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Abstract

We consider a capital accumulating incumbent firm which produces an

established product and has the option to introduce an improved substitute

product to the market by incurring adoption costs. We find that depending

on the initial capacities on the established market and the value of adoption

costs, three scenarios are possible, namely introducing immediately, later or

abstaining from product introduction. In case of delayed product introduc-

tion, the incumbent reduces capacities for the established product before

the new product is introduced. We find that the higher the adoption costs,

the higher is the gain by delaying the product introduction compared to im-

mediate introduction. From a welfare perspective, the product introduction

is welfare enhancing but the option of delay decreases the welfare gain. The

model is calibrated using data on hard disk and solid state drives.
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1 Introduction

For many firms, especially for those operating in the high-tech sector, whenever

a new technology is available, they have to decide whether to adjust the product

range by incorporating the new technology and if yes, when to do so.

Wang and Hui (2012) provide examples of firms hesitating to incorporate new

available technologies and choosing to stay with the old technology for a while.

Examples include the technology of DVD that has been developed well before

vendors started promoting DVDs. Another example is the MP3 standard.

In an empirical investigation, Chandy and Tellis (2000) have found that a large

fraction of product innovations has been achieved by incumbents. Indeed, we face

such a situation described above often in real-world markets and in many indus-

tries, submarkets evolve and coexist with the established product. An example is

the TV Industry where CRT televisions and flatscreens were sold simultaneously

for a long time (cf. Dawid et al. (2015)). Another example is the storage device

industry where solid-state drives (SSD) have been introduced to the market in

addition to hard disk drives (HDD). We use recent data from this industry on

worldwide sales to calibrate our model.1

We consider an incumbent firm which has the option to introduce a horizontally

and vertically differentiated substitute product which has a higher quality than

the established one. For realizing this option, it incurs one-time adoption costs.

Thus, the firm has to determine if the product introduction is profitable and if yes,

when the optimal time of product introduction is. After introduction, we assume

that the firm sells both products.

1Data on HDD and SSD sales stem from quarterly reports of Western Digital and Storage-

Newsletter. The latter is provided by TrendFocus which is a market research and consulting firm

which is specialized in the data storage industry.
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The firm faces the following trade-off: On the one hand, by launching the new

product it cannibalizes demand for the established product. On the other hand, it

benefits from the new product with higher quality by exploiting higher willingness

to pay of the consumers.

We find that if the firm is strong on the established market, i.e. its capacities are

at a high level, then the firm decides to wait and to introduce the improved product

later. By delaying, the firm benefits from discounting adoption costs (e.g. coming

from adjustment costs, advertisement activities or fees paid to developers for using

their technologies) while it decreases the capacity of the established product before

the new product is introduced. Due to this reduction of capacity, prices for both

products increase which reduces cannibalization. Amongst others, this enables the

incumbent to build-up capacities for the new product faster when it is introduced,

compared to immediate introduction.

There is a large literature on capital accumulating firms which has been extended

by Dawid et al. (2015) who analyze the optimal R&D effort for product innovation

and the optimal capital accumulation of established and new products, where

the breakthrough probability of developing a new product depends on both, the

knowledge stock and the current R&D effort. Hence, in that paper innovation time

is stochastic and it is assumed that the new product is introduced immediately once

it is available. We focus on the optimal timing of product introduction and optimal

investment in capacities and differ from Dawid et al. (2015) in not considering R&D

efforts to develop a new product and not linking successful development to market

introduction but considering the time of market introduction as a choice variable.

The classical literature on optimal timing of technology adoption (see, e.g.,

Kamien and Schwartz (1972) for a single firm and Reinganum (1981) and Fu-

denberg and Tirole (1985) for a duopoly) assumes that quality increases due to

technological progress and the only decision variable is the time of technology

adoption (see Hoppe (2002) for a survey on theoretical models and empicial evi-

dence). Farzin et al. (1998) and Doraszelski (2004) extend this stream of literature

by modeling the quality improvement as a stochastic process. In contrast, in our

model, the quality of the new product is fixed and the firm cannot gain additional
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quality by delaying.

Our analysis focuses on the dependence on initial characteristics whose impor-

tance has been addressed a lot, e.g., in Hinloopen et al. (2013) where initial

marginal costs determine if a technology is developed further or not. Here, ini-

tial levels of capacity determine whether and when a new product is going to be

introduced.

Real options models (see, e.g., Dixit and Pindyck (1994)) have focussed on opti-

mal timing in continuous time where demand is stochastic, e.g., evolving according

to a Brownian motion. A simultaneous analysis of optimal timing and optimal in-

vestment in capacities in the real options literature has been provided by Huisman

and Kort (2015) where the price of the good is stochastic. We differ from that

stream of literature by considering a deterministic environment and continuous

adjustments of capacities.

The problem of an incumbent delaying product introduction has been addressed

in Wang and Hui (2012). They apply a discrete three-period time framework where

capacity adjustments are not taken into account.

Hendricks and Singhal (1997) estimate empirically the impact of being late to

the market, i.e. not fulfilling promise of preannouncements. While reasons for

not meeting an announced introduction date include problems in development

and the need to redesign products, managerial reasons are given in Adaku et al.

(2018). In contrast to those works, intentional delay is considered in the production

management literature where existing inventory is identified to cause delays of new

product introductions in different industries (see Avlonitis (1983), Billington et al.

(1998), Koca et al. (2010), Li et al. (2010) and Katana et al. (2017)).

The model is calibrated in order to replicate the recent dynamics in the HDD

and SSD industry. While worldwide shipments of HDDs decrease, SSDs’ shipment

increases strongly. SSDs are considered to be superior to HDDs in many aspects

accompanied with the disadvantage of comparably high price. Even though those

are not monopoly markets, they are quite concentrated and dominated by a small

number of firms such that we believe that this data is to some extent suitable for

our parametrization.
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From a technical perspective, we employ Pontryagin’s Maximum Principle for

free end time (see, e.g., Grass et al. (2008)) to obtain analytical results concerning

the optimal investments and the optimal time of market introduction. Moreover,

in this optimal control problem, due to the non-concave structure of the value

function, the Arrow-Mangasarian sufficiency conditions are not met which might

lead to the presence of multiple optimal investment paths. In particular, we char-

acterize situations in which the firm is indifferent between introducing and not

introducing the new product to the market. In such models, qualitative proper-

ties of solutions depend very much on parameters (cf. Hinloopen et al. (2013)).

Therefore, we use a bifurcation analysis to assess industry dynamics for different

values of adoption costs where the state space is divided in parts which correspond

to immediate, delayed or no product introduction, respectively.

The analysis in this paper is carried out for a monopoly setting. Even though

the real-world examples we have raised stem from competitive environments, we

believe that it is important to consider the monopoly as it is interesting in its own

right. Indeed, timing of product introduction is not only influenced by competing

firms but also by competing substitute products even if there is only a single firm.

As the established and new product are substitutes, there is ‘internal’ competition

between those two products. In order to disentangle rivalry between products and

between firms, it is reasonable to analyze the monopoly case before proceeding to

the competition case.

The paper is organized as follows. We introduce the model in Sect. 2. Sect. 3

is devoted to the technical analysis. In Sect. 4, we provide an economic interpre-

tation, conduct a bifurcation analysis and present optimal timing curves. Sect. 5

analyzes welfare effects of delaying product introduction. Model assumptions are

discussed in Sect. 6 and Sect. 7 concludes.

2 Model

We consider an incumbent firm which has initial capacity Kini
1 to produce an estab-

lished product. A new substitute product with higher quality has been developed
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and is ready for market introduction. Product introduction comes with lump-sum

adoption costs F . An important assumption is that the incumbent cannot invest

in capacities of the new product before introducing it, i.e. there are no capacities

at the time of introduction for the new product.

We follow the literature on optimal capital accumulation by relying on a standard

linear model (see, e.g., Dockner et al. (2000)). Thus, the firm faces a linear inverse

demand function which is given by

p1(t) = 1−K1(t). (1)

After product introduction, the inverse linear demand system2 is given by

p1(t) = 1−K1(t)− ηK2(t), (2)

and

p2(t) = 1 + θ − ηK1(t)−K2(t), (3)

where 0 < η < 1 measures the degree of horizontal and θ > 0 the degree of vertical

differentiation of the substitutes.

The firm wants to determine the optimal time of product introduction T and

the optimal investment strategies before and after product introduction. There is

no inventory, i.e. capacities equal sales3. The capacity dynamics are

K̇i(t) = Ii(t)− δKi(t), i = 1, 2, (4)

K1(0) = Kini
1 , K2(t) = Kini

2 = 0 ∀ t ≤ T, (5)

where δ > 0 measures the depreciation rate. As has been done in Dawid et al.

(2015), we allow the firm to intentionally scrap capacities, i.e. Ii ∈ R while capac-

ities have to remain non-negative:

Ki(t) ≥ 0 ∀ t ≥ 0, i = 1, 2. (6)

2This demand system is motivated by the fact that the two products are substitutes and

competing with each other. According to the seminal result of Kreps and Scheinkman (1983),

setting prices optimally subject to ex-ante capacity commitments reduces to a Cournot setting

which we adopt here.
3This assumption has been used in large parts of the literature on dynamic capacity invest-

ment, see, e.g., Goyal and Netessine (2007). See Section 6 for a discussion of this assumption.
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Adjusting capacities is costly, in particular it comes with quadratic costs

C
(
Ii(t)

)
=
γ

2
I2i (t), i = 1, 2. (7)

Normalizing production costs to zero, the objective function of the firm is given

by the following expression:

max
T,I1(t),I2(t)

J =

∫ T

0

e−rt
(
p1(t)K1(t)− C(I1)

)
dt

+

∫ ∞
T

e−rt
(
p1(t)K1(t) + p2(t)K2(t)− C(I1)− C(I2)

)
dt− e−rTF.

(8)

We refer to this problem as P(Kini
1 ).

3 Analysis

In case that the firm wants to introduce the improved product at some finite time

T , there will be a structural change of the model. Therefore, we denote by mode 1

(m1) the optimal control problem up to time T and by mode 2 (m2) the problem

after T , where T might be infinite. Denote by V m1(K1) and V m2(K1, K2) the

corresponding value functions of the infinite horizon control problems where the

mode is fixed and hence does not change4. The optimal control problem at hand

where the mode m might change is denoted by V (K1, K2, t,m) and we refer to

this problem as the optimal control problem with introduction option.

The subproblem in m2 is linear-quadratic with infinite time horizon which can

be solved easily, as has been done in Dawid et al. (2015). The optimal strategy

and the value function are stationary for this problem, i.e.

V (K1, K2, t,m2) = V m2(K1, K2)− F. (9)

There is a unique globally asymptotically stable steady state under the optimal

strategy and the value function is given by5

V m2(K1, K2) = aK2
1 + bK1 + dK1K2 + eK2

2 + fK2 + g. (10)
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Figure 1: Value function of m2 at T , i.e. for K2 = 0. Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.154472, γ = 5.6.

The typical shape of the value function of m2 is depicted in Figure 1.6 In m2,

due to the higher willingness to pay for the new product, steady state profits will

be higher compared to m1. However, as we assume that capacities at hand can-

not be transferred to the production of the new product, capacities for the new

product has to be build up which temporarily reduces profits when switching to m2.

By regarding the value function of the subproblem as the salvage value of the

optimal control problem with introduction option, we can rewrite (8) by

max
T,I1(t)

J =

∫ T

0

e−rt
(
p1(t)K1(t)− C(I1(t))

)
dt+ e−rTS

(
K1(T )

)
, (11)

where S
(
K1(T )

)
= V m2(K1(T ), 0)− F .7 This problem can be solved analytically

by Pontryagin’s Maximum Principle for variable terminal time. The Hamiltonian

is

H(K1, I1, λ, t) = (1−K1)K1 −
γ

2
I21 + λ(I1 − δK1), (12)

4We suppress the argument t wherever it is possible and no confusion may arise.
5Coefficients are derived numerically from a system of nonlinear equations which is given in

Dawid et al. (2015).
6The marginal value of K1 is decreasing and even becomes negative due to the assumption

that there is no inventory and hence capacities equal quantities.
7K2(T ) = 0 since there are no capacities for the new product at T , yet.
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where λ is the co-state variable and the optimal investment is given by

I1 =
λ

γ
. (13)

The co-state equation reads

λ̇ = (r + δ)λ− (1− 2K1), (14)

and the transversality condition is given by8

λ(T ) = SK1 = V m2
K1

(K1, 0), (15)

where SK1 = ∂S(K1(t))
∂K1(t)

. For nonzero finite T ∗, let
(
K∗1(·), I∗1 (·)

)
be an optimal

solution to (11) on the optimal time interval [0, T ∗] for m1. Pontryagin’s Maximum

Principle for variable end time implies an additional constraint for the terminal

time, which is given by

H(K∗1(T ∗), I∗1 (T ∗), λ(T ∗), T ∗) = rS
(
K∗1(T ∗)

)
− ST

(
K∗1(T ∗)

)
. (16)

Note that the salvage value does not depend explicitly on T ∗ and hence,

ST
(
K∗1(T ∗)

)
= 0. (17)

Equation (16) is obtained by considering the right hand side of (11) as a function

of terminal time and maximizing the function with respect to terminal time (see

Grass et al. (2008)). Intuitively, equation (16) requires that staying marginally in

m1 and introducing afterwards is as good as introducing the new product imme-

diately.

In Lemma 2 in Appendix A.2, we state that there are two solutions for equation

(16). We denote the two solutions of (16) by K lb
1 and Kub

1 , respectively for lower

and upper bound of an interval (where K lb
1 ≤ Kub

1 ) which we will analyze further

below. For F = 0, both solutions coincide9, i.e. K lb
1 = Kub

1 (see Appendix A.2),

which we denote by KF=0
1 .

8The canonical system, isoclines, the steady state for staying in m1 (which is denoted by

Kss,m1

1 ) and its stability properties are given in Appendix A.1.
9Technically, in case of no adoption costs, H and rS are tangential at KF=0

1 :

∂

∂K1
H(KF=0

1 , I∗1 (T ∗), λ(T ∗), T ∗) =
∂

∂K1
rV m2(KF=0

1 , 0). (18)
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Note that equation (16) is a necessary condition and hence, delaying not only

marginally but for a longer time might yield higher value. Thus, we have to figure

out whether K lb
1 and Kub

1 are indeed optimal.

To answer this question, we state the following lemma where we focus on the

dependence of K lb
1 on F .

Lemma 1. K lb
1 is decreasing in F .

Proof. See Appendix A.3.

Moreover, Kub
1 is increasing in F . Thus, for increasing F , the interval [K lb

1 , K
ub
1 ]

expands around KF=0
1 .

In the proof of Lemma 2 in Appendix A.2, we find that

∂V m2

∂K2

(KF=0
1 , 0) = dKF=0

1 + f = 0. (19)

It can easily be seen that ∂Vm2

∂K2
(KF=0

1 , 0) is monotone in K1 and thus,

∂V m2

∂K2

(KF=0
1 , 0) < 0 for K1 > KF=0

1 , (20)

and
∂V m2

∂K2

(KF=0
1 , 0) > 0 for K1 < KF=0

1 . (21)

If the firm were to introduce the new product for K1 > KF=0
1 , this would yield a

negative investment for K2 in m2 which would violate the non-negativity constraint

of K2 as we have assumed that no capacities for the new product are installed

when introducing the new product. Hence, investments in K2 would be restricted

to be 0 as long as K1 stays above KF=0
1 . Hence, for K1 > KF=0

1 , introducing

immediately cannot be optimal. As Kub
1 ≥ KF=0

1 , as above, investments in m2

would be restricted such that introducing is not optimal. We show in Appendix

A.4 in Lemma 4 that in case it is optimal to introduce the new product, then

K lb
1 is the optimal capacity to introduce the new product at. Hence, for higher

capacities, it is optimal not to introduce and for lower capacities, it is optimal to

introduce right away.
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As the optimal introduction time depends on the size of capacity, we consider it

as a correspondence depending on Kini
1 and denote it by

T ∗(Kini
1 ).10 (22)

It is a correspondence since there are situations with multiple optimal values as

we will discuss in the following main Proposition 1.

Before stating the main Proposition 1 we need to prove several results, which is

done in Appendix A.5 and A.6. In particular, there exists a threshold value for

adoption costs F̃ , above which the firm finds it optimal to abstain from introducing

the new product if the current capacity exceeds a certain threshold K̃1. The latter

is decreasing in F .

Proposition 1.

i) For 0 ≤ F < F̃ ,

T ∗(K1) = 0 for all K1 ≤ K lb
1 , (23)

0 < T ∗(K1) <∞ for all K lb
1 < K1. (24)

ii) For F = F̃ ,

T ∗(K1) = 0 for all K1 ≤ K lb
1 , (25)

0 < T ∗(K1) <∞ for all K lb
1 < K1 < K̃1, (26)

T ∗(K1) =∞ for all K̃1 ≤ K1. (27)

iii) For F̃ < F < F̄ ,

T ∗(K1) = 0 for all K1 ≤ K lb
1 , (28)

0 < T ∗(K1) <∞ for all K lb
1 < K1 ≤ K̃1, (29)

T ∗(K1) =∞ for all K̃1 ≤ K1. (30)

10An alternative would have been to define a function which gives the remaining time in m1

not depending on the initial but current capacity (cf. Long et al. (2017)).
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iv) For F̄ ≤ F ,

T ∗(K1) = 0 for all K1 ≤ K̃1, (31)

T ∗(K1) =∞ for all K̃1 ≤ K1. (32)

Proof. See Appendix A.5 and A.6.

Proposition 1 states that immediate introduction is optimal if capacity for the

established product is lower than a certain threshold (either K lb
1 or K̃1 depending

on the level of adoption costs) whereas for capacities above, it is either optimal

to wait and to decrease capacities on the established market before product intro-

duction or not to introduce at all.

Note that in Proposition 1 iii) and iv), there are two different solutions at K1 =

K̃1 that are both optimal. Hence, for F > F̃ at K̃1, the firm is indifferent between

introducing the new product (possibly after some delay) or not introducing at all11.

At F̃ , K̃1 (the threshold separating finite and infinite solutions for T ) is Kss,m1

1

which is the long run capacity value if the firm stays with its established product

(see Appendix A.1. That is, for K1 ≥ Kss,m1

1 the firm prefers not to innovate and

stays in m1, whereas for K1 < Kss,m1

1 the firm decreases12 capacities to K lb
1 where

the new product is introduced eventually.

For KF=0
1 < K1, as mentioned above, the non-negativity constraint for K2 would

have been active in m2. Capacities of the established product would be lowered

until KF=0
1 but there, lowering further until K lb

1 would be optimal and hence, the

product introduction would take place at K lb
1 .

By Proposition 3 in Appendix A.6, K̃1 decreases in F and hence the range of

capacities where the firm stays with only one product enlarges.

Note that for F < F̄ , the value function of m2 and the value function of the

problem with introduction option paste smoothly at K lb
1 , i.e.13

∂V (K lb
1 , 0,m1)

∂K1

=
∂V m2(K lb

1 )

∂K1

. (33)

11There is no other value of capacity where both solutions are optimal.
12In Appendix A.5 in Lemma 6, we show that at F̃ , Klb

1 ≤ Kss,m1 holds.
13Note that the value function is time-invariant and hence the time argument can be omitted,

i.e. V (Klb
1 ,K

lb
1 , t,m) = V (Klb

1 ,K
lb
1 ,m).

11



K1
lb

K
˜
1

0.42 0.44 0.46 0.48
K1

6.055

6.060

6.065

6.070

6.075

6.080

Vm2- F

V

Vm1

Figure 2: Value function for F̃ ≈ 1.7029. Parameters: r = 0.04, δ = 0.1, η =

0.9, θ = 0.154472, γ = 5.6.

Furthermore, at F̃ , the value function of the problem with introduction option and

the value function of m1 paste smoothly at K̃1 (see Figure 2) whereas for F > F̃

the value function has a kink at K̃1.

In total, as long as F is intermediate (i.e. F̃ < F < F̄ ), we can split the state

space in three parts:

i) ‘Immediate introduction’: K1 ≤ K lb
1 : Firm innovates immediately, T ∗ = 0.

ii) ‘Delayed product introduction’: K lb
1 < K1 ≤ K̃1: Firm delays introduction

and introduces the product later at 0 < T ∗ <∞.

iii) ‘No introduction’: K1 ≥ K̃1: Firm delays introduction infinitely, i.e. there

is no product introduction.

For increasing F the indifference point K̃1 shifts to the left and eventually the

waiting region vanishes where K̃1 and K lb
1 coincide and only two possibilities re-

main: Either the firm innovates immediately (for low capacities) or never (for high

capacities). Hence, for F ≥ F̄ , the value function is given by the upper curve of

the value functions V m1 and V m2 .
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For K lb
1 < Kini

1 , the higher Kini
1 the longer it takes to arrive at K lb

1 where the firm

wants to launch the new product, i.e. the stronger the firm is on the established

market, the more it delays the introduction of the new product. On the other

hand, due to Lemma 1, the higher the adoption costs, the lower is the switching

capacity, i.e. the firm wants to reduce capacities more in advance before switching

to m2. Thus, higher capacities and higher adoption costs, both lead to a longer

delay.

F=1

F=1.5

F=1.7

0.4 0.5 0.6 0.7 0.8
K10.00

0.02

0.04

0.06

0.08

0.10

0.12

V-S

Figure 3: Gain by delay. Parameters: r = 0.04, δ = 0.1, η = 0.9, θ = 0.154472, γ =

5.6.

In Figure 3, we illustrate how the difference between the value function of the

problem with introduction option (V ) and the problem corresponding to imme-

diate introduction (S) evolves as F increases. By Proposition 1, for K1 > K lb
1 ,

V > S. As F increases and discounting adoption costs become more important,

the difference of the value function with introduction option and the scrap value

function gets larger. In other words, the higher the adoption costs, the more

valuable the option to delay the product introduction.

Furthermore, as the products are vertically differentiated, the value of the prob-
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lem of m2 is higher than that of m1 for no adoption costs. Thus, the value of the

problem with introduction option is higher than the value of the infinite problem

of m1. Obviously, for large enough F , product introduction will not be sufficiently

attractive anymore and the incumbent will stay with its established product, i.e.

V = V m1 .

4 Dynamics

After having analyzed analytically the possible cases for different adoption costs

and different established capacities, in this section, we describe optimal capacity

investments and provide economic intuition about the optimal timing decision. A

bifurcation analysis is presented in Section 4.2. Optimal timing curves and their

dependence on parameters of horizontal and vertical differentiation are given in

Section 4.3.

In order to derive dynamics, we consider the following default parameter setting

motivated by sales data from the storage device industry

r = 0.04, δ = 0.1, η = 0.9, θ = 0.154472, γ = 5.6. (34)

Quarterly worldwide sales data of HDD’s and SSD’s from 2015 to 2017 are used

to calibrate the linear inverse demand system by selecting the parameters η and θ

such that the price of SSD is approximately three14 times as much as HDD’s price

which is consistent with market observations15. Inserting data pairs into the linear

inverse demand system yields prices which fluctuate extensively. However, both

prices exhibit a decreasing trend which fits to price observations of the market for

those products where the price of SSDs decrease faster than the price of HDDs.

Assuming standard values for parameters r and δ, the remaining parameter γ

14Aggregating annual capacities, on average, the price ratio is 3.1739.
15As prices differ along size, capacity, model etc., prices of bestselling HDDs and SSDs for

private users with capacity of 1TB are considered. For simplicity, production costs are assumed

to be zero. However, the high differences in prices arise to some extent due to different production

costs. See Igami (2017) for a structural analysis in the hard disk drive industry.
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could not be estimated16 such that the parameter has been selected in order to get

a crowding out of HDDs eventually.

4.1 Economic Interpretation

The intuition for the ‘Immediate Introduction’ and ‘No Introduction’ scenario is

straight forward. The benefit from the new product is either so high that the firm

does not want to wait or the benefit is too low such that the firm stays with the

established product. Thus, we focus on the interpretation of the interesting case

of delay. The firm exploits profits in m1 before moving to m2. In economic terms,

the following mechanisms can be identified.

First, the delay in time leads to stronger discounting of the scrap value V m2−F .

The firm saves adoption costs as F is paid as a lump-sum, but gets V m2 later as

well. The latter is smoothed by the concave structure of the value function of m2 as

the firm reduces capacities of the established product and hence V m2 increases17.

Second, as mentioned above,

∂V m2

∂K2

(KF=0
1 , 0) = 0, (35)

holds, which has an interesting economic intuition. In contrast to m1, in m2, the

firm is able to invest in K2. For F = 0 at KF=0
1 , there is no reason for waiting. But

for higher F > 0, waiting yields discounting of adoption costs while there is no dis-

advantage of not being able to invest in the new product’s capacity since at KF=0
1 ,

(35) still holds. Thus, by postponing the product introduction, the incumbent can

decrease the capacity of K1 before switching such that ∂Vm2

∂K2
(K lb

1 , 0) > 0, i.e. when

switching, the marginal value of the new product’s capacity is positive and hence

there is an immediate gain from investment in K2. Hence, the investment pattern

in m2 is affected, where due to the reduced capacity of the established product,

the firm has stronger incentives to build-up capacities for the new product and

16The evolution of quantities in this model differs from observed data. Here, the firm would

decrease SSD quantities in order to increase the price of HDDs. The reason seems to be the

competitive nature of the dataset.
17This holds as long as the switching capacity Klb

1 is greater than the maximal argument of

V m2 which is true for the considered parameter setting.
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the disinvestment in the established product is weaker18 than it would be without

delay. In m2, temporarily profits drop and are lower than in m1 as there is a strong

investment in capacities of the new product but sales increase only gradually for

the new product. By delaying, the firm can postpone this drop in profits and

enjoy ’high’ profits in m1. However, the drop in profits is stronger compared to

immediate introduction.

4.2 Bifurcation Analysis

From Figure 2, it is clear that the value function is not concave in K1 and hence

does not satisfy the Arrow-Mangasarian sufficiency conditions. Thus, as mentioned

earlier, in this section we examine the qualitative properties of the steady states

of the control problem with introduction option with respect to the parameter

F . If the firm starts in the immediate introduction area, it introduces the new

Immediate introduction

Delayed introduction No introduction

1 1.5 F
˜

F
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K1

Figure 4: Regions.

product immediately and hence is no more in m1 but in m2. In the no introduction

18This is due to the increased marginal value of the established capacity.
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area, the new product is never introduced. In the delayed introduction area, K1

will be decreased until it hits the line seperating this area from the immediate

introduction area.

Denote by ¯̄F the value of adoption costs where thereafter finite solutions for T

disappear for the first time19, i.e.

T ∗(0) =∞ . (36)

Hence for F> ¯̄F , only the no introduction area remains.

As we are interested in characterizing dynamics in m1 and in m2 together, we

draw a superimposed bifurcation diagram of both modes (cf. Hinloopen et al.

(2017)) in Figure 5. For F < F̃ , we have a unique stable steady state. No matter

FF
˜

K1
ss,m1

1.700 1.705 1.710 1.715 1.720 1.725
F

0.10

0.50

K1
lb

K
˜
1

Figure 5: Superimposed diagram.

if the firm delays product introduction or not, it will eventually arrive at the steady

state level of K1 in m2 which is 0 here. As analyzed before, at F̃ there arises a

second steady state where for initial capacities K̃1 ≤ K1, the firm stays in m1 and

eventually arrives at Kss,m1

1 .

At F̃ , we have an indifference-attractor bifurcation which is a heteroclinic bi-

furcation (see Wagener (2003) and Kiseleva and Wagener (2010) for a characteri-

19As K̃1 is decreasing in F , at ¯̄F , K1 = 0 is the only remaining value for capacity such that

the firm is indifferent between immediate and no product introduction.
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F

1.310 1.311 1.312 1.313 1.314 1.315
F

0.005

0.010

0.050

0.100

0.500

K1

K
˜
1

K1
ss,m2

K1
ss,m1

Figure 6: Dynamics around ¯̄F for an alternative parametrization: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

zation). Initially, the optimal solution is characterized by only one stable steady

state. At F̃ , a second equilibrium (Kss,m1

1 ) arises ’out of the blue’, where a re-

pelling curve separates the two basins of attraction. For very high F , only the

second equilibrium remains. The black solid curve is the Skiba curve20 (which

is repelling except at F̃ and ¯̄F where it is semi-stable). Here, for capacities on

the Skiba curve, optimal paths are moving in opposite directions. However, for a

different parameter setting with a positive steady state of K1 in m2, for capacities

on the Skiba curve below Kss,m2

1 both optimal paths would move in same direction

(see Figure 6).

Note that this is a superimposed diagram and not a bifurcation diagram in

the classical sense and the latter is possible since there the firm either jumps

immediately to m2 or never which means that we actually consider two disjoint

optimal control problems where the mode can be interpreted as a further state

variable.

20Note that at F̃ , the firm is actually not indifferent and hence K̃1 is not a Skiba point.
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4.3 Characterization of Optimal Timing Curves

As discussed in Section 3, for F > F̃ , K̃1 separates finite and infinite solutions

for the optimal introduction time. Thus, T ∗ jumps at K̃1 to infinity. Hence, for

K̃1 ≤ K1, the value function of the problem with introduction option is equal to

the value function of the problem without introduction option.

We now investigate in detail what happens when F approaches F̃ . The graphs

of the optimal introduction time are depicted in Figure 7. For low adoption costs,

K1
ss,m1

0.40 0.45 0.50 0.55
K10.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T *

F = 1.4

K1
ss,m1

0.40 0.45 0.50 0.55
K10

2

4

6

8

10
T *

F = 1.7

K1
ss,m1

∞

T *

0.40 0.45 0.50 0.55
K1

F = F̃ ≈ 1.7029

Figure 7: Optimal time of switching for increasing F .

the correspondence is concave for K1 ≥ K lb
1 . As analyzed in Section 3, it is finite

for low adoption costs whereas it becomes infinite at F̃ for K1 ≥ K̃1 = Kss,m1
1 .

For F approaching F̃ , T ∗(K1) becomes convex-concave and very steep at Kss,m1

1 ,

i.e Kss,m1

1 becomes an inflection point (see Figure 7) which means that the firm

decreases higher capacities and ’stays around’ Kss,m1

1 for a while until it starts

decreasing again down to K lb
1 . Note that for F < F̃ , T ∗(K1) is finite everywhere,

whereas at F̃ , T ∗(K1) is infinite for K1 ≥ Kss,m1
1 .

Figure 8 depicts optimal curves in the (K1, I1) space for the interesting case of

intermediate adoption costs (i.e. F̃ < F < F̄ ) where K̃1 separates the two basins

of attraction. For K lb
1 < K1 < K̃1, the firm decreases capacities down to K lb

1 and

introduces the new product. In m2, it continues decreasing capacities of K1 down

to Kss,m2

1 while it builds up capacities for the new product up to Kss,m2

2 .
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Figure 8: Capacity-investment dynamics for F = 1.705.

4.3.1 Effect of Horizontal and Vertical Differentiation

For decreasing degree of horizontal differentiation η, the products become more

differentiated and thus the firm is expected to benefit from this. As both markets

get more independent we expect that the firm is willing to introduce the new

product earlier. Numerical experiments are in line with this intuition (see Figure

9). Analogously, for decreasing θ we get similar results in the opposite direction.

5 Welfare Implications

For analyzing welfare implications, note that the inverse demand functions stem

from the following utility function of the consumers where M is the initial endow-

ment:

CS(t) = u(K1, K2) = K1 +(1+θ)K2−
1

2
(K2

1 +K2
2)−ηK1K2 +(M−p1K1−p2K2).

(37)

Welfare depends on the interpretation of adoption costs. If it is paid to the devel-

oper of the technology, then it is considered as a transfer and it is always profitable

to introduce the new product immediately (given that investment in K2 is positive

in m2, i.e. K1 < KF=0
1 , cf. section 3). But if it is considered as ‘real’ costs, then

it has to be taken into account. In that case, the social planner maximizes the
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Figure 9: Optimal time of switching for different parameterizations of η and θ for

the default parameter setting and F = 1.4.

difference of consumer surplus and costs of investment and adoption:

max
T,I1(t),I2(t)

J =

∫ T

0

e−rt
(
u(K1, 0)− γ

2
I21
)
dt+

∫ ∞
T

e−rt
(
u(K1, K2)−

γ

2
(I21 + I22 )

)
dt−e−rTF.

(38)

We expect that product introduction is favorable from a social point of view as

in m2, there is a new product of higher quality which affects the consumer only

positively.

For the case of ’real’ costs and a given initial capacity Kini
1 , the welfare difference

of the situation of a profit maximizing firm and the social planner is given by

∆W (F ;Kini
1 ) = W (F ;Kini

1 )−W sp(F ;Kini
1 ), (39)

where W (F ;Kini
1 ) and W sp(F ;Kini

1 ) are the welfare functions of the profit maxi-

mizing firm and of a social planner, respectively.

We find that for the considered parameterization, from the perspective of a

social planner, it is optimal to introduce immediately for a wider range of F and
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capacities. For instance, for Kini
1 = Kss,m1

1 , delay occurs only for F > 5.4277 which

is substantially higher than for the case of a profit maximizing firm (F = 1.2910).

The welfare loss for Kini
1 = Kss,m1

1 is depicted in Figure 10. The welfare loss

F
˜

1.4 1.6 1.8
F

3.6

3.8

4.0

4.2
-ΔW

Figure 10: Welfare loss for K1 = Kss,m1

1 .

is initially constant as in both situations, immediate introduction is optimal (as

long as Kss,m1

1 < K lb
1 ) but at some critical F (where K lb

1 < Kss,m1

1 ), the firm starts

delaying the product introduction which increases the welfare loss. However, for

F ≥ F̃ , the welfare loss decreases as the firm stays in m1 where F does not have

an effect whereas the welfare for the social planner decreases as costs of switching

to m2 increase.

We see that government intervention by subsidizing costs which come along

with introducing new products would be welfare enhancing if it leads to faster

introduction or introduction at all. However, for low adoption costs, subsidies

would not have an impact.

6 Discussion of Results and Assumptions

From an economic perspective, delay was expected in order to discount adoption

costs and to smooth cannibalization. Our analysis shows that the decrease of es-

tablished capacities is accompanied by a larger marginal value for the new product
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in m2, i.e. investing in the capacities of the new product is stronger than it would

be with immediate introduction.

In our analysis, we abstract from competition. However, a monopoly could turn

into a competing environment if entry is possible. Thus, if there is a threat of

possible entrants, we expect that this would accelerate product introductions.

Another issue is that we do not consider the phase of development of the new

product. For the interpretation that the new product is developed by the incum-

bent himself, it is clear that the firm is not going to engage in R&D activities if the

product is not introduced eventually. In the case where the product is introduced

with some delay, we expect that R&D efforts would be less in the development

phase which would have a similar impact on the introduction time.

For the interpretation of external developers generating a new technology where

adoption costs mainly consist of buying the patent for the new technology, an

alternative option to adoption costs which has to be paid once when the product

is introduced, would be to consider fees per unit which has to be paid to the

owner of the patent. There, as long as the fee per unit is constant and less than θ,

introduction would occur immediately since fees are paid continuously, so adoption

costs are ‘spread over time’.

We made the assumption that capacities are fully used, i.e. production equals

sales. We believe that this assumption is of minor consequence to our results since

in our model, there are no capacities for the new product in T and investment in

capacities is accompanied with quadratic costs such that capacities are not build

up as a ‘lump-sum’ but slowly while the capacity of the established product is

reduced slowly. Moreover, in the case of delay, the incumbent starts reducing

capacities even in m1. A rigorous analysis of the full usage of capacity assumption

yields that it is optimal to exploit full capacity if the following conditions hold:

2K1 + ηK2 ≤ 1, (40)

ηK1 + 2K2 ≤ 1 + θ. (41)

Numerical experiments suggest that conditions (40) and (41) seem to be satisfied
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for reasonable values of K1 (≤ Kss,m1

1 )21.

Furthermore, e.g., for decreasing demand, it is argued that in practice firms

reduce prices in order to maintain production rather than reducing production

due to contracts with employees and suppliers, even though such contracts are

not modeled here (cf. Goyal and Netessine (2007)). However, counterexamples

exist as well where firms have excess capacity, e.g., for deterring entry (see Chicu

(2012)).

This analysis focuses on the effect of adoption costs. However, for some products,

not adoption costs but differences in production costs may be the main reason

for firms to abstain from product introduction, in particular if the old and new

product’s production costs differ a lot. Apple had developed a mouse in 1979 whose

production costs were so high such that Apple abstained from further development

of this mouse and hence from introducing it (cf. Hinloopen et al. (2013)).

7 Conclusion

Using a fully dynamic framework we identify different scenarios in which the firm’s

behavior depends crucially on the capacity of the established product and on the

level of adoption costs. There is an interesting case where it is not optimal for the

firm to introduce the new product immediately but to delay product introduction.

21In the case of no horizontal and vertical differentiation, i.e. η = 1 and θ = 0, conditions (40)

and (41) are satisfied if

K1 ≥
1

3
∧K2 ≤

1

3
, (42)

or

K1 ≤
1

3
∧K2 ≥

1

3
. (43)

For our default parameter setting with F = 1.705, (42) and (43) are satisfied. In the case of

horizontal and vertical differentiation, (40) and (41) are weakened. For higher θ, the incumbent

wants to build up capacities for the new product faster, but to decrease capacities of the estab-

lished product faster as well. For lower η, as products are more differentiated and competition

between the established and the new product is weakened, investment in the new product’s and

disinvestment of the established product’s capacities are slower. Thus, in both cases, we expect

that (40) and (41) are not affected much.
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By delay in time, adoption costs are discounted while the firm prepares for product

introduction by reducing capacities on the established market which increases the

marginal value of the established and new products’ capacities and hence reduces

cannibalization. Moreover, the incumbent postpones investment in new capacity

and hence benefits longer from high profits before product introduction. Notewor-

thy is the occurrence of Skiba points where the firm is indifferent in approaching

different steady states which affects the number of products produced by the firm.

We assume that firms cannot invest in capacities beforehand. Allowing for in-

vestment before introduction might have an effect on the time of introduction,

in particular we expect that this would accelerate product introduction while we

think that qualitative results would remain unaffected. Furthermore, we abstained

from competition which would be the natural next step.

A Appendix

A.1

The canonical system is given by

K̇1 =
λ

γ
− δK1,

λ̇ = (r + δ)λ− (1− 2K1),

(44)

and the isoclines are

K̇1 = 0 ⇔ λ = δγK1,

λ̇ = 0 ⇔ λ =
1− 2K1

r + δ
.

(45)

If the firm does not introduce the new product, i.e. for staying in m1 infinitely,

there is a unique steady state

Kss,m1

1 =
1

δγ(r + δ) + 2
, λss,m1 =

δγ

δγ(r + δ) + 2
. (46)

The steady state is a saddle point as the Jacobian is

−δ 1
γ

2 r + δ

 (47)
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with

det J = −δ(r + δ)− 2

γ
< 0. (48)

The eigenvalues are given by

µ1,2 =
r

2
±
√(r

2

)2
+ δ(r + δ), (49)

so eigenvalues have different sign and the steady state is indeed a saddle point.

A.2

Lemma 2. Condition (16) holds for(
K∗1
)
1,2

= −d
f
±

√
2γrF

f 2
. (50)

Proof.

Consider the terminal condition22 (16):

H(K∗1 , I
∗
1 , λ(T ∗), T ∗) = rS

(
K∗1
)

(51)

⇔

(1−K∗1)K∗1 −
γ

2
I∗1

2 + λ(T ∗)(I∗1 − δK∗1) = r(V m2(K∗1)− F ) (52)

⇔

(1−K∗1)K∗1 −
γ

2
I∗1

2 +
∂V m2

∂K1

(I∗1 − δK∗1) = r(V m2(K∗1)− F ). (53)

The HJB-equation in m2 at T ∗ is given by23

(1−K∗1)K∗1 −
γ

2
(I∗1

2 + I∗2
2) +

∂V m2

∂K1

(I∗1 − δK∗1) +
∂V m2

∂K2

I∗2 = rV m2(K∗1). (54)

For I∗2 =
V

m2
K2

γ
, we have:

(1−K∗1)K∗1 −
γ

2
I∗1

2 +
∂V m2

∂K1

(I∗1 − δK∗1) +
1

2γ

(∂V m2

∂K2

)2
= rV m2(K∗1). (55)

22For convenience, we henceforth omit the dependence of state and control variables on T ∗.
23Note that F is paid for switching to m2 and does not occur in m2 anymore.
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Using (55) and (53) yields

rF =
1

2γ

(∂V m2

∂K2

)2
, (56)

which under consideration of K2 = 0 yields the two solutions

K lb
1 := −d

f
−

√
2γrF

f 2
, (57)

and

Kub
1 := −d

f
+

√
2γrF

f 2
. (58)

A.3

Proof of Lemma 1. Taking the derivative of K lb
1 with respect to F yields

∂K lb
1

∂F
= − 2γr

2f 2
√

2γrF
f2

= −
√

γr

2Ff 2
< 0 . (59)

A.4

Lemma 3. For K1 < K lb
1 ,

H < rS, (60)

holds and for K lb
1 < K1 < Kub

1 ,

H > rS, (61)

holds.

Proof. By Lemma 2 in Appendix A.2, we know that for F = 0 the terminal

condition of the Maximum Principle holds for KF=0
1 and H < rS for other values

of capacity24. For F > 0, F occurs negatively on the right hand side of the terminal

24Cf. Appendix A.2. For F = 0, the square root in (50) vanishes and both solutions coincide.

Moreover, note that for F = 0, the only extra term in (55) in comparison to (53) is 1
2γ

(
∂Vm2

∂K2

)2
which is non-negative. Hence for all K1, H is less or equal than rS (it is equal for Klb

1 (= Kub
1 )

as 1
2γ

(
∂Vm2

∂K2

)2
= 0).
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condition and only there. Thus, there arises an interval whose bounds are given

by (57) and (58) wherein H > rS. For Kini
1 outside the interval, the opposite

holds.

Lemma 4. If T ∗(K1) is finite for all K1, then for all K1 ≤ K lb
1 , it is optimal to

innovate immediately. For all K lb
1 < K1, it is optimal to reduce capacities and to

innovate when the capacity reaches K lb
1 , i.e. T ∗(K1) > 0.

Proof of Lemma 4. Whenever H > rS, delaying the introduction of the new prod-

uct marginally and introducing it afterwards is better than introducing it imme-

diately. Due to Lemma 3, H > rS holds in the interval (K lb
1 , K

ub
1 ). Moreover,

note that introducing is not optimal for K1 > KF=0
1 . For K lb

1 < K1 ≤ KF=0
1 ,

along the path to K lb
1 , delaying marginally and introducing dominates the option

of introducing immediately. Hence, introducing at K lb
1 is indeed optimal. For

K1 < K lb
1 , again due to Lemma 3, H < rS holds. Investing in K1 such that K1

increases and hits the switching candidate K lb
1 and introducing then is worse than

having introduced earlier since along the path, at every value of capacity, intro-

ducing immediately would have been better compared to delaying marginally and

introducing afterwards. Hence, for K1 ≤ K lb
1 , introducing immediately is optimal.

A.5

Lemma 5. ∃! F̃ > 0 such that ∀F ≥ F̃ , ∃ K1 with T ∗(K1) = ∞, i.e. V (K1) =

V m1(K1) and ∀F < F̃ , @ K1 with T ∗(K1) =∞.

Proof. The value function of m1 without the option to switch to m2 is independent

of F whereas the value function of the control problem with introduction option is

decreasing in F due to the decreasing salvage value. Thus, there is some F̃ where

the value function of the control problem with introduction option hits the value

function of m1 for the first time which is greater than 0 since for F = 0, switching

is costless and in m2, there is the option of producing the new product which has

a higher quality (θ > 0)25.

25Even without vertical differentiation, introducing the new product is beneficial as the market
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This result leads to the following corollary.

Corollary 1. For F < F̃ , T ∗(K1) is finite for all initial capacities and Lemma 4

applies.

Proof. Follows directly from Lemma 5.

Denote by K̃1 the lowest value of initial capacity where an infinite solution T ∗

exists for P(K̃1):

K̃1 = min{K1 | T ∗(K1) =∞}. (62)

Note that K̃1 exists for F ≥ F̃ . The following lemma and proposition characterize

the situation at F̃ .

Lemma 6. At F = F̃ ,

K lb
1 ≤ K̃1 (63)

holds.

Proof. Let F = F̃ . Assume K̃1 < K lb
1 . Then, for K̃1, H < rS, which yields that

the unique solution is to switch to m2 which contradicts F = F̃ .

Proposition 2. At F = F̃ ,

K̃1 = Kss,m1

1 , (64)

and the free end-time problem P(K̃1) has a unique solution with T ∗ =∞.

We first state the following lemma which is necessary for the proof of Proposition

2.

Lemma 7. The dynamics at the terminal pair
(
K lb

1 , λ(T )
)

are not K̇1 > 0 and

λ̇ > 0 simultaneously.

Proof. The terminal pair is determined by H = rS and λ(T ) = SK1 . The line

λ(T ) = SK1 = b + cK1 has a positive ordinate (b > 0) as K1’s marginal value is

positive if there are no capacities installed. One might think that this line could

is expanded and the firm is able to split the total quantity among the two products which yields

a higher price (cf. Dawid et al. (2015)).
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Figure 11: Vector plot. Parameters: r = 0.04, δ = 0.1, η = 0.9, θ = 0.1, γ =

0.15, F = 1.275(> F̃ ).

pass through the area to the right-upper of the intersection point of K̇1 = 0 and

λ̇ = 0 where K̇1 > 0 and λ̇ > 0 hold. This would yield different dynamics than

studied so far. However, one can easily show that for terminal pairs in that area,

there is no candidate for an optimal solution with 0 < T ∗ < ∞. In particular,

for Kini
1 > K lb

1 , there are either no candidate paths or only non-monotone paths

arriving at the terminal pair which cannot be optimal26. Converging to the steady

state of m1 along the stable manifold is not optimal as well as time consistency

is violated since for K1 < K lb
1 , H < rS holds. Thus, there are no optimal paths

for Kini
1 > K lb

1 which yields a contradiction and proves that this situation cannot

occur.

Proof of Proposition 2. As the steady state of m1 is a saddle-point, there is a

26Non-monotone paths imply a set of Skiba points which generates fluctuating paths for

T ∗ =∞, which contradicts to the uniqueness property of the steady state of the infinite horizon

problem.
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stable and unstable manifold. If T ∗ is finite but not zero, then the switching pair(
K1(T ), λ(T )

)
in the (K1, λ) space is derived from the condition H = rS and the

transversality condition λ(T ) = SK1 . As F increases and K lb
1 decreases, there is

an F , where
(
K lb

1 , λ(T )
)

is on the unstable manifold with K̇1 < 0 and λ̇ < 027.

Denote that F by F uns. For arriving at that pair, the initial pair has to be on

the unstable manifold. Thus, for all K1 ≥ Kss,m1

1 , there is no optimal path which

leads to (K lb
1 , λ(T )), i.e. for all K1 ≥ Kss,m1

1 , T ∗(K1) =∞.

Next, we prove that F̃ = F uns. Obviously, F̃ ≤ F uns 28. Assume F̃ < F uns.

Then, by Lemma 1, at F̃ , the terminal pair is to the right of the unstable manifold.

Denote for all possible terminal values K1(T ) the value of the path which leads

to the terminal pair by V term(K1(t), K1(T ), F ) which in this case exists for all

K1 ≥ K1(T ) and for all F < F uns and is continuous in F .

In order to avoid confusion, for an F , we denote the correspondingK lb
1 byK lb

1 (F ).

For Kini
1 > K̃1,

V term(Kini
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kini
1 ), (65)

holds29. Hence, ∃ F l < F̃ with

V term(Kini
1 , K lb

1 (F l), F l) = V m1(Kini
1 ), (66)

which contradicts the minimality of F̃ . Hence, the assumption F̃ < F uns was

wrong and F̃ = F uns holds.

Now, we prove that K̃1 is not less than Kss,m1

1 again by contradiction. Assume

that K̃1 < Kss,m1

1 . Then, consider Kint
1 for which K̃1 < Kint

1 < Kss,m1

1 holds. For

27As shown in Lemma 7, the dynamics at the terminal pair are not K̇1 > 0 and λ̇ > 0

simultaneously.
28Note that for Funs infinite solutions for T exist. As F̃ is the minimal value of adoption costs

for which infinite solutions exist, F̃ ≤ Funs holds.
29It cannot be V term(Kini

1 ,Klb
1 (F ), F ) = V m1(Kini

1 ) since for Kini
1 ≥ K̃1, trajectories of the

finite and infinite solution move in the same direction (as due to Lemma 6, Klb
1 ≤ K̃1) and accord-

ing to Proposition 1 in Caulkins et al. (2015), in that case, the trajectories have to coincide for all

t ∈ [0, T ∗(Kini
1 )] which is apparently not true. Moreover, V term(Kini

1 ,Klb
1 (F ), F ) > V m1(Kini

1 )

cannot hold either since this leads to another solution for the problem without introduction op-

tion via moving to K̃1 along the path corresponding to the finite solution of T and switching at

K̃1 to the solution of the problem without introduction option.
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F = F̃ , we have30

V term(Kint
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kint
1 ). (67)

Again, by continuity of V term in F , there exists an F l < F̃ with

V term(Kint
1 , K lb

1 (F l), F l) = V m1(Kint
1 ), (68)

which contradicts the minimality of F̃ . Thus, K̃1 = Kss,m1

1 and it is a threshold

point31 where the firm is not indifferent.

A.6

Corollary 2. At F̃ , for K1 < K̃1,

T ∗(K1) <∞, (69)

holds and for K̃1 ≤ K1,

T ∗(K1) =∞, (70)

holds.

Proof. Due to the definition of K̃1, for K1 < K̃1 only finite solutions are optimal.

According to the proof of Proposition 2, for K̃1 ≤ K1, only infinite solutions are

optimal.

For characterizing the evolution of K̃1, we denote by F̄ the value of adoption

costs for which

V m1(K lb) = V m2(K lb)− F (= S(K lb)) (71)

holds, i.e. where the firm is indifferent between introducing immediately and

delaying infinitely at K lb
1 .

30Note that in this case, V term exists for K1 < K̃1. Moreover, as this problem is time invariant

and trajectories of the finite and infinite solution move in opposite directions and due to the

monotonicity of the trajectory of the infinite solution
(
see Hartl (1987)

)
, the trajectory of the

finite solution is monotone as well and there cannot be an overlap region, i.e. there is no interval

of Skiba points (cf. Caulkins et al. (2015)). Thus, at F̃ for Kint
1 , the infinite solution is the

unique optimal solution.
31Here, a threshold point is characterized by having finite and infinite solutions for T in every

neighborhood (cf. Caulkins et al. (2015)).
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Proposition 3. K̃1 is decreasing in F and for all F̃ < F < F̄ , the free end-time

problem P(K̃1) has two different solutions with optimal terminal times 0 < T f <∞

and T∞ = ∞, i.e. K̃1 is a Skiba point where the firm is indifferent between

introducing the product after some delay and not at all.

Proof of Proposition 3. As K lb
1 decreases with F , for F̃ < F < F̄ , the terminal

pair
(
K1(T ), λ(T )

)
=
(
K lb

1 , λ(T )
)

is to the left of the unstable manifold (cf. proof

of Proposition 2 in Appendix A.5). There, the dynamics are given by K̇1 < 0 and

λ̇ < 0. Starting at the terminal pair
(
K lb

1 , λ(T )
)

and moving backwards along the

arc leading to it, i.e. considering V term introduced in Appendix A.5 (cf. Figure

11), we can identify candidates for the optimal starting point for different Kini
1 .

This arc hits the K̇1 = 0 line at some Kh
1 . This is the highest K1 for which a

finite candidate T exists since following the arc further gives further candidates

for K lb
1 ≤ K1 < Kh

1 as there is K̇1 > 0, which implies non-monotone paths for

K1 which cannot be optimal (cf. Appendix A.5). Hence, V term is well defined.

For any K1 < Kss,m1

1 , it is also possible to converge to the steady state of m1 by

following the stable arc of the steady state. Comparing values of both candidates

by taking the upper curve of the value functions corresponding to both options we

obtain the value function and the optimal strategies of the control problem with

introduction option. Hence, there is an indifference point 0 < K̃1 ≤ Kh
1 where

the firm is indifferent moving to the steady state along the stable manifold and

moving to K lb
1 . Thus, K̃1 is a Skiba point. As F increases, K lb

1 and Kh
1 decreases.

Next, we prove that K̃1 decreases as well by contradiction. For F a, F b ∈ (F̃ , F̄ ),

with F a < F b, denote the corresponding indifference points by K̃1
a

and K̃1
b

and

assume that K̃1
a ≤ K̃1

b
, i.e. K̃1 is nondecreasing in F . Then,

V m1(K̃1
b
) = V term(K̃1

b
, K lb

1 (F b), F b) < V term(K̃1
b
, K lb

1 (F a), F a) ≤ V m1(K̃1
b
)

(72)

which yields a contradiction32 . Hence, K̃1 is decreasing in F .

Now, we show that at F̄ the waiting region vanishes and only immediate or

32The last inequality is due to the following: K̃1
a ≤ K̃1

b
and for K1 ≥ K̃1

a
, infinite solutions

are optimal.
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infinite solutions for T remain.

Corollary 3. For F̄ ≤ F < ¯̄F , there exists a K̃1 > 0 such that for all K1 < K̃1 the

firm introduces the new product immediately whereas for all K1 > K̃1 the firm never

introduces the new product. At K̃1, the incumbent is indifferent, in particular the

free end-time problem P(K̃1) has two different solutions with 0 = T f < T∞ =∞.

Moreover, at F̄ , K̃1 = K lb
1 .

Proof. By definition of F̄ , the firm is indifferent between immediate and infinite

product introduction. By Proposition 3, K̃1 is decreasing and hits K lb
1 at F̄ where

solutions with 0 < T <∞ vanish.

A.7

Quarterly data on worldwide HDD sales beginning in Q1 in 2015 and ending in

Q4 in 2017 is given by

(125, 111, 118.7, 115.1, 100.5, 98.7, 113.8, 111.5, 98.8, 96.4, 104.1, 104.8), (73)

while SSD sales in the same period are given by

(23.19, 23.86, 26.22, 29.53, 30.78, 33.69, 38.25, 45.03, 39.78, 42.09, 40, 42.49) (74)

The corresponding value function in mode m2 is given by

V m2(K1, K2) = 7.57695+0.946976K1−1.14284K2
1+1.58041K2−1.70404K1K2−1.14284K2

2 .

(75)
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