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1 Introduction

This work is motivated by Tadahisa Funaki’s pioneering work [26] and Martin Hairer’s
recent work [35]. The former had proved the existence and uniqueness of a natural
evolution driven by regular noise on loop space over a Riemannian manifold (M, g) by
the classical theory of stochastic differential equation, and the latter considered the
singular noise case, i.e. the associated stochastic heat equation may be interpreted
formally as

m

(1.1) = —VE(u)+ Zoi(u)ﬁg

i=1

for solutions wu(t,-) : S* — M, ie. the formal Langevin dynamics associated to the
energy given by

B(0) = [ u(0u(s). 0.0(s))ds.

and > " 0;(w)&; is a suitable “white noise on loop space”. By Andersson-Driver’s
work in [2], we know that there exists an explicit relation between the Langevin energy
E(u) and the Wiener (Brownian bridge) measure (see also [42, 52, 61]). In [2], the
Wiener (Brownian bridge) measure p has been interpreted as the limit of a natural
approximation of the measure exp(—3F(u))Zu, where Zu denotes a ‘Lebesgue’ like
measure on path space. By observing the above connection, one may think the solution
to the stochastic heat equation (1.1) may have p as an invariant (even symmetrizing)
measure. In this paper, starting from the invariant measure p we use the theory of
Dirichlet forms to construct a natural evolution which admits p as an invariant measure.

Actually, on a Riemannian path/loop space there exists another process which also
admits p as an invariant measure associated with the Dirichlet form &Y given by
the Malliavin gradient, which sometimes is called the O-U Dirichlet process. These
processes had first been constructed by Driver and Rockner in [19] for pinned loop
space and by Albeverio, Léandre and Rockner in [4] for the free loop space by using
Dirichlet form theory. After that there were several follow-up papers concentrating on
more general cases, see [23, 43, 57, 16]. In addition, Norris in [48, 47] obtained some
similar processes based on the theory of stochastic differential equations.

Recently, Hairer [35] wrote equation (1.1) in local coordinates heuristically as

(1.2) Ou® = O2u™ + ng(u)ﬁsuﬁﬁsuw + o (u)é&;,

where Einstein summation convention over repeated indices is applied and I'j, are the
Christoffel symbols for the Levi-Civita connection of (M, g). o; are some suitable vector
fields on M. This equation may be considered as a certain kind of multi-component
version of the KPZ equation. By the theory of regularity structures recently developed
in [34, 8, 11], local well-posedness of (1.2) has been obtained in [35].
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When M = R? the process constructed by Driver and Réckner in [19] is the O-U
process in the Mallivan calculus, whereas equation (1.2) corresponds to the stochastic
heat equation. To explain the difference of the above two processes, let us first consider
the following two stochastic equations on L?([0, 1]; R%):

A. Ornstein-Unlenbeck process

1 !
dX(t) = §X(t)dt + (—Ap) 2dW (1),
B. Stochastic heat equation

dX(t) = %ADX(t)dt + dW (),
where Ap is the operator C?—; on L?([0, 1]; R?) with boundary condition h(0) = 0, h(1) =
0 and W is an L?-cylindrical Wiener process. Solutions to these two equations share
the same Gaussian invariant measure N (0, (—Ap)™') in L*([0,1]; R9). Tt is well known
that N(0, (—=Ap)~!) has full (topological) support on C([0, 1]; R?) and is the same as
the law of the Brownian bridge on C([0, 1]; R?) starting from 0.

In the first part of this paper, we construct the solutions to the stochastic heat
equation taking values in a Riemannian manifold M by Dirichlet form theory (i.e.
we replace in Case B above R? by M). Unlike as in [19], we consider the closure
(&,2(&)) of the following bilinear form with the reference measure p = the law of
Brownian motion on M (path space case)/the law of Brownian bridge on M (loop
space case):

1 1 —
&(F,G) = 3 /E<DF, DG gdp = 3 Z/EthFthGdu; F,G e FCy,
k=1

where .ZC} is introduced in (2.2) below, H := L?([0, 1];R?), E is introduced in Section
2.1 and DF is the L*-derivative defined in Section 2 with {h;} being an orthonormal
basis in H. In this case, we call the associated Dirichlet form L2-Dirichlet form.
When M = R¢ this Dirichlet form just corresponds to the stochastic heat equation,
i.e. Case B above, while in [19] the considered Dirichlet form corresponds to the process
from Case A above, if M = R?. Therefore, below we denote the Dirichlet form in [19]
by &°V. By simple computations, one sees that the classical cylinder test functions
u(y) = f() considered in [19] are not in the domain of Z(&), since & (u, u) might be
infinity. Thus, we need to choose a class of suitable functions .#C} introduced in (2.2)
below. As usual in Dirichlet from theory to obtain the corresponding Markov process,
i.e. in our case the solution to the stochastic heat equation in the path/loop space
over M, we have to prove a) closability and b) quasi-regularity, which is done
in Section 2 below (see Theorem 2.2). To prove the quasi-regularity of the closure of
&, the uniform distance will be replaced by L2-distance mentioned in Subsection 2.1.
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Then we obtain martingale solutions to the stochastic heat equations, which admit p
as an invariant measure on path space and loop space, respectively.

We would like to emphasize that both the Dirichlet form approach and regularity
structure theory can be used to construct rigorously the natural Markov process as-
sociated with (1.2) (see Section 4). The Markov process constructed by the Dirichlet
form approach is a global martingale solution starting from quasi-every starting point
(which is a path/loop), which has the law of the Brownian motion resp. Brownian
bridge on M as an invariant measure. The solution obtained by regularity structure in
[35] is a local strong solution to (1.2) starting from every point (=path/loop).

In this paper we consider four different cases: pinned path resp. loop spaces and free
path resp. loop spaces. For a better understanding of the measure and the stochastic
heat equation on these spaces, let us first look at the simplest case : M = R?. For
the case of the path space, the reference measure is P, := N(z,(—Ap n)~'), which is
the law of Brownian motion starting from a fixed point z € R? where Ap y is the
operator % on L2([0,1];R?) with boundary condition h(0) = 0,h/(1) = 0, and the
corresponding SPDE constructed by the L2-Dirichlet form & above is the following:

1
(1.3) dX(t) = EAD’N(X(t) —x)dt + dW (),
with W an L%([0, 1]; R?)-cylindrical Wiener process. On the loop space, the reference
measure is P, , = N(z,(—Ap)~!), which is the law of Brownian bridge starting from
r € RY, then the corresponding SPDE is:

dX(t) = %AD(X(t) — 2)dt + dW (1),

where Ap is the operator ;—; on L?([0, 1]; R?) with boundary condition h(0) = 0, h(1) =
0. For the case of free path/loop space, we have the following: Let ¢ be a probabil-
ity measure on R?. Then the reference measure for the free path case is given by

[ Pyo(dz) = [ N(z,(—Ap,n) ')o(dz) and the corresponding SPDE is:

dX(t,z) = %AD,N(X(t, ) — X (£, 0))dt + dW (2).

Similarly, the reference measure for the free loop case is given by [ P,,o(dx) =
[ N(z,(—Ap) ')o(dz) and the corresponding SPDE is:

1
dX(t,z) = §AD(X(t, x) — X (t,0))dt + dW (¢).
In the second part of this paper, we use functional inequalities to study the proper-
ties of the solutions to the stochastic heat equations on path space over a Riemannian

manifold M. Functional inequalities for Ornstein-Unlenbeck process on Riemannian
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path space have been well-studied (see [24, 3, 4, 22, 3, 38, 39, 53, 16] and references
therein). Since the L2-Dirichlet form associated with the stochastic heat equation is
larger than the O-U Dirichlet form &°Y constructed in [19] (i.e., &V (u,u) < & (u,u)
for u € D(&)), all the functional inequalities with respect to &°Y still hold in the
stochastic heat equation case, which implies that the former requires stronger Ricci
curvature conditions than the latter. In fact, from recent results in [46] by Naber, we
know that the Poincare inequality /log-Sobolev inequality for the twisted O-U Dirichlet
form requires the uniformly bounded Ricci curvature. And for the L2-Dirichlet form,
it only needs lower bounded Ricci curvature, which had already been proved before
by Gourcy-Wu in [33]. In this section we also establish the log-Sobolev inequality for
&, but our constant C(K) is smaller than Gourcy-Wu’s constant (see Theorem 3.1
below). In particular, when M is an Einstein manifold with constant Ricci curvature
K € R, our constant C'(K) in the log-Sobolev inequality is optimal in the sense that
limg o C(K) = % and 7:1—2 is the optimal constant for the log-Sobolev inequality in the
flat case (see Theorem 3.3 below). Here we want to emphasize that the log-Sobolev
inequality implies the L*-ergodicity of the solution to the stochastic heat equation (see
Remark 3.2 below for other consequences).

As mentioned above, the log-Sobolev inequality is a consequence of a geometric
property of the manifold. It is very interesting to ask to what extent these geometric
properties are also necessary for the log-Sobolev inequality to hold for & as above. The
most interesting work is related to the Bakry-Emery criterion, which gives a charac-
terization of the lower boundedness of the Ricci curvature in terms of the log-Sobolev
inequality for the classical Dirichlet form on a Riemannian manifold (see [6]). Recently,
Naber in [46] characterizes uniform boundedness of the Ricci curvature using the O-U
process on path space. Wang-Wu[59] obtained a more general characterization of the
Ricci curvature and the second fundamental form on the boundary of the Riemannian
manifold using a new method. After that, this result has been extended to general
uniform bounds of the Ricci curvature by Wu [60] and Cheng-Thalimaier [17]. In ad-
dition, Wu [60] and Wang [56] gave some characterization for the upper bound of the
Ricci curvature by analysis on path space and the Weitzenbock-Bochner integration
formula respectively. Similar to the above case, in Subsection 3.2 we give some (equiv-
alent) characterizations of the lower boundedness of the Ricci curvature by using the
L2-gradient and a properly weighted decomposition of the L2-Dirichlet form on path
space.

In the last part of the paper, we discuss the form of the stochastic heat equations
constructed in Section 2. Dirichlet form theory is a useful tool to construct stochastic
processes on infinite dimensional spaces (see [5, 44]). In the flat case we can use
Dirichlet form theory to write an SPDE which the process satisfies (see [5] for the p(®),
model). This helps to obtain new properties of the @3 field (see [50, 51]). However,
in the Riemannian manifold case, the explicit form of the SPDE cannot be deduced
directly since there are no linear functions on the Riemannian manifold. It will be



seen from Section 2 that the martingale part is space-time white noise and thus is very
rough. To define the drift part, renormalization is required (see [34]). In Section 4 we
construct suitable approximation processes on the piecewise geodesic space using the
approximation measures from [2] and discuss the convergence of the approximations,
which gives two limiting forms of the stochastic heat equations. One is more related to
the Mosco convergence of the approximating Dirichlet forms to the L?-Dirichlet form
& and the integration by parts formula obtained by Driver (see (4.30) and Remark 4.10
below). The other is more related to (1.2) constructed by Hairer ( see (4.29) below).
The different forms of the equations originate from the different choices of the diffusion
coefficients. We conjecture that the Markov process constructed in Section 2 by the
Dirichlet form & has the same law as the solution to (1.2) constructed by Hairer in
[35]. To obtain the Mosco convergence of the corresponding Dirichlet forms in general
Markov uniqueness of the limiting L2-Dirichlet form is required, which is a difficult
problem in Dirichlet form theory. We hope to be able to use the theory of regularity
structures/ paracontrolled distribution method to make the heuristic convergence of
the corresponding solutions in Section 4 rigorous in our future work.

This paper is organized as follows: In Section 2 we construct the L2-Dirichlet form
& on the pinned (free) path/loop space. By this we obtain existence of martingale
solutions to the stochastic heat equation on path space and loop space. In Section 3.1,
we derive functional inequalities for the L2-Dirichlet form &. The equivalent character-
izations of the lower boundedness of the Ricci curvature are obtained in Section 3.2. In
Section 4.2, we construct approximation processes on the piecewise geodesic space by
considering Dirichlet forms with respect to the approximation measure. In Section 4.3
we discuss the convergence of the approximation processes and the form of the limiting
stochastic equation heuristically.

2 Construction of Dirichlet form

2.1 Dirichlet form on pinned path Space

Throughout this article, suppose that M is a complete and stochastic complete Rie-
mannian manifold with dimension d, and p is the Riemannian distance on M. In this
section we assume that M is compact for simplicity and for the more general case, we
refer to Remark 2.1. Fix o € M and T > 0, the based path space W (M) over M is
defined by

W, (M) :={y € C((0,T]; M) : 7(0) = o}.

Then WZX(M) is a Polish space under the uniform distance

doo(7,0) = sup p(y(t),o(t)), ~,0€ W] (M).
te[0,7]



For convenience, we write W,(M) := W(M). In the following we consider W, (M) for
simplicity. In order to construct Dirichlet forms associated to stochastic heat equations
on Riemannian path space, we first need to introduce the following L?-distance, which
is a smaller distance than the above uniform distance do, on W,(M):

1
d(”y,'r])2 ::/ p(fys,ns)st, v, € Wo(M).
0

The L2-distance d is quite crucial to prove the quasi-regularity for the Dirichlet form
mentioned in Theorem 2.2. Let E be the closure of W, (M) in

{77 [0, T] — M; /Olp(o, ns)’ds < oo}

with respect to the distance cZ, then E is a Polish space.

Before stating our main results in this section, let us recall some basic notation and
introduce the Brownian motion on M. Let V be the Riemannian connection on M
and the curvature tensor R of V is given by

R(X,Y)Z =VxVyZ —=VxVyZ =V xy1Z

for all vector fields X,Y and Z on M. The Ricci tensor Ric and the scalar curvature
Scal of M are traces of R and Ric respectively, i.e.,

d d

RicX := Z R(X, éi)éi, Scal = Z(Rlc@l, éi>,

i=1 =1

where {é;} is an orthonormal frame.
Let O(M) be the orthonormal frame bundle over M, and let 7 : O(M) — M be the

canonical projection. Furthermore, we choose a standard othornormal basis { H;}%¢_, of
horizontal vector fields on O(M) and consider the following SDE:

AU, =3¢ Hy(U;) odB!, t>0
(2.1) ’
UO = Ug,
where u, is a fixed orthonormal basis of T,M and B}, --- , B are independent Brownian

motions on R. Then z; := 7(U;), t > 0, is the Brownian motion on M with initial
point o, and U. is the (stochastic) horizontal lift along .. Let u be the distribution of
zpq) := {x(t)|t € [0,1]}. Then p is a probability measure on W, (M).

In the following we use (-, -) to denote the inner product in R%

Let ZC} be a space of C} cylinder functions on E, defined as follows: for every
F € FC}, there exist some m > 1, m € N, f € CHR™),g € C'([0,1] x M),
i =1,...,m, such that

22 Fo) =7 ([ atats, [ wloris [ nlsinis). 2eB
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Here Cy"' ([0, 1] x M) denotes the functions which are continuous w.r.t. the first variable
and C'- differentiable w.r.t. the second variable with continuous derivatives. It is easy
to see that ZC} is dense in L*(E,u). For any F € FC} of the form (2.2) and
h € H := L*([0,1]; RY), the directional derivative of F with respect to h is given by

D) = 320/ / (U= (3)Vg5(5,70), hs) s, € Wi(M),

where

. 1 1 1
9;f(v) = 3jf</0 gl(s,%)d&/o gz(s,%)ds,---,/o 9m(37%)d3)'

and Vg; denotes the gradient w.r.t. the second variable. Without loss of generality, for
v € E\W,(M) we take D, F'(y) = 0. By the Riesz representation theorem, there exists
a gradient operator DF(y) € H such that (DF(y),h)yu = DpF(7v),y € E,h € H. In
particular, for v € W,(M),

(2.3) DF(1)(s) = 3 0:f()US (1) Vg5(s,%).

Remark 2.1. In fact, for a more general Riemannian manifold the main results in
this section still hold. But when we prove the quasi-reqularity of &, it is required that
the function g is allowed to be the distance function, which can be approximated by
C-functions in a suitable way. This will be considered in a forthcoming paper.

Let H denote the Cameron-Martin space:

H := {h e c([o, 1];Rd)‘h(0) =0, ||h||F = /01 R/ (s)|*ds < oo} :

Taking a sequence of elements {h;} C H such that it is an orthonormal basis in H,
consider the following symmetric quadratic form

S(R.G) = /

1 o
E(DF, DG)gdp = 5 > /E Dy FD, Gdu; F,G e FCL
k=1

The following is the main results in this section.

Theorem 2.2. The quadratic form (&,.FC}) is closable and its closure (&, D(&)) is
a quasi-reqular Dirichlet form on L*(E;p) = L*(W,(M); u).

The proof of Theorem 2.2 will be given at the end of this subsection. Using the
theory of Dirichlet forms (see [44]), we obtain the following associated diffusion process.

8



Theorem 2.3. There exists a conservative (Markov) diffusion process M = (Q, F, (#,),
(X1)i>0, (P?).cr) on E properly associated with (&, 2(&)), i.e. for u € L*(E;u) N
By(E), the transition semigroup Pyu(z) := E*[u(X})] is an &-quasi-continuous version
of Tyu for allt > 0, where T} is the semigroup associated with (&, 2(&)).

Here %,(E) denotes the set of the bounded Borel-measurable functions and for the
notion of &-quasi-continuity we refer to [44, ChapterIIl, Definition 3.2]. Moreover, by
the Fukushima decomposition we have:

Theorem 2.4. There exists a properly &-exceptional set S C E, i.e. u(S) =0 and
P*[X; e E\ SVt > 0] =1 for z € E\S, such that Vz € E\S under P?, the sample
paths of the associated process M = (Q, F, (M), (Xi)i>0, (P?).ce) on E satisfy the
following for u € P(&)

(2.4) u(Xy) —u(Xo) = M+ N P*—a.s.,

where M"™ is a martingale with quadratic variation process given by fot | Du(X,)|%ds
and N; is a zero quadratic variation process. In particular, for v € D(L), N} =

fot Lu(X)ds, where L is the generator of (&, D(&)).

T2

Remark 2.5. i) If we choose u(y) = [*u®(vs)ds € FCy, 0 <1 <1y < 1, with u®
being local coordinates on M, then the quadratic variation process for M™ is the same
as that for the martingale part in (1.2) (see Remark 4.10).

ii) Although the stochastic horizontal lift (Uy(7))ico,00) @5 applied in the definition
of (&, FCy), the value of &(F,F) is independent of (Uy(Y))tep,00)- In particular, by

the definition (2.3) of the gradient, we have

S(R.6) =5 [ XS 0fi()032) [ (V0! (57, Vo)

i=1 j=1

for any F,G € ZC} with
PO =11 ([ absnons. [ abtsr)as. . [ ghisn(oas)
60 =1 [ dtsnonds. [ s s [ atlsoas). o em

This implies the quadratic form & is independent of (Ui(7))icjo,00)- This is differ-
ent from the O-U Dirichlet form, since the latter depends on the parallel translation
(Ue(7))eel0.00)-

iii) In Section 4 we have another reference measure g = e~ o Seal(y(s)dsq (),
which is also related to exp(—3E(u))Zu mentioned in introduction. We can also con-
struct the L*-Dirichlet form (&°, 2(&°)) with respect to g and the results in Theorems
2.2-2.4 still hold in this case.



Proof of Theorem 2.2. (a) Closablity: By the integration by parts formula (refer
to [20], also see [36, 37]): for h € H,

(2.5) / DypFdp = / FBpdy

for every cylinder function depending on finite times F(vy) = f(V,..-sV,,), where
feCHM™) and t; € [0,1],i=1,...,m

! 1
L2(E, ,LL) = ﬁh = / <h,i9 —+ éRiCUS (hs), st> s
0
where
(Ricy, (a1), az) == (Ric(Usar), Usaa)r, s, a1,a2 € RY
For each F() fo g1(s,7s)ds fo Im(8,7s)ds) € F Y, choose

( Zgl /n ’yl/n o _ng /TL ’71/71)‘

Then F, and D,F, L?>-converge to F' and DjF respectively. Thus, we deduce that
(2.5) holds for F € .ZCY.

Since 3, € L*(E, u), it is standard to prove that (&,.#C}) is closable (see [19] or
[43, 57, 16]). For the completeness of the proof we write it in detail. Let {F,}52, C
FC} be a sequence of cylinder functions with

(2.6) lim p[F7] =0, lim & (F,— Fy, F, — F,) =0.

n—oo n,m—0o0

Thus {DF,}°°, is a Cauchy sequence in L? (E — H; i) for which there exists a limit
®. Tt suffices to prove that ® = 0. By (2.5), for G € ZC} and k > 1, we have

= p[(D (F,G), hiyu] — n[(DG, hi)u ]

(2.7) 1
— i |R6 [ (1) + GRicmu(s).aB.)| < DG ).

Since G and DG are bounded and fol (h(s) + 3Ricy,hi(s),dBs) € L*(E; ), F, con-
verges to 0 in L%*(p), we may take the limit n — oo under the integral in (2.7) and
conclude

p[(® h)uG) =0, VGeFC!, k>1,

10



which implies that ® = 0, a.s., and that (&, #C}) is closable. By standard methods,
we show easily that its closure (&, 2(&)) is a Dirichlet form.

(b) Quasi-Regularity: By the Nash embedding theorem we may assume that M
is embedded isometrically into R for a large enough N € R:

Vip—Y(p) = @' (p), ... " (p) € RY.

Then the distance p(p, q) is equivalent to po(p,q) := |[(p) — ¥(q)| for p,q € M and
w 1s smooth on M which implies that the two distances d(v,n)* and d(v,1)? =

Yot fo — 9'(n(s)))?ds on the path space E are equivalent to each other.
Since E is separable we can choose a fixed countable dense set {,,|m € N} C W,(M)
in E. We first prove the tightness of the capacity for (&, 2(&)): Let ¢ € Cp°(R) be
an increasing function satisfying

p(t)=t, Vtel-1,1 and [¢'| <1.
And for m € N, the function v, : E — R is given by
vm(7) = @(d(7,6n)?), 7 €E.
Suppose we can show that

(2.8) Wy, = 1nf Um,n € N, converges & — quasi-uniformly to zero on E,
m n

then for every k € N there exists a closed set Fj such that Cap(FY) < % and w, — 0
uniformly on Fj. For every 0 < € < 1 there exists n € N such that w,, < € on Fj, which
implies that Fj is totally bounded, hence compact and the capacity of (&, 2(&)) is
tight. In the following we show (2.8): we fix m € N, consider v,, € D(&) and

Diym(1) = (3,60 302 [ (W69 = (En0) (U7 V0 (9), () .

Thus we obtain

(2.9) ) 2
E(Ums Um) —%/E;(thvm )) dp
<2 / fj( / — 0 (6n()) (U V0 (s ))7hk(8)>d8>2du

<oy [ o)hduz e, vmen
i=1 VE
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Here C' is independent of m and in the last inequality we used that M is compact.
Since {&,|m € N} is dense in E, w,, | 0 on E hence in L?(E; ). By (2.9) and [44,
IV.Lemma 4.1] we have

E(wp,wy,) <C, V¥neN.

By [44, 1.2.12, II1.3.5] we obtain that a subsequence of the Cesaro mean of some
subsequence of w,, converges to zero &-quasi-uniformly. But since (wy, )nen is decreasing,
(2.8) follows.

For any v # n € E let ¢ := d(y,n7) > 0. There exists a certain {y such that
d(én,n) < £ and d(En,7) > £. Let v () == @(d(7, &m)?), m € N for ¢ as above. Then
{vm} separates the points of E and (iii) in the definition of quasi-regular Dirichlet

froms (cf. [44]) follows. Now the results follow immediately. O

2.2 Dirichlet form on loop sapce

In this subsection, we construct the quasi-regular Dirichlet form on loop space. To do
that, we first need the integration by parts formula with respect to the Brownian bridge
measure and this formula does not only depend on bounds of the Ricci curvature, but
also on the Hessian of the logarithm heat kernel on M. Fix o € M, the based loop
space L, (M) over M is defined by

Loo(M) == {y € C([0,1]; M) : 4(0) = v(1) = o}

Then L,,(M) is a Polish space under the uniform distance do.
As in the previous section, we work with the following simple but natural distance
on L, (M),

1
d(v,n) :=/ p(Vssms)?ds,  y,n € Loo(M).
0

Let E be the closure of L,,(M) in {n : [0,T] — M; fol p(0,ms)*ds < oo} with respect
to the distance d. Then E is a Polish space.

Let P,, be the Brownian bridge measure on L, (M), which can be extended to

a Borel measure on E. Let O(M) be the orthonormal frame bundle over M, and let

7 : O(M) — M be the canonical projection. Let (7¢){o<t<1} be the coordinate process

on Lyo(M), (ZFi)o<i<1 the P, ,-completed natural filtration of (y:). We set .F# = Z.

Then (7;) is a semimartingale on the stochastic basis (E,.#,.%;,P,,). For a given

orthonormal frame ug € 7~ (z) C O(M), there exists a unique stochastic horizontal

lift (Uy) of (7¢), determined by the Levi-Civita connection, such that Uy = ug. Let

dB, = U ody, — U; 'Viogpi_i(ys,0)dt, t>0

o {0
0o=70,
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where od~; stands for the Stratonovich differential of v, and p;(z,y) is the heat kernel
of %A with A := Levi-Civita Laplacian on M. (By)o<i<1 is an R-valued standard
Brownian motion.

By Driver’s integration by parts formula [21] (see also [38, 13]) we have for F' €
FCL h e Hy:= {h € H|h(1) =0},

(2.11) / DuFdP,, — / FB.dP,,,
Loyo(M) Lo,o(M)

with
! 1
L*(E,P,,) D By := / <h; + §RicUShS — Hessy, logp1_s(+, 0)hs, st> ,
0

where Hess, fa := u™'Hessf (7 (u))ua for u € O(M),a € R? and smooth function f on
M. Let {h} C Hy be an orthonormal basis in H such that hy € Hy, k& € N. Similarly
as above we easily deduce that the form

5(F,G) = % /

E

1 o)
(DF, DG)udP,, = 5 > /E Dy, FD,, GdP,, F,G e .ZC}
k=1

is closable and its closure (&, 2(&)) is a quasi-regular Dirichlet form on L*(E;P,,) =
L*(Lyo(M);P,,). Moreover, Theorems 2.2-2.4 still hold in this case.

2.3 Dirichlet form on free path/loop space

Similar to the above two subsections, in this subsection, we construct a class of quasi-
regular Dirichlet forms on the free path/loop space. Let o be a probability measure
on M and do(z) = v(z)dr some C'-function v on M, and P, be the distribution of
the Brownian motion/Brownian bridge starting from o up to time 1, which is then a
probability measure on the free path/loop space:

(2.12) W(M)=C([0,1]; M) or L(M) = Uyem Ly, (M).
In fact, we know that
dP, = / P,do(y),
M

where P, is the law of Brownian motion/Brownian bridge starting at y. Similarly, we
define the L*-distance on W (M)/L(M) by

1
d(7,n) ;:/ p(vs,ms)ds,  v,m € W(M).
0

13



Let E be the closure of W (M)/L(M) in {n : [0,T] — M; fol p(0,ns)%ds < oo} with
respect to the distance d. Then E is a Polish space. P, can be extended to a Borel
measure on E. Choose a sequence of {h;} C H such that it is an orthonormal basis in
H. Then the quadratic form on the free path/loop space is defined by

E(F,C) = /

E

1 o
(DF, DG)udP, = 5 > / Dy, FD,, GdP,, F,G < FC}.
k=1"E

By the integration by parts formula in [28]/[15, Lemma 4.1] (and the references therein):
for F € ZCl, h € H,

(2.13) / Dy FdP, = / FBdP,,

where
! 1 ! 1
By = / <h’s + éRicUshs, dBS> or / <h'S + §RiCUShS — Hessy, log p1_s(+, 0)hs, dBS> ,
0 0

and 3, € L?(E,P,). Here B is the corresponding Brownian motion in R%. This implies
that the form & is closable, and similarly as above, we can prove that its closure
(&,2(8)) is a quasi-regular Dirichlet form on L?(E;P,) = L*(W(M);P,). Moreover,
Theorems 2.2-2.4 still hold in this case.

Remark 2.6. Compared to the proof of the closability of the O-U Dirichlet form &°U
on the free path/loop space in [28], our situation is simpler now. This is because the
integration by parts formula for O-U Dirichlet form depends on the initial distribution
o. The present case does not depend on the initial point since now we take the Lo-space
as the intermediate space.

3 Properties of L?-Dirichlet form on path space

In this section, we study properties of the stochastic heat process X;,t > 0, and L*-
Dirichlet form & constructed in Section 2.1. In fact, we establish some functional
inequalities associated with (&, D(&)). As mentioned in Remark 2.1, the results in
Section 2 also hold when M is not compact. Therefore, in this section we drop the
compactness condition on M.

3.1 Log-Sobolev inequality
In this subsection, we establish log-Sobolev inequality for the L?-Dirichlet form.

14



Theorem 3.1. [Log-Sobolev inequality] Suppose that Ric > —K for K € R, then the
log-Sobolev inequality holds

(3.1) w(F?log F?) < 2C(K)&(F, F), F e ZC}, u(F?) =1,

where C(K) := =LK A Cy(K) with

K2
41— V2e% —eK), if K <0,

2 eK—ze§+1>, if K> 0.

OO(K> =

Remark 3.2. (i) In fact, Theorem 3.1 has first been proved in [33]. Compared to
their results, our constant C'(K) is smaller. The constant in [33] is given by

X & 1—\/2e§—ef<), if 2% —eK >0,

C(K) =
Z (e —2e% +1), if 2% — K < 0.

Then it is easy to see that C(K) > Co(K) for K > 0 and 2e2 — X > 0.

Comparing the classic O-U Dirichlet form &°Y and the L?-Dirichlet form &, we
note that the log-Sobolev inequality associated to two Dirichlet forms are com-
pletely different. The former requires uniform bounds on the Ricci curvature,
and the latter only needs lower bounds of the Ricci curvature.

(11) According to [54], the log-Sobolev inequality implies hypercontractivity of the as-
sociated semigroup P, in particular, the L?-exponential ergodicity of the process:
IPif = [ fdpllre < e/CE| P2

(1ii) The log-Sobolev inequality also implies the irreducibility of the Dirichlet form
(&,2(8)). It’s obvious that the Dirichlet form (&, 2(&)) is recurrent. Combin-
ing these two results, by [27, Theorem 4.7.1], for any nearly Borel non-exceptional
set B,

P*(opob, <oco,¥n>0)=1, forqe z€E.

Here op = inf{t > 0 : X; € B}, 0 is the shift operator for the Markov process
X, and for the definition of any nearly Borel non-exceptional set we refer to
[27]. Moreover by [27, Theorem 4.7.3] we obtain the following strong law of large
numbers: for f € L'(E, i)

1 t
lim ;/ f(XS)ds:/fdu, P* —a.s.,
0

t—o00

for g.e. z € E.
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Proof of Theorem 3.1. By [33] we have the martingale representation theorem, that
is, for F € ZC},

(3.2) F=E(F)+ /01<H§, dB,),
with
(3.3) HF =E {M;l/sl M. (DF(7))dr ﬁ] :

Here and in the following E means the expectation w.r.t. u, B is R%valued Brownian
motion under p, (%) is the normal filtration generated by B and M, is the solution of
the equation

d 1 :
(34) &Mt + §MtR1CUt = 0, MO =1

Let F' = G? for G € Z(C} and consider the continuous version of the martingale
N, = E[F|.%]. We have

N, =EF +/ (HF dB,).
0
Now applying It6’s formula to Nglog Ny, we have
1 1
(3.5) EN; log Ny — ENglog Ny = 5IE/ N HE*ds.
0

Here and in the following we use | - | to denote the norm in R% On the other hand,
DF = D(G?) = 2GDG.

Using this relation in the explicit formula (3.3) for HY, we have

1
(3.6) HF =2FE lGM;l / M,DG(7)dr

By the lower bound on the Ricci curvature, we have
(3.7 MM | < e

By Cauchy-Schwarz inequality in (3.6) and (3.7), we have

2

1
|HE? < 4E[G2|333]EK/ eK(Ts)/2\DTG|dT>

16



Here and in the following we use DG to denote DG(7) for simplicity. Thus the right
hand side of (3.5) can be controlled by

1 1 2 1 1 1
2R / K / eK(Ts)/Q\DTG|dT> ]ds <2E / [ / eKT=)qr / |DTG\2d71 ds
0 s 0 s s

1
(3.8) <2 [1eK0=9 _1)4s8(G, )
K Jo
K _1_
§26K—12K£’(G,G).

Now we use another way to control the left hand side of (3.8). We have the following
estimate, which follows essentially from [29]: Hélder’s inequality implies that

1 2 1 1
( / eK(T_S)/leTG\dT) < / eK=)2dr / X2 D, G| dr.

s

Then changing the order of integration we obtain

1 1 2 1
]E/ K/ eK<T—5>/QyDTG|dT> ]ds gE/ J1(s)|DsG|*ds,
0 s 0

where .
Ji(s) = — / 2 (1= eKO-/2) K=/
0 K
:% [2(1 — e%) — eK(lr;S) + eK(IZM}
Taking the derivative of t — Jy(t) gives
2 1 —t 1 ¢
']{(t> = _E |:€I§t — §€K(12 : — §€K(12+ ):| .

In addition, we have J;(0) =0, J;(1) = 2% (1 — e%)Q. Moreover,

2 K 1[ 2

For J|(t) = 0 we only have one solution e X! = 2¢=% — 1, which implies that when

K >0, Ji(s) >0 for all s > 0. Then for K > 0, J(s) is increasing, which implies that

1 1 2 1 1
IE/ K/ eK<TS>/2|DTG\dT) ]ds < J1(1)E/ |D,G[*ds < CO(K)E/ |D,G|*ds.
0 s 0 0
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For K < 0, we suppose ty € (0, 1) satisfying J{(¢y) = 0, which is the maximum point
of Ji. Then for K < 0,

1 1 2 1 1
IE/ K/ eK<”>/ZyDTG|dT> ]ds < Jl(to)/ |D,G|*ds < CO(K)/ |D,G|*ds.
0 s 0 0

Combining all the above, we complete the proof. O

In the following Theorem 3.3, we obtain a new constant for the log-Sobolev in-
equality for Einstein manifolds. In this case the constant C'(K) tends to the optimal
constant in the flat case as K — 0 (see [9]).

Theorem 3.3. Suppose that M is an Einstein manifold with constant Ricci curvature

—K € R. Then the log-Sobolev inequality for (&, 2(&)) holds:

(3.9) w(F?log F?) < 2C(K)&(F,F), F e ZC}, u(F?) =1,
where
) 1/2 2
el —1 2 1
C(K):=< |4d A 2A2 — V=
@] (i) St ) g
and
K 2n° 1]
Ay=|—+— | k+= keN :
k 2+K(+2)] . keNu{o}
Remark 3.4. In fact, we have
) 4
Jim, O(K) = 25
and 5 is the optimal constant in the R? case (see [9, 18] and the references therein,).

Proof. Let hay := V2sin [(k+ 1) 77] eq for @ = 1,...,d,k € NU{0}. Here {e,} is
the usual orthonormal basis for R? given by e, = (0,...,1,..,0). It is easy to see that
{hax} is an orthonormal basis of H. We start with the following computation:

1 1
1
R gy = e [ e“/wsm{(mg) m] d7 = Ve 2B (s, k, K),

s

£+2_7T2 k—i—l il
2 K 2
1 2m 1 1
_1\k, K/2 _ _Ks/2 : - “n - Ks/2 -
x{( 1) e sm{(k:—i—2>7rs}+K (k+2>e cos |:(/{?+2)7TS} }
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B(s, k,K) =




Thus, we have

1
(3.10) / eK(T2 = hordr = Ak(—l)keK(l_S)/z\/éea — Aphog + Biha,

—1 —1
K 2r2 1\’ K 2x2 1\?| 2« 1
R (T Bi=|—+"(k+= = =
2+K(+2>] ok 2+K(+2) K(k+2)’
_ 1
hoi(T) := V2 cos {(k + 5) 7T7':| Cor-

It is easy to see that By < K2+ 7V o 1 Indeed, if K% < 72 then B is decreasing with

respect to k and if K? > 72 then Bk < ﬁ < }r Now since Ric = —K we have
MM, = 5. A similar argument as in the proof of Theorem 3.1 implies the left

hand side of (3.8) can be controlled by

where

A =

ds

& U ko) 2
{/ > D (DG, o) /e T B pdr ds]
a=1 k=0 8
1 d oo
ZQE[/ ) (DG hap) gy Ae(—1)FV2eRK 0792,
0 Ia=1t=0
d oo d oo 2
Y (DG haw)yg Ahas + Y > (DG, ho )y Biha ds]
a=1 k=0 a=1 k=0
1 d oo d oo 2
=2 <IE DD (DG, ho)y Ap(—1) V20026, =N "N " (DG, ho )y Acha
0 Ta=1 k=0 a=1 k=0

1 d oo d oo
#28 [ (305 (DG hasdyy An(-)FVER e, = 375 DG b A
k=0 a=1 k=0

d oo d oo 2
ZZ(DG,ha,k)HBki_la7k>ds+E/l > ) (DG, hop)yy Bl ds)
0

1 0 a=1 k=0
= 2([1 —|— [2 —|— Ig),

where we used (3.10) in the first equality. Then we have for I

1 2
I §4dE/ yDGyil(ZyAkO KU=)ds + 2R| DG} A
0 k

E_1

—EIDG [ 14(3 144

k

+21A0|2} — CU(K)E(G, ),
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where the first inequality is due to that A is decreasing w.r.t. k and {h,x} is an
orthonormal basis of H. For I3 we have

d oo
472 1
Iy=2 > (DG hop)y Bi < (m Vv p) &(G,G) = C(K)&(G,G).
a=1 k=0

Using Holder’s inequality we obtain
I, < 2L L7 <201 (K)YV2Co(K)28(G, G).
Combining the above estimates we obtain
p(F?log F?) < 2(C1(K)'? + Cy(K)'2)?6(G, G).
O

3.2 Characterization of the lower bound of the Ricci curvature

The upper and lower bounds for the Ricci curvature on a Riemannian manifold were
well characterized in terms of the twisted Malliavin gradient-Dirichlet form &°Y for
the O-U process on the path space (see A in the introduction) in [46, 59, 60, 17].
If the Malliavin gradient is replaced by the L?-gradient DF, then we obtain charac-
terizations for the lower boundedness of the Ricci curvature in terms of a properly
decomposition of the L? gradient -Dirichlet form. This subsection is devoted to prove
such characterizations.

In fact, all the results in Section 2 and Theorem 3.1 also hold when we change 1 to
T > 0. To state our results, let us first introduce some notations: For any point y € M
and 17" > 0, let x, o7 be the Brownian motion starting from y € M up to T', and pr,
be the distribution of zy [0 7. Define ZCJ as in (2.2) with 1 replaced by T'. For any
n>1and G € ZCI, define the following quadratic form

G0 = 0w [ [ D)6 s, (0

11 T
T (‘ t —2) Con(K) / / [DG(7)(s) [gadsdpry (7).
nen W (M) ST+

where

1 KT KT T? e —1 _K
Cl(K): |:E(TK€ — € +1):| 7, 02771([(): K (1\/6 ”) .
Similarly as in the proof of Theorem 2.2 we see that (&7, ,,.-#C/') is closable and its
closure is a Dirichlet form. Let p; be the Markov semigroup of the Brownian motion
x, starting from y € M, ie. given by p,f(y) = E[f(zy4)],y € M, f € B(M),t > 0.
Let C§°(M) denote the set of all smooth functions with compact supports on M.
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Theorem 3.5. For K € R, the following statements are equivalent:

(1)
(2)

()

Ric > — K.
For any f € C§°(M), Ty > 15 >0 and y € M, we have
Tl Tl Ks
| Vnswas| < [ eFnviimas
TQ T2

Forany F € {Z?:l a; fst_i fi(vs)ds,n € N, f; € C°(M), s;,t; € [0,T],a; € R} and
ye M, T >0

T
IV,EF (2, 10.17)| < / ¢ 7 E|DF(zy0.1)|(s)ds,
0

where V,, denotes the gradient w.r.t. y and E means expectation w.r.t. jip,.

For anyy € M, T > 0, the following log-Sobolev inequality holds for any n € N:

pry(F?log F?) < 28/

T)n,y

(F,F), FeZC, ury(F?) =1.

For anyy € M, T > 0, the following Poincaré-inequality holds for any n € N:

MTvZI(FZ) S ggn,y

(B, F), FeZC, ury(F)=0.

Proof. (1) = (3) By the gradient formula in [38] (see also [28, 55, 59]), for F/(y) := f(y)
with f € C§°(M) we have

VELF (2, 0m)) = USE| MY (U) 'V f ()],

where U}/ is the solution to (2.1) with o replaced by y and M} is the solution to (3.4)
with U; replaced by U{. Applying the above formula to F(y) = Y"1, a; fst_i fi(vs)ds,

we have
n t;
VEIF(a0m)] = > o [ V,EL(r,))ds
=1 i
(3.11) _up Zai/ E[MYUY) MV fi(, )] ds
i=1 Si

T
=U} / E[MYDF(z,0.1m)(s)]ds.
0
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Combining this with Ric > — K, we have
T
Ks
(3.12) V,EF (2, 0m)| < / ¢SE|DF (2, 0.1)|(s)ds.
0

(3) = (2) Taking F(v) := fTil f(7s)ds for f € CYH(M) and Ty > Ty > 0, by (3) we
have

T1 Tl
| nestas| = | [, B 1| = [9,E)
2 7—2’K5
(3.13) < [ FEIDF (0 l(5)ds
0
Tl Ks
— [ nIvias
T

(2) = (1) Let f € C3°(M) with |V f(y)| =1 and Hesss(y) = 0. For any 7" > 0 and
e > 0, according to (2), we obtain

T+e
/ Vs f(y)ds

T

Tte Ks
(3.14) < / 5 py|V f1(y)ds.

T

Dividing the two sides of the above equation by ¢ and letting € go to zero, we get

(3.15) IVprfl (y) < e pr|VF|(y).

Then by the classical result (or refer to [54] and references therein), (1) follows. Note
that por = pr, where pr is the semigroup associated with the generator A. Thus we
complete the proof of this step.

(5) = (1) Let f € C5°(M) with |V f(y)] = 1 and Hesss(y) = 0. Taking F(y) =
nfTT_l/n f(vs)ds, then DF(v)(s) = nU;1Vf(75)1SE[T_1/n,T]. By (5) we have that

E [n /T:/n f(’ys)dsr - {En /Ti/n f(%)dsr

T
<Con(B)n+1) [ EF)Pds
T—-1/n
Letting n — oo we obtain
(3.16) prf? = (prf)? < Co(K)pr|V S,
with Cy(K) = EKIT(_I. According to [55, Theorems 3.2.3], we have
S 0200\ (52
Rie(¥ 1,9 )(0) = tim (PO 9 )
(317) 1 (parf2(y) — (parf)*(y) 2
:171“?01T< 5T — |Vpar f ()] )
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Combining the above inequality with (3.16), we get

2KT_1

1
Ric(Vf, V)(y) < lim (627

parl V() |Vp2Tf<y>|2)

=tz \ (o — 1) prlVITW) |+l i por V() = [Vpar £ ()]

B .1/ 2 - 2
_K+1T1?8T<pT|Vf| \Vorf(y)] )
= K + 2Ric(V £, V) (),
where the last inequality follows due to the formula in [55, Theorems 3.2.3]:

5|V 2 —|Vp 2
(91,9 1)0) = g IV = 1901 0)

Therefore, we complete the proof of this step.
(1) = (4) According to the proof of Theorem 3.1, we only need to prove the
following: for any n € N

T T (s—t)K 2 ~
IE/ U ez |DF|ds} dt < &, (F,F).
0 t

In fact, we know that

T T (s—t)K 2
E/ /62 \DF|ds| dt
0 t

T T—-1/n (s—t)K T (s—t)K
SE/ / e 2z |DF|ds —|—/ e 2z |DF|ds
0 t

V(T=1/n) T—1/n
T T-1/n

<(1+ n)/ (T — t)E/ VK| DF2dsdt
0 t

V(T—-1/n)

2

dt

T T
+(1/n+1/n2)/ E/ K| DFdsdt
0 T-1/n
T T—1/n
<(1+n) / (T —t)(1V e<T—t>K)th/ |DF*ds
° T ° T
+ (1/n +1/n?) / e T KA1 v e_K/”)E/ |DF|*ds
0 T-1/n

T-1/n T
=(1 +n)Cl(K)E/ |IDF*ds + (1/n + 1/n*)Ca(K, n)E/ |DF|*ds,
0

T-1/n

where we used Holder’s inequality and Young’s inequality in the second inequality.
Thus we obtain the result. O
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4 Stochastic heat equation

Based on the Andersson-Driver approximation of the Wiener measure, we now present a
heuristic derivation of the equation for the process (constructed in Section 2) on path
space. When M is Euclidean space, we may choose some suitable linear functions,
which are in the domain of the generator, through which we can deduce the associated
stochastic heat equation. However, when M is a Riemannian manifold, in general, it is
not easy to find suitable test functions on E belonging to the domain of the generator
and derive the associated equation. Instead, we will use a suitable approximation to
give some intuitive idea how to deduce the equation. As mentioned in Section 1, it is
proved in [2] that natural approximations of exp(—3E(7))Z7 do indeed converge to
Wiener measure on M. For the sake of simplicity, in this section, we suppose that M
is compact. First we write the equations associated with the approximation measures.

4.1 Preliminary

Before going on, we need to introduce some notations from [2]. We will also use (-, -)
to denote the Riemmanian metric. Let .7 be the set of all partitions of [0, 1] and

1
(4.1) BO)i= [ (/9 ()ds
0
for all absolutely continuous curves v € W, (M), where 7/(s) := L~(s). Otherwise, set
E(v) = 0o. Define the space of finite energy paths:

(4.2) H(M) :={y € W,(M) : v is an absolutely continuous curve and E(y) < co}.

For each v € H(M), the tangent space T, H(M) of H(M) at v may be naturally
identified with the space of all absolutely continuous vector fields X : [0,1] — T'M
along v with X (0) = 0 and G'(X, X) < oo, where

(4.3) GYX,X) = /O 1 <v§58), wdi(s) > ds,

(1.9 VIO o ) S )X ()

and //s(y) : ToM — T,y M is parallel translation along « relative to the Levi-Civita
covariant derivative V. As mentioned in [2], on the tangent space TH (M) there exists
a natural metric given by

(4.5) GUX,X) = /O (X (s), X(s))ds,



for any X € TH(M).
Now we introduce finite dimensional approximations to (H (M), G°): for every & :=
{0=s9<s1<82<..<8,=1} €T with A;s =s; — s;_1, define

(4.6) Hp(M) :={y€ HM)NC*([0,1]/2) : V+'(s)/ds = 0,s ¢ P}.

These are the piecewise geodesics paths in H (M), which change directions only at the
partition points. For v € H» (M) the tangent space T, H»(M) can be identified with
elements X € T, H »(M) satisfying the Jacobi equations on [0, 1]\, see [2, Prop. 4.4]
for more details.

By induction, we may easily get the metric on TH (M) for the partition & € 7,

n

(4.7) Go(X,Y) =) (X (s:),Y(s:)) Ass,

i=1
for all X,V € T, Hy»(M) and v € Hp»(M). Let Volgo  be the volume form on Hx (M)
determined by GY%. By the arguments in [2], VOIGE)@ may be interpreted as a suitable

approximation to 2~ mentioned in introduction.
Denote by 1% the measure on Hz (M) given by

|
0 ._ 1By,
Vo = Zgze olgo,,

where E : H(M) — [0,00) is the energy functional defined in (4.1) and Z is a
normalization constant given by

Zp =T (V2rAs).

The following is one of the main results from [2].

Theorem 4.1. [2, Theorem 1.8] Suppose that f: W,(M) — R is bounded and contin-
uous,

lim FO)dvg(y) = / F(y)es do SalreNds gy (),

| 2] —0 H (M) (M)
where Scal s the scalar curvature of M and p s the law of Brownian motion on M
introduced in Section 2.1.

For technical reasons, we need to introduce the following subspace H% (M) of
Hg (M) such that every element v € H% (M) is a piecewise geodesic and each part
v([Si-1, 8:]) is the unique geodesic linking v(s;—1) and ~y(s;) (see [2, Sec. 5]). In fact,
for any partition 7 3 & = {0 = 59 < $1 < $3 < ... < 8, = 1} with As; = ¢ for
1=1,..,n and each > 0 less than the injectivity radius of M, define

H% (M) = {fy € Hp(M) : / Z |7/ (s)|ds < & for i =1, 2, ,n} ,
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where sqg = 0. In the following we always suppose that § > 0 is less than the injectivity
radius of M. Then we can easily check that H% (M) is a locally compact separable
metric space with the distance given by

d7(v,m) =€ p(Ve ), ¥ v,m € HY(M).
=1

Moreover, it is easy to show that each v € H% (M) is determined uniquely by finite
points o,7(s1),7(s2), ..., 7(sn) (see e.g. [2, Section 5]). By Theorem 4.1 and [2, (6.1),
Prop. 5.13] we have the following convergence result.

Theorem 4.2. Suppose that f: W (M) — R is bounded and continuous. Then

lim FNA () = / F(y)et I8 Sestn sy )
1210 s, ary Wo(M)

where Scal s the scalar curvature of M and p s the law of Brownian motion on M
introduced in Section 2.1.

Next, we will recall some basic geometrical concepts of a Riemannian manifold
M. As in Section 2, let O(M) be the orthonormal frame bundle over M and let
m: O(M) — M denote the bundle of orthogonal frames on M. Let 2 (M) be the
set of all smooth vector fields and let V be the Riemannian connection on M. The
curvature tensor is given in terms of the Riemannian connection V by the following
formula:

R(X,Y)Z =VxVyZ —VxVyZ - VixyZ,

for any vector fields X,Y,Z € 2 (M) on M, where [X, Y] is the Lie bracket of vector
fields X and Y.

The Ricci curvature may be interpreted as the trace of the curvature tensor and
the scalar curvature may be considered as the trace of the Ricci curvature tensor on
M, that is to say,

d

Ric(X) :=> R(X,&)e;, VX eT(M),
=1
d

Scal(z) = Z(Ric(éi), éi)r,m, T € M,

i=1
where {é;} is an orthonormal frame. Denote the curvature form by
Qn1, 12) = w™ Ry, manp Ju,
for all w € O(M) and 1,19 € T,O(M), and for a,b € RY, let
Qu(a,b) = u ' R(ua, ub)u.
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Define
R,(v,w) =u"'R(v,w)u, u€ O(M), v,w € Tru)M.

Fix y € H(M) and X € T, H(M), define ¢5(X) by

(4.8) G (X) = /0 " Rue (7 (1), X ())dr,

where v = //(7) is the horizontal lift of ~.
The development map ¢ : H(R?) — H(M) is defined by ¢(b) :== v € H(M) for
b € H(R?), where v solves the functional differential equation,

V(8) = J«(M¥(s),  ~(0) =o.

The anti-development map ¢~* : H(M) — H(R?) is given by b = ¢~!(7), where

) = [ 100
For each h € C*°(H (M) — H(R?)) and v € H(M), let X" () € T, H(M) be given by

XI(Y) = Jls(Mhs(y)  for all s € [0,1],

where hy(7y) := h(y)(s). Given v € Hp(M), let Hy ., be the subspace of H(R?) given
by

Hyo = o € HRY : 0'(s) = Quy(H(5), v(s) (), Vs ¢ P},
where u = //(7) and b = ¢~(y). By [2] we know that v € Hy, if and only if
Xv(y) = [/ (v)v € T, Hp(M).

4.2 The approximation Dirichlet form &7

In this subsection we will mainly derive the Dirichlet form associated with the approx-

imation measures v/%. To do that, we need to construct a family of special basis on

THu(M).

Foranye > 0,take 7 5 Z ={0=50 < $1 < ... < s, = 1} with As; = s,—s;,1 = ¢
for i = 1,...,n. Let {e,} be an orthonormal basis for R¢ given by e, = (0, .., 1,...0).
Consider the space [>(Z; RY) := {iz : P Rd‘HiIH%(
by

FRi) < oo} under the norm given

<hly ﬁ2>l2(W;Rd) —€ Zgbl(si% iL2(3i)>Rd~

i=1
Choose an orthonormal basis flw- cP(Z;RY),i=1,...,n,a=1,..,d, be given by
A 0, jAi
ha,i(sj) = 1 .
%eaa J =1
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For fixed i = 1,..,n,a = 1,...,d, define h,; : Hp(M) — H(R?) by requiring
hai(v) € Hp,, for all v € Hp(M) and for s € &2, hai(7)(s) = ﬁm(s) for all v €
Hy(M). For v € H%(M), hyi(7y) is uniquely determined by the above properties
(see the proof of Lemma A.1 below). The following lemma is used to prove the quasi-
regularity of the approximation Dirichlet form & .

Lemma 4.3. sup,¢j ) [hai(7)(r)| € LP(H (M), V%), p > 1, with § > 0 satisfying
cosh(y/kd0)kod? < 1 . Here kg is an upper bound for the norms of the curvature tensor
R (or equivalently 2).

Proof. We only consider h,1(r) on [0,e]. The other cases can be handled similarly.
We use the following notations: v € H% (M), b := ¢~1(y) the anti-development map,
u = //(7) and A(s) := Q) (b'(s), )b/ (s), b/(s) = Ajb/e for s € (s,-1,s;] with Ab =
b(s;) —b(s;—1). A similar argument as in the proof of Lemma 8.2 in [2] implies that for
r € [0,¢],

sinh /K

4.9 hai1(r)| < |R.1(0 ,
(49) )] < 1,10 2
where
A 52
(4.10) K = sup ||A(s)]| < /£0| 12| < ko=
s€[0,e] € €
and || - || is the norm of the matrix. In fact, by Taylor’s theorem we have for s € [0, €]

h(s) =h(0) 4+ sh'(0) + /S h" (u)(s — u)du
(4.11) . 0
=sh/(0) + /0 A(u)h(u)(s — u)du.

Here and in the following we omit the subindex of A if there’s no confusion. Then for
s € 0,¢]

[h(s)| < s[h'(0)] + K/Os [7(w)](s — u)du =: f(s).
Note that f(0) =0, f'(s) = [W(0)] + K [ |h(u)|du and
"(s) = K|h(s)] < K f(s),

that is

f'(s)=Kf(s)+n(s), f(0)=0, f/(0)=In(0)],
where n(s) := f"(s) — Kf(s) < 0. Then by the variation of parameter ( cf. the proof
of [2, Lemma 8.2]) we have

O R e
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which implies (4.9). Also (4.11) implies that

Then by (4.9) we have
hv K 1
|h(s)]§sm\/? i [ K/ (€ — u) A )|du}

sinhv Ke 1 vV Ke
< + sinh vV Ke sup |h(u
VK 5\/E 2 u€(0,e] | ( )|

By (4.10) we have
VKesinh VKe < \/ro|Ab| sinh(y/ro| A1b|) < kod? cosh(y/rod) < 1

Thus we know that

2 sinhvVKe 2
sup |h(s)| < < cosh vV Ke < — cosh k9,
sel0.e] eve VK \/E Ve

which implies the result. Here we used the elementary inequality sinh(a)/a < cosh(a).
[

In the following we fix a § as in Lemma 4.3 and we consider H% (M) as the state
space for the approximation Dirichlet form. Let

FCY = {HH(M) 27 F(7) = f(Yors Yoas s Vs ) [ € Cy(M™) } N Cy(HE(M)),

with CY(H%(M)) being continuous, differentiable functions from H% (M) to R with
compact support. Since v € H% (M), v is determined by (s1), ..., 7(s,). This implies
that every u = f(v4,,..., %, ) with f € CH(M™),0 < t; <ty < ... < t,, < 1, can be
expressed as §(Ys,, Vsgs - Vs, ) € FCF . By this we can easily conclude that .#CJ” is
dense in L2(H%(M),v%).

For each F € .ZCy, the directional derivative of F with respect to ha; is given by

(4.12) Dy, F() = (Vif () /s haiV) (s))g,, a7 € Hy(M),

where V;f(v) = Vif(Vs;, s Vs, )- Define for v € HS,(M),

n d

F(Y)he; € I2(2;RY).

a,i

Dy,
i=1 a=1

In this section we also use the notation DF' as in Section 2 for simplicity.
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Remark 4.4. By the definition of h and h we know that DF(y) = Y20 3¢ Dy, . F(v)
hailo. For F € ZCF the directional derivative should be along h,; € Hz.,, which does
not form a basis for L*([0, 1]; RY). Therefore, we replace L*([0, 1];R?) in & by I*(22; R?)
in the Dirichlet form &7 and consider DF(y) € I*(2;R%). For F € ZCL,v € HY,
we can find F. € FCF such that I DE.(Y)|l2(zray = | DF(Y)|2(0,1)re), as € — 0,
where the second DF is the L*-gradient in Section 2.

Next, we will introduce the quadratic form on H%(M). For any u,v € FCF,
define

n d
, 1 1
P D D 0 E :} : D D 0
&7 (u,v) 5/1159(M>< u Do) g dva E/liéy(M) hesti) Dh V)5

i=1 a=1
To prove the closability of the form &7, we need to establish the following integra-
tion by parts formula for 19,.

Lemma 4.5 (Integration by parts formula). For every hy j,a =1,2,...,d,j =1,2,...,n,
we have the following integration by parts formula

(4.13) / Xhai fdvY, = /
HS, (M) HS

o

f@gz(ha,j)d%%a
M)
for all f € C3(H%(M)) with & as in Lemma 4.3, where for p > 1

LP(HE,(M), %) 3 Bip(hay) = =

g

d
(Ajb = Ajiib hay(sy) + &> (q(X"09 ) hay 5, haj) (57)-

a1=1

Here b= ¢~ () with Ajb = b(s;) — b(sj_1) for j =1,...n, Npy1b =0 and q is defined
in (4.8).

Proof. By Stoke’s theorem we have for f € CL(H%,(M))
0= [ XM+ L],
HY, (M)

where we recall .

0 _ -1iF
Vi = _Z%, e 2" Volgo .

By the same arguments as in [2, Lemma 7.3] and (4.7), we know that {X"ai i =
1,..,n,a = 1,...,d} is a globally defined orthonormal frame for (Hz(M),GY%). Then
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we have fora=1,....d,j =1,...,n,

1 _
LoV = =5 (X" E)(3) - 15 + Lgna, Volos,

n d
1
T D0 GO, X, X Vol

i=1 a1=1

1 ,
—5(X™IE)(7) - v +

1
= —5(X"E)(y) v + > Z GO (["are, Xhaa], XPore) o,

i=1 a1=1

By the Cartan development map and [2, Lemma 7.1], we know

(p)) =2 [ <w<>”d—<”“> s =2 [ 09}y,

1
22/ (V' (), by 4 >d5— (A0 — Ajyib, haj(s5)),
0

where we used b'(s;) = 0'(r) = A;b/e for r € (s;_1, 8i],7 = 1,...,n, in the last equality.
Furthermore, by [2, Theorem 3.5] we have

n d
2L D GoX T, Xt X

1 a=1

n n

d
ZZ<Xhallh = XM hal,i>ha1,i>(sk)
=1 a1=1 k=1

n

n d
SZ Z <q Xha] ali - Q(Xhal’i)ham ha1,i> (3k>

i=1 a1=1 k=1

_EZ al] aJ>h¢117j> (Sj)'

a1=1

Here we used X"a1ih, ;(s;) = 0, since h, j(sx) is independent of v and we also used
(q(X"11)hg j, hay ;) (sk) # 0 only for i = j = k and the skew symmetry of ¢(X"1.7) to
deduce (q(X"*7)hg, i, ha, ;) = 0. Thus, by Stoke’s theorem we know that (4.13) holds.

[l

Based on the above integration by parts formula, we obtain the closablity of the
following quadratic form (&7, #C{) on L?(H%(M);v%). Now we prove:

Theorem 4.6. The quadratic form (87, FC§’) is closable in L*(H%(M); %) and its
closure (67, 2(&87)) is a quasi-regular Dirichlet form.
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Proof. (a) Dirichlet form: First we prove that (&7, . ZCy’) is closable. Let {F}22, C
ZCY with

(4.14) lim o5, [FY] =0, lim &7 (F = Fp, Fy — F) = 0.

By (4.14), we know that { DF}};2, is a Cauchy sequence in L? (H%, (M) — I>(2;R?);1Y,),
for which there exists a limit ®. It suffices to prove that ® = 0. Taking F € .ZCy,
we have fora=1,....,d,7=1,...,n,

(4.15) X"iF = Dy, ,F = (DF, hei)i2(pza).

Thus, by the above integration by parts formula (4.13), we have for G € #C

V5 [GIDFy, haidirgan | = 15 [GX" F)

(4.16)
— V% [RGB (has)] — V% [Fu X0 .

Since G and DG are bounded and B5(h,;) € L*(H%(M); %), F), converges to 0 in
L*(%). By the dominated convergence theorem, taking the limit in (4.16), we obtain

1/2] [G(q), iLa,i>l2(L@;Rd):| = O, VG e ﬂc@aﬂ
Therefore, there exists a v%-null set ), such that
(@(7), iLa,Z‘)lQ(;@;Rd) =0,7 ¢ Q.

Since {ha;} is an orthonormal basis in 2(22;R?), we conclude that ® = 0, a.s., and
hence (67, #C{) is closable. Moreover, it is standard that the closure (&7, D(&7))
is a Dirichlet form.

(b) Quasi-regularity: Sincey € H%, (M) is uniquely determined by (v(s1), ¥(s2); .-,
v(s,)), we can easily find a countable dense subset in ZC;” to separate the points in
H%(M). In fact, similarly as in the proof of Theorem 2.2, we use ¢ to denote the Nash
embedding map. For k € N, choose x;, € ZFCy satisfying xx(7) = 1 if d(7vs,_,,7s;) <
0 — % for every i = 1,...,n. Since H% (M) is separable we can choose a fixed countable
dense set {¢™m € N} in H%(M). Take {vnii(7) = [¥(7s) — 0(E€)Pxi(v), k,m €
N,i = 1,...,n}, which is a countable dense subset in .#Cy” and separate the points in
H%(M). Since H% (M) is locally compact, the tightness of the corresponding capacity
follows immediately. Now the quasi-regularity of the Dirichlet form follows. [

Similarly as in Section 2, we can construct a Markov process associated with the
above Dirichlet form. We consider Hg% A(M) as the one point compactification of
H% (M) (c.f. [44, P88]). Any function f: H%(M) — R is considered as a function on
H?, (M) by setting f(A) = 0. By the above proof for quasi-regularity and [44, Chap.
V Corollary 2.16] we obtain:
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Theorem 4.7. There exists a Markov (Hunt) diffusion process M7 = (Q,ﬁ,///t,
(27 ) >0, (Pz)zerS@A(M)) with state space H%(M ) properly associated with (é"%’, D(E7)),
i.e. foru € L*(H%(M);v%) N By(HS,(M)), the transition semigroup P u(z) =
E*[u(x)] is an &7 -quasi-continuous version of T;”u for all t > 0, where T;” is the
semigroup associated with (87, 2(£7)).

By the integration by parts formula in Lemma 4.5 we can write the explicit mar-
tingale solution to the Markov process constructed for /%,.

Theorem 4.8. There exists a properly &7 -exceptional set S C E, i.e. 1%(S) =0 and
P*[x7(t) € HY A(M)\ S,¥t > 0] =1 for z € HY \(M)\S, such that ¥z € H%(M)\S
under P?, the sample paths of the associated process M satisfy the following for
u(y) = f(s1 - Ys,) € FCF with f € C<(M"),

n d t
[ [ 1 . . [
u(x;]) — u(a:b}) =3 ZZ/O Xhav’Xh“vZu(xj})dl

(4.17) e
1<
=323 [ D lad )b a )+ M
i=1 a=1Y0

where Bgp(hgj) is given in Lemma 4.5 and M} is a martingale with the quadratic
variation process given by

n d

) = X [ (). X)) o
(.19 =23 [ U@ Ve
1« [* ;
=23 [ VSV o

with Vif (7) = Vif (Yayy oor Yon)-

Proof. By (4.12) and applying the integration by parts formula (4.13) we have for
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ve FCY,
&7 (u,v)

~

7ha,i> <D/U7il/a,i> dng
12(Z;R4) 12(Z;R4)

= % Z Z / Xh“viuXh“*ivdl/f)@
- 5

n d
= % 2.2 /H v [(XP1u)Bos (hai) — X"t (XPeru)] A,

S5
i=1 a=1 " Hg (M)

n d n d
1 . , 1
_ _/ v {5 Z ZXha,z(Xha,zu) -5 Z Z 5,@(ha,i)Dha,iu} dv?,
H, (M) i=1 a=1 i=1 a=1
= —/ vL 7 udv’,
H%, (M)

where L7 is the generator of &7 (see [44, Chap. 1]) and in the third equality we apply
(4.13) to v X "aiu, which is also a smooth function on H%(M). Then by the Fukushima
decomposition we have under P~?

t
ua?) ~u(af) = [ L7ula?)dr + M.
0

where M}" is a martingale with the quadratic variation process given by (4.18) (cf. [27,
Thm. 5.2.3]. Thus the result follows. O
Remark 4.9. We can also write &7 in the following way. In fact, by [2, Sec. 5] we
know that for any u = f (Y, ..., Vs,) € FC5,

1

&7 (u, ) =5 /H§ (M)<DU7DU>12(3J,Rd)dV?@

n d

Z Z 1
= 5/ Dha,ZU’(fY)Dha,zU’(fY)dVO@
H

)
i=1 a=1 (M)

(4.19) n
1 1 0
=— Z 5 <sz7 vif>TvsiMdl/9
2 HS, (M)
=1
= Z _/ <sz7 vif>T“/vadu‘(ﬂ’
i 2 M Z

with

MY = {x= (25, ... 25,) € M": p(xs, |, x5,) <8 fori=1,2,....n},
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and py = 5= exp(—3E»)Vol

Z

where the energy form Ez(x) is defined by

9>

n

2
p xSi_17ISi
Eolx) = 3 P EnnTn),

- e
=1

and Vol,,, denotes the volume measure on M™ with respect to the metric g7’ = eg x

£g X .. X €g. As a result, we can also view &7 as a quasi-reqular Dirichlet form in
L* (Mg, g2).

4.3 Derivation of the limiting process

In order to present a better understand of the stochastic heat equation in Section
4.2. We have two ways to write the limiting equation. The first one is invoking the
stochastic parallel translation U:

4.3.1 Limiting equation invoking the stochastic parallel translation U:

In the following we choose § > 0 satisfying the conditions in Lemma A.1 below. Then
the associated finite dimension geodesic space (H%(M),GY%) is a smooth manifold
with nd dimensions. We know that X"ai is a standard orthonormal frame fields in
(H%(M),G%) and the associated Laplace operator Ay is defined by

(4.20) Apu =Y (X"i)u, ueC®(H,(M)).

i=1 a=1

Set

n d
(4.21) Br = 5 32 B lhai)has

i=1 a=1

Then, the generator associated to the Dirichlet form &7 can be written as
1 8
(4.22) Ly =580 - X" -Vy

where V5 is the unique gradient associated to the metric G%. Thus, the associated
diffusion process satisfies the following equation under P?, for q-e. z € H%(M): for
1=1,..,n,

d
(4.23) da(s;) = > XMi(@)) (i) 0 AW = XP2 () (s;)dlt,

a=1
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where {WW '} is a sequence of independent Brownian motions, o means the Stratonovich
integral and

X792 (7)(51) = /(1) Bir(s) = Zﬁf (hai) /s (Vhas(s:)
(4.24)

_ 2_\1/5 ; 5@(ha,i)//si<7)ea

As mentioned in Remark 2.5 (iii) we can also construct the L2-Dirichlet form

(£°, 2(6°)) with respect to the reference measure o = e~ Jo Sl (s (v). We
conjecture for which heuristic proofs are included in the appendix.

Conjecture I (with limiting equation in terms of stochastic parallel trans-
lation U): (&7,2(&7)) Mosco converges to (&%, 2(&°)), as e — 0. The Markov
process ® given by (6, 2(&£°)) satisfies the following heuristic equation

1V
2ds
where U;. is the stochastic parallel translation for ®; introduced in Section 2.1, W is

an L2([0, 1]; R%)-cylindrical Wiener process and o means renormalization (see Remark
4.10).

1
(425) d¢t75 = 6 ¢t Sdt ZRiC(asét,s)dt + EVSC&l(@{;’S)dt + Ut,s(é) o) th,

4.3.2 Limiting equation invoking vector fields o:

Above we used the Laplace operator Ag. Now we derive the diffusion equation associ-
ated to the Dirichelt form &7 by using the Laplacian on finite dimensional manifolds
and the vector fields o in (1.2). In this case, Y ., 02 is equal to the Laplace-Beltrami
operator. Thus by using (4.22) and [42, Lemma 5.23], it is easy to prove that for

= f(781a "'778n) € ngC(ng7

n

(4.26) Loyu = Z[%A(“f - X2 (9)(s:) - Vif],

i=1

where A® .V, mean the Laplace-Beltrami operator and the gradient with respect to
the i-th variable.

@21 X)) = /(2B — Apab) = 5 (s57) =7 (s54),

Therefore, the associated diffusion process satisfies the following equation under P~?
q-e. 2 € H%(M): fori=1,...,n,

(4.28) dz(s:) \/_Z% ) (s:) o AW — XP% () (s,)dt,
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where {WW '} is a sequence of independent Brownian motions, o means the Stratonovich
integral. Now we conjecture:

Conjecture II in terms of vector fields o: 27 converge to ®, as ¢ — 0, with ®

satisfying the following heuristic equation

1V

(429) do = 5%38@dt + O'Q(¢) o tha,

where W is an L?([0, 1]; R?)-cylindrical Wiener process and o means renormalization
(see Remark 4.10).

Remark 4.10. (i) We only present (so far) heuristic proofs in the appendiz. For
the flat case, the convergence can be made rigorous by classical argument (see e.g.
[62]). For Conjecture II we believe that the convergence above can be made rigorous
by using the theory of regqularity structures introduced by Hairer in [34] or by using the
paracontrolled distribution method proposed in [30]. In fact,

igaﬁ + iRic(@sy) and UodW,oodW
are not well-defined in the classical sense and we need to multiply two distributions. To
make the proof rigorous, renormalization techniques should be involved. As there are
more than 40 terms required for the renormalization for the equation (1.2), the BPHZ
theorem in the regularity structure theory developed in [11] has been used in [35]. To
prove the convergence rigorously in Conjecture 11, the discrete version of the BPHZ
theorem is required. However, there is no useful version of the discrete BPHZ theorem
until now. This is one reason we do not prove Conjecture II in this paper. We hope to
be able to prove the convergence rigorously in our future work.

(1) We have two ways to write the limiting equations, which give us two different
equations with different diffusion coefficients. Since the different approrimated pro-
cesses have the same law, the solutions to two different equations (4.25) and (4.29)
should have the same law. For (4.25) this is more related to the integration by parts
formula (see (iii) below). For (4.29) this requires by reqularity structure theory.

(i1i) By Congecture I, we expect that the process given by the Dirichlet form (&, 2(&))
in Section 2.1 can be interpreted as a solution to the following heuristic stochastic heat
equation

1V
2ds
By the integration by parts formula by Driver in [20], we can also derive (4.30) heuris-
tically: We have the following relations:

1
(430) dXt,S = athysdt — ZRiC(aSXt,S)dt ‘I— Ut,s @) th

1 1
dzasxt,sH / (W(s),dB.), Ric<asxt,s)<—>< / RicUShS,st>,
S 0 0
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for h € H. Remark 4.4 gives part of the proof of the Mosco convergence of Dirichlet
forms &7, which is equivalent to the convergence of the associated semigroups. How-
ever, the Mosco convergence in Conjecture I still requires Markov uniqueness of the
limiting Dirichlet form (&°, 2(&°)), which is a very difficult problem in this case.
(1ii) If we write (4.29) in local coordinates it is the same as equation (1.2) con-
sidered in [35]. To use the theory of reqularity structures in [34] or the paracontrolled
distribution method in [30] for equation (4.29), we may embed the manifold M into a
high dimensional Euclidean space RYN. In this case, equation (4.29) can be written as
(4.31) dX* = %[@ﬁsxi — S4(X)0,X70,X'dt + o' o dW,
where X' = (X, e;) with {e;} a basis in RN, S is the second fundamental form and T,
is the projection map from RN to T,M for p € M (see also [7]). Here we used that

for the second fundamental form S (see [49]). By using the recent results for the theory
of reqularity structures in [8] and [11], the local well-posedness of the equation (4.31)
follows. Moreover, by the results in [7] for the smooth noise case, the solution should
stay in the Riemannian manifold M.

Remark 4.11. In [2] another Riemannian metric G, has also been introduced and
the corresponding measures v, converge to the Wiener measure p. By [2, Corollary
7.7] we can also consider the Dirichlet form associated with v, and obtain that it is a
quasi-reqular Dirichlet form. However, it seems not easy to derive the equation for the
approzimation processes as in (4.23).

A Appendix

In the appendix we give some heuristic calculations leading to proofs of Conjectures I
and II. Before this, we prove the following results for the basis hq;,a = 1,2,...,d,j =
1,..,n.

Lemma A.1. Fiz ko, as in Lemma 4.3 satisfying k0> < 5 and for eachy € H (M),
let b := ¢~ () be the associated anti-development map and let u := //(7) be the parallel
translate of v. Let h : [0,e] — R® be the solution of the equation

(A1) h'(s) = Quoy (V'(s), () (s), s € (0,¢)

with boundary conditions h(0) = 0, h(e) = %ea, where V' (s) = 22 for Ajb = b(s;) —
b(si—1). Then forr € [0,¢]

h(r) = e (rl + [Agjj a O(|Aib|4)> <1 -

RN P!
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where [N = Qu0)(Aib, ) Ab, O(JAD*) denotes a matriz (term) with its norm
bounded by C|Ab|* and for r € [0, €]

lg(r)] < ClADPeY?
for some constant C, which is independent of v and r.

Proof. For convenience, let A(s) := Qy(5)(V'(s),-)0'(s). By the definition of the deriva-
tive, we know that t/(s) = A;b/e. It is easy to see that

(A.2) A(u) = A(0) + /0 " A (r)dr.

Let h be the solution to the equation (A.1) with A(s) replaced by A(0). Then it is not
difficult to obtain that h satisfies the following (see [12, Page72]):

. =A@\ (S Az L1
(A3)  hlr) = <n§ (2n + 1] ) (; (2n+1)!) st = BDo e

2n

Here Dy is invertible, since Dy = ¢ (I + Z 2n +i)

> :=¢(l + D) and

L KP| AP Ko|Aqb|? 1 _
D| < 0T < : - Ab* < Kkod? < 1/3
121 < ; Qn+ D) = 1= ko ADE 2 (since rol Aib” < Kod™ < 1/3),

where we used || A(0)|| < o|0|? in the first inequality. Moreover, we have
Dyt =¢t i(—l)"D” =cH(I- M +O0(]Ab)
0 pwrt 6 7 )

where we used || > 07, (=1)"D"|| <>, ||D||" = % < |Ab|*. In addition,

o0 A 2n+1 [A,b]27n3
B= =r] ’ O(|Ab|Y).
nz% (2n+ 1! e 6e2 + O A1)

Combining this with (A.3) we obtain that
- AD)P*r3 AD)?
i) == (s B ooy ) (1- B2 ogaary) .

Now we give an estimate of |h — iz| By Taylor’s theorem we have

(A.4) h(r) = h(r) = (W'(0) = B'(0))r + /OT(T — w)[A(u)h(u) — A0)h(u)]du,
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which implies that
[A(r) = h(r)] <|W'(0) = W'(0)]r + K/OT(T — u)|h(u) = h(u)|du

+ [ = wlat) = Al
<|W'(0) = W (0)|r + K/ (r —u)|h(u) — h(w)|du 4+ Cre /2| Ab)?
0
=f(r),
where in the last inequality we used (A.2), that |A(r)] < Ce=V/2, and that ||A’(r)]] <

C|A;b]?/e* from the proof of [2, Prop. 6.2]. Here K := max||A(r)||. A similar
argument as in the proof of Lemma 4.3 implies that

(A.5)

sinh v Kr
VE
< cosh(y/rad)e (|I'(0) = ()] + ClAp[*=2)

W) = h(r)| <F(r) < (IW'(0) = K(0)] + C|abf=")
(A.6)

where we used the elementary inequality $22¢ < cosh(a) for a € R and

VET < \fro|Ablr/e < \/Rol Aib| < \/Fod.

Also by (A.4) and a similar argument as in (A.5) we have
() = (0 < [ (e = w)lAA(w) ~ A0)hw)jdu
0

SK/ (e — u)|h(u) — h(w)|du + 05_7/2/ (e — u)u|Ab|*du

0 0

< cosh(\/m_od)Ks/ (e — uw)du|h'(0) — W' (0)| + CKe¥?| N> + Ce V2| A
0

<cosh(\//£_06)/10€|Aib\2

< 5 W/ (0) — B (0)| + C=~ V2| A)%,

where in the second inequality we used that |A(r)| < Ce~'/2, and that [|A'(r)|| <
C|A;b]?/£3. In the third inequality we used (A.6) and in the last inequality we used
that K < ko|A;b|?/e?. Since ¢ satisfies kg cosh(y/kgd)0% < 1, we obtain

Ih/(0) — 1/ (0)] < Ce™2| A
Therefore, combining this with (A.6) we have
h(r) — h(r)] < Ce™ 2| ADP,

which implies the result. O
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Heuristic proof of Conjectures I and II: We derive the convergence by heuristically
analyzing the limit of the corresponding diffusion and drift parts. The convergence
of the diffusion part follows from the definition of X"«i. In fact, for Conjecture I
the diffusion part is //,,(z") o dW? with W being an l2(4@ R%)-cylindrical Wiener
process, which converges to the diffusion part heuristically. We emphasize that the
diffusion part is not well-defined in the classical sense and it requires renormalization
(see Remark 4.10). For Conjecture II it is easy to see the convergence heuristically.

In the following we consider the drift part. For Conjecture I, we analyze % Br(haj):
By (4.13), (4.8) we know that

(A7)
;E s(hay)(7) = #@ — Agiabyhu(s) + VE a121<q Y gy 5 ) (55)
— é(A-b Aji1b, e, +\/_Z< a,j(55), /SJ u(r( "), /) rhay 5 (r ))drhal,j(sj)>

= I(e) + I(e),

where we used that h, ;(r) = 0 for » € [0,s;_1]. Here and in the following we use //,
to denote //,(y) for simplicity. Now we consider I5(g). Since

(A8)  hagr) =ghans(9) + 52hang(r) = hasg(s)] = () + ),

we get

I(e) = 76 Z < a.j(55), / Ry 7), [ hay J(SJ>)drha13(53)>
+ \/EZ <ha,3(53> / Ry (7( ), X;pZ)drha1,j(3j)>
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where X¥2 = //,4)5(r). For I (¢), we deduce that

(A.10)
Infe) =5 > < [ e //real>//realdr>
:% <ea, / //;131c(~y'(r))dr> _ 2_15 <ea, / Ricum(b'(r))dr>

=% <ea, //;1Ric(v/<sj—))> + 5 <ea, / Ricy( V(1)) — Ricu(sj)(b’(r))dr>
=% (/s;€a: Ric(Y (s5-))) — % <ea, / / Sj(DRiC)uS(b’(r),b'(r))dsdr>

=111 + Iz,

where 7/(s;—) = //5,0'(r), Ricywy = //;'Ric//y, (DRic),, (V'(s),-) := (d/ds)Ricy,s) and
we used that {//,e,, } is an orthonormal frame in 7', M in the second equality. For I35
we have

_— - AP
Iz = 7= (€0, (DRic)u, (A0, A,6) ) + O < o)

For I, we have

(A.11)
d 5;
) == 3" (e [ 7RG'), //rw2<r>>//rea1dr>
d 5;
:ig 2::1 <ea, / N Qi (7). wg(r))ealdr>
:ig ~ <€a> /S‘jjl Qu(sj'_l)(b,(r)ﬂ ¢2(7“>)€a1d7’>

T D <€a, /Sj (Qury (V' (1), ¥2(7))eay = Qugs; 1) (V' (1), ¥2(r))eq, ) dr>

j—
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(A0 (r — 5;1)°

According to Lemma A.1, we know that
2hy(r) =2ha, ;(r) = ha, ;(s;) = {253 ((7“ — i) + 62
(A.12) (12D ))( [A;] +O(A )> \H ear + g — 551)
|Ajlb|2) (|A€jgb|4)7

=:0(r,e)eq, + O(
£2
This implies that

;

where 6(r,e) =272 (r — s;_1)

o, / Qo 1) (Db, (r))eadr

)

<

(

I52:(€)
€ a1=1
1O g
=— Z ea,/ Qus;_1) (Db, 0(r,€)eq, ) €q,dr
252 a1=1 Sj—1
1
+—( (1A; b|362)+0(|A blPe™ ))

€2
=0(|A;0P™") + O(|A0]°™2)
r,e)dr = 0 in the third equality. In the following, we use

where we used that [/
(A.12) to estimate 122;(5)
(A.13)
Iygs(e \/—;< / ) (0 (1),12(7))€ay — Qus;_yy (V' (r), ¥a(7))€ay) 7">
:% < / ' 0( ) [Ricu T)(b’(?“)) — RiCu(sjil (b/( ))} d > + Obg
> +0,.

/ " o0e) / T (DRic), ) (b'(s), b'(s))dsdr
2| = s ron,

1
:m <6a7 5 ? i
2(r — s
(ew (DRic),, (Ajb,AD)) / {% -+

253
1
=== (ear (DRic),, (A;6,2;6)) + Oy
with Oy, := O <|A b ) +0 ('A;—Qb‘B) Combining the computation for I515 and Isg1, 290
we have
Ioio + Ioo = _68 <6a, (DRiC)uS_ (Ajb, Ajb)> + Ob,e;
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which combined with (A.7), (A.9), (A.10) implies that

() (3) = (D = Agiab ) + 5 ([ Ric(/(5,-)

1
NG

1 )
- @<(DRlc)qu (Ajbﬂ Ajb)7 €a> + Ob,e'
Then we obtain
d
1
XPe (7)(s1) :2_62 Z(A ib—Aji1b,eq //sjea + = Z <//S]€a7 Ric(y > //sgea
a=1

d
Z ((DRic)y, (A0, Ajb), €a)//s;€a + Oz

1. 1 .
:2—82//5](%’5 = Ajad) + JRie('(s57)) = 152 /s (DRic)u,, (850, Ajb) + O,

where we used that {//,e.} is an orthonormal frame in T’ M. Heuristically, we have
5 /s, (Db — Aj1b) = //,0%b and Oy — 0 as € — 0, since |A;b| ~ £2~. We also have
Zle //sj(DRic)usj (e;,e;) = VScal, which suggests the third term above converges to
1—12VScal(7) by a similar argument as in [2, Section 6]. Now we have

X2 () = = %//safsb - iRiC(as’y) - %QVScal(fy)
1V

1. 1
=— §d—$857 + ZRlc(aﬂ) - EVSCal(v),

where we used //;0%,b = //s%//jaﬂ = %837
For Conjecture II it is easy to see that é//sj(Ajb —Ajpib) — //sé‘ib = %857

(A.14)
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