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Abstract We reconsider the deterministic haploid mutation-selection equa-
tion with two types. This is an ordinary differential equation that describes the
type distribution (forward in time) in a population of infinite size. This paper
establishes ancestral (random) structures inherent in this deterministic model.
In a first step, we obtain a representation of the deterministic equation’s so-
lution (and, in particular, of its equilibrium) in terms of an ancestral process
called the killed ancestral selection graph. This representation allows one to
understand the bifurcations related to the error threshold phenomenon from
a genealogical point of view. Next, we characterise the ancestral type distri-
bution by means of the pruned lookdown ancestral selection graph and study
its properties at equilibrium. We also provide an alternative characterisation
in terms of a piecewise-deterministic Markov process. Throughout, emphasis
is on the underlying dualities as well as on explicit results.

Keywords mutation-selection equation · pruned lookdown ancestral selection
graph · killed ancestral selection graph · error threshold
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1 Introduction

Understanding the interplay between mutation and selection is a major topic
of population genetics research. By and large, the field is divided into two
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major lines of research, devoted to deterministic and stochastic models, re-
spectively. The deterministic mutation-selection equation describes the action
of mutation and selection on the genetic composition of an effectively infi-
nite population; its first version goes back to Crow and Kimura (1956). De-
terministic mutation-selection equations are formulated in terms of discrete-
or continuous-time dynamical systems, and they are treated forward in time
throughout, via the well-developed methods of dynamical systems; a compre-
hensive overview of the research until 2000 is provided in the monograph by
Bürger (2000). Stochastic mutation-selection models, such as the Moran and
Wright-Fisher models with mutation and selection, additionally capture the
fluctuations due to random reproduction over long time scales; these fluctu-
ations are absent in the deterministic dynamics. The stochastic models have
their roots in the seminal work of Fisher (1930), Wright (1931), Malécot (1948),
Feller (1951), and Moran (1958). They are formulated in terms of stochastic
processes in discrete or continuous time, and are often made tractable via a
diffusion limit. Their modern treatment further relies crucially on the genealog-
ical point of view, where lines of descent are traced backward in time with the
help of ancestral processes, such as the ancestral selection graph (Krone and
Neuhauser, 1997). Overviews of the area may be found in the monographs by
Ewens (2004), Durrett (2008), and Wakeley (2009).

During the last decades, deterministic and stochastic population genetics
have largely led separate lives. It is the purpose of this article to bring the
two research areas closer together by working out the backward point of view,
so far reserved to stochastic models of population genetics, for determinis-
tic mutation-selection equations. The first step in this direction was taken by
Cordero (2017); this will be our starting point. We will work with the simplest
model, namely, with haploid individuals, two types, selection, and mutation,
and pursue two major aims. First, we will obtain a representation of the so-
lution of the deterministic mutation-selection equation and its equilibrium
state(s) in terms of an ancestral process termed the killed ancestral selection
graph. Second, we will characterise the type distribution of the ancestors of
today’s individuals in the distant past by what we call the pruned lookdown
ancestral selection graph. Throughout, emphasis will be on the underlying
dualities as well as on explicit results and worked details.

The paper is organised as follows. We set out in Section 2 by introducing
the Moran model with two types, selection, and mutation. This is a stochas-
tic model for a finite population, which leads to the deterministic mutation-
selection equation via a law of large numbers. Next, the graphical constructions
required to trace back ancestral lines are introduced; namely, the ancestral
selection graph (Section 3), the killed ancestral selection graph (Section 4),
and the pruned lookdown ancestral selection graph (Section 5), all in the de-
terministic limit. In the special case of unidirectional mutation (away from
the beneficial type, without back mutation), the results shed new light on the
bifurcations related to the so-called error threshold phenomenon. Finally (Sec-
tion 6), we characterise the ancestral type distribution in two ways: first, by
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means of the pruned lookdown ancestral selection graph; and second, as the
absorption probability of a piecewise-deterministic Markov process.

2 The two-type Moran model and its deterministic limit

We consider the two-type Moran model with mutation and selection, which
is described as follows. We have a haploid population of fixed size N . Each
individual in this population has a type, which is either 0 or 1. Individuals of
type 1 reproduce at rate 1, whereas individuals of type 0 reproduce at rate 1+s
with s ≥ 0. We refer to type 0 as the fit or beneficial type, whereas type 1 is
unfit or deleterious. When an individual reproduces, its single offspring inherits
the parent’s type and replaces a uniformly-chosen individual in the popula-
tion, thereby keeping the population size constant. Each individual mutates at
rate u; the type after the event is i with probability νi, i ∈ {0, 1}. We assume
throughout that u is positive and ν0, ν1 are non-negative with ν0 + ν1 = 1.

The Moran model has a well-known graphical representation as an inter-
acting particle system, see Fig. 1. Here, individuals are represented by pieces
of horizontal lines. Time runs from left to right in the figure. Reproduction
events are depicted by arrows between the lines. If an individual places off-
spring via an arrow, the offspring inherits the parent’s type and replaces the
individual at the tip. We decompose reproduction events into neutral and se-
lective ones. This is reflected by neutral and selective arrows in the graphical
representation. Neutral arrows appear at rate 1/N per ordered pair of lines;
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×

×
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t 0

t

r

Mutation to type 0

× Mutation to type 1

Selective arrow

Neutral arrow

Fig. 1: A realisation of the Moran interacting particle system (thin lines) and
the embedded ASG (bold lines). Time runs forward in the Moran model (→)
and backward in the ASG (←).
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selective arrows appear at rate s/N per ordered pair. Neutral arrows are used
by all types; selective arrows are only used by individuals of type 0. Mutation
events are depicted by crosses and circles on the lines. A circle (cross) indicates
a mutation to type 0 (type 1), which means that the type on the line is 0 (is 1)
after the mutation. This occurs at rate uν0 (at rate uν1) per line. Both types
of mutation events are independent of the type on the line before the event;
in particular, silent events are included where the type is the same before and
after the event. All arrows, crosses, and circles appear independently. Given
a realisation of the particle system and an initial type configuration (that is,
a type assigned to each line at t = 0), we can read off the types on the lines
at all later times t > 0. The distribution of the initial types is independent of
the law of the graphical elements (arrows, circles, and crosses). In particular,
we will see that certain properties of the ancestral processes are determined
by the graphical elements alone, irrespective of the initial types.

Let Y
(N)
t be the proportion of type-1 individuals at time t in a population

of size N . Clearly,
(
Y

(N)
t

)
t≥0

, which we abbreviate by Y (N), is a Markov

process on [0, 1]. We will, in what follows, study the deterministic limit of the

Moran model. In Cordero (2017, Prop. 3.1), it is shown that, if Y
(N)
0 −→ y0

as N → ∞, then Y (N) converges to the solution y(t; y0) of the initial value
problem

dy

dt
(t) = −sy(t)

(
1− y(t)

)
− uν0y(t) + uν1

(
1− y(t)

)
, t ≥ 0,

y(0) = y0, for y0 ∈ [0, 1].
(2.1)

The convergence is uniform on compact sets of time in probability and a spe-
cial case of the dynamical law of large numbers of Kurtz (1970, Thm. 3.1);
see also Ethier and Kurtz (1986, Thm. 11.2.1). Neither parameters nor time
are rescaled. This corresponds to a strong mutation–strong selection setting.
(Note that this in contrast to the usual diffusion limit, where parameters and
time are rescaled with population size; this is suitable in a weak mutation–
weak selection framework, see, e.g., Durrett (2008, Ch. 7.2).) If ν0 ∈ (0, 1),
the convergence carries over to t → ∞ in the sense that the stationary dis-
tribution of the Moran model converges in distribution to the point measure
on ȳ as N → ∞ (Cordero, 2017), where ȳ is the (unique) stable equilibrium
of the ODE. The initial value problem (2.1) is the classical mutation-selection
equation of population genetics (Crow and Kimura, 1956, 1970). It is a Riccati
differential equation with constant coefficients and hence the solution is known
explicitly (Cordero, 2017). The equilibrium points of (2.1) are the solutions of
the equation

sy2 − (u+ s)y + uν1 = 0. (2.2)

The stable equilibrium, known, for example, via Cordero (2017, Lem. 3.1), is
given by

ȳ =

 1
2

(
1 + u

s −
√(

1− u
s

)2
+ 4ν0

u
s

)
, s > 0,

ν1, s = 0.
(2.3)
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Fig. 2: The equilibria of (2.1) as a function of u/s for s > 0. Black line: ȳ
(stable); grey line: y? (unstable).

If s > 0, there is an additional equilibrium of (2.1), which is unstable (see
Cordero (2017, Lem. 3.1)), namely,

y? =
1

2

(
1 +

u

s
+

√(
1− u

s

)2

+ 4ν0
u

s

)
.

If ν0 > 0, then ȳ ∈ [0, 1) and y? > 1; so ȳ is the only relevant equilib-
rium. Furthermore, limt→∞ y(t; y0) = ȳ for all y0 ∈ [0, 1]. If ν0 = 0, the
two equilibria reduce to ȳ = min{u/s, 1} and y? = max{1, u/s}. In particu-
lar, if ν0 = 0 and u ≥ s, then ȳ is still the only relevant equilibrium and
again limt→∞ y(t; y0) = ȳ for all y0 ∈ [0, 1]. But if ν0 = 0 and u < s, then there
are two equilibria in the unit interval. In particular, then limt→∞ y(t; y0) = ȳ
for y0 ∈ [0, 1), while y(t; 1) ≡ 1.

For s > 0, Fig. 2 shows how ȳ and y? depend on u/s and ν0. For in-
creasing u/s, the effect of selection decreases in the sense that ȳ increases; it
converges to ν1 for u/s→∞, which is also the equilibrium frequency when se-
lection is absent. The case s > 0, ν0 = 0 deserves special attention. If u/s < 1,
both ȳ = u/s (stable) and y? = 1 (unstable) are in [0, 1]; when u surpasses the
critical value s, the ȳ = 1 is the only equilibrium in [0, 1], and is attracting
for all y0 ∈ [0, 1]. This phenomenon is known as the error threshold (Eigen,
1971; Eigen et al., 1989); it means that selection ceases to operate for u ≥ s.
Extending (2.1) to y0 ∈ R yields a transcritical (or exchange of stability) bi-
furcation of the equilibria at 1 and u/s: For u < s, the former is unstable and
the latter is stable; and vice versa for u > s. See Baake and Wiehe (1997) for
more details. Let us only add here that the equilibrium at u/s in this classical
mutation-selection equation with ν0 = 0 and u < s is used to estimate fit-
ness landscapes from molecular data via appropriate averaging (Zanini et al.,
2017).
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3 The ancestral selection graph and its deterministic limit

The ancestral selection graph (ASG) by Krone and Neuhauser (1997) is a tool
to study the genealogical relations of a sample taken from the population at
present. This is done in three steps, which we first describe for the finite-N
Moran model. One starts from an untyped sample (that is, no types have been
assigned to the individuals) taken at t > 0, to which we refer as the present. In
a first step, one goes backward in time and constructs a branching-coalescing
graph, whose lines correspond to potential ancestors and are decorated with
the mutation crosses and circles, as anticipated in Fig. 1. When this graph has
been constructed backward in time until time 0, say, one samples the types
for each line without replacement from the initial type distribution. In a last
step, one propagates the types forward up to time t, taking into account the
mutation and selection events. We will think of t as the time of sampling and
denote the backward time by r: Backward time r = 0 corresponds to the time
point t and backward time r = t corresponds to the time point 0, as anticipated
in Fig. 1.

Let us describe these steps in detail. The branching-coalescing graph can be
constructed via the graphical representation of the forward process in Fig. 1.
Choose n lines at time r = 0 and follow them back in time. At any time,
the lines currently in the graph may be hit by selective arrows from in- or
outside the current set of lines. Since we are in an untyped scenario, it is not
yet possible to decide whether these arrows have been used or not. The idea is
therefore to keep track of all potential ancestors of the sample. When a given
line, which we call descendant line, is hit by a selective arrow, it splits into the
continuing line (the one at the tip of the arrow) and the incoming line (the
one at the tail). The incoming line is the ancestor if it is of type 0 and has
thus used the selective arrow, whereas the continuing line is the ancestor if
the incoming line is of type 1 and the selective arrow thus has not been used,
see Fig. 3. We call this rule the pecking order. A neutral arrow between two
potential ancestors lets the two lines merge into one; this implies coalescence
into a common ancestor. A coalescence event reduces the number of lines by
one.

If there are currently n lines, there is thus an increase to n + 1 at rate
s(N − n)n/N due to a selective arrow from one of the N − n individuals that
are currently not potential ancestors. At rate n(n− 1)/N , there is a decrease
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Fig. 3: The descendant line (D) splits into the continuing line (C) and the
incoming line (I). The incoming line is ancestral if and only if it is of type 0.
The true ancestral line is drawn in bold.
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to n − 1 due to a coalescence event. At rate sn(n − 1)/N , a selective arrow
joins two potential ancestors currently in the graph. We call this a collision
event. Collisions do not change the number of lines. The mutation circles and
crosses occur on each line at rates uν0 and uν1, respectively.

When the branching-coalescing graph has been constructed up to time r =
t, we sample a type for each line without replacement from the initial popula-

tion with type distribution (1 − Y (N)
0 , Y

(N)
0 ). One then propagates the types

forward up to time t taking into account the pecking order and the mutations.
Proceeding in this way, the types in [0, t] are determined, along with the true
genealogy.

In the deterministic limit, the ASG turns into the following construc-
tion (see Cordero (2017) for details). Branching, deleterious, and beneficial
mutations occur at rate s, uν1, and uν0 per line, respectively. Since collisions
and coalescences occur in the Moran model at rates of order O(1/N), both
types of events vanish as N → ∞. As a consequence, in the deterministic
limit, all individuals in a sample remain independent in the backward pro-
cess. It therefore suffices to consider a sample of size 1. For every finite time
horizon, the number of lines remains bounded. The typing of the potential an-
cestors at r = t is done independently and identically according to the initial
distribution (1− y0, y0).

4 The killed ASG in the deterministic limit

Our first aim now is to recover the solution of the deterministic mutation-
selection equation (2.1) by genealogical means. Recall that the solution y(t; y0)
gives the frequency of type 1 at time t; the deterministic limit of the ASG is
therefore the appropriate tool. Recall also that, due to the independence of
the sampled individuals, it is sufficient to consider a single one.

Our starting point is a well-known observation (e.g. Shiga and Uchiyama
(1986); Athreya and Swart (2005); Mano (2009)) that holds for the diffusion
limit and carries over to the deterministic setting: In the absence of mutations,
a single individual at time t is of type 1 if and only if all its potential ancestors
at t = 0 are of type 1. This is easily verified via the pecking order (cf. Fig. 3).
Namely, at every branching event, a type 0 on either the continuing or incoming
line suffices for the descendant individual to be of type 0; iterating this over
all branching events gives the statement. Mutations add further information
about the types: they can determine the type of the sample even before we
sample the initial types. More precisely, a mutation to type 1 determines the
type of the line (to the right of the mutation) on which it occurs, so this line
need not be traced back further into the past; it may be pruned. Next, the first
mutation to type 0 (on any line that is still alive after the pruning) decides
that the sampled individual has type 0, so that no potential ancestor must
be considered any further and the process may be killed. This motivates the
following definition.
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Fig. 4: The killed ASG either absorbs in a state with 0 lines due to mutations
to type 1 (left) or in a cemetery state ∆ due to a mutation to type 0 (center);
it may also grow to ∞ (not shown). The realisation on the right is still in a
transient state.

Definition 1 The killed ASG in the deterministic limit starts with one line
emerging from each of the n individuals in the sample. Every line branches at
rate s (due to a selective arrow from outside the set of potential ancestors).
Every line is pruned at rate uν1 (due to a deleterious mutation). At rate uν0

per line, the process is killed (due to a beneficial mutation), that is, it is sent
to the cemetery state ∆. All the events occur independently on every line.

Fig. 4 depicts some realisations of the killed ASG. There, we adopt the conven-
tion that the incoming line is always placed immediately beneath the continu-
ing line. Let (Rr)r≥0 be the line-counting process of the killed ASG. This is a
continuous-time Markov chain with values in N∆

0 := N0 ∪ {∆} and transition
rates

qR(k, k + 1) = ks, qR(k, k − 1) = kuν1, qR(k,∆) = kuν0 (4.1)

for k ∈ N0. The states 0 and ∆ are absorbing; all other states are transient.
The state 0 is reached if all lines are pruned due to deleterious mutations. The
state ∆ is reached upon the first beneficial mutation. Absorption in 0 (in ∆)
implies that (not) all individuals in the sample are of type 1. The process may
also grow to ∞ (this happens with positive probability if ν0 = 0, u < s).

We now establish a connection between the solution y(· ; y0) of the (deter-
ministic) mutation-selection equation and the (stochastic) line-counting pro-
cess (Rr)r≥0, in terms of a duality relation, which formalises the ideas de-
scribed above. Let H : [0, 1]×N∆0 → R be defined as

H(y0, n) = yn0 , for y0 ∈ [0, 1], n ∈ N∆
0 , (4.2)

where y∆0 := 0 for all y0 ∈ [0, 1]. The function H returns the sampling proba-
bility for n individuals to be of type 1 under y0. Setting y∆0 = 0 is in accordance
with this interpretation: it is impossible to sample an unfit individual that has
a beneficial mutation in its relevant ancestry. The function H will serve as our
duality function.

Theorem 2 The line-counting process (Rr)r≥0 of the killed ASG and the so-
lution y(· ; y0) of the deterministic mutation-selection equation (2.1) satisfy the
duality relation

y(t; y0)n = E[yRt
0 | R0 = n] for all n ∈ N∆0 , y0 ∈ [0, 1], and t ≥ 0. (4.3)
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Proof We can consider
(
y(t; y0)

)
t≥0

as a (deterministic) Markov process on [0, 1]

with generator
Ayf(y) = Asyf(y) +Auyf(y)

for f ∈ C1([0, 1],R), where

Asyf(y) := −sy(1− y)
∂f

∂y
and Auyf(y) := [−uν0y + uν1(1− y)]

∂f

∂y
(4.4)

correspond to selection and mutation, respectively. On the other hand, the
infinitesimal generator of the line-counting process of the killed ASG reads

ARf̃(n) = AsRf̃(n) +AuRf̃(n) (4.5)

for f̃ ∈ Cb(N∆
0 ,R), where

AsRf̃(n) := ns[f̃(n+ 1)− f̃(n)]

and
AuRf̃(n) := nuν1[f̃(n− 1)− f̃(n)] + nuν0[f̃(∆)− f̃(n)]

again correspond to selection and mutation, respectively. Since H is continu-
ous, it suffices to show that

AyH(·, n)(y) = ARH(y, ·)(n) for y ∈ [0, 1] and n ∈ N∆
0

to prove the duality (see Liggett (2010, Thm. 3.42) or Jansen and Kurt (2014,
Prop. 1.2)). This matching of the generators is a straightforward calculation
and can be done individually for the selection and mutation parts; for example,

AsyH(·, n)(y) = −ns[yn − yn+1] = AsRH(y, ·)(n).

Similarly, AuyH(·, n)(y) = AuRH(y, ·)(n). ut

Theorem 2 provides a stochastic representation of the solution of the determin-
istic mutation-selection equation. It tells us that the killed ASG is indeed the
right process to determine the current type distribution. To see this, set n = 1
and note that the right-hand side of (4.3) indeed equals the probability that
a single individual at time t is of type 1: This is the case if either all lines
have been pruned before time t; or if all lines still alive at time t are assigned
type 1 when sampling from the initial distribution with weights (1 − y0, y0),
see Fig. 4.

Remark 3 Theorem 2 amounts to a weak duality between the forward and the
backward process. We expect that this also holds pathwise (see Jansen and
Kurt (2014, Sect. 4) for the corresponding notions). But in order to estab-
lish this strong kind of duality, one would need a particle construction of the
forward process (such as a lookdown construction as in Donnelly and Kurtz
(1999), but for the deterministic limit). This is beyond the scope of this article.

We are particularly interested in the equilibrium ȳ. Let us note in passing:
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Corollary 4 (
ȳRr
)
r≥0

is a martingale.

Proof Setting y0 = ȳ in (4.3) yields

E[ȳRr | R0 = n] = ȳn,

which implies that the left-hand side does not depend on r. ut

We now proceed to recover ȳ via the probabilistic backward picture. To this
end, we take the limit t→∞ in (4.3). This leads us to consider the asymptotic
behaviour of R, which is stated in the following Lemma.

Lemma 5 (i) If ν0 = 1, R absorbs in ∆ with probability 1.
(ii) If ν0 ∈ (0, 1), R absorbs in {0, ∆} with probability 1.

(iii) If ν0 = 0 and u < s, R absorbs in 0 with probability < 1 and, conditional
on non-absorption of R in 0, Rr →∞ with probability 1.

(iv) If ν0 = 0 and u ≥ s, R absorbs in 0 with probability 1.

Proof If ν0 > 0, conditional on non-absorption of R in {0, ∆}, there is always
at least one line in the killed ASG. The time to the first beneficial mutation on
any given line is exponentially distributed with parameter uν0 and therefore
finite almost surely. Hence, for any n ∈ N,

P (Rr /∈ {0, ∆} | R0 = n) ≤ P (Rr 6= ∆ | Rr 6= 0, R0 = n)
r→∞−→ 0.

This proves (ii). If ν0 = 1, we have ν1 = 0 and hence P (Rr = 0 | R0 = n) = 0
for all n ∈ N and r ≥ 0. The same argument used for (ii) then leads to (i).
For the second statement of (iii), note that conditional on non-absorption
of R in 0, R is transient and hence we can apply Karlin and McGregor (1957,
Thm. 8). The other cases follow by the classical absorption criterion (Karlin
and McGregor, 1957, Sect. 5). ut

Setting n = 1 in (4.3) and taking the limit t→∞, we directly obtain a repre-
sentation of the equilibrium frequency ȳ in terms of the absorption probability
of R in 0.

Corollary 6
ȳ = P ( lim

r→∞
Rr = 0 | R0 = 1). (4.6)

Therefore, we can now recover (2.3) using only properties of R. To calculate the
absorption probabilities, let wn := P (limr→∞Rr = 0 | R0 = n). A first-step
decomposition yields

wn =
s

u+ s
wn+1 +

uν1

u+ s
wn−1, n ≥ 1, (4.7)

together with w0 = 1 and w∆ = 0. It remains to solve (4.7). Due to the
independence of the n lines, one has wn = wn1 , and it suffices to show the
following.
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Proposition 7

w1 =

 1
2

(
1 + u

s −
√(

1− u
s

)2
+ 4ν0

u
s

)
, s > 0,

ν1, s = 0.
(4.8)

Remark 8 Note that, for ν0 = 0, (4.8) reduces to

w1 =

{
min

{
u
s , 1
}
, if s > 0,

1, if s = 0.

Proof of Proposition 7 Using the product form of w2, (4.7) evaluated for n = 1
leads to

sw2
1 − (u+ s)w1 + uν1 = 0, (4.9)

i.e. w1 satisfies Eq. (2.2). In particular, for s = 0, one has w1 = ν1. For s > 0,
we get w1 ∈ {ȳ, y?}. In addition, if ν0 > 0 or u > s, we already know from
Section 2 that y? > 1. Since w1 is a probability, we therefore have w1 = ȳ.
If ν0 = 0 and u < s, then y? = 1 and ȳ < 1. But Lemma 5 implies w1 < 1,
so w1 = ȳ. Finally, if ν0 = 0 and s = u, we have w1 = ȳ = y?. ut

Since w1 = ȳ, Proposition 7 is in accordance with Corollary 6. We have
thus found the desired genealogical interpretation of the solution of the deter-
ministic mutation-selection equation (2.1) and, in particular, of its stable equi-
librium ȳ. Let us explicitly describe what happens in the special case ν0 = 0,
which brings about the bifurcation that corresponds to the error threshold.
In this case, ∆ cannot be accessed, R is a birth-death process with birth
rate s and death rate u, and w1 = ȳ corresponds to its extinction probability.
Namely, for u ≥ s, the process dies out almost surely, whereas for u < s,
it survives with positive probability 1 − u/s and then grows to infinite size
almost surely. This is a classical result from the theory of branching processes
(Athreya and Ney, 1972, Ch. III.4): Indeed, for ν0 = 0, (4.9) is the fixed point
equation w1 = ϕ(w1) for the generating function ϕ of the offspring distri-
bution of a binary Galton-Watson process with probability u/(u + s) for no
offspring and s/(u + s) for two offspring individuals. This connection sheds
new light on the bifurcation observed in Section 2 and Fig. 2. Namely, let us
consider the killed ASG starting from a single individual sampled from the
equilibrium population (at some late time t, say), so R0 = 1. If R converges
to ∞, then limr→∞ yRr

0 = 0 for all y0 ∈ [0, 1), so the sampled individual is
of type 0; whereas yRr

0 ≡ 1 for y0 = 1 and r ≥ 0, which results in an indi-
vidual of type 1. On the other hand, conditional on eventual absorption of R
in 0, limr→∞ yRr

0 = 1 for all y0 ∈ [0, 1], which renders type 1 for the sampled
individual.

5 The pruned lookdown ASG in the deterministic limit

Let us now turn to the type of the ancestor of a single individual from the
equilibrium population. This is a more involved problem than identifying the
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(stationary) type distribution of the forward process, because we now must
identify the parental branch (incoming or continuing, depending on the type)
at every branching event, which requires nested case distinctions. Furthermore,
some ancestral lines must be traced back beyond the first mutation. Never-
theless, mutations may still rule out certain potential ancestors. To describe
this, Cordero (2017) extended the pruned lookdown ASG (pLD-ASG) of Lenz
et al. (2015) to the framework of the deterministic limit. Let us recall the idea
behind this process. The pLD-ASG starts from a single individual. The lines of
the graph correspond to the potential ancestors and are assigned consecutive
levels, starting at level 1 (see Fig. 5). If a line is hit by a selective arrow, its
level is increased by one and at the same time all lines above it are shifted up
one level; thereby making space for the incoming line, which then occupies the
former level of the line it hit. If the first event on a line that does not occupy
the top level is a mutation to type 1, we can conclude that it will not be an-
cestral, since it will, at a later time, play the role of an unsuccessful incoming
line, for its type is 1 due to the mutation. Hence we can cut away this line.
The line occupying the top level is exempt from the pruning since, regardless
of its type, this line will be ancestral if all lines below it are non-ancestral. If a
line that is not the top line has a mutation to type 0, we can cut away all lines
above it, because this line will, at some stage, be an incoming line and will,
due to the mutation, succeed against lines above it. If the top line is hit by a
mutation to type 0, this does not have an effect. This motivates the following
definition.

Definition 9 The pruned lookdown ASG in the deterministic limit starts at
time r = 0 and proceeds in direction of increasing r. At each time r, the
graph consists of a finite number Lr of lines. The lines are numbered by the
integers 1, . . . , Lr, to which we refer as levels. The process then evolves via the
following transitions.

×

×

Fig. 5: The pruned lookdown ASG: Pruning due to a deleterious mutation on
a line that is not at the top (top left); pruning of all lines above a beneficial
mutation (top right); a deleterious and a beneficial mutation at the top line,
which do not affect the number of potential ancestors (bottom).
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1. Every line i 6 Lr branches at rate s and a new line, namely the incoming
branch, is inserted at level i and all lines at levels k > i are pushed one
level upward to k + 1; in particular, the continuing branch is shifted from
level i to i+ 1. Lr increases to Lr + 1.

2. Every line i 6 Lr experiences deleterious mutations at rate uν1. If i = Lr,
nothing happens. If i < Lr, the line at level i is pruned, and the lines above
it slide down to ‘fill the gap’, rendering the transition from Lr to Lr − 1.

3. Every line i 6 Lr experiences beneficial mutations at rate uν0. All the lines
at levels > i are pruned, resulting in a transition from Lr to i. Thus, no
pruning happens if a beneficial mutation occurs on level Lr.

All the events occur independently on every line. We call L = (Lr)r≥0 the
line-counting process of the pLD-ASG.

The line-counting process L is a Markov chain on N, the transition rates of
which result directly from the definition as

qL(n, n+1) = ns, qL(n, n−1) = (n−1)uν1+1{n>1}uν0, qL(n, n−`) = uν0,
(5.1)

where 2 ≤ ` < n.

Remark 10 For later use, we do not insist on starting from a single individual;
but one should keep in mind that if we start the process with n > 1 lines, then it
does not correctly describe the ancestry of n individuals. For example, assume
that the first event is a beneficial mutation on line 1. This induces pruning of
all other lines, which is incompatible with the ancestry of n individuals.

For any given r > 0, a hierarchy is, by construction, imposed on the lines
of the graph, such that if one line is 0, the lowest line occupied by a type-
0 individual is the true ancestral line. In particular, the ancestor at time r
is then of type 0. If all lines are occupied by individuals of type 1, the top
line is the true ancestral line and the ancestor at time r is of type 1. In the
finite Moran model and in the diffusion limit, the line that is ancestral if all
potential ancestors are of type 1 is called immune (the name originates from
the immunity to pruning by deleterious mutations); in the deterministic limit,
the immune line is always the top line.

The above rationale may be used to determine the ancestor’s type at any
time t = r; but explicit results require the limit r →∞. We therefore now con-
sider the asymptotic behaviour of Lr. Recall that we assume u > 0 throughout.

Proposition 11 (i) If s = 0, L absorbs in 1 almost surely.
(ii) If u < s and ν0 = 0, L is transient, so Lr →∞ almost surely as r →∞.

(iii) If u = s and ν0 = 0, L is null recurrent.
(iv) If u > s or ν0 > 0, L is positive recurrent and the stationary distribution

is geometric with parameter 1− p, where

p =

{
s
uν1

ȳ, if ν1 > 0,
s

u+s , if ν1 = 0.

13



Remark 12 The parameter of the geometric distribution p = p(u, s, ν1) is a
function of u, s, and ν1. Explicitly, it is given by

p(u, s, ν1) =

 1
2

(
u+s
uν1
−
√(

u+s
uν1

)2 − 4 s
uν1

)
, if ν1 > 0,

s
u+s , if ν1 = 0.

(5.2)

It is continuous in ν1, i.e. limν1→0 p(u, s, ν1) = p(u, s, 0).

Remark 13 A proof for case (iv), for ν1 > 0, is given in Cordero (2017,
Lem. 5.3).

Proof of Proposition 11 Case (i) is trivial. Cases (ii) and (iii) are straight-
forward applications of Karlin and McGregor (1957, Thm. 1,Thm. 2). For
case (iv), note that L is stochastically dominated by a Yule process with
branching rate s. This Yule process is non-explosive. One easily checks that
the claimed geometric distribution is invariant. Every process which is non-
explosive and has an invariant distribution is positive recurrent, see Norris
(1998, Thm. 3.5.3). The uniqueness of the stationary distribution follows from
Norris (1998, Thm. 3.5.2). ut

In what follows, the asymptotic tail probabilities of Lr are crucial. Let

an := lim
r→∞

P1(Lr > n)

if this limit exists (the subscript denotes the initial value). We first focus on
the positive recurrent case where we know the limit exists.

Proposition 14 If L is positive recurrent, the coefficients (an)n≥0 satisfy

an =
s

u+ s
an−1 +

uν1

u+ s
an+1, n ∈ N, (5.3)

with boundary condition a0 = 1 and limn→∞ an = 0.

Remark 15 Recursion (5.3) is the analogue to Fearnhead’s recursion (Fearn-
head, 2002) in the deterministic limit.

Remark 16 If we interchange the roles of s and uν1 in (5.3) and replace the
boundary condition limn→∞ an = 0 by a∆ = 0, we obtain the recursion for wn
in (4.7) (note that u = uν0 + uν1 such that u + s is invariant under the
interchange of s and uν1).

Proof of Proposition 14 We give a direct proof via the graphical construc-
tion (see Fig. 6). The coefficients, as tail probabilities of a stationary dis-
tribution, satisfy the boundary conditions. Fix some r > 0 and n ∈ N. We
now look at the last events before r in backward time; which correspond to
the first events after r in forward time. Let Ts(r), Tν0(r), and Tν1(r) be the
(backward) times of the last selective, beneficial, and deleterious mutation
event, respectively, that have occurred before time r on the first n levels.
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n + 1

n

T T−
×

n + 1

n + 2

T T−

n + 1  

T T−

Fig. 6: The first event on the first n (out of at least n + 1) lines may be a
branching (left), a pruning due to a deleterious mutation (center), or a pruning
due to a beneficial mutation (right).

Set T (r) := max{Ts(r), Tν0(r), Tν1(r)}. On {Lr > n}, we have that T (r) is
positive. Furthermore,

P (Lr > n) = P
(
Lr > n, T (r) = Ts(r)

)
+ P

(
Lr > n, T (r) = Tν1(r)

)
+ P

(
Lr > n, T (r) = Tν0(r)

)
.

Let LT (r)− := limr̃↗T (r) Lr̃ be the state ‘just before’ the jump. Reading each
transition in Fig. 6 from left to right, one concludes the following. If T (r) =
Ts(r), then Lr > n if and only if LT (r)− > n−1. If T (r) = Tν1(r), then Lr > n
if and only if LT (r)− > n + 1. The case T (r) = Tν0(r) contradicts Lr > n,

so P
(
Lr > n, T (r) = Tν0(r)

)
= 0. On {Lr > n}, none of the first n lines is

the immune line and therefore the probability that the last event is a selection
event or a pruning due to a deleterious mutation is s/(u+ s) and uν1/(u+ s),
respectively. Hence,

P (Lr > n) =
s

u+ s
P
(
LT (r)− > n− 1 | T (r) = Ts(r)

)
+

uν1

u+ s
P
(
LT (r)− > n+ 1 | T (r) = Tν1(r)

)
.

But LT (r)− is independent of what happens at time T (r), since this is in the
future (in r-time). Taking r →∞ on both sides proves the assertion. ut

If L is positive recurrent, we denote by L∞ a random variable on N dis-
tributed according to the stationary distribution of the line-counting process.
Directly solving the recurrence relation (5.3) leads to the geometric distribu-
tion of L∞. Here, we take a different route. We derive the memoryless property
of L∞ and conclude that the distribution is geometric, since this is the only
discrete distribution without memory.

Proposition 17 (Lack of memory property) If L is positive recurrent,
then for all k ∈ N0,

P (L∞ > n+ k | L∞ > n) = P (L∞ > k). (5.4)

In particular,

L∞ ∼ Geom(1− p), with p =

{
s
uν1

ȳ, if ν1 > 0,
s

u+s , if ν1 = 0.
(5.5)
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Proof Denote b
(n)
k := P (L∞ > n + k | L∞ > n). Clearly, b

(n)
0 = 1 and

limk→∞ b
(n)
k = 0 for all n ∈ N. By Proposition 14,

b
(n)
k =

an+k

an
=

1

an

( s

u+ s
an+k−1 +

uν1

u+ s
an+k+1

)
=

s

u+ s
b
(n)
k−1 +

uν1

u+ s
b
(n)
k+1.

In particular, b
(n)
k = ak for all k ∈ N0. As a consequence, P (L∞ > n) = an1 .

Now that we know L∞ has indeed a geometric distribution, it remains to
determine the parameter. By Proposition 14,

a1 =
s

u+ s
+

uν1

u+ s
a2

1, (5.6)

of which the solution is given by a1 = sȳ/uν1 if ν1 > 0 and a1 = s/(u + s)
if ν1 = 0. ut

The recursion (5.3) looks like a first-step decomposition for the absorption
probabilities of some other process. And indeed, in the diffusion limit, Baake
et al. (2016) connect the tail probabilities of Lr to the absorption probabilities
of another process via Siegmund duality. We establish a similar connection in
the deterministic limit. Let (Dt)t≥0 be the process on N∆ := N ∪ {∆} with
transition rates given by

qD(d, d−1) = (d−1)s, qD(d, d+1) = (d−1)uν1, qD(d,∆) = (d−1)uν0

(5.7)
for d ∈ N. We adopt the convention that n < ∆ for all n ∈ N.

Remark 18 The processD exhibits an interesting connection to the line-counting
process of the killed ASG. Let D and L be as previously defined with given
rates uν0, uν1, and s. Furthermore, let D̆ and L̆ be the same processes, but
with rates s and uν1 interchanged. Write R̆ for the line-counting process of a
killed ASG with beneficial and deleterious mutation rate uν0 and s, respec-
tively, and selection rate uν1 (so uν1 and s are interchanged). Note that the
rate at which mutation events occur is then ŭ = uν0 + s; similarly, given that
a mutation occurs, the probabilities for beneficial and deleterious mutations
are ν̆0 = uν0/(uν0 + s) and ν̆1 = s/(uν0 + s), respectively. Comparing (4.1)
and (5.7) immediately yields

R̆
d
= D − 1 if R̆0 = D0 − 1. (5.8)

In particular, the asymptotic behaviour of D follows by means of Lemma 5:
If ν0 > 0, D absorbs in {1, ∆} with probability 1. If in addition s = 0, D
absorbs in ∆ with probability 1. If ν0 = 0 and u ≤ s, D absorbs in 1 with
probability 1. If ν0 = 0 and u > s, D absorbs in 1 with probability < 1 and,
conditional on non-absorption of D in 1, Dt →∞ with probability 1.

Proposition 19 L and D are Siegmund dual, i.e. for t ≥ 0,

P (m ≤ Lt | L0 = n) = P (Dt ≤ n | D0 = m), ∀n ∈ N, m ∈ N∆. (5.9)
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Proof We denote the infinitesimal generators of Lt and Dt by AL and AD,
respectively. They have the form

ALf(n) = ns[f(n+ 1)− f(n)] +
(
(n− 1)uν1 + 1{n≥1}uν0

)
[f(n− 1)− f(n)]

+ uν0

n−2∑
i=1

[f(i)− f(n)]

for f ∈ Cb(N,R), and

ADf̃(m) = (m− 1)s[f̃(m− 1)− f̃(m)] + (m− 1)uν1[f̃(m+ 1)− f̃(m)]

+ (m− 1)uν0[f̃(∆)− f̃(m)]

for f̃ ∈ Cb(N∆,R). In the case of a Siegmund duality, the duality function is

H̄(n,m) = 1(m≤n).

We will show that ALH̄(·,m)(n) = ADH̄(n, ·)(m). The result follows then
once more as an application of Liggett (2010, Thm. 3.42). Indeed,

ALH̄(·,m)(n) = ns1(m=n+1) − (n− 1)uν11(m=n) − uν0

n−1∑
i=1

1(m≤n<m+i).

Note that
n−1∑
i=1

1(m≤n<m+i) =

{
m− 1, if n ≥ m > 1,

0, otherwise.

Thus, we can rewrite ALH̄(·,m)(n) as

(m− 1)s1(m−1=n) − (m− 1)uν11(m=n) − (m− 1)uν01(m≤n),

which equals ADH̄(n, ·)(m), as required. ut

Remark 20 The analogous result in the diffusion limit is proven in Baake et al.
(2016) via Clifford-Sudbury flights (Clifford and Sudbury, 1985). Their proof
leads to a pathwise duality but relies on a particle representation of the forward
process. We expect a similar argument to apply also in our setting, but as noted
in Remark 3, this would require to first establish a particle representation for
the forward process in the deterministic limit.

Corollary 21

P ( lim
t→∞

Dt = 1 | D0 = n+ 1) = an, ∀n ∈ N. (5.10)

Proof The proof is a direct consequence of Proposition 19. ut
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This result gives an alternative way to recover (5.3) via a first-step decom-
position of the absorption probabilities of D. By Remark 18, the absorption
probability of D in 1, given D0 = n+1, equals the absorption probability of R̆
in 0, given R̆0 = n. In particular, an = ˘̄yn, where

˘̄y :=

{
1
2

(
1 + uν0+s

uν1
−
√

(1− uν0+s
uν1

)2 + 4ν0ν1

)
, ν1 > 0,

s
u+s , ν1 = 0.

(5.11)

This is consistent with Remark 16: The recursion for the absorption probability
of R̆ in 0 is obtained by interchanging the roles of uν1 and s in Fearnhead’s
recursion. Hence, ˘̄y is as in (2.3), but with uν1 and s interchanged; note that
this implies replacement of u = uν0 + uν1 by uν0 + s. On the other hand, as
a consequence of Corollary 21, ˘̄y = p with p from Proposition 17. In a similar
way, we can derive that

ȳ = lim
r→∞

P1(L̆r > 1).

We can now deal with the asymptotic behaviour when L is null recurrent
(recall from Proposition 11 that this is the case for ν0 = 0 and u = s).

Corollary 22 If u = s and ν0 = 0,

lim
r→∞

P1(Lr > n) = 1.

Proof The proof is an immediate consequence of Corollary 21 together with
Remark 18. ut

6 The ancestral type distribution

In the Moran model (with finite N) and in the diffusion limit, all individuals
at present originate from a single individual in the distant past, see Cordero
(2017, Sect. 3) and Krone and Neuhauser (1997, Thm. 3.2), respectively. This
individual is called the common ancestor, and the distribution of its type is the
common ancestor type distribution. In the diffusion limit, Fearnhead (2002)
derived this distribution in terms of coefficients characterised via a recursion
(see also Taylor (2007)). In the deterministic limit, there are no coalescence
and collision events (Cordero, 2017; Krone and Neuhauser, 1997), so the notion
of a common ancestor does not make sense. Instead Cordero (2017) introduces
the representative ancestral type (RA type). This is the type of the ancestor
of a generic individual in the population, denoted earlier (Georgii and Baake,
2003) as the ancestral type of a typical individual. The general concept was
developed by Jagers (1989, 1992) in the context of branching processes. In
our case, the RA type at backward time r is denoted by Jr and takes values
in {0, 1}. For a representative ancestor that lives in a population with type
distribution (1 − y0, y0), we define gr(y0) := Py0(Jr = 1) as the conditional
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probability of an unfit RA type at backward time r. It follows from the discus-
sion after Definition 9 (alternatively, see Cordero (2017, Prop. 5.5, Cor. 5.6))
that

gr(y0) = E1[yLr
0 ] = 1− (1− y0)

∑
n≥0

P1(Lr > n)yn0 . (6.1)

This is consistent with the graphical picture: the RA type at backward time r
is 1 if and only if all Lr lines are of type 1. The corresponding probability is
given by E1[yLr

0 ]. Alternatively, we can partition the event of a beneficial repre-
sentative ancestor according to the first level occupied by a type-0 individual.
Namely,

P1(Lr > n)(1− y0)yn0

is the probability that at least n + 1 lines are present, the (n + 1)st line is of
type 0, and the first n lines are of type 1. Summing this probability over n
gives the probability of an RA type 0. The complementary probability leads
to the right-hand side of (6.1).

Now let g∞(y0) := limr→∞ gr(y0) be the conditional probability for an
unfit RA type of an individual sampled at a very late time. If

∑
n≥0 any

n
0 <∞,

equation (6.1) yields

g∞(y0) = 1− (1− y0)
∑
n≥0

any
n
0 . (6.2)

We can now exploit what we know about the an to obtain explicit expressions
for g∞. This is captured in the following theorem.

Theorem 23 (i) If s = 0, g∞(y0) = y0 for all y0 ∈ [0, 1].

(ii) If u ≤ s and ν0 = 0, g∞(y0) =

{
0, if y0 ∈ [0, 1),

1, if y0 = 1.

(iii) If s > 0 and either u > s or ν0 > 0, g∞(y0) = 1−p
1−py0 y0.

Proof In case (i), L absorbs in 1 and hence a0 = 1 and an = 0 for all n ≥ 1.
In particular,

∑
n≥0 any

n
0 < ∞ for all y0 ∈ [0, 1], so that together with (6.2)

the result follows. For case (ii), we first treat the subcase u < s and ν0 = 0.
There, L is transient and hence Lr → ∞ almost surely. Hence, an = 1 for
all n ≥ 0. For y0 ∈ [0, 1), again

∑
n≥0 any

n
0 < ∞, and the result follows

by (6.2). For y0 = 1, we use that L is bounded for all r > 0. In particular,∑
n≥0 P (Lr > n | L0 = 1) <∞. But then, gr(1) = 1 for r > 0. Taking the

limit r → ∞ yields the result. The other subcase of (ii) is u = s and ν0 = 0.
There, Corollary 22 leads to an ≡ 1 (n ≥ 0). Case (iii) follows by summing
the geometric series obtained from (6.2) via Proposition 17. ut

Theorem 23 is consistent with the graphical picture. Case (i) corresponds
to the neutral situation, in which each individual has exactly one potential
ancestor at all times; the representative ancestor is then a single draw from
the initial distribution. In particular, there is no bias towards one of the types.
In case (iii), L∞ > 1 with positive probability, so there is a bias towards

19



the beneficial type. The reason is that a single beneficial potential ancestor
suffices for the RA type to be of type 0, which manifests itself in the fac-
tor (1− p)/(1− py0) < 1 for y0 < 1. In case (ii), depending on whether u = s
or u < s, L is null recurrent or transient. In both cases, the number of potential
ancestors in the limit r →∞ is infinite and the bias towards type 0 is taken to
an extreme: Any positive proportion of beneficial types suffices to ensure that
the ancestor has type 0. If there are no beneficial types in the population, the
RA is of type 1 with probability 1.

Let us now study the dependence on ν0 of the probability for an unfit RA
type. To stress the dependence, we write g∞(y0, ν0).

Corollary 24 Let y0 ∈ (0, 1). If s > 0 and ν0, ν̄0 ∈ [0, 1] with ν0 < ν̄0,

g∞(y0, ν0) < g∞(y0, ν̄0).

Proof Fix s, u > 0, y0 ∈ (0, 1), and ν0, ν̄0 ∈ [0, 1] with ν0 < ν̄0. Furthermore,
we set ν1 = 1− ν0 and ν̄1 = 1 − ν̄0. Clearly, ν1 > ν̄1. We use a coupling
argument similar to Lenz et al. (2015, Sect. 6). Write G = (Gr)r≥0 for the pLD-
ASG with selection rate s, mutation rate u, beneficial mutation probability ν0,
and deleterious mutation probability ν1. Let L = (Lr)r≥0 be the line-counting
process of G. We write Ḡ = (Ḡr)r≥0 for another pLD-ASG, with line-counting
process L̄ = (L̄r)r≥0, which we couple with G in such a way that L̄r ≤ Lr
almost surely, for all r ≥ 0. We start with L0 = L̄0 = 1. Assume that we
have constructed {Gq}q<r and {Ḡq}q<r, and that L̄r− ≤ Lr− almost surely. If
a line of Gr− at level i ≤ L̄r− branches at time r, then also the line of Ḡr−
at level i branches. If on a line of Gr− at level i ≤ L̄r− there is a beneficial
mutation at time r, then the line of Ḡr− at level i has a beneficial mutation.
If on a line of Gr− at level i ≤ Lr− there is a deleterious mutation at time r,
we toss a coin. With probability ν̄1/ν1 we have a deleterious mutation on the
line of Ḡr− at level i; but with probability 1 − ν̄1/ν1 we have a beneficial
mutation on the line of Ḡr− at level i. In all the cases L̄r ≤ Lr almost surely.
Constructing Ḡ in this inductive manner leads to a pLD-ASG with selection
rate s, mutation rate u, beneficial mutation probability ν̄0, and deleterious
mutation probability ν̄1 with the desired property. In particular, using (6.1),
we get

gr(y0, ν0) = E1

[
yLr

0

]
≤ E1

[
yL̄r

0

]
= gr(y0, ν̄0).

Letting r →∞ leads to g∞(y0, ν0) ≤ g∞(y0, ν̄0). In order to show that the in-
equality holds in the strict sense, it is enough to show that P1

(
L̄∞ < L∞

)
> 0.

To see this, we let T (r) be the time of the last deleterious mutation on the low-
est line that has occurred before time r in L (with the convention T (r) := −∞
if there is no such mutation). On the set {T (r) > 0}, let LT (r)− := limq↗T (r) Lq
be the state ‘just before’ the mutation. Note that

P1

(
L̄r < Lr

)
≥ P1

(
L̄r < Lr, T (r) > 0

)
≥
(

1− ν̄1

ν1

)
P1(LT (r)− > 1, T (r) > 0)

for r > 0. Clearly T (r) tends to ∞ as r → ∞. Hence, we also have that
limr→∞ P1(LT (r)− > 1, T (r) > 0) = p, where p is given in Proposition 11. In

particular, P1

(
L̄∞ < L∞

)
≥ p
(
1− ν̄1/ν1

)
> 0, and the result follows. ut
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Fig. 7: The probability of an unfit RA type at equilibrium.

Consider now (1− g∞(ȳ), g∞(ȳ)), namely, the distribution of the RA type
that lives in the stable equilibrium population ȳ. We call it the RA type
distribution at equilibrium and characterise it in what follows. First note that
both g∞ and ȳ are functions of ν0. In order to stress this (double) dependence,
we write g∞(ȳ(ν0), ν0). We also write L(ν0) instead of L. Recall from Section 2
that, for ν0 = 0, ȳ(0) = min{u/s, 1} and so, by Theorem 23,

g∞(ȳ(0), 0) =

{
0, if u < s,

1, if u ≥ s.

This is the counterpart to the transcritical bifurcation (or error threshold) of
the equilibrium frequency of the forward process. The probability for an unfit
RA type at equilibrium exhibits an even more drastic behaviour: a jump from 0
to 1 if u surpasses the critical value s, see Fig. 7. If ν0 ∈ (0, 1), L(ν0) is positive
recurrent and L∞(ν0) is almost surely finite. Moreover, in this case ȳ(ν0) ∈ (0, 1)

for all u > 0. In particular, g∞(ȳ(ν0), ν0) = E1[ȳ(ν0)
L∞(ν0)

] ∈ (0, 1), and hence

g∞(ȳ(ν0), ν0)

{
> g∞(ȳ(0), 0) = 0, if u < s,

< g∞(ȳ(0), 0) = 1, if u ≥ s,

compare Figs. 2 and 7. It may seem surprising at first sight that, even though
switching off beneficial mutations leads to an increase of ȳ for all values of u,
it decreases the probability for the deleterious type to be ancestral if u < s,
but increases it for u ≥ s. The reason for this is that:

– for u < s: in contrast to the case ν0 ∈ (0, 1), where L∞(ν0) is finite, L∞(0)
is infinite, and hence beats ȳ(0) regardless of its value.

– for u ≥ s: in contrast to the case ν0 ∈ (0, 1), where ȳ(ν0) is strictly posi-
tive, ȳ(0) = 1, and therefore, there is no chance to sample an ancestor of
type 0, regardless of the value of L∞(ν0).
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Let us finally give an alternative representation of the conditional proba-
bility of an unfit RA-type. Motivated by Taylor (2007) and Baake et al. (2016,
Sect. 7) in the diffusion limit, we consider the piecewise-deterministic Markov
process Ỹ := (Ỹt)t≥0 with generator

AỸ f(y) = [−sy(1− y)−uν0y+uν1(1−y)]
∂f

∂y
+
uν0y

1− y
[f(1)−f(y)]

+
uν1(1−y)

y
[f(0)−f(y)]

(6.3)

for f ∈ C1([0, 1],R) with limy→1AỸ f(y) = limy→0AỸ f(y) = 0. The latter

means that Ỹ absorbs in 0 or 1. This process follows the dynamics of the
mutation-selection equation up to a random jumping time. At this time the
process jumps to one of the boundaries where it is absorbed. Existence and
uniqueness of a Markov process corresponding to AỸ follow by proving that
the jump rates, which diverge at the boundary, are in fact bounded along
trajectories of the process over any finite time interval. If ν0 ∈ (0, 1) and
y0 ∈ (0, 1), then y(t; y0) never hits the boundary, since ȳ ∈ (0, 1). If ν0 = 1
or ν0 = 0 and y0 ∈ (0, 1), then y(t; y0) hits 0 or 1, respectively. In both cases,
the possibly diverging jump term is absent because either ν1 = 0 or ν0 = 0,
respectively. We now show that Ỹ is dual to L.

Theorem 25 The processes Ỹ and L are dual with respect to the duality func-
tion H(y, n) = yn (from (4.2)), that is, for t ≥ 0,

E
[(
Ỹt
)n | Ỹ0 = y0

]
= E

[
yLt

0 | L0 = n
]
, ∀y0 ∈ [0, 1], n ∈ N. (6.4)

Proof Once more we apply the duality criterion for generators (Liggett, 2010,
Thm. 3.42). Note that we can rewrite AỸ = Asy +Au

Ỹ
, with Asy of (4.4) and

Au
Ỹ
f(y) := [−yuν0 + uν1(1− y)]

∂f

∂y
+

y

1− y
uν0 [f(1)− f(y)]

+
1− y
y

uν1 [f(0)− f(y)] ,

which should not be confused with AuY (4.4). In a similar way, AL = AsR+AuL,
with AsR of (4.5) and

AuLf(n) = (n− 1)uν1[f(n− 1)− f(n)] + uν0

n−1∑
k=1

[f(k)− f(n)].

In the proof of Theorem 2, we already showed AsyH(·, n)(y) = AsRH(y, ·)(n).
Hence, it suffices to check Au

Ỹ
H(·, n)(y) = AuLH(y, ·)(n), which then implies

AỸH(·, n)(y) = ALH(y, ·)(n), ∀y ∈ [0, 1], n ∈ N.
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Indeed, we obtain

Au
Ỹ
H(·, n)(y)

= (n− 1)uν1

[
yn−1 − yn

]
+ uν0

[
y

1− yn

1− y
− nyn

]
= (n− 1)uν1 [H(y, n− 1)−H(y, n)] + uν0

n−1∑
j=1

[H(y, j)−H(y, n)]

= AuLH(y, ·)(n),

which proves the claim. ut

We now obtain a characterisation of g∞(y0) that does not depend on L by
taking t→∞ in (6.1) and (6.4).

Corollary 26 For y0 ∈ [0, 1], we have

g∞(y0) = P ( lim
t→∞

Ỹt = 1 | Ỹ0 = y0).

Remark 27 The Kolmogorov backward equation for the absorption probability
of Ỹt in 1 leads to the characterisation of g∞ as the solution to the boundary
value problem

AỸ g∞(y0) = 0 for y0 ∈ (0, 1), (6.5)

complemented by g∞(0) = 0 and g∞(1) = 1. It is the deterministic limit
analogue of the boundary value problem in Taylor (2007, Eqn. (11)).

In the remainder of the paper we provide a heuristic explanation for the
duality relation of Theorem 25. For simplicity, we only treat the case n = 1
here, but the argument is easily adapted to arbitrary n. We sample an in-
dividual at time t and construct the pLD-ASG until time 0 where the type
distribution is (1− y0, y0). Let Lt be the number of lines in the pLD-ASG at
time 0. Then,

yLt
0 = Py0(Jt = 1 | Lt).

1

1 ×
1

0 ×

Fig. 8: The type along the ancestral line depends on the pLD-ASG and on the
initial assignment of types. A solid (dotted) ancestral line corresponds to an
unfit (fit) type. The type assignment on the left leads to a type change due
to a beneficial mutation. The type assignment on the right does not lead to
a type change on the ancestral line. The extracted type evolution along the
ancestral line is depicted in grey below.
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Our aim is to construct an appropriate random variable Kt (different from Lt),
such that

Ỹt = Py0(Jt = 1 | Kt).

Theorem 25 would then be a direct consequence of this result. Note that for
every realisation of the pLD-ASG and each initial configuration, we can extract
the type evolution along the ancestral line and partition it into pieces in which
the type is constant; see Fig. 8. For a given pLD-ASG and a given assignment
of types, the type along the ancestral line changes only by mutations. We will
keep track of the kind of mutation that induces the last type change (that is,
the last non-silent mutation) along the ancestral line before time 0. Let Kt

be the random variable with values in {∅,#,×} that encodes this. The sym-
bols # or × represent a beneficial or deleterious type-changing mutation; the
symbol ∅ indicates that there is no type change in [0, t]. Clearly, Kt is a func-
tion of the pLD-ASG and the initial assignment of types. If there is no type
change on the ancestral line, i.e. {Kt = ∅}, the type of the sampled individual
and its ancestor at time t coincide, and therefore this type is 1 with proba-
bility y(t; y0). In particular, before we see a type-changing mutation on the
ancestral line, the desired probability evolves as the proportion of deleterious
individuals in the population, which explains the drift term in the generator
of the process Ỹ . The event {Kt = #} implies that the type of the ancestor
at time 0 is deleterious and therefore Ỹ must be 1. This explains the jump
to 1 of the process Ỹ . The event {Kt = ×} implies that the ancestor at time 0
is of the beneficial type, and this explains the jump to 0 of the process Ỹ .
Summarising,

Py0(Jt = 1 | Kt) =


y(t; y0), if Kt = ∅,
1, if Kt = #,
0, if Kt = ×,

see also Fig. 9. It remains to explain the rates at which these type changes
appear on the ancestral line. We only explain the jump rate to 0; the jump
rate to 1 follows in an analogous way. The rate at which a deleterious type
change at time t occurs on the ancestral line, and therefore a jump to 0 of Ỹ , is
given by limε→0 P

ε
yt(Jε = 0 | J0 = 1)/ε, where P εyt means that we condition on

the type distribution at backward time ε being equal to (1− y(t; y0), y(t; y0)).
Note that

P εyt(Jε = 0 | J0 = 1) = P εyt(J0 = 1 | Jε = 0)
P εyt(Jε = 0)

P εyt(J0 = 1)

= P εyt(J0 = 1 | Jε = 0)
1− E1[y(t; y0)Lε ]

y(t+ ε, y0)
.

(6.6)

Moreover, denoting by M1
ε the event of a single deleterious (not necessarily

type-changing) mutation on the ancestral line in a time interval of length ε,
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0 t

0

1

Ỹt
y(t; y0)

0 t

0

1

Ỹt
y(t; y0)

×

Fig. 9: A type change on the ancestral line (grey) can either be due to a
mutation to type 0 or type 1. The rate for either one depends on the type
distribution at the time of the type change. The bold solid line corresponds
to Ỹt, whereas the thin solid line corresponds to y(t; y0).

we deduce that

P εyt(J0 = 1 | Jε = 0) = P εyt(J0 = 1,M1
ε | Jε = 0) + o(ε)

= P εyt(M
1
ε | Jε = 0) + o(ε)

= uν1ε+ o(ε).

(6.7)

Combining (6.6) and (6.7) leads to

lim
ε→0

Pyt(Jε = 0 | J0 = 1)

ε
= uν1

1− y(t; y0)

y(t; y0)
,

which corresponds to the jump rate to 0 in (6.3).

Remark 28 It seems this argument can be applied to obtain a pathwise duality.
But as noted in Remark 3, this requires a particle representation of the forward
process in the deterministic limit.
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