function f : (BκR(x0) ∩ Z
d) → R, the inequality∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(f(x) − f(y))2|x− y|−d−α � c
∑

x,y∈BκR(x0)∩Zd

|x−y|>R0

(f(x) − f(y))2ω(x, y)
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holds.
The constant c depends on Λ, ϑ,R0, and on the dimension d. It does not depend on

ω and Γ.

Let us present the motivation for Theorem 1.1 and provide some applications.
One motivation for our research stems from new contributions to the study of the Boltzmann

equation, where recent regularity results for integro-differential operators are applied in
combination with results on kinetic equations, see [10]. This approach allows to work without
cutoff conditions on the collision kernel. The Boltzmann equation describes the evolution of
the density f depending on time, space, and velocity in an ideal gas. The equation takes the
form

∂tf + (v,∇xf) = Q(f, f) (t ∈ R, x ∈ R
d, v ∈ R

d) ,

where Q(f, f) is the so-called Boltzmann collision operator whose precise definition depends
on assumptions on how the particles interact in the gas under consideration, in particular
on the so-called cross section, cf. [13, 17]. For some cases, the operator (f, g) �→ Q(f, g)
can be decomposed as Q(f, g) = Q1(f, g) + Q2(f, g), where for given f the map g �→ Q1(f, g)
corresponds to an operator g �→ Lvg that satisfies

−
∫

Lvg(v)g(v)dv � λ‖g‖2
Ḣs − Λ‖g‖2

L2 (5)

for every g ∈ C∞(B1). The constants λ and Λ depend on the dimension d and on bounds of
physical quantities related to f such as mass, energy, and entropy. The exponent s ∈ (0, 1)
correlates to assumptions on the cross section that appears in the definition of the collision
kernel. The operator g �→ Q2(f, g) turns out to be of lower order. In the aforementioned cases,
the proof of (5) is well understood, see [3, 16]. A direct proof making use of a geometric
understanding of the collision mechanism is provided in [9, Proposition A.1]. A detailed analysis
leads to an estimate of the form (3), cf. [9, Lemma A.6], where x, y are replaced by velocity
variables v, v′ and the kernel k is derived in a highly nontrivial way from the collision kernel.
As explained above, the assumptions on the cones appearing in the kernel in this work and in
[9] are rather different.

The first application concerns function spaces. For a domain Ω ⊂ R
d, we consider the Hilbert

space

Hk(Ω) =
{
f ∈ L2(Ω)

∣∣ |f |Hk(Ω) < ∞}
,

where the seminorm |f |Hk(Ω) is given by

|f |2Hk(Ω) =
∫

Ω×Ω

(f(y) − f(x))2k(x, y) d(x, y).

We endow Hk(Ω) with the norm ‖f‖Hk(Ω), ‖f‖2
Hk(Ω) = ‖f‖2

L2(Ω) + |f |2Hk(Ω). The space H
α
2 (Ω)

is defined as the Hilbert space of all f ∈ L2(Ω) such that the seminorm |f |
H

α
2 (Ω)

is finite. We

denote the norm on H
α
2 (Ω) by ‖f‖

H
α
2 (Ω)

. Note that | · |
H

α
2 (Ω)

dominates | · |Hk(Ω) because of
(2). Hence, ‖ · ‖

H
α
2 (Ω)

dominates ‖ · ‖Hk(Ω) and we can deduce the following inclusion:

H
α
2 (Ω) ⊂ Hk(Ω) . (6)

As we will show, Theorem 1.3 implies the reverse implication if Ω is a bounded Lipschitz
domain. We will prove the following result in Section 3.
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Theorem 1.4. Let Ω ⊂ R
d be a bounded Lipschitz domain. Then, Hk(Ω) = H

α
2 (Ω). The

seminorms | · |Hk(Ω) and | · |
H

α
2 (Ω)

as well as the corresponding norms are comparable on Hk(Ω).

Moreover, the subspace C∞(Ω) is dense in Hk(Ω).
In addition, Hk(Rd) = H

α
2 (Rd). The seminorms | · |Hk(Rd) and | · |

H
α
2 (Rd)

as well as the

corresponding norms are comparable on Hk(Rd). The subspace C∞
c (Rd) of smooth functions

with compact support in R
d is dense in Hk(Rd).

As mentioned above, Theorem 1.1 has direct significance for the theory of Markov jump
processes. Let us recall that a bilinear symmetric closed form (E ,D(E)) on L2(Rd) is
called Dirichlet form if it is Markovian, for example, if for every u ∈ D(E), the function
v = (u ∧ 1) ∨ 0 belongs to D(E) and satisfies E(v, v) � E(u, u). See [8, Section 1.1] for this
definition plus comments and examples. A Dirichlet form (E ,D(E)) on L2(Rd) is called regular
if Cc(Rd) ∩ D(E) is dense in Cc(Rd) with respect to the supremum norm as well as in D(E)
with respect to the norm (E(u, u) + (u, u))

1
2 . A major result is that every regular Dirichlet form

(E ,D(E)) on L2(Rd) corresponds to a symmetric strong Markov process on (Rd,B(Rd)), whose
Dirichlet form is given by (E ,D(E)), cf. [8, Theorem 7.2.1]. Note that the rotationally symmetric
α-stable process is the strong Markov process that corresponds to the regular Dirichlet form
(Eα, Hα/2(Rd)) on L2(Rd), where

Eα(f, g) =
∫

Rd×Rd

(f(y) − f(x))(g(y) − g(x)) |x− y|−d−α d(x, y) .

Theorem 1.1 immediately implies the following result.

Corollary 1.5. The Dirichlet form (E ,F) on L2(Rd) with F = Hα/2(Rd) and

E(f, g) =
∫

Rd×Rd

(f(y) − f(x))(g(y) − g(x))k(x, y) d(x, y) ,

is a regular Dirichlet form on L2(Rd). There exists a corresponding strong Markov process.

The corresponding stochastic process is an interesting subject for further research. Presum-
ably, it shares several properties with the related rotationally symmetric α-stable process.
Establishing sharp pointwise heat kernel estimates and, if applicable, the Feller property
constitute interesting but challenging tasks.

Another application concerns regularity of solutions to integro-differential equations. We
can apply recent results of [7] and establish a weak Harnack inequality and Hölder a priori
estimates to corresponding weak solutions.

Corollary 1.6. Assume α ∈ (0, 2), k is as in Theorem 1.1, Ω ⊂ R
d is open, and f ∈

Lq/α(Ω) for q > d. Then, every weak solution u : R
d → R to

lim
ε→0+

∫
Rd\Bε(x)

(u(y) − u(x))k(x, y)dy = f(x) (x ∈ Ω) ,

satisfies a weak Harnack inequality and is Hölder regular in the interior of Ω.

The proof uses the regularity result of [7]. It relies on Theorem 1.1, which ensures that
[7, Condition (A)] is satisfied. Condition (B) is easily verified for the classical choice of Lipschitz
continuous cutoff functions.
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This article is organized as follows. In Section 2, we provide the technical definitions and
explain the set-up in detail. In Section 3, we explain how Theorem 1.1 is derived from
Theorem 1.3. To this end, we formulate a rescaled version of Theorem 1.3 on hZ

d for
h > 0, Corollary 3.1, and consider the limit procedure h ↘ 0. We also provide the proof of
Theorem 1.4. In Section 5, we provide the main tool for the proof of Theorem 1.3, which is
Theorem 5.15. Since the main ideas can be better communicated when working in the Euclidean
space rather than the integral lattice, we present this case separately in Section 4. Section 6
finally contains the proof of Theorem 1.3.

2. Set-up, definitions, and preliminaries

The aim of this section to provide the framework of Theorem 1.1 and auxiliary results needed
to deduce Theorem 1.1 from Theorem 1.3.

v

ϑ

r

Figure 1 (colour online). Example of a cone V (v, ϑ) and a double half-cone Vr(v, ϑ) for d = 2.

Figure 2. The family V Γ[x] for a possible configuration Γ.

Definition 2.1. Given v ∈ Sd−1 and ϑ ∈ (0, π
2 ], we define a cone by

Ṽ = Ṽ (v, ϑ) =
{
h ∈ R

d
∣∣∣ h 
= 0,

〈v, h〉
|h| > cos(ϑ)

}
.
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Let Ṽ denote the family of all cones. We denote the corresponding double cone by V , that is,

V = V (v, ϑ) = Ṽ ∪ (−Ṽ ) .

The set V of all double cones is simply the manifold (0, π
2 ] × P

d−1
R

, where P
d−1
R

is the real
projective space of dimension d− 1. For x ∈ R

d, we define a shifted cone by Ṽ [x] = Ṽ + x and
a shifted double cone by V [x] = V + x. For r > 0 and a given cone Ṽ = Ṽ (v, ϑ), we define

Ṽr = Ṽr(v, ϑ) = {y ∈ Ṽ |Br(y) ⊂ Ṽ }.
For a double cone V , we define the set Vr analogously and call it a double half-cone. A mapping
Γ : R

d → V is called configuration. If Γ is a configuration with the property that the infimum
ϑ over all apex angles of cones in Γ(Rd) is positive, then Γ is called ϑ-bounded. If Γ is a
ϑ-bounded configuration and{

(x, y) ∈ R
d × R

d
∣∣ y − x ∈ Γ(x)

}
is a Borel set in R

d × R
d, (M)

then Γ is called ϑ-admissible, cf. Remark 1.2. For x ∈ R
d and Γ a configuration, we define

V Γ[x] = x + Γ(x) and analogously for r > 0

V Γ
r [x] =

{
y ∈ V Γ[x]

∣∣ Br(y) ⊂ V Γ[x]
}
,

see Figure 1 and Figure 2.

One key observation of our approach is that the large, possibly uncountable, family of cones
generated by a ϑ-admissible configuration Γ can be reduced to a finite family of cones.

Lemma 2.2. Let Γ be a ϑ-bounded configuration. There are numbers L ∈ N and θ ∈ (0, π
2 ],

and double cones V 1, . . . , V L centered at 0 with apex angle θ and symmetry axis v1, . . . , vL ∈
Sd−1 such that

∀x ∈ R
d ∃m ∈ {1, . . . , L} : V m ⊂ Γ(x) .

The constants L and θ depend on the dimension d and ϑ but not on Γ itself.

Proof. Obviously,

Sd−1 ⊂
⋃

v∈Sd−1

V

(
v,

ϑ

3

)
,

where Sd−1 is the unit sphere in R
d. Since Sd−1 is compact and the right-hand side is an open

cover of Sd−1, one can choose finite many v1, . . . , vL ∈ Sd−1 such that

Sd−1 ⊂
L⋃

m=1

V

(
vm,

ϑ

3

)
.

Define V m = V (vm, ϑ
3 ) for m = 1, . . . , L. Now the claim follows with θ = ϑ/3. �

Definition 2.3. In the sequel, we write V m[x] instead of V m + x. We call the set {V m|1 �
i � L} the family of reference cones associated to Γ. Each element is called a reference cone.
Analogous to Definition 2.1, we set

V m
r =

{
u ∈ V m

∣∣ Br ⊂ V m
}
, V m

r [x] = V m
r + x .

With help of Lemma 2.2, we can define a new configuration that has useful properties. The
following corollary is the key tool for our reasoning in Section 4 and Section 5.
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Corollary 2.4. Let Γ be a ϑ-bounded configuration. Then, there exists another
configuration Γ̃ that fulfills #Γ̃(Rd) < ∞ and for every x ∈ R

d

Γ̃(x) ⊂ Γ(x).

The minimum of apex angles of cones in Γ̃(Rd) is ϑ.

Proof. Let V 1, . . . , V L be the double cones from the preceding lemma. Define sets

M1 = {x ∈ R
d | V 1 ⊂ Γ(x) }

M2 = {x ∈ R
d | V 2 ⊂ Γ(x) } \M1

...

ML = {x ∈ R
d | V L ⊂ Γ(x) } \ML−1.

Now,

R
d =

⋃
1�i�L

Mi

and this union is disjunct. Define Γ̃ : R
d → V, x �→ V i for x ∈ Mi and arrive at the assertion. �

Definition 2.5. For h > 0 and u = (u1, . . . , ud) ∈ R
d, let

Ah(u) =
{
x ∈ R

d
∣∣ ‖x− u‖∞ < h/2

}
be the open cube with center u. The half-closed cube with center u will be denoted by

Ãh(u) =
d∏

i=1

[
ui − h

2
, ui +

h

2

)
.

Remark 2.6. Half-closed cubes are only needed in one proof in Section 3.

Let Γ be a ϑ-admissible configuration and {V 1, . . . , V L} a family of reference cones according
to Lemma 2.2. Then, our assumption (M) implies for any V ∈ V that the set

{x ∈ R
d | V ⊂ Γ(x) }

is Lebesgue measurable. This implication is due to [4, Theorem 4.4].
Given h > 0, u ∈ R

d and m ∈ {1, . . . , L}, we set

Am
h (u) = {x ∈ Ah(u) | V m ⊂ Γ(x) } .

An index m ∈ {1, . . . , L} is called h-favored by majority at u (or short: h-favored index at u)
if

λd(Am
h (u)) = max

i∈{1,...,L}
λd(Ai

h(u)) .

Here, λd is the Lebesgue measure on R
d. Note that λd(Am

h (u)) � L−1λd(Ah(u)) for every
h-favored index at u. This follows directly from

Ah(u) =
⋃

i∈{1,...,L}
Ai

h(u) .

It is clear that the choice of an h-favored index is in general not unique.
Now we state an elementary result for the intersection of cones which will be very helpful

for us.
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Lemma 2.7. Let Ṽ be a cone with apex angle ϑ and let h > 0. Then, for each x ∈ R
d and

each ξ ∈ Ah(x)

Ṽh
√
d[ξ] ⊂ Ṽh

2

√
d[x] ⊂ Ṽ [ξ] .

In other words, ⋃
ξ∈Ah(x)

Ṽh
√
d[ξ] ⊂ Ṽh

2

√
d[x] ⊂

⋂
ξ∈Ah(x)

Ṽ [ξ] .

Proof. Let 
 > 0. Note

ζ ∈
⋂

ξ∈B�

Ṽ [ξ] ⇔ ∀ξ ∈ B� : ζ − ξ ∈ Ṽ

⇔ ζ −B� ⊂ Ṽ

⇔ B�(ζ) ⊂ Ṽ

⇔ ζ ∈ Ṽ�.

This means

Ṽ� =
⋂

ξ∈B�

Ṽ [ξ] . (7)

On the other hand, for ζ ∈ Ṽ2�, we have B�(ζ) ⊂ Ṽ�. This is equivalent to

∀ζ ∈ Ṽ2� ∀ξ ∈ B� : ζ + ξ ∈ Ṽ� .

In other words, ⋃
ξ∈B�

Ṽ2�[ξ] ⊂ Ṽ� . (8)

From (7) and (8), we conclude for every ξ ∈ B�

Ṽ2�[ξ] ⊂ Ṽ� ⊂ Ṽ [ξ] .

Translation by x ∈ R
d yields

Ṽ2�[ξ] ⊂ Ṽ�[x] ⊂ Ṽ [ξ] ∀ξ ∈ B�(x) .

Now set 
 = h
2

√
d and observe that Ah(x) ⊂ B�(x). �

3. Application of the discrete problem

In this section, we show how to derive Theorem 1.1 from Theorem 1.3. The idea is to provide an
hZ

d-Version of Theorem 1.3, applying it to a discrete version of the kernel k from Theorem 1.1,
and then pass to the limit h → 0. We also prove Theorem 1.4.

By scaling, we can deduce the following hZ
d-Version from Theorem 1.3.

Corollary 3.1. Let Γ be a ϑ-bounded configuration and let h > 0. Let ω : hZ
d × hZ

d →
[0,∞] be a function satisfying ω(x, y) = ω(y, x) and

Λ−1
(
1V Γ[x](y) + 1V Γ[y](x)

)|x− y|−d−α � ω(x, y) � Λ|x− y|−d−α (9)
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for |x− y| > R0h, where R0 > 0, Λ � 1 are some constants. There exist constants κ � 1 and
c > 0, such that for every R > 0, every x0 ∈ R

d, and every function f : (BκR ∩ hZ
d) → R, the

inequality

c
∑

x,y∈BR∩hZd

|x−y|>R0h

(f(x) − f(y))2|x− y|−d−α �
∑

x,y∈BκR∩hZd

|x−y|>R0h

(f(x) − f(y))2ω(x, y)

holds. The constant c depends on Λ, ϑ,R0 and on the dimension d. It does not depend on ω,Γ,
and h.

Proof. Let:

M =

{
ω : hZ

d × hZ
d → [0,∞]

∣∣∣∣∣ ω(x, y) = ω(y, x) and
(9) for some configuration Γ with ϑ > 0

}
,

N =

{
ω : Z

d × Z
d → [0,∞]

∣∣∣∣∣ ω(x, y) = ω(y, x) and
(4) for some configuration Γ with ϑ > 0

}
.

Every element ω ∈ M is of the form h−d−αω̃(h−1x, h−1y) for some ω̃ ∈ N . If R > 0, x0 ∈ R
d,

and f : BκR(x0) ∩ hZ
d → R is some function, we define the function g : BκR(x0) ∩ Z

d → R by
g(x) = f(hx). Then, with use of Theorem 1.3:

c
∑

x,y∈BR(x0)∩hZd

|x−y|>R0h

(f(x) − f(y))2|x− y|−d−α

= c
∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(g(x) − g(y))2h−d−α|x− y|−d−α

�
∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(g(x) − g(y))2h−d−αω̃(x, y)

=
∑

x,y∈BκR(x0)∩hZd

|x−y|>R0h

(f(x) − f(y))2h−d−αω̃(h−1x, h−1y)

=
∑

x,y∈BκR(x0)∩hZd

|x−y|>R0h

(f(x) − f(y))2ω(x, y).

This proves the claim. �

3.1. The discrete version of the kernel

In this subsection, we will always assume that Γ is a fixed ϑ-admissible configuration and
{V m}1�m�L is the associated family of reference cones. We will always denote the symmetry
axis of a reference cone V m by vm (m ∈ {1, . . . , L}).

For k : R
d × R

d → [0,∞] a nonnegative measurable function and h > 0, we define ωk
h : hZ

d ×
hZ

d → [0,∞] by

ωk
h(x, y) = h−2d

∫
Ah(x)×Ah(y)

k(s, t) d(s, t).

Note that ωk
h(x, y) may be infinite for x and y from neighboring cubes.
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We want to apply Corollary 3.1 to ω = ωk
h. Therefore, we need to make sure that the function

ωk
h satisfies (9). First, we show this claim for h = 1. The next three technical lemmas are

tailor-made for this purpose.

Lemma 3.2. For all x, y ∈ Z
d, all 1-favored indices m at x and n at y, all t ∈ An

1 (y), and all
s ∈ Am

1 (x), the inequality

1V m√
d/2

[x](t) + 1V n√
d/2

[y](s) � 1V m√
d
[x](y) + 1V n√

d
[y](x)

holds.

Proof. Let x, y ∈ Z
d and let m be a 1-favored index at x. Assume y ∈ V m√

d
[x]. Then,

B√
d/2(y) ⊂ V m√

d/2
[x]. Therefore,

An
1 (y) ⊂ A1(y) ⊂ B√

d/2(y) ⊂ V m√
d/2

[x]. �

The assertion of the following lemma is obviously true.

Lemma 3.3. Let r > 0. There is an apex angle θ > 0 such that for every m ∈ {1, . . . , L}
there exists an axis v(m) ∈ R

d so that(
V (v(m), θ) ∩ Z

d
) ⊂ (

V m
r ∩ Z

d
)
.

Lemma 3.4. For every h > 0, all x, y ∈ Z
d with |x− y| > √

dh and all s ∈ Ah(x), t ∈ Ah(y),
the following holds:

1
2
√
d
|x− y| < |s− t| < 2

√
d|x− y|.

Proof. This is about comparing the Euclidean norm to the maximum norm on R
d. Note

that for any vector v ∈ R
d, we have:

|v|∞ � |v| �
√
d|v|∞. (10)

Let h = 1 and x, y ∈ Z
d with |x− y| > √

d. Since the maximum norm takes only integer values
on lattice points and |x− y| > √

d, it follows that |x− y|∞ � 2. As a consequence of the triangle
inequality, we record for s ∈ A1(x) and t ∈ A1(y):

1
2
|x− y|∞ � |x− y|∞ − 1 < |s− t|∞ < |x− y|∞ + 1 � 2|x− y|∞.

Using (10), we conclude:

|s− t| �
√
d|s− t|∞ < 2

√
d|x− y|∞ � 2

√
d|x− y|,

|x− y| �
√
d|x− y|∞ < 2

√
d|s− t|∞ � 2

√
d|s− t|.

The general case for arbitrary h > 0 follows by scaling. �

Proposition 3.5. Let k : R
d × R

d → [0,∞] be a symmetric and measurable function
satisfying (2) for a ϑ-admissible configuration Γ. Then, there are constants C = C(d, ϑ) > 0 and
ϑ′ ∈ (0, π

2 ] and a ϑ′-bounded configuration Γ′ such that for all x, y ∈ Z
d with |x− y| > √

d:

CΛ−1
(

1V Γ′ [x](y) + 1V Γ′ [y](x)
)
|x− y|−d−α � ωk

1 (x, y).

The angle ϑ′ does only depend on θ and on the infimum ϑ of the apex angles of all cones in Γ.
There is no further dependence on Γ.



QUADRATIC FORMS AND SOBOLEV SPACES OF FRACTIONAL ORDER 851

Proof. Note:

ωk
1 (x, y) � Λ−1

∫
A1(x)×A1(y)

[
1V Γ(s)(t) + 1V Γ(t)(s)

]|t− s|−d−α d(s, t).

Therefore, we just need to concentrate on the integral. Let m be a 1-favored index at x and n be
a 1-favored index at y. Then, with use of Lemma 2.7, Lemma 3.2, Lemma 3.3, and Lemma 3.4,
we estimate∫

A1(x)×A1(y)

[
1V Γ[s](t) + 1V Γ[t](s)

]|t− s|−d−α d(s, t)

�
∫
Am

1 (x)×An
1 (y)

[
1V m[s](t) + 1V n[t](s)

]|t− s|−d−α d(s, t)

�
∫
Am

1 (x)×An
1 (y)

[
1V m√

d/2
[x](t) + 1V n√

d/2
[y](s)

]
|t− s|−d−α d(s, t)

� 1
(2
√
d)d+α

λd×d(Am
1 (x) ×An

1 (y))
[
1V m√

d
[x](y) + 1V n√

d
[y](x)

]
|x− y|−d−α

� 1
(2
√
d)d+α

λd×d(Am
1 (x) ×An

1 (y))
[
1V (v(m),θ)[x](y) + 1V (v(n),θ)[y](x)

]|x− y|−d−α.

Now, the claim follows with C = 1
(2

√
d)d+2·L2 � 1

(2
√
d)d+α

λd×d(Am
1 (x) ×An

1 (y)) and some
appropriate choice of Γ′. �

Corollary 3.6. Let k : R
d × R

d → [0,∞] be a symmetric and measurable function
satisfying (2) for a ϑ-admissible configuration Γ. Then, there are ϑ′ > 0 and C > 0 so that
for each h > 0 there is a configuration Γh on R

d with the following properties:

(i) The infimum of the apex angles of all cones in Γh(Rd) equals ϑ′.
(ii) For all x, y ∈ hZ

d with |x− y| > √
dh, the inequalities

C−1
(

1V Γh [x](y) + 1V Γh [y](x)
)
|x− y|−d−α � ωk

h(x, y) � C|x− y|−d−α (11)

hold.

Proof. For h > 0, define a new configuration Γh on R
d by Γh(x) = Γ(hx). Note that the

infimum of the apex angles of all cones in Γh(Rd) is the same as the infimum of the apex angles of
all cones in Γ(Rd). It does not depend on h. Note also that (M) holds true for Γ if and only if (M)
holds true for Γh. Therefore, Γh is a ϑ-admissible configuration. Define kh : R

d × R
d → [0,∞]

via kh(x, y) = k(hx, hy)hd+α. Since k satisfies (2), we also have for almost all x, y ∈ R
d:

Λ−1
(
1V Γ[hx](hy) + 1V Γ[hy](hx)

)|x− y|−d−α � k(hx, hy)hd+α � Λ|x− y|−d−α. (12)

Fix some h > 0. We note that for all x, y ∈ R
d the assertion hy ∈ V Γ[hx] is equivalent to

y ∈ V Γh(x). This together with (12) shows that kh and Γh satisfy (2). Therefore, we can apply
Proposition 3.5 to Γ = Γh and k = kh. We obtain a configuration (Γh)′ with a positive infimum
of the apex angles of all cones ϑ′ and some constant C > 0 such that for all x, y ∈ Z

d with
|x− y| > √

d, we have

CΛ−1
(

1V (Γh)′ [x](y) + 1V (Γh)′ [y](x)
)
|x− y|−d−α � ωkh

1 (x, y). (13)
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Note that ϑ′ does only depend on the infimum of the apex angles of all cones in Γ. We define
a new configuration (Γh)′h−1 via (Γh)′h−1(x) = (Γh)′(h−1x). The infimum of the apex angles of
all cones in this new configuration is obviously still ϑ′. Since for all x, y ∈ Z

d

y ∈ V (Γh)′ [x] ⇔ hy ∈ V (Γh)′
h−1 [hx] ,

inequality (13) is equivalent to

CΛ−1

(
1
V

(Γh)′
h−1 [hx]

(hy) + 1
V

(Γh)′
h−1 [hy]

(hx)
)
|x− y|−d−α � ωkh

1 (x, y) (14)

for all x, y ∈ Z
d with |x− y| > √

d.
Now, let x, y ∈ hZ

d with |x− y| > √
dh. Then, h−1x, h−1y ∈ Z

d with |h−1x− h−1y| > √
d.

With use of (14) and the transformation formula for integrals, we obtain

CΛ−1

(
1
V

(Γh)′
h−1 [x]

(y) + 1
V

(Γh)′
h−1 [y]

(x)
)
|x− y|−d−α

= CΛ−1
(

1V (Γh)′ [h−1x](h
−1y) + 1V (Γh)′ [h−1y](h

−1x)
)
|h−1x− h−1y|−d−αh−d−α

� ωkh
1 (h−1x, h−1y)h−d−α

= ωk
h(x, y).

The upper bound in (ii) is just a consequence of Lemma 3.4. The claim follows with Γh =
(Γh)′h−1 . �

3.2. Proof of the continuous version

In this part, we prove Theorem 1.1 and Theorem 1.4.

Proof of Theorem 1.1. The inequality (3) is obviously true if the right-hand side is infinite.
Hence, we can restrict ourselves to functions f ∈ Hk(B). The following Lemma 3.7 provides
comparability of the seminorms | · |Hk(B) and | · |

H
α
2 (B)

, which implies (3). The proof is
complete. �

Lemma 3.7. Let B ⊂ R
d be a ball. Let α ∈ (0, 2) and Γ be a ϑ-admissible configuration. Let

k : R
d × R

d → [0,∞] be a measurable function satisfying k(x, y) = k(y, x) and (2). The spaces
Hk(B) and H

α
2 (B) coincide. Furthermore,

| · |
H

α
2 (B)

� c| · |Hk(B) on Hk(B) = H
α
2 (B)

for a constant c � 1 independent of the ball B. For 0 < α0 � α < 2, the constant depends on
α0 but not on α.

Proof. In view of (6), we only have to show the inclusion Hk(B) ⊂ H
α
2 (B). Note that

comparability of the seminorms implies comparability of norms. Hence, we shall show

|f |Hk(B) � |f |
H

α
2 (B)

for all f ∈ Hk(B), (15)

that is, the ratio of the two quantities is bounded by a constant independent of f . Let R >
0, x0 ∈ R

d, and κ as in Corollary 3.1. In the sequel, we use the notation B = BR(x0) and
B∗ = BκR(x0). Let f ∈ Hk(B∗). For h ∈ (0, 1), we consider the following piecewise constant
approximation of f . We define for x ∈ hZ

d ∩B∗

fh(x) = h−d

∫
Ah(x)∩B∗

f(s) ds .
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Because of Proposition 3.6, there is a constant C > 0 and a configuration Γh with ϑ′ > 0 such
that for all x, y ∈ hZ

d with |x− y| > √
dh, the inequalities

C−1
(

1V Γh [x](y) + 1V Γh [y](x)
)
|x− y|−d−α � ωk

h(x, y) � C|x− y|−d−α

hold. Thus, ω = ωk
h together with Γ = Γh fulfill (9) for R0 =

√
d and Λ = C. Corollary 3.1

implies the existence of c > 0, independent of f,R, α, and h, so that

c
∑

x,y∈B∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2|x− y|−d−α �
∑

x,y∈B∗∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2ω(x, y).

Using Lemma 3.4, we obtain

c
∑

x,y∈B∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2
∫
Ah(x)×Ah(y)

|s− t|−d−α d(s, t)

�
∑

x,y∈B∗∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2
∫
Ah(x)×Ah(y)

k(s, t) d(s, t), (16)

for a constant c > 0 that differs from the one above by a factor only depending on the
dimension d.

For technical reasons, we need the property that every x in R
d is contained in some cube.

Therefore, we consider half-closed cubes. Given x = (x1, . . . , xd) ∈ R
d and h ∈ (0, 1), we use

the notation

Ãh(x) =
d∏

i=1

[
xi − h

2
, xi +

h

2

)
.

For h ∈ (0, 1), we define a function gh : R
d × R

d → R via

gh(s, t) =
∑

x,y∈hZd

[
(fh(x) − fh(y))2k(s, t) 1

˜Ah(x)× ˜Ah(y)(s, t) 1{x,y∈B∗|√dh<|x−y|}(x, y)
]

and claim that gh converges for h → 0 almost everywhere to the function g : R
d × R

d → R

with

g(s, t) = (f(s) − f(t))2k(s, t)1B∗×B∗(s, t).

Indeed, gh(s, t) = (fh(xh) − fh(yh))2k(s, t) for appropriate points xh and yh. We conclude with
help of Lemma A.2, gh(s, t) → g(s, t) for almost every (s, t) ∈ B∗ ×B∗. In the same way, we
can show that the function g̃h : R

d × R
d → R with

g̃h(s, t) =
∑

x,y∈hZd

[
(fh(x) − fh(y))2|s− t|−d−α 1

˜Ah(x)× ˜Ah(y)(s, t)

× 1{x,y∈B|√dhn<|x−y|}(x, y)
]

converges for h → 0 pointwise almost everywhere to

g̃ : R
d × R

d → R,

g̃(s, t) = (f(s) − f(t))2|s− t|−d−α1B×B(s, t).
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For the right-hand side in (16), this implies with help of dominated convergence∑
x,y∈B∗∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2
∫

˜Ah(x)× ˜Ah(y)

k(s, t) d(s, t)

=
∫
Rd×Rd

gh(s, t) d(s, t) h→0−→
∫
Rd×Rd

g(s, t) d(s, t).

With regard to the left-hand side of (16), note that the Fatou lemma implies

lim inf
h→0

∑
x,y∈B∩hZd

|x−y|>√
dh

(fh(x) − fh(y))2
∫

˜Ah(x)× ˜Ah(y)

|s− t|−d−α d(s, t)

= lim inf
h→0

∫
Rd×Rd

g̃h(s, t) d(s, t) �
∫
Rd×Rd

g̃(s, t)d(s, t).

In conclusion, we have shown that the discrete inequality (16) yields the continuous version

c|f |
H

α
2 (B)

� |f |Hk(B∗) for all f ∈ Hk(B∗).

This is true for every ball B, since c is independent of B. Therefore, using Lemma A.1, we
conclude for each ball B ⊂ R

d and each f ∈ Hk(B∗)

c∗|f |
H

α
2 (B)

� |f |Hk(B)

for some c∗ > 0, independent of the ball B. This proves comparability of the seminorms and
Hk(B) ⊂ H

α
2 (B). �

Proof of Theorem 1.4. The comparability constant c in Lemma 3.7 is independent of the
radius R of the respective ball. Thus, the result for the whole space is obtained in the limit
R → ∞ using monotone convergence.

Now let Ω be a bounded Lipschitz domain. In view of Lemma 3.7 and Lemma A.1, we
conclude

| · |
H

α
2 (Ω)

� c| · |Hk(Ω) on Hk(Ω)

for a constant c � 1, which leads to Hk(Ω) ⊂ H
α
2 (Ω). Since the inclusion H

α
2 (Ω) ⊂ Hk(Ω) is

obvious by the definition of k, one obtains Hk(Ω) = H
α
2 (Ω). For the assertions concerning

density of smooth functions, note that C∞(Ω) is a dense subset of H
α
2 (Ω), cf. [5, Proposition

4.52]. Furthermore, C∞
c (Rd) is a dense subset of H

α
2 (Rd), cf. [5, Proposition 4.27]. �

4. A continuous prelude

The main tool for the proof of Theorem 1.3 is the construction of paths connecting two arbitrary
points in Z

d. In this section, we show the existence of paths connecting two arbitrary points
in R

d. This result is not needed to prove Theorem 1.3. Therefore, the reader may skip this
section. However, the procedure in the continuous setting is similar to the discrete setting, but
less technical. For this reason, reading this section first might provide useful intuition.

From a configuration Γ: R
d → V, we construct a directed graph G as follows: the vertex set

is R
d and there is a directed edge from x to y if y ∈ V Γ[x]. Note that there are no loops in G

as Γ(x) is open and does not contain the tip.
We shall be concerned with the question whether G is connected as an undirected graph

if the underlying configuration is ϑ-bounded. In this case, Corollary 2.4 allows us to assume
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without loss of generality that the image of Γ contains only a finite number of elements. Thus,
crucial parts of the argument can be proved by induction on the number of cones in Γ(Rd). As
it often happens, one needs to strike the right balance and the statement suitable for induction
is a little bit stronger (and more technical) than the primary target. We are led to consider
subgraphs GU defined by open subsets U ⊂ R

d as follows: the vertex set of GU is still R
d and

the rule for oriented edges is the same, however, we only put in the edges issuing from vertices
in U . Note that vertices outside U still can be used in edge paths since we are interested in
undirected connectivity.

In this section, we always assume that the configuration Γ is ϑ-bounded.
The main result of this part is:

Theorem 4.1. For any connected open set U ⊂ R
d, any two points x, y ∈ U are vertices in

the same connected component of GU .

For the proof of Theorem 4.1, we need some auxiliary results.

Definition 4.2. A point x ∈ R
d is of cone type V if V = Γ(x). Two points x, y ∈ R

d have
the same type if Γ(x) = Γ(y).

Lemma 4.3. If two points x, y ∈ U have the same type, then there is an edge path in GU

of length at most two connecting them.

Proof. Let V = Γ(x) = Γ(y). Then, the translated double cones V [x] and V [y] intersect.
We pick a point of intersection (it may lie outside of U). It has an edge incoming from x and
another edge incoming from y. These two edges form the desired edge path. �

Definition 4.4. We call x well connected in U if there is an open neighborhood W of x
that, considered as a set of vertices in GU , lies entirely in a single connected component of GU .
That is, the point x is connected by edge paths in GU to all points of an open neighborhood.

The following lemma lists inter alia some important features of well-connected points.

Lemma 4.5. The following hold.

(1) For y ∈ U , any point x ∈ U ∩ V Γ[y] is well connected in U .
(2) If U ′ ⊂ U is an inclusion of open sets, then any point x ∈ U ′ that is well connected in

U ′ is also well-connected in U .
(3) Any nonempty open set U contains a point that is well connected in U . In fact, the

well-connected points are dense in U .

Proof. For (1), we may choose U ∩ V Γ[y] as the open neighborhood. Any two points therein
are connected via an edge path of length two with y as the middle vertex. Therefore, (1) follows.

Enlarging the open set U ′ only adds edges to the graph. Hence, connectivity can only improve.
This proves (2).

For the proof of (3), note that existence of a well-connected point follows from (1). Applying
the existence statement to smaller open sets U ′ ⊂ U , density follows in view of (2). �

Lemma 4.6. Consider two points x, y ∈ U and let V = Γ(y) be the cone type of y. Assume
that the translated double cone V [x] contains a point z of cone type V . Then, x and y
are connected.

Note that we do not assume that V = Γ(x). One may also note that in the situation of the
lemma, the point x is well connected in U .
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Proof. Since y and z have the same type, they are connected by an edge path of length at
most two. Now, z ∈ V [x] implies x ∈ V [z] = V Γ[z]. Hence, there is an edge from z to x. �

Proof of Theorem 4.1. According to Lemma 2.2, we may assume that the image of Γ has at
most L different elements since Γ is ϑ-bounded. Therefore, we can use induction on the number
#Γ(U) of cones realized in U . If there is only a single cone type throughout U , any two points
x, y ∈ U are connected in GU by an edge path of length at most two. This settles the base of
the induction.

For #Γ(U) > 1, we start with the following observation:

There is a constant λ > 0 depending only on the minimum apex angle ϑ such that
for any double cone V ∈ V and any two points x, y ∈ R

d of distance ‖x− y‖ < λ,
the intersection V [x] ∩ V [y] contains a point in B1(x).

Now assume that x is well connected in U and that the r-ball Br(x) lies entirely in U . We
claim that x is connected to any point y ∈ Bλr(x). Indeed, consider the cone type V = Γ(y) of
y. If V [x] contains a point of cone type V , the points x and y are connected by Lemma 4.6.

Otherwise, within the open set U ′ = U ∩ V [x] 
= ∅, the cone type V is not realized. We infer
by induction that all points in U ′ are mutually connected in GU ′ and hence in GU . However,
V [y] = V Γ[y] intersects U ′ ⊃ Br(x) ∩ V [x] by the opening observation. Hence, y is connected
to a point in U ′ and therefore to any point in U ′, which contains points arbitrarily close to x.
Since x is well connected in U , the points y and x are connected in GU .

It follows that a well-connected point x ∈ U whose r-neighborhood lies in U is actually
connected to any point in its λr-neighborhood. Now, density of well-connected points in U (cf.
Lemma 4.5 (3)) implies that U is covered by overlapping open well-connected subsets. �

5. Chaining and renormalization

In this section, we provide the chaining argument that leads to the proof of Theorem 1.3 in
Section 5. The main result of this section is Theorem 5.15.

Every configuration Γ: R
d → V induces naturally a mapping Γ|Zd which we again call

configuration and denote by Γ. As in the continuous case, a configuration Γ defines a directed
graph G = G(Γ) where the vertex set is given by Z

d and there is an oriented edge from x to y
if y ∈ V Γ[x].

We shall be concerned with the question whether G is connected as an undirected graph if
Γ is ϑ-bounded. Therefore, throughout this section, we assume without further notice that Γ
is a ϑ-bounded configuration. In addition to the continuous version, however, we also want to
keep track of how far such an edge path might take us away from the end points in question.

5.1. Auxiliary results

A technicality is that we always have to use lattice points. Since any closed ball of radius
√
d

2
contains a lattice point, we have:

Lemma 5.1. Let Ṽ be a cone of apex angle at least ϑ.

(1) Fix r > 0 and assume R > r+
√
d

sin(ϑ) . Then, BR(x) ∩ Ṽ [x] contains a lattice point y ∈ Z
d

with Br(y) ⊂ Ṽ [x].
(2) Let x, y ∈ R

d. Fix r > ‖x− y‖ and R > r+
√
d

sin(ϑ) + r. Then, the intersection

BR(x) ∩ Ṽ [x] ∩ BR(y) ∩ Ṽ [y]

contains a lattice point.
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Proof. Within distance r+
√
d/2

sin(ϑ) of x, we find a point z with Br+
√
d/2(z) ⊂ Ṽ [x]. Within the

closed ball of radius
√
d/2 around z, we find the desired lattice point y. The second assertion

can be seen as another way of looking at the same phenomenon. By (1), there is a lattice
point z ∈ Z

d with Br(z) ⊂ B r+
√

d
sin(ϑ)

(x) ∩ Ṽ [x]. Now, z ∈ Ṽ [y] since Ṽ [y] is obtained from Ṽ [x]

via translation by a distance less than r. By triangle inequality, z ∈ BR(y). �

A quantitative version of Lemma 4.3 follows immediately.

Corollary 5.2. Any two lattice points x, y ∈ Z
d with Γ(x) = Γ(y) = V and of distance

less than r are connected via a path of two edges of length less than R = r+
√
d

sin(ϑ) + r.

Definition 5.3. For r � R, we call a lattice point x ∈ Z
dr-R-connected, if any lattice point

y ∈ Br(x) is connected in G to x via an undirected edge path not leaving BR(x).

The following lemma is the discrete version of the density of well-connected points
(Lemma 4.5 (3)).

Lemma 5.4. For any r � 0, any R >
√
d+r

sin(ϑ) , and any lattice point x ∈ Z
d, there is an

r-R-connected lattice point y ∈ BR(x).

Proof. The larger radius R is chosen so that BR(x) ∩ (V Γ[x]) contains a lattice point y whose
r-ball Br(y) lies within the double cone V Γ[x]. Thus, any two points in Br(y) are connected
via x, and x is within distance R from y. �

Our discrete variant of Lemma 4.6 reads as follows:

Lemma 5.5. Consider two lattice points x, y ∈ Z
d of distance less than r. Let V = Γ(y) be

the cone type of y and let R > r + 2r+
√
d

sin(ϑ) . Assume that Br(x) ∩ V [x] contains a lattice point

z of cone type V . Then, there is an edge path from y to x not leaving BR(x).

Proof. There is a directed edge from z to x. Note that the distance of y and z is at most
2r. Hence, R is chosen so that the triple intersection

BR(x) ∩ V [z] ∩ V [y] = BR(x) ∩ V Γ[z] ∩ V Γ[y]

contains a lattice point. Through this point, z and y are connected. �

The assertion of the following lemma is obvious.

Lemma 5.6. There is a constant δ > 0, depending only on ϑ and the dimension d, such that
for any double cone V ∈ Γ(Zd) the following condition holds:

If for a lattice point x ∈ V , there is a lattice point in V closer to 0, then there is
such a lattice point in V ∩Bδ(x).

That is, we can go from x within V to a lattice point of minimum distance to the tip via a
chain of jumps each bounded in length from above by δ.

5.2. The Induction

It is our aim to prove that every two lattice points in a given ball of radius r are connected via
an edge path that does not leave a larger ball of radius R. Here, the radius R shall depend only
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on r, ϑ, and d. In the following lemma, we show this for a series of values for r, respectively,
R. The proof is similar to the proof of the corresponding result in the continuous setting, cf.
Theorem 4.1.

Lemma 5.7. There are constants r1 � ρ1 � R1, r2 � ρ2 � R2, . . ., depending only on ϑ and
d, with δ < r1 and ri < ri+1, ρi < ρi+1, Ri < Ri+1 for every i ∈ N such that any lattice point
x ∈ Z

d is rk-Rk-connected provided at most k cone types are realized at the lattices points in
Bρk

(x).

Proof. We induct on k. The case k = 1 follows directly from Corollary 5.2: choose ρ1 = r1 >

δ and R1 > r1+
√
d

sin(ϑ) .
For the induction step, assume that constants up to ρk−1, rk−1 and Rk−1 have already been

found. Choose:

s >
ρk−1 +

√
d

sin(ϑ)
and S >

s +
√
d

sin(ϑ)
.

Note that by Lemma 5.1 (1) any set Bs(x̂) ∩ V [x̂] contains a lattice point z with Bρk−1(z) ⊂
V [x̂]. If x̂ is s-S-connected, there is an edge path from x̂ to z not leaving BS(x̂).

So, we put rk = S. By Lemma 5.4, there is an s-S-connected lattice point x̂ ∈ Brk(x).
Consider an arbitrary point y ∈ Brk(x). It suffices to choose Rk and ρk so that we can ensure
the existence of an edge path from x̂ to y within BRk

(x).
Let V = Γ(y) be the cone type of y. The distance of y and x̂ is less than 2S. We are interested

in the double half-cone x̂ + Vρk−1 . Either tip of the double half-cone is within distance s < S
of x̂ and thus within distance 3S of y. By Lemma 5.1 (2), the intersection

Bŝ(x̂) ∩ (x̂ + Vρk−1) ∩ V [y]

contains a lattice point for any ŝ > 3S+
√
d

sin(ϑ) + 3S.
Choosing ρk > S + ŝ + ρk−1, we can use the induction hypothesis as follows. If no lattice

point in the region Bŝ+ρk−1(x̂) ∩ V [x̂] ⊂ Bρk
(x) is of cone type V , we see that there are at

most k − 1 different cone types realized within Bŝ+ρk−1(x̂) ∩ V [x̂]. Hence, each lattice point
in Bŝ(x̂) ∩ (x̂ + Vρk−1) is rk−1-Rk−1-connected. Since rk−1 > δ, all these well-connected balls
overlap and are therefore connected to a lattice point z near the tip of the double half-cone.
Recall that z is within distance s of x̂ and that x̂ is s-S-connected. Hence, all the lattice points
in Bŝ(x̂) ∩ (x̂ + Vρk−1) are connected to x̂.

On the other hand, one of these lattice points lies within the double cone y + V = V Γ[y] and
is hence directly connected to y. Thus, y is connected to x̂. Each edge path used will take us at
most S or Rk−1 outside of Bŝ(x̂). Thus, we might choose Rk > 2S + Rk−1 + ŝ. We might need
to increase this number, to ensure ρk � Rk, but the increase incurred in treating the remaining
case is much worse.

It remains to deal with the possibility that there is a lattice point of cone type V in the
region Bŝ+ρk−1(x̂) ∩ V [x̂]. Since x̂ and y are of distance at most 2S < ŝ, Lemma 5.5 applies

and we choose Rk > (ŝ + ρk−1) + 2(ŝ+ρk−1)+
√
d

sin(ϑ) . �

Corollary 5.8. For every r > 0, there is R � r, depending only on r, ϑ, and d, such that
for any configuration Γ: Z

d → V with apex angles bounded from below by ϑ any lattice point
x ∈ Z

d is r-R-connected.

Proof. By Corollary 2.4, we can assume without loss of generality that #Γ(Zd) = L, where
L is a constant that depends only on ϑ and d. Now the claim follows from Lemma 5.7 and the
following observation: If x is r-R-connected, it is r′-R-connected for any r′ � r. �
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5.3. Renormalization: Blocks and Towns

Since the proof of Theorem 1.3 involves a renormalization argument, it is important to restate
Corollary 5.8 for structures at large scale (see Proposition 5.14). To this end, we introduce
what we call blocks and towns. Recall our notation

A�(x) =
{
y ∈ R

d | ‖y − x‖∞ � 


2

}
for cubes.

Lemma 5.9. For any apex angle ϑ, there is a constant δ = δ(ϑ) > 0 such that the following
holds for each 
 > 0 and any points x, y ∈ R

d of distance at least δ
:

If Ṽ is a cone of apex angle ϑ
2 and y ∈ Ṽ [x], then

A�(y) ⊂
⋂

z∈A�(x)

V [z]

for the cone V with apex angle ϑ and the same axis as Ṽ .

Proof. Let Ṽ be a cone of apex angle ϑ
2 and symmetry axis v and let V be a cone with apex

angle ϑ and symmetry axis v. Let x ∈ R
d and 
 > 0. According to Lemma 2.7, we know⋂

z∈A�(x)

V [z] ⊃ V �
2

√
d[x].

It is also known that

B �
2

√
d
(y) ⊃ A�(y)

for any y ∈ R
d.

Therefore, we choose a point ỹ ∈ ∂(Ṽ [x]) with the property

B �
2

√
d
(ỹ) ⊂ V �

2

√
d[x],

that is, B�
√
d(ỹ) ⊂ V [x] and set δ = |x−ỹ|

� �
√
d

sin(ϑ/2) . �

Definition 5.10. A block

Q�(x) = Z
d ∩A�(x)

is a collection of lattice points inside a cube. The town at scale (h, 
) is the collection

T (h, 
) =
{
Q�(x) |x ∈ hZ

d
}

If the constant δ from Lemma 5.9 is less than h
� , we call the town sparsely populated

(or ϑ-sparsely populated when we want to recall that δ depends on ϑ).

In order to employ geometric language, we implicitly may identify the block Q�(x) with its
center x. This way, we think of the distance between two blocks as the distance of their centers.
If h is large compared to 
, the distance between the centers is a good approximation to any
distance between points from the two blocks.

Definition 5.11. Let Γ: Z
d → V be a ϑ-bounded configuration. We call a double cone V ∈

Vfavored by majority in Q for a block Q ⊂ Z
d if the preimage Γ−1

Q (V ) = {x ∈ Q |Γ(x) = V }
has maximal size, that is,

#Γ−1
Q (V ) � #Γ−1

Q (V ′) for every V ′ ∈ V.
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Remark 5.12. Given a block Q, the choice of a cone V ∈ V that is favored by majority in
Q, in general, is not unique.

Definition 5.13. Given a town T = T (h, 
), we now define a directed graph as follows. The
vertices are given by the blocks in T . There is an edge from a block Q to a block P if there is
a cone V ∈ V favored by majority in Q with:

y ∈ V [x] for all x ∈ Q, y ∈ P.

We call the corresponding undirected graph the favored graph.

We derive a connectivity result for the favored graph of a sparsely populated town from
Corollary 5.8.

Proposition 5.14. For any radius r > 0, there exists R � r depending only on ϑ and d,
such that in a ϑ-sparsely populated town T of scale (h, 
), any two blocks Q and P within
distance hr of some point z ∈ hZ

d are connected by an undirected edge path in the favored
graph that does not pass through blocks farther away from z than hR.

Proof. Let r > 0 and T = T (h, 
) be a sparsely populated town. Let Q,P ∈ T = T (h, 
) be
two blocks within distance hr of some point z ∈ hZ

d. Denote by W (Q) ∈ V one of the cones
that are favored by majority in Q. Let us show the existence of a path in the favored graph
that connects Q and P and does not leave the ball BhR(z). In order to invoke Corollary 5.8,
note that

Z
d −→ T (h, 
)

x �→ Q�(hx)

provides an identification of the town T with the integer lattice Z
d. Denoting by W 1

2
(Q)

the double cone with apex ϑ
2 and the same axis as W (Q), let us consider the following

configuration:

Z
d −→ Vϑ

2

x �→ W 1
2
(Q�(hx)).

If there is an edge from x to y in this configuration, then by Lemma 5.9, there is an edge
from the block Q�(hx) to the block Q�(hy) in the favored graph. Choose x, y ∈ Z

d so that
P = Q�(hx) and Q = Q�(hy).

Now the claim follows from Corollary 5.8. �

5.4. Connecting Points at Scale

From Corollary 5.8, it is clear that, for any configuration Γ: Z
d → V with apex angles bounded

away from 0, the associated directed graph G = G(Γ) is connected when considered as an
undirected graph. Thus, there is a set of paths, which is large enough to connect any given pair
x, y. The aim of this section is to prove quantitative estimates on the length of paths and the
number of edges. The following contains our main result in this direction. As shown below, it
implies Theorem 1.3 quite directly:

Theorem 5.15. Let Γ: Z
d → V be a configuration with apex angles bounded from below

by ϑ > 0. Let R0 > 0. There exist positive numbers N and M and a constant λ � R0, all
independent of Γ, and a collection (pxy)x,y∈Zd of unoriented edge paths in G such that the
following holds:
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(1) The path pxy starts at x and ends at y.
(2) Any path pxy has at most N edges.
(3) Any edge of G is used in at most M paths pxy.
(4) Any edge in pxy has length comparable to |x− y| with constant λ.

Let us provide the setup of the proof of Theorem 5.15. We pick an even integer Δ larger
than the constant max(δ,R0) and with the property that Δ/L ∈ N, where δ is as in Lemma 5.9
and L is as in Lemma 2.2. Hence, the towns Tn = T (Δn,Δn−1) are all ϑ-sparsely populated so
that Proposition 5.14 applies. The distance |x− y| lies in exactly one of the intervals [Δ0,Δ1),
[Δ1,Δ2), [Δ2,Δ3), etc., say: |x− y| ∈ [Δn−1,Δn). In this case, we will consider Tn to be the
appropriate town for connecting x and y. We call n the logarithmic scale of the town Tn. Let L
denote the same constant as in Lemma 2.2. Assume #Γ(Zd) � L. Since Δ is an even integer,
each block Q = QΔn−1(x) contains at least Δd(n−1)

L lattice points z ∈ Q where the associated
cone Γ(z) is favored by majority in Q.

An important step in the construction of pxy is to connect x and y to blocks of Tn. The
following lemma deals with this problem.

Lemma 5.16. There is a constant R1 � 1 such that for any point x ∈ R
d and any n ∈ N

there is a block Q ∈ Tn entirely contained in BΔnR1(x) ∩ x + Γ(x).

Proof. There is a radius r such that for any cone Ṽ of apex at least ϑ
2 and each point z ∈ R

d,
the intersection Br(z) ∩ Ṽ [z] contains a lattice point y. Now the claim follows by rescaling from
Lemma 5.9 applied to Δnz and Δny. As we want to encircle the whole block and not just its
center, we choose R1 > r +

√
d. �

Now we are in the position to prove the main result of this section.

Proof of Theorem 5.15. Let R1 be the radius from Lemma 5.16, put r = 2
√
d + R1, and

let R be the radius resulting with this value from Proposition 5.14. The proof consists of
several steps.

Step 1: Construction of paths in the favored graph for a fixed scale. We fix some logarithmic
scale n. For every z ∈ Δn

Z
d, we construct a path Pn

z in the favored graph that traverses every
block of Tn that is a subset of BΔnr(z). By taking the union

⋃
z∈ΔnZd Pn

z , we construct paths
in the favored graph for a fixed scale. Let z ∈ Δn

Z
d. Proposition 5.14 allows us to connect

every block Q ∈ Tn, Q ⊂ BΔnr(z) with every other block P ∈ Tn, P ⊂ BΔnr(z) so that the
corresponding path traverses not more than #(BR ∩ Z

d) � Rd blocks of Tn, which can be
chosen to lie in BΔnR. If we apply Proposition 5.14 successively to all blocks of Tn, which are
subsets of BΔnr, then we obtain a path

Pn
z = Q1 −Q2 − · · · −Qt (17)

of blocks of Tn in the favored graph with

rd � #(BΔnr ∩ Z
d) � t � #(BΔnr ∩ Z

d)(BΔnR ∩ Z
d) � rdRd

such that the following holds (see Figure 3):

(1) For each i ∈ {1, . . . , t}, we have Qi ⊂ BΔnR(z).
(2) The blocks Q1 and Qt are subsets of BΔnr(z).
(3) If Q is any block of Tn with Q ⊂ BΔnr(z), then Q = Qi for some i ∈ {1, . . . , t}.

Finally, set Pn =
⋃

z∈ΔnZd Pn
z .
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Q1

Qt

BΔnR(z)

BΔnr(z)

Figure 3 (colour online). The path Q1 − · · · −Qt.

Step 2: Construction of paths in the graph G for a fixed scale. For a logarithmic scale n and
x, y ∈ [Δn−1,Δn), we construct a path in the graph G connecting x and y.

Fix a logarithmic scale n. Let z ∈ Δn
Z
d. Choose for every block in (17) a favored cone and

call the corresponding set of points in the block where this cone is associated majority set.
Each majority set contains at least

a =
Δd(n−1)

L
∈ N

points. Without loss of generality, we assume that every majority set contains exactly a different
elements. Then, we identify a block in (17) with its majority set, that is, if Qk is the kth block
in (17), then

Qk = (qki )1�i�a.

Starting from (17), we now fix certain paths in the graph G, which then give rise to the
collection (pxy). Let i ∈ {1, . . . , a}. Without loss of generality, we assume that t is an even
number (for odd t just erase the last edge in the following scheme). Let M be the set of the
following paths in G:

q1
i − q2

i − q3
i − q4

i − · · · − qti
q1
i − q2

i+1 − q3
i − q4

i+1 − · · · − qti+1

q1
i − q2

i+2 − q3
i − q4

i+2 − · · · − qti+2

q1
i − q2

i+3 − q3
i − q4

i+3 − · · · − qti+3
...

...
...

...
...

...
q1
i − q2

i+a−1 − q3
i − q4

i+a−1 − · · · − qti+a−1.

(18)
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... φz(x, y)

BΔn 2
√

d(z)

q1
1

q2
2

q3
1

qt−2
2qt−1

1

qt
2

x

y

Figure 4 (colour online). Construction of a path using φz(x, y).

Here, the lower index is to be read modulo a, that is, k + a = k for every k. Since we do
this for every i ∈ {1, . . . , a}, the set M consists of a2 paths. Now, we associate to every pair
(x, y) ∈

A = { (x, y) ∈ BΔn2
√
d(z) ×BΔn2

√
d(z) | |x− y| ∈ [Δn−1,Δn) }

one path of M . Since the numbers a and #A are comparable, that is., its ratio is bounded by
a number independent of n, this can be realized by a function

φz : A → M

with

#φ−1
z (p) � K for every p ∈ M

where K � 1 is independent of n and p. In order to use the path φz(x, y) to connect x and
y, it remains to make sure that x and y are both connected in G to one element in φz(x, y),
respectively. This follows from Lemma 5.16 which guarantees that every x ∈ BΔn2

√
d(z) is

connected to every point in some block Qk of Pn
z . In this way, the path φz(x, y) induces a path

in G that starts in x and ends in y (cf. Figure 4).
Using this construction scheme, we have constructed a path for each pair (x, y) ∈

B2
√
dΔn(z) ×B2

√
dΔn(z) with |x− y| ∈ [Δn−1,Δn). Let Mn

z be the set of all these paths. This
principle of construction of the paths can be carried out for every z ∈ Δn

Z
d.

Step 3: Construction of pxy. Note that the whole construction process of Step 2 has been
performed for an arbitrary n ∈ N. We define pxy for x, y ∈ Z

d as follows. Choose n ∈ N such that
|x− y| ∈ [Δn−1,Δn). Next, choose any z ∈ Z

d such that φz(x, y) represents a path connecting
x and y, cf. Figure 4. In this way, pxy ∈ ⋃

z∈ΔnZd Mn
z .

Step 4: Bounds of the length of each edge path. The second claim of Theorem 5.15 follows
immediately from t � #(Br ∩ Z

d) · #(BR ∩ Z
d).

Step 5: Bounds of the length of each edge. By construction, all edges used in pxy for some
x, y ∈ Z

d with |x− y| ∈ [Δn−1,Δn) have lengths bounded from below by Δn−1 and from above
by 2ΔnR. Ergo the fourth claim follows with λ = 2RΔ.

Step 6: Bounds of the multiplicity of edges. According to step 5, it is enough to proof the third
claim of Theorem 5.15 for one fixed logarithmic scale. Therefore, we fix n. Assume that e is
an edge of length in [Δn−1, 2ΔnR). Then, there exists a point z ∈ Δn

Z
d so that e ∈ BΔnR(z).

Since the number of lattice points in B2R bounds from above the number of block centers
z ∈ Δn

Z
d for which BΔnR(z) contains e, it is enough to bound the number of times e is used
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by paths belonging to a fixed z. But now by construction (cf. step 1) for every edge in BΔnR(z)
the usage of pathst start in some point x and end in some other point y with x, y ∈ BΔn2

√
d(z)

so that |x− y| ∈ [Δn−1,Δn) is bounded by K and this number is independent of the scale. �

6. Proof of Theorem 1.3

We are now in the position to prove Theorem 1.3. The proof is just an easy consequence of
Theorem 5.15.

Proof. Let R > 0 and x0 ∈ R
d. For x, y ∈ BR(x0) ∩ Z

d denote by (x = z1, z2, . . . , zN−1, zN =
y) the path pxy that satisfies properties (1)–(4) of Theorem 5.15. For simplicity, we assume here
that every path in (pxy) is of length N . Then, with use of the properties (1)–(4) of Theorem 5.15
and of (4) we find:∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(f(x) − f(y))2|x− y|−d−α

� 2λd+α
∑

x,y∈BR(x0)∩Zd

|x−y|>R0

N−1∑
i=1

(f(zi+1) − f(zi))2|zi+1 − zi|−d−α

� 2λd+α
∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(N − 1) max
i∈{1,...,N−1}

[
(f(zi+1) − f(zi))2|zi+1 − zi|−d−α

]

� 2Λλd+α
∑

x,y∈BR(x0)∩Zd

|x−y|>R0

(N − 1) max
i∈{1,...,N−1}

[
(f(zi+1) − f(zi))2ω(zi+1, zi)

]

= 2Λλd+α(N − 1)M
∑

x,y∈B(N−1)λR(x0)∩Zd

|x−y|>R0

(f(x) − f(y))2ω(x, y).

Therefore, c = (2Λλd+α(N − 1)M)−1 and κ = (N − 1)λ. �

Appendix. Auxiliary results

The following lemma is a version of [7, Lemma 6.9] that matches our integral kernels. Note
that [7, Lemma 6.9] is concerned with translation invariant expressions. The proof also applies
to our case.

Lemma A.1. Let α ∈ (0, 2) and κ � 1. For B = BR(x0), R > 0, x0 ∈ R
d, we set B∗ =

BκR(x0). Let k : R
d × R

d → R be a symmetric kernel that satisfies (2). Suppose that for some
c > 0

c

∫
B×B

(f(x) − f(y))2|x− y|−d−α d(x, y) �
∫
B∗×B∗

(f(x) − f(y))2k(x, y) d(x, y)

for every ball B ⊂ R
d and every f ∈ Hk(B∗). Then, for every bounded Lipschitz domain Ω ⊂ R

d

there exists a constant c̃ = c̃(d, κ, α,Ω) > 0 such that for every f ∈ Hk(Ω)

c̃c

∫
Ω×Ω

(f(x) − f(y))2|x− y|−d−α d(x, y) �
∫

Ω×Ω

(f(x) − f(y))2k(x, y) d(x, y).
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The constant c̃ depends on the domain Ω only up to scaling. In particular, if Ω is a ball, the
constant can be chosen independently of Ω. For 0 < α0 � α < 2, the constant c̃ depends on α0

but not on α.

Proof. Let Ω be a bounded Lipschitz domain. The Whitney decomposition technique
provides a family B of balls with the following properties.

(i) There exists a constant c = c(d) such that for every x, y ∈ Ω with |x− y| < c dist(x, ∂Ω),
there exists a ball B ∈ B with x, y ∈ B.

(ii) For every B ∈ B, B∗ ⊂ Ω.
(iii) The family {B∗}B∈B has the finite overlapping property, that is, each point of Ω belongs

to at most M = M(d) balls B∗.

Thus, for each f ∈ Hk(Ω),∫
Ω×Ω

(f(x) − f(y))2k(x, y) d(x, y)

� 1
M2

∑
B∈B

∫
B∗×B∗

(f(x) − f(y))2k(x, y) d(x, y)

� c

M2

∑
B∈B

∫
B×B

(f(x) − f(y))2|x− y|−d−α d(x, y)

� cc̃

M2

∫
Ω×Ω

(f(x) − f(y))2|x− y|−d−α d(x, y), (A.1)

where we applied inequality (13) in proof of [6, Theorem 1] to derive the last inequality, see
also [11, Theorem 1.6]. For a scaled version of Ω, we can scale all balls in the family B by the
same factor and arrive at the same constant c̃. The constant stays bounded when α ∈ [α0, 2)
for α0 > 0. �

The next lemma follows from Lebesgue’s differentiation theorem.

Lemma A.2. Let ϕ : R
d → R be locally integrable. The following holds for almost every

s ∈ R
d. If (xh)h>0 is a sequence in hZ

d such that s ∈ Ãh(xh) for every h > 0, then,

1
λd(Ah(xh))

∫
Ah(xh)

ϕ(t) dt h→0−→ ϕ(s).

Proof. The cube Ãh(xh) is contained in the ball B2h
√
d(s) and we know λd(Ãh(xh)) =

cλd(B2h
√
d(s)) for a constant c only depending on the dimension d. Thus, it follows by

Lebesgue’s differentiation theorem (cf [15, Theorem 1.4, Corollary 1.7, Chapter 3]) for almost
every s ∈ R

d

1
λd(Ah(xh))

∫
Ah(xh)

|ϕ(t) − ϕ(s)|ds

� 1
λd(B2h

√
d(s))

∫
B2h

√
d(s)

|ϕ(t) − ϕ(s)|ds h→0−→ 0.

This implies our claim. �
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