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NUMERICAL APPROXIMATION OF STOCHASTIC EVOLUTION EQUATIONS:

CONVERGENCE IN SCALE OF HILBERT SPACES

HAKIMA BESSAIH, ERIKA HAUSENBLAS, TSIRY RANDRIANASOLO, AND PAUL RAZAFIMANDIMBY

ABSTRACT. The present paper is devoted to the numerical approximation of an abstract stochastic non-

linear evolution equation in a separable Hilbert space H. Examples of equations which fall into our

framework include the GOY and Sabra shell models and a class of nonlinear heat equations. The space-

time numerical scheme is defined in terms of a Galerkin approximation in space and a semi-implicit

Euler–Maruyama scheme in time. We prove the convergence in probability of our scheme by means of

an estimate of the error on a localized set of arbitrary large probability. Our error estimate is shown to

hold in a more regular space Vβ ⊂ H with β ∈ [0, 1
4 ) and that the explicit rate of convergence of our

scheme depends on this parameter β.

1. INTRODUCTION

Throughout this paper we fix a complete filtered probability space U = (Ω,F, F, P) with the fil-

tration F = {Ft; t ≥ 0} satisfying the usual conditions. We also fix a separable Hilbert space H

equipped with a scalar product (·, ·) with the associated norm | · | and another separable Hilbert

space H. In this paper, we analyze numerical approximations for an abstract stochastic evolution

equation of the form

(1)

{

du = −[Au + B(u, u)]dt + G(u)dW, t ∈ [0, T],

u(0) = u0,

where hereafter T > 0 is a fixed number and A is a self-adjoint positive operators on H. The

operators B and G are nonlinear maps satisfying several technical assumptions to be specified later

and W = {W(t); 0 ≤ t ≤ T} is a H-valued Wiener process.

The abstract equation (1) can describe several problems from different fields including mathemat-

ical finance, electromagnetism, and fluid dynamic. Stochastic models have been widely used to de-

scribe small fluctuations or perturbations which arise in nature. For a more exhaustive introduction

to the importance of stochastic models and the analysis of stochastic partial differential equations,

we refer the reader to [18, 32, 37, 40, 42].

Numerical analysis for stochastic partial differential equations (SPDEs) has known a strong inter-

est in the past decades. Many algorithms which are based on either finite difference or finite element

methods or spectral Galerkin methods (for the space discretization) and on either Euler schemes or

Crank-Nicholson or Runge-Kutta schemes (for the temporal discretization) have been introduced

for both the linear and nonlinear cases and their rate of convergence have been investigated widely.

Here we should note that the orders of convergence that are frequently analyzed are the weak and

strong orders of convergence. The literature on numerical analysis for SPDEs is now very extensive.

Without being exhaustive, we only cite amongst other the recent papers [38, 16, 24, 1, 15], the excel-

lent review paper [33] and references therein. Most of the literature deals with the stochastic heat

equations with globally Lipschitz nonlinearities, but there are also several papers that treat abstract

stochastic evolution equations. For example, Gyongy and Millet in [31] investigated a general evo-

lution equation with an operator that has the strong monotone and global Lipschitz properties. They
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were able to implement a space-time discretization and showed a rate of convergence in mean under

appropriate assumptions. Similar rate of convergence have been obtained by Bessaih and Schurz

in [8] for an equation with globally Lipschitz nonlinearities. When a system of SPDEs with non-

globally Lipschitz nonlinearities, such as the stochastic Navier-Stokes equations, is considered the

story is completely different. Indeed, in this case the rate of convergence obtained is generally only

in probability. This kind of convergence was introduced for the first time by Printems in [41] and

is well suited for SPDEs with locally Lipschitz coefficients. When the stochastic perturbation is in

an additive form (additive noise), then using a path wise argument one can prove a convergence in

mean, we refer to Breckner in [10]. Let us mention that in this case, no rate of convergence can be

deduced.

Recent literature involving nonlinear models with nonlinearities which are locally Lipschitz are

[28, 17, 11, 5] and references therein. In [11] martingale solutions to the incompressible Navier-Stokes

equations with Gaussian multiplicative noise are constructed from a finite element based space-time

discretizations. The authors of [17] proved the convergence in probability with rates of an explicit

and an implicit numerical schemes by means of a Gronwall argument. The main issue when the

term B is not globally Lipschitz lies on its interplay with the stochastic forcing, which prevents a

Gronwall argument in the context of expectations. This issue is for example solved in [10, 14] by the

introduction of a weight, which when carefully chosen contributes in removing unwanted terms and

allows to use Gronwall lemma. In [17], the authors use different approach by computing the error

estimates on a sample subset Ωk ⊂ Ω with large probability. In particular, the set Ωk is carefully

chosen so that the random variables ‖∇uℓ‖L2 are bounded as long as the events are taken in Ωk, and

limkց0 P(Ω \ Ωk) = 0. The result is then obtained using standard arguments based on the Gronwall

lemma. Other kinds of numerical algorithms have been used in [5] for a 2D stochastic Navier-Stokes

equations. There, a splitting up method has been used and a rate of convergence in probability is

obtained. A blending of a splitting scheme and the method of cubature on Wiener space applied to a

spectral Galerkin discretisation of degree N is used in [28] to approximate the marginal distribution

of the solution of the stochastic Navier- Stokes equations on the two-dimensional torus and rates of

convergence are also given. For the numerical analysis of other kind of stochastic nonlinear models

that enjoy the local Lipschitz condition, without being exhaustive, we refer to [25, 26, 9, 20] and

references therein. They include the stochastic Schrödinder, Burgers and KDV equations.

In the present paper, we are interested in the numerical treatment of the abstract stochastic evo-

lution equations (1). We first give a simple and short proof of the existence and uniqueness of a

mild solution and study the regularity of this solution. The result about the existence of solution is

based on a fixed point argument recently developed in [12]. Then, we discretize (1) using a coupled

Galerkin method and (semi-)implicit Euler scheme and show convergence in probability with rates

in Vβ := D(Aβ). Regarding our approach it is similar to [17] and [41], however, the results are differ-

ent. Indeed, while [17] and [41] establish their rates of convergence in the space H where the solution

lives, we establish our rate of convergence in Vβ ⊂ H where β ∈ [0, 1
4) is arbitrary. Hence, our result

does not follow from the papers [17] and [41]. In contrast to the nonlinear term of Navier–Stokes

equations with periodic boundary condition treated in [17], our nonlinear term does not satisfy the

property 〈B(u, u), Au〉 = 0 which plays a crucial role in the analysis in [17]. We should also point out

that our model does not fall into the general framework of the papers [31] and [8], see Remark 2.2.

Examples of semilinear equations which fall into our framework include the GOY and Sabra shell

models. These toy models are used to mimic some features of turbulent flows. It seems that our work

is the first one rigorously addressing the numerical approximation of such models. Our result also

confirm that, in term of numerical analysis, shell models behave far better than the Navier-Stokes

equations. On the theoretical point of view, we provide a new and simple proof of the existence of

solutions to stochastic shell models driven by Gaussian multiplicative noise. On the physical point

of view, it is also worth mentioning that shell models of turbulence are toy models which consist
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of infinitely many nonlinear differential equations having a structure similar to the Fourier repre-

sentation of the Navier-Stokes equations, see [27]. Moreover, they capture quite well the statistical

properties of three dimensional Navier-Stokes equations, like the Kolmogorov energy spectrum and

the intermittency scaling exponents for the high-order structure functions, see [27] and [29]. Due to

their success in the study of turbulence, new shell models have been derived by several prominent

physicists for the investigation of the turbulence in magnetohydrodynamics, see for instance [39].

Another example of system of equations which falls into our framework is a class of nonlinear heat

equations described in Section 5. We do not know whether our results can cover the numerical anal-

ysis of 1D stochastic nonlinear heat equations driven by additive space-time noise. Despite this fact

we believe that our paper is still interesting as we are able to treat a class of 2D stochastic nonlinear

heat equations with locally Lipschitz coefficients and we are not aware of results similar to ours. In

fact, most of results related to stochastic heat equations are either about 1D model, or d-dimensional,

d ∈ {1, 2, 3}, models with globally Lipschitz coefficients and deal with weak convergence or conver-

gence in weaker norm, see for instance [38, 16, 24, 1].

This paper is organized as follows: in Section 2, we introduce the necessary notations and the

standing assumptions that will be used in the present work. In Section 3, we present our numerical

scheme and also discuss the stability and existence of solution at each time step. The convergence of

the proposed method is presented in Section 4. In Section 5 we present the stochastic shell models

for turbulence and a class of stochastic nonlinear heat equations as motivating examples.

2. NOTATIONS, ASSUMPTIONS, PRELIMINARY RESULTS AND THE MAIN THEOREM

In this section we introduce the necessary notations and the standing assumptions that will be

used in the present work. We will also introduce our numerical scheme and state our main result.

2.1. Assumptions and notations. Throughout this paper we fix a separable Hilbert space H with

norm | · | and a fixed orthonormal basis {ψn; n ∈ N}. We assume that we are given a linear operator

A : D(A) ⊂ H → H which is a self-adjoint and positive operator such that the fixed orthonormal

basis {ψn; n ∈ N} satisfies

{ψn; n ∈ N} ⊂ D(A), Aψn = λnψn,

for an increasing sequence of positive numbers {λn; n ∈ N} with λn → ∞ as n ր ∞. It is clear

that −A is the infinitesimal generator of an analytic semigroup e−tA, t ≥ 0, on H. For any α ∈ R the

domain of Aα denoted by Vα = D(Aα) is a separable Hilbert space when equipped with the scalar

product

(2) ((u, v))α =
∞

∑
k=1

λ2α
k ukvk, for u, v ∈ Vα.

The norm associated to this scalar product will be denoted by ‖u‖α, u ∈ Vα. In what follows we set

V := D(A
1
2 ).

Next, we consider a nonlinear map B(·, ·) : V × V → V∗ satisfying the following set of assump-

tions, where hereafter V∗ denotes the dual of the Banach space V.

(B1) There exists a constant C0 > 0 such that for any θ ∈ [0, 1
2 ) and γ ∈ (0, 1

2 ) satisfying θ + γ ∈

(0, 1
2 ], we have

(3)

‖B(u, v)− B(x, y)‖−θ ≤



























C0‖u − x‖ 1
2−(θ+γ)(‖v‖γ + ‖y‖γ) + ‖v − y‖γ(‖u‖ 1

2−(θ+γ) + ‖x‖ 1
2−(θ+γ))

for any u, x ∈ V 1
2−(θ+γ) and v, y ∈ Vγ,

C0(‖u‖γ + ‖x‖γ)‖v − y‖ 1
2−(θ+γ) + ‖u − x‖γ(‖v‖ 1

2−(θ+γ) + ‖y‖ 1
2−(θ+γ))

for any v, y ∈ V 1
2−(θ+γ) and u, x ∈ Vγ.
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Due to the continuous embedding V−θ ⊂ V− 1
2
, θ ∈ [0, 1

2), (3) holds with θ and 1
2 − (θ + γ)

respectively replaced by 1
2 and 1

2 − γ where γ > 0 is arbitrary.

In addition to the above, we assume that for any ε > 0 there exists a constant C > 0 such

that

(4) |B(u, v)| ≤ C|u|‖v‖ 1
2+ε, for any u ∈ H, v ∈ V 1

2+ε.

(B2) We also assume that for any u, v ∈ V

(5) 〈Av + B(u, v), v〉 ≥ ‖v‖2
1
2
.

(B3) We assume that for any u ∈ H we have

(6) B(0, u) = B(u, 0) = 0.

Note that Assumptions (B1) and (B3) imply

(B1)′ There exists a constant C0 > 0 such that for any numbers θ ∈ [0, 1
2) and γ ∈ (0, 1

2) satisfying

θ + γ ∈ (0, 1
2 ], we have

(7) ‖B(u, v)‖−θ ≤ C0







‖u‖ 1
2−(θ+γ)‖v‖γ for any u ∈ V 1

2−(θ+γ) and v ∈ Vγ,

‖u‖γ‖v‖ 1
2−(θ+γ) for any v ∈ V 1

2−(θ+γ), and u ∈ Vγ.

If θ = 1
2 , then (7) holds with 1

2 − (θ + γ) replaced by 1
2 − γ where γ > 0 is arbitrary.

Let {wj; j ∈ N} be a sequence of mutually independent and identically distributed standard Brown-

ian motions on U. Let H be separable Hilbert space and L1(H) be the space of all trace class operators

on H. Recall that if Q ∈ L1(H) is a symmetric, positive operator and {ϕj; j ∈ N} is an orthonormal

basis of H consisting of eigenvectors of Q, then the series

W(t) =
∞

∑
j=1

√

qjwj(t)ϕj, t ∈ [0, T],

where {qj; j ∈ N} are the eigenvalues of Q, converges in L2(Ω; C([0, T];H)) and it defines an H-

valued Wiener process with covariance operator Q. Furthermore, for any positive integer ℓ > 0 there

exists a constant Cℓ > 0 such that

(8) E‖W(t) − W(s)‖2ℓ
H ≤ Cℓ|t − s|ℓ (Tr Q)ℓ ,

for any t, s ≥ 0 with t 6= 0. Before proceeding further we recall few facts about stochastic integral.

Let K be a separable Hilbert space, L(H, K) be the space of all bounded linear K-valued operators

defined on H, M2
T(K) be the space of all equivalence classes of F-progressively measurable processes

Ψ : Ω × [0, T] → K satisfying

E

∫ T

0
‖Ψ(s)‖2

Kds < ∞.

If Q ∈ L1(H) is a symmetric, positive and trace class operator then Q
1
2 ∈ L2(H) and for any Ψ ∈

L(H, K) we have Ψ ◦ Q
1
2 ∈ L2(H, K), where L2(H, K) (with L2(H) := L2(H,H)) is the Hilbert space

of all operators Ψ ∈ L(H, K) satisfying

‖Ψ‖2
L2(H,K) =

∞

∑
j=1

‖Ψϕj‖
2
K < ∞.

Furthermore, from the theory of stochastic integration on infinite dimensional Hilbert space, see [21],

for any L(H, K)-valued process Ψ such that Ψ ◦ Q1/2 ∈ M
2
T(L2(H, K)) the process M defined by

M(t) =
∫ t

0
Ψ(s)dW(s), t ∈ [0, T],

is a K-valued martingale. Moreover, we have the following Itô’s isometry

(9) E

(∥

∥

∥

∥

∫ t

0
Ψ(s)dW(s)

∥

∥

∥

∥

2

K

)

= E

(

∫ t

0
‖Ψ(s)Q

1
2 ‖2

L2(H,K)ds

)

, ∀t ∈ [0, T],
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and the Burkholder-Davis-Gundy inequality

(10) E

(

sup
0≤s≤t

∥

∥

∥

∥

∫ s

0
Ψ(τ)dW(τ)

∥

∥

∥

∥

q

K

)

≤ CqE

(

∫ t

0
‖Ψ(s)Q

1
2 ‖2

L2(H,K)ds

)

q
2

, ∀t ∈ [0, T], ∀q ∈ (1, ∞).

Now, we impose the following set of conditions on the nonlinear term G(·) and the Wiener process

W.

(N) Let H be a separable Hilbert space. We assume that the driving noise W is a H-valued Wiener

process with a positive and symmetric covariance operator Q ∈ L1(H).

(G) We assume that the nonlinear function G : H → L(H, V 1
4
) is measurable and that there exists

a constant C1 > 0 such that for any u ∈ H, v ∈ H we have

‖G(u)− G(v)‖L(H,V 1
4
) ≤ C1|u − v|.

Remark 2.1.

(a) Note that the above assumption implies that G : H → L(H, H) is globally Lipschitz and of at most

linear growth, i.e, there exists a constant C2 > 0 such that

‖G(u)− G(v)‖L(H,H) ≤ C2|u − v|,

|G(u)| ≤ C2(1 + |u|),

for any u, v ∈ H.

(b) There also exists a number C3 > 0 such that

‖G(u)− G(v)‖L(H,V 1
4
) ≤ C3‖u − v‖ 1

4
,

‖G(u)‖L(H,V 1
4
) ≤ C3(1 + ‖u‖ 1

4
),

for any u, v ∈ V 1
4
.

(c) Owing to item (a) of the present remark, if u ∈ M
2
T(H), then G(u) ◦ Q

1
2 ∈ M

2
T(L2(H, H)) and the

stochastic integral
∫ t

0 G(u(s))dW(s) is a well defined H-valued martingale.

To close the current subsection we formulate the following remark.

Remark 2.2. Our assumptions on our problem do not imply the assumptions in either [31] or [8]. To justify

this claim assume that the coefficient of the noise G of our paper and those of [31] and [8] are both zero. Let us

now set

A(t, u) = −Au − B(u, u),

which basically corresponds to the drift in both [31] and [8]. For the sake of simplicity we take θ = 0 and γ = 1
4

in our assumption (B1). The spaces H and V in [31] and [8] are respectively V0 and V 1
2

in our framework.

The map A(t, u) defined above satisfies

〈A(t, u)− A(t, v), u − v〉 ≤ −|u − v|2 + C0|u − v|‖u − v‖ 1
4

(

‖u‖ 1
4
+ ‖v‖ 1

4

)

.

This implies that our assumptions does not imply either [31, Assumptions 2.1(i) and (2.2)(1)] or [8, As-

sumption (H2)].

2.2. Preliminary results. In this subsection we recall and derive some results that will be used in the

remaining part of the paper. To this end, we first define the notion of solution of (1).

Definition 2.3. An F-adapted process u is called a weak solution of (1) (in the sense of PDEs) if the following

conditions are satisfied

(i) u ∈ L2(0, T; V) ∩ C([0, T]; H) P-a.s.,

(ii) for every t ∈ [0, T] we have P-a.s.

(11) (u(t), φ) = (u0, φ)−
∫ t

0
(〈Au(s) + B(u(s), u(s)), φ〉) ds +

∫ t

0
〈φ, G(u(s))dW(s)〉,

for any φ ∈ V.
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Definition 2.4. An F-adapted process u ∈ C([0, T]; H) P-a.s. is called a mild solution to (1) if for every

t ∈ [0, T],

(12) u(t) = e−tAu0 +
∫ t

0
e−(t−r)AB(u(r), u(r))dr +

∫ t

0
e−(t−r)AG(u(r))dW (r), P-a.s.

Remark 2.5. Observe that if u ∈ L2(0, T; V) ∩ C([0, T], H) is a mild solution to (1), then for any t > s ≥ 0,

u(t) = e−(t−s)Au(s) +
∫ t

s
e−(t−r)AB(u(r), u(r))dr +

∫ t

s
e−(t−r)AG(u(r))dW(r), P-a.s.

In fact, we have

u(t) =e−(t−s)A

(

e−sAu0 +
∫ s

0
e−(s−r)AB(u(r), u(r))dr +

∫ s

0
e−(s−r)AG(u(r))dW(r)

)

+
∫ t

s
e−(t−r)AB(u(r), u(r))dr +

∫ t

s
e−(t−r)AG(u(r))dW(r)

=e−(t−s)Au(s) +
∫ t

s
e−(t−r)AB(u(r), u(r))dr +

∫ t

s
e−(t−r)AG(u(r))dW(r), P-a.s.

This remark is used later to prove a very important lemma for our analysis, see Lemma 4.1.

Next, we state and give a short proof of the following results.

Proposition 2.6. If the assumptions (B1) to (B3) hold and (G) is satisfied with V 1
4

replaced by H and u0 ∈

L2(Ω, H), then the problem (1) has a unique global mild, which is also a weak, solution u. Moreover, if

u0 ∈ L2p(Ω, H) for any real number p ∈ [2, 8], then there exists a constant C > 0 such that

(13) E sup
t∈[0,T]

|u(t)|2p + E

∫ T

0
|u(s)|2p−2|A

1
2 u(s)|2ds ≤ C(1 + E|u0|

2p),

and

(14) E

(

∫ T

0
|A

1
2 u(s)|2ds

)p

≤ C(1 + E|u0|
2p).

If, in addition, Assumption (G) is satisfied and u0 ∈ Lp(Ω, V 1
4
) with p ∈ [2, 8], then there exists a constant

C > 0 such that

(15) E sup
t∈[0,T]

‖u(t)‖
p
1
4

+ E

(

∫ T

0
‖u(s)‖2

3
4
ds

)p

≤ C(1 + E‖u0‖
p
1
4

+ (E|u0|
2p)2).

Proof. Let us first prove the existence of a local mild solution. For this purpose, we study the proper-

ties of B in order to apply a contraction principle as in [12, Theorem 3.15]. Let B(·) be the mapping

defined by B(x) = B(x, x) for any x ∈ Vβ. Let β ∈ (0, 1
2). Using Assumptions (B1) with θ = 1

2 − β,

γ = β, we derive that

(16) ‖B(x)− B(y)‖β− 1
2
≤ C0|x − y|(‖x‖β + ‖y‖β) + C‖x − y‖β(|x|+ |y|),

for any x, y ∈ Vβ. Since, by [43, Theorem 1.18.10, pp 141], Vβ coincides with the complex interpolation

[H, D(A
1
2 )]2β, we infer from the interpolation inequality [43, Theorem 1.9.3, pp 59] and (16) that

(17) ‖B(x)−B(y)‖β− 1
2
≤ C0|x− y|(|x|1−2β‖x‖

2β
1
2

+ |y|1−2β‖y‖
2β
1
2

)+C‖x− y‖
2β
1
2

|x− y|1−2β(|x|+ |y|),

for any x, y ∈ V. Now, we denote by XT the Banach space C([0, T]; H) ∩ L2(0, T; V) endowed with

the norm

‖x‖XT
= sup

t∈[0,T]

|x(t)|+

(

∫ T

0
‖x(t)‖2

1
2
dt

)
1
2

.

We recall the following classical result, see [22, Theorem 3, pp 520].

(18) The linear map Λ : L2(0, T; V∗) ∋ f 7→ x(·) =
∫ ·

0
e−(·−r)A f (r)dr ∈ XT is continuous.
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Thus, thanks to (17), (18) and Assumption (G) we can apply [12, Theorem 3.15] to infer the existence

of a unique local mild solution u with lifespan τ of (1) (we refer to [12, Definition 3.1] for the definition

of local solution). Let {τj; j ∈ N} be an increasing sequence of stopping times converging almost

surely to the lifespan τ. Using the equivalence lemma in [21, Proposition 6.5] we can easily prove

that the local mild solution is also a local weak solution satisfying (11) with t replaced by t ∧ τj,

j ∈ N. Now, we can prove by arguing as in [13, Appendix A] or [14, Proof of Theorem 4.4] that the

local solution u satisfies (13) uniformly w.r.t. j ∈ N. With this observation along with an argument

similar to [12, Proof of Theorem 2.10] we conclude that (1) admits a global solution (i.e., τ = T a.s.) u

satisfying (13) and u ∈ XT almost-surely.

As mentioned earlier the proof follows a similar argument as in [13, Appendix A], but for the

sake of completeness we sketch the proof of (13). We apply Itô’s formula first to | · | and the process

u(· ∧ τj) and then to the map x → xp p ≥ 2 and the process |u(· ∧ τj)|
2. Then, using the assumption

(B2) and (G) we infer that there exists a constant C > 0 such that for any j ∈ N

sup
t∈[0,T]

|u(t ∧ τj))|
2p +

∫ T

0
|u(s)|2p−2|A

1
2 u(s)|2ds ≤ CE|u0|

2p

+ C
∫ T

0
|u(s ∧ τj)|

2p−2|(1 + |u(s ∧ τj)|
2)ds

+ 2p sup
t∈[0,T]

∫ t∧τj

0
|u(s)|2p−2〈u(s), G(u(s))dW(s)〉.

Using the Burkholder-Holder-Davis inequality we deduce that

E sup
t∈[0,T]

∫ t∧τj

0
|u(s)|2p−2〈G(u(s)), u(s)〉dW(s) ≤E

(

∫ T

0
(|u(s ∧ τj)|

4pds

)1/2

+E

(

∫ T

0
(|u(s ∧ τj)|

4p−2ds

)1/2

.

Using Young’s inequality, we infer that for any ǫ ∈ (0, 1
2) there exists a constant C(ǫ) > 0 such that

E

(

∫ T

0
(|u(s ∧ τj)|

4pds

)1/2

≤ ǫE sup
t∈[0,T]

|u(t ∧ τj))|
2p + C(ǫ)E

∫ T

0
sup

s∈[0,t]

|u(s ∧ τj)|
2pdt.

For the second integral, we need to use Hölder’s inequality and then Young’s inequality and the

previous calculations

E

(

∫ T

0
(|u(s ∧ τj)|

4p−2ds

)1/2

≤ ǫE sup
t∈[0,T]

|u(t ∧ τj))|
2p + C(ǫ)E

∫ T

0
sup

s∈[0,t]

|u(s ∧ τj)|
2pdt + T

1
2p .

Now collecting all the estimates we get that

(1 − 2ǫ)E sup
t∈[0,T]

|u(t ∧ τj))|
2p +

∫ T

0
E|u(s)|2p−2|A

1
2 u(s)|2ds ≤C(1 + E|u0|

2p)

+ CE

∫ T

0
sup

s∈[0,t]

|u(s ∧ τj)|
2pdt.

Now, choosing ǫ = 1
4 , applying Gronwall’s lemma and passing to the limit as j → ∞ complete the

proof of (13). The estimate (14) easily follows from (13), so we omit its proof.

We shall now prove the inequality (15). To start with we will apply Itô’s formula to ϕ(u) = ‖u‖2
1
4

.

Note that thanks to the estimates (13) and (14), Assumptions (B1) and (G) we readily check that there

exists a constant C > 0 such that

E

∫ T

0

[

‖Au + B(u, u)‖2
− 1

2
+ ‖G(u)‖2

L(H,V 1
4
)

]

(t)dt ≤ C.
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Hence the general Itô’s formula in [36, Section 3] is applicable to (1) and the functional ϕ(u)(t) =

‖u(t)‖2
1
4

. Thus, an application of Itô’s formula to the functional ϕ(u)(t ∧ τj) = ‖u(t ∧ τj)‖
2
1
4

gives

ϕ(u(t ∧ τj)) = ϕ(u(0)) +
∫ t∧τj

0
ϕ′(u(s))du(s) +

1

2

∫ t∧τj

0
Tr
(

ϕ′′(u(s))G(u(s))Q(Gu(s))∗
)

ds,

which along with the inequality 1
2‖φ′′(u)‖ ≤ 1, where the norm is understood as the norm of a

bilinear map, implies

‖u(t ∧ τj)‖
2
1
4
+ 2

∫ t∧τj

0

(

‖u(s)‖2
3
4
+ 2〈A

1
2 u(s), B(u(s), u(s))〉

)

ds

≤ ‖u0‖
2
1
4
+ 2

∫ t∧τj

0
〈A

1
2 u(s), G(u(s))dW(s)〉 + C Tr Q

∫ t∧τj

0
‖G(u(s))‖2

L(H,V 1
4
)ds.

(19)

Since the embedding V 1
2+α ⊂ V2α is continuous for any α ∈ [0, 1

2 ], we can use Assumptions (B1)′ and

the Cauchy inequality to infer that

∣

∣

∣

∣

∫ t∧τj

0
〈A

1
2 u(s), B(u(s), u(s))〉ds

∣

∣

∣

∣

≤ C
∫ t∧τj

0
‖u(s)‖ 1

2
|B(u(s), u(s))|ds,

≤
1

2

∫ t∧τj

0
‖u(s)‖2

3
4
ds + C

∫ t∧τj

0
‖u(s)‖2

1
2−γ

‖u(s)‖2
γds,

for some γ ∈ (0, 1
2). From an application of a complex interpolation inequality, see [43, Theorem

1.9.3, pp 59], we infer that

∣

∣

∣

∣

∫ T

0
〈A

1
2 u(s), B(u(s), u(s))〉ds

∣

∣

∣

∣

≤
1

2

∫ T

0
‖u(s)‖2

3
4
ds +

∫ T

0
|u(s)|2‖u(s)‖2

1
2
ds.

Plugging the latter inequality into (19), using the assumption on G we obtain

‖u(t ∧ τj)‖
2
1
4
+

3

2

∫ t∧τj

0
‖u(s)‖2

3
4
ds ≤ ‖u(0)‖2

1
4
+ C sup

s∈[0,T]

|u(s)|2
∫ T

0
‖u(s)‖2

1
2
ds

+CT + C
∫ T

0
‖u(s)‖2

1
4
ds + 2

∣

∣

∣

∣

∫ t∧τj

0
〈A

1
4 u(s), A

1
4 G(u(s))dW(s)〉

∣

∣

∣

∣

.

(20)

Taking the supremum over t ∈ [0, T], then raising both sides of the resulting inequality to the power

p/2, taking the mathematical expectation, and finally using the Burkholder-Davis-Gundy inequality

yield

E sup
s∈[0,t]

‖u(s ∧ τj)‖
p
1
4

+ 2E

(

∫ t∧τj

0
‖u(s)‖2

3
4
ds

)p/2

−

(

CE‖u(0)‖
p
1
4

+ CT + CE

[

∫ t∧τj

0
‖u(s)‖2

1
4
ds

]

p
2

)

≤ C

(

E sup
s∈[0,T]

|u(s)|2p

) 1
2 [

E

(

∫ T

0
‖u(s)‖2

1
2
ds

)p ] 1
2

+2CE

(

∫ t∧τj

0
|A

1
4 u(s)|2‖G(u(s))‖2

L(H,V 1
4
)ds

)

p
4

.

(21)

Here we have used the fact that for any integer ℓ and n we can find a constant Cℓ,n such that

(22)
n

∑
i=1

aℓi ≤

(

n

∑
i=1

ai

)ℓ

≤ Cℓ,n

n

∑
i=1

aℓi

for a sequence of non-negative numbers {ai; i = 1, 2, . . . , n}.
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Using the assumptions on G and Young’s inequality we infer that there exists a constant C > 0

such that for any j ∈ N

E

(

∫ t∧τj

0
|A

1
4 u(s)|2‖G(u(s))‖2

L(H,V 1
4
)ds

)

p
4

≤
1

4
E sup

s∈[0,t]

‖u(s ∧ τj)‖
p
1
4

+ CE

[

∫ t∧τj

0
‖u(s)‖2

1
4
ds

]

p
2

+ CT,

which along with (21), (13) and (14) implies

E sup
s∈[0,t]

‖u(s ∧ τj)‖
p
1
4

+ 2E

(

∫ t∧τj

0
‖u(s)‖2

3
4
ds

)

p
2

≤E‖u(0)‖
p
1
4

+ C2(1 + E|u0|
2p)2

+ CT + E

[

∫ t∧τj

0
‖u(s)‖2

1
4
ds

]

p
2

.

Now, we infer from the interpolation inequality [43, Theorem 1.9.3, pp 59], (13) and (14) that there

exists a constant C > 0 such that for any j ∈ N

E

[

∫ t∧τj

0
‖u(s)‖2

1
4
ds

]

p
2

≤ T
p
2 E

(

sup
s∈[0,T]

|u(s)|
p
2

[

∫ T

0
‖u(s)‖2ds

]

p
4

)

≤ CT.

Hence,

E sup
s∈[0,t]

‖u(s ∧ τj)‖
p
1
4

≤ CT(1 + E‖u(0)‖
p
1
4

+ (E|u0|
2p)2),

from which along with a passage to the limit we readily complete the proof of the proposition.

�

2.3. The numerical scheme and the main result. Let N be a positive integer, HN ⊂ H the linear

space spanned by {ψn; n = 1, . . . , N}, and πN : H → HN the orthogonal projection of H onto the

finite dimensional subspace HN. The projection of u by πN is denoted by

(23) uN := πNu =
N

∑
n=1

(ψn, u)ψn,

for u ∈ H. The Galerkin approximation of the SPDEs (1) reads

(24) duN = [πNAuN + πNB(uN, uN)]dt + πNG(uN)dW(t), uN(0) = πNu0.

Due to the assumptions (B1)-(B3) and (G), we can use Proposition 2.6 to prove that (24) has a global

weak solution.

To derive an approximation of the exact solution u of (1) we construct an approximation Uj of the

Galerkin solution uN . To this end, let M be a positive integer and IM = ([tm, tm+1])
M
m=0 an equidistant

grid of mesh-size k = tm+1 − tm covering [0, T]. Now, for any j ∈ {0, . . . , M − 1} we look for a

sequence of F-adapted random variables Uj ∈ HN , j = 0, 1, . . . , M such that for any w ∈ V

(25)

{

U0 = πNu0,

〈Uj+1 − Uj + k[πNAUj+1 + πNB(Uj, Uj+1)], w〉 = 〈w, πNG(Uj)∆j+1W〉,

where ∆j+1W := W(tj+1)− W(tj), j ∈ {0, . . . , M − 1}, is an independent and identically distributed

random variables. We will justify in the following proposition that for a given U0 = πNu0 the

numerical scheme (25) admits at least one solution U j ∈ HN , j ∈ {1, . . . M} and that (25) is stable

in H and D(A
1
4 ).

Proposition 2.7. Let the assumptions (B1)-(B3) and (G) hold. Let N and M be two fixed positive integers and

u0 ∈ L2p
(Ω; H) for any integer p ∈ [2, 4]. Then, for any j ∈ {1, . . . , M} there exists at least a Ftj

-measurable
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random variable Uj ∈ HN satisfying (25). Moreover, there exists a constant C > 0 (depending only on T and

Tr Q ) such that

E max
0≤m≤M

|Um|2 +
M−1

∑
j=0

|Uj+1 − Uj|2 + 2kE

M

∑
j=1

‖Uj‖2
1
2
≤ C(E|u0|

2 + 1),(26)

E

[

max
1≤m≤M

|Um|2
p
+ k

M

∑
j=1

|Uj|2
p−1

‖Uj‖2

1
2

]

≤ C(1 + E|u0|
2p−1

),(27)

E

[

k
M

∑
j=1

‖Uj‖2

1
2

]2p−1

≤ C(1 + E|u0|
2p
).(28)

Furthermore, if u0 ∈ L8(Ω, D(A
1
4 )), then there exists a constant C > 0 such that

E max
1≤m≤M

‖Um‖2
1
4
+ E

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4
+ kE

M

∑
j=1

‖Uj‖2
3
4
≤ C,(29)

E max
1≤m≤M

‖Um‖4
1
4
+ E

(M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4

)2

+ k2
E

( M

∑
j=1

‖Uj‖2
3
4

)2

≤ C(30)

Proof. The detailed proofs of the existence, measurability and the estimates (29) and (30) will be given

in Section 3. Thanks to the assumption (B2), the proof of the inequalities (26)-(28) is very similar to

the proof of [17], so we omit it. �

We should note that the estimates (29) and (30) hold even if u0 ∈ L4(Ω, D(A
1
4 )), but for the sake

of consistency we take u0 ∈ L8(Ω, D(A
1
4 )).

Now, we proceed to the statement of the main result of this paper.

Theorem 2.8. Let the assumptions (B1)-(B3) and (G) hold and assume that u0 ∈ L16(Ω; H) ∩ L8(Ω; V 1
4
).

Then for any β ∈ [0, 1
4 ), there exists a constant k0 > 0 such that for any small number ε > 0 we have

(31) max
1≤j≤M

E

(

1Ωk
‖u(tj)− Uj‖2

β

)

+ 2kE

(

1Ωk

M

∑
j=1

‖u(tj)− Uj‖2
1
2+β

)

< k0k−2ε[k2( 1
4−β) + λ

−2( 1
4−β)

N ],

where the set Ωk is defined by

Ωk =

{

ω ∈ Ω : sup
t∈[0,T]

‖u(t, ω)‖2
1
4
< log k−ε, max

0≤j≤M
‖Uj(ω)‖2

1
4
< log k−ε

}

.

Proof. The proof of this theorem will be given in Section 4. �

Remark 2.9. Note that owing to (15) and (30) and the Markov inequality it is not difficult to prove that the

set Ωk satisfies

lim
kց0

P[Ω\Ωk] = 0.

Corollary 2.10. If all the assumptions of Theorem 2.8 are satisfied, then the solution {Uj; j = 1, 2, . . . , M}

of the numerical scheme (25) converges in probability in the Hilbert space Vβ, β ∈ [0, 1
4). More precisely, for

any small number ε > 0, any θ0 ∈
(

0, 1
4 − β − ε

)

and θ1 ∈ (0, 1
4 − β) we have

(32) lim
Θր∞

lim
kց0

lim
Nր∞

max
1≤j≤M

P

(

‖u(tj)− Uj‖β + k
1
2

( M

∑
j=1

‖u(tj)− Uj‖2
1
2+β

)
1
2

≥ Θ[kθ0 + Λ
−θ1
N ]

)

= 0.

Proof. To shorten notation let us set ej := u(tj)− Uj and

ΩΘ
k,N = {ω ∈ Ω; ‖ej‖2

β + k
M

∑
j=1

‖ej‖2
1
2+β

≥ Θ[kθ0 + Λ
−θ1
N ]},
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for any positive numbers M and k. Let Ωk be as in the statement of Theorem 2.8. Owing to (31), (15),

(30) and the Chebychev-Markov inequality, we can find a constant C̃5 > 0 such that

P

(

ΩΘ
k,N

)

= P(ΩΘ
k,N ∩ Ωk) + P(ΩΘ

k,N ∩ Ωc
k)

≤ P(ΩΘ
k,N ∩ Ωk) + P(Ωc

k)

≤
k0

Θ
k2( 1

4−β)−2ε−2θ0 +
k0

Θ
k−2ελ

−2( 1
4−β)+2θ1

N +
C̃5

log k−ε
.

Letting N ր ∞, then k ց 0 and finally Θ ր ∞ in the last line we easily conclude the proof of the

corollary. �

To close this section let us make some few remarks. Instead of the scheme (25) we could also use

a fully-implicit scheme. More precisely, for any j ∈ {0, . . . , M − 1} we look for a Ftj
-measurable

random variable U j ∈ HN such that for any w ∈ V

(33)

{

U0 = πNu0,

〈U j+1 − U j + k[πNAU j+1 + πNB(U j+1,U j+1)], w〉 = 〈w, πNG(U j)∆j+1W〉,

where ∆j+1W := W(tj+1)−W(tj), j ∈ {0, . . . , M − 1}. We have the following theorem:

Theorem 2.11. Let the assumptions (B1)-(B3) and (G) hold and assume that u0 ∈ L16(Ω; H) ∩ L8(Ω; V 1
4
).

Let N and M be two fixed positive integers. Then,

(a) for any j ∈ {0, . . . , M − 1} there exists a unique Ftj
-measurable random variable U j ∈ HN satisfying

(33) and the estimates (26) and (30).

(b) For any β ∈ [0, 1
4) there exists a constant k0 > 0 such that for any small number ε > 0 we have

(34) max
1≤j≤M

E

(

1Ωk
‖u(tj)− U j‖2

β

)

+ 2kE

(

1Ωk

M

∑
j=1

‖u(tj)−U j‖2
1
2+β

)

< k0k−2ε[k2( 1
4−β) + λ

−2( 1
4−β)

N ],

where

Ωk =

{

ω : sup
t∈[0,T]

‖u(t, ω)‖2
1
4
< log k−ε, max

0≤j≤M
‖U j(ω)‖2

1
4
< log k−ε

}

.

(c) Moreover, for any small number ε > 0, any θ0 ∈
(

0, 1
4 − β − ε

)

and θ1 ∈ (0, 1
4 − β)

(35) lim
Θր∞

lim
kց0

lim
Nր∞

max
1≤j≤M

P



‖u(tj)− U j‖2
β + k

1
2

(

M

∑
j=1

‖u(tj)− U j‖2
1
2+β

) 1
2

≥ Θ[kθ0 + λ−θ1
N ]



 = 0.

Proof. The arguments for the proof of this theorem are very similar to those of the proofs of Proposi-

tion 2.7, Theorem 2.8 and Corollary 2.10, thus we omit them. �

3. EXISTENCE AND STABILITY ANALYSIS OF THE SCHEME: PROOF OF PROPOSITION 2.7

In this section we will show that for any j ∈ {0, . . . , M − 1} the numerical scheme (25) admits at

least one solution Uj ∈ HN . We will also show that (25) is stable in D(A
1
4 ), see Proposition 2.7 for

more precision.

Proof of Proposition 2.7. As we mentioned in Subsection 2.3 we will only prove the existence, measur-

ability and the estimates (29) and (30). The proof of the inequalities (26)-(28) will be omitted because

it is very similar to the proof of [17] (see also [11]).

Proof of the existence. We first establish that for any j ∈ {0, . . . M − 1} there exists Uj ∈ HN satisfying

the numerical scheme (25). To this end, let us fix ω ∈ Ω and for a given Uj ∈ HN consider the map

Λ
j
ω : HN → HN defined by

〈Λ
j
ω(v), ψ〉 = 〈v − Uj(ω), ψ〉+ k〈Av + πNB(Uj(ω), v), ψ〉 − 〈ψ, πNG(Uj(ω))∆j+1W(ω)〉
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for any ψ ∈ HN. Note that since HN ⊂ D(A) the map Λ
j
ω is well-defined. From assumptions (B1)

and (G) and the linearity of A it is clear that for given Uj the map Λ
j
ω is continuous. Furthermore,

using Hölder’s inequality, the fact that λ1|ψ|
2 ≤ ‖ψ‖2

1
2

, ψ ∈ V and assumptions (B2) and (G) we

derive that

〈Λ
j
ωv, v〉 ≥|v|2

(

λ1k +
1

2
−

k

2

)

−
|Uj(ω)|2

2

(

1 + ‖∆j+1W(ω)‖2
HC2

2

)

−
1

2
‖∆j+1W(ω)‖2

HC2
2

≥γ|v|2 − Γ
j
ω.

Since k < 1, and by Assumption (N), ‖∆j+1W‖2
H
< ∞, the constant γ is positive and µj =

√

Γ
j
ω

γ < ∞

whenever |Uj|2 < ∞. Thus, we have 〈Λ
j
ωv, v〉 ≥ 0 for any v ∈ H

j
N(ω) := {ψ ∈ Hn; |ψ| = Rµj}

where R > 1 is an arbitrary constant. Since U0 = πNu0 is given, we can conclude from the above

observations and Brouwer fixed point theorem that there exists at least one U1 ∈ HN satisfying

Λ0
ω(U

1) = 0 and |U1| ≤ Rµ0.

In a similar way, assuming that Uj ∈ HN , we infer that there exists at least one Uj+1 ∈ HN such that

Λ
j
ω(U

j+1) = 0 and |Uj+1| ≤ Rµj.

Therefore, we have to prove by induction that given U0 ∈ HN and a H-valued Wiener process W, for

each j, there exists a sequence {Uj; j = 1, . . . , M} ⊂ HN satisfying the algorithm (25).

Proof of the measurability. In order to prove the Ftj
-measurability of Uj it is sufficient to show that

for each j ∈ {1, . . . , M} one can find a Borel measurable map Ej : HN ×H → HN such that Uj =

Ej(U
j−1, ∆jW). In fact, if such claim is true then by exploiting the Ftj

-measurability of ∆jW one can

argue by induction and show that if U0 is F0-measurable then Ej(U
j−1, ∆jW) is Ftj

-measurable,

hence Uj is Ftj
-measurable. Thus, it remains to prove the existence of Ej. For this purpose we will

closely follow [23]. Let P(HN) be the set of subsets of HN and consider a multivalued map E
S
j+1 :

HN ×H → P(HN) such that for each (Uj, ηj+1), E
S
j+1(U

j, ηj+1) denotes the set of solutions Uj+1 of

(25). From the existence result above we deduce that ES
j+1 maps HN ×H to nonempty closed subsets

of HN. Furthermore, since we are in the finite dimensional space HN, we can prove, by using the

assumptions (B1) and (G) and the sequential characterization of the closed graph theorem, that the

graph of ES
j+1 is closed. From these last two facts and [4, Theorem 3.1] we can find a univocal map

Ej+1 : HN ×H → HN such that Ej(U
j, ηj+1) ∈ E

S
j+1(U

j, ηj+1) and Ej is measurable when HN ×H and

HN are equipped with their respective Borel σ-algebra. This completes the proof of the measurability

of the solutions of (25).

Proof of (26)-(28). Thanks to the assumption (B2), the proof of the inequalities (26)-(28) is very

similar to the proof of [17], so we omit it and we directly proceed to the proof of the estimates (29)

and (30).

Proof of (29). Taking w = 2A
1
2 Uj+1 in (25), using the Cauchy-Schwarz inequality and the identity

(36) ((v − x, 2v)) = ‖v‖2 − ‖x‖2 + ‖v − x‖2, (v, x are elements of a Hilbert space with norm ‖·‖ )

yield

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4
+ ‖Uj+1 − Uj‖2

1
4
+ 2k‖Uj+1‖2

3
4

≤ 2k|πNB(Uj, Uj+1)|‖Uj+1‖ 1
2
+ 2‖πN G(Uj)∆j+1W‖ 1

4
‖Uj+1 − Uj‖ 1

4

+ 2〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉.
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Using the fact that ‖πN‖L(H,HN) ≤ 1, we obtain

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4
+ ‖Uj+1 − Uj‖2

1
4
+ 2k‖Uj+1‖2

3
4

≤ 2k|B(Uj, Uj+1)|‖Uj+1‖ 1
2
+ 2‖G(Uj)∆j+1W‖ 1

4
‖Uj+1 − Uj‖ 1

4

+ 2〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉.

(37)

Using Assumption (B1)′, the complex interpolation inequality in [43, Theorem 1.9.3, pp 59], the

Young inequality, and the continuous embedding V 1
2
⊂ V 1

4
we obtain

2|B(Uj, Uj+1)|‖Uj+1‖ 1
2
≤ C|Uj|4‖Uj+1‖2

1
4
+ ‖Uj+1‖2

3
4

(38)

≤ C|Uj|4‖Uj+1‖2
1
2
+ ‖Uj+1‖2

3
4
,

which implies that

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4
+

1

2
‖Uj+1 − Uj‖2

1
4
+ 2k‖Uj+1‖2

3
4
≤ 2Ck|Uj|4‖Uj+1‖2

1
2
+ 4‖G(Uj)∆j+1W‖2

1
4

+2〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉.

(39)

Since Uj is a constant, adapted and hence progressively measurable process, it is not difficult to prove

that

2E〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉 = 0.

Using (27) and (28) with p = 2 and p = 3 respectively, we easily prove that there exists a constant

C > 0, depending only on T, such that

(40) kE

(

M−1

∑
j=0

|Uj|4‖Uj+1‖2
1
2

)

≤

(

E max
1≤m≤M

|Um|8
) 1

2
(

E

(

k
M

∑
j=1

‖Uj‖2
1
2

)2) 1
2

≤ C(1 + E|u0|
8)2.

Now, since Uj is Ftj
-measurable and ∆j+1W is independent of Ftj

, we infer that there exists a constant

C > 0 such that for any j ∈ {0, . . . , M − 1}

E

(

‖G(Uj)∆j+1W‖2
1
4

)

≤ E

(

E

(

‖G(Uj)‖2
L(H,V 1

4
)‖∆j+1W‖2

H|Ftj

))

= mE

(

‖G(Uj)‖2
L(H,V 1

4
)E

(

‖∆j+1W‖2
H|Ftj

)

)

≤ Ck (trQ)
1
2 (1 + E‖Uj‖2

1
4
),(41)

where (8) and Assumption (G) along with Remark 2.1-(b) were used to derive the last line of the

above chain of inequalities.

Now taking the mathematical expectation in (39), summing both sides of the resulting equations

from j = 0 to m − 1 and using the last three observations imply

max
1≤m≤M

E‖Um‖2
1
4
+

1

2
E

(M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4

)

+ 2kE

M

∑
j=1

‖Uj‖2
3
4

≤ CT + E‖u0‖
2
1
4
+ C Tr Qk

M

∑
m=1

max
1≤j≤m

E‖Uj‖2
1
4
,

from which along with the discrete Gronwall lemma we infer that there exists a constant C > 0 such

that

max
1≤m≤M

E‖Um‖2
1
4
+

1

2
E

(M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4

)

+ 2kE

M

∑
j=1

‖Uj‖2
3
4
≤ C(1 + E‖u0‖

2
1
4
+ [E|u0|

8]2).(42)
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Note that from (39) we can derive that there exists a constant C > 0 such that

E max
1≤m≤M

‖Um‖2
1
4
≤ E‖u0‖

2
1
4
+ CkE

M−1

∑
j=0

|Uj|4‖Uj+1‖2
1
2
+ E

M−1

∑
j=0

‖G(Uj)∆j+1W‖2
1
4

+2E max
1≤m≤M

m−1

∑
j=0

〈A
1
4 πNG(Uj)∆j+1W, A

1
4 Uj〉

=:
4

∑
i=1

Ii.

Arguing as in [11, proof of (3.9)] we can establish that

I4 ≤
1

2
E‖u0‖

2
1
4
+

1

2
E max

1≤m≤M
‖Um‖2

1
4
+ Ck

M−1

∑
j=0

E‖Uj‖2
1
4
,

which altogether with (42) yields that

I4 ≤
1

2
E max

1≤m≤M
‖Um‖2

1
4
+ C(1 + E‖u0‖

2
1
4
).

Using the same idea as in the proof of (41) and using (42) we infer that

I3 ≤ C(1 + E‖u0‖
2
1
4
).

Using these two estimates and the inequality (40) we derive that there exists a constant C > 0 such

that

E max
1≤m≤M

‖Um‖2
1
4
≤ C(1 + E‖u0‖

2
1
4
+ [E|u0|

8]2),

which along with (42) completes the proof of (29).

Now, we continue with the derivation of an estimate of max1≤m≤M E‖Um‖4
1
4

. Multiplying (37) by

‖Uj+1‖2
1
4

and using identity (36) and then summing both sides of the resulting equation from j = 0 to

m − 1 implies

1

2
‖Um‖4

1
4
+

1

2

m−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

+
m−1

∑
j=0

‖Uj+1‖2
1
4
‖Uj+1 − Uj‖2

1
4
+ 2k

m−1

∑
j=0

‖Uj+1‖2
1
4
‖Uj+1‖2

3
4

≤
1

2
‖u0‖

4
1
4
+ Ck

m−1

∑
j=0

|B(Uj, Uj+1)|2‖Uj+1‖2
1
2
‖Uj+1‖2

1
4

+2
m−1

∑
j=0

〈A
1
4 [Uj+1 − Uj], A

1
4 πNG(Uj)∆j+1W〉‖Uj+1‖2

1
4

+2
m−1

∑
j=0

〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉‖Uj+1‖2

1
4

=:
1

2
‖u0‖

4
1
4
+ J1 + J2 + J3.

(43)

Thanks to the estimate (38) we can estimate J1 as follows

EJ1 ≤ CKE

M−1

∑
j=0

|Uj|4‖Uj+1‖4
1
4
+ kE

M−1

∑
j=0

‖Uj+1‖2
1
4
‖Uj+1‖2

3
4
=: J1,1 + J1,2.
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Since the second term J1,2 can be absorbed in the LHS later on, we will focus on estimating the second

term J1,1. We have

J1,1 ≤Ck
M−1

∑
j=0

|Uj|4|Uj+1|2‖Uj+1‖2
1
2

≤C

(

E max
0≤j≤M−1

[|Uj|8|Uj+1|4]

)
1
2
(

E

[

k
M

∑
j=1

‖Uj‖2
1
2

]2) 1
2

≤C

(

E[ max
0≤j≤M−1

|Uj|12]

)
1
2
(

E

[

k
M

∑
j=1

‖Uj‖2
1
2

]2) 1
2

≤C(1 + E|u0|
16),

where (27) and (28) are used to obtain the last line. Hence,

EJ1 ≤ C(1 + E|u0|
16) + Ek

M−1

∑
j=0

(

‖Uj+1‖2 −
1

4
‖Uj+1‖2

3
4

)

.

Now we estimate J2 as follows

EJ2 ≤CE

M−1

∑
j=0

‖G(Uj)∆j+1W‖2
1
4

(

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4
+ ‖Uj‖2

1
4

)

+
1

2
E

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4
‖Uj+1‖2

1
4

≤CE

M−1

∑
j=0

‖G(Uj)∆j+1W‖4
1
4
+ CE

M−1

∑
j=0

‖G(Uj)∆j+1W‖2
1
4
‖Uj‖2

1
4
+

1

8
E

M−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

+
1

2
E

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4
‖Uj+1‖2

1
4
.

As long as J3 is concerned we have

EJ3 = 2E

m−1

∑
j=0

〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉‖Uj‖2

1
4
+ 2E

m−1

∑
j=0

〈A
1
4 Uj, A

1
4 G(Uj)∆j+1W〉

(

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

)

= 2E

m−1

∑
j=0

〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉

(

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

)

≤ CE

M−1

∑
j=0

‖A
1
4 G(Uj)∆j+1W‖2

1
4
‖Uj‖2

1
4
+

1

8
E

M−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

because for any j

E〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉‖Uj‖2

1
4
= 0.

By a similar idea as used to derive (41) we can prove that

CE

M−1

∑
j=0

‖G(Uj)∆j+1W‖4
1
4
+ CE

M−1

∑
j=0

‖G(Uj)∆j+1W‖2
1
4
‖Uj‖2

1
4
≤ C + CkE

M−1

∑
j=0

‖Uj‖4
1
4
.

Thus,

E[J2 + J3] ≤ C + CkE

M−1

∑
j=0

‖Uj‖4
1
4
+

1

4
E

M−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

+
1

2
E

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4
‖Uj+1‖2

1
4
.
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Taking the mathematical expectation in (43) and by plugging the information about Ji, i = 1, 2, 3 in

the resulting equation yield

max
1≤m≤M

1

2
E‖Um‖4

1
4
+

1

4
E

M−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

+
1

2
E

M−1

∑
j=0

‖Uj+1‖2
1
4
‖Uj+1 − Uj‖2

1
4
+ kE

M

∑
j=1

‖Uj‖2
1
4
‖Uj‖2

3
4

≤ C(1 + E|u0|
12 + ‖u0‖

4
1
4
) + CkE

M−1

∑
j=0

‖Uj‖4
1
4
,

which along with the Gronwall inequality yields

max
1≤m≤M

1

2
E‖Um‖4

1
4
≤ C(1 + E|u0|

12 + ‖u0‖
4
1
4
).

The latter inequality is used in the former one to derive that

max
1≤m≤M

1

2
E‖Um‖4

1
4
+

1

4
E

M−1

∑
j=0

∣

∣

∣

∣

‖Uj+1‖2
1
4
− ‖Uj‖2

1
4

∣

∣

∣

∣

2

+
1

2
E

M−1

∑
j=0

‖Uj+1‖2
1
4
‖Uj+1 − Uj‖2

1
4

+kE

M

∑
j=1

‖Uj‖2
1
4
‖Uj‖2

3
4
≤ C(1 + E|u0|

12 + ‖u0‖
4
1
4
).

(44)

Now we continue our analysis with the estimation of E max1≤j≤M‖Uj‖4
1
4

. To start with this analysis,

we easily derive from (43) the following inequality

max
1≤m≤M

1

2
E‖Um‖4

1
4
≤ Ck

M−1

∑
j=0

|Uj|4‖Uj+1‖2‖Uj+1‖2
1
2

+ C
M−1

∑
j=0

(

‖G(Uj)∆j+1‖
4
1
4
+ ‖G(Uj)∆j+1‖

2
1
4
‖Uj‖2

1
4

)

+ max
0≤j≤M−1

j−1

∑
ℓ=0

〈A
1
4 Uℓ, A

1
4 πNG(Uℓ)∆ℓ+1W〉‖Uℓ‖2

1
4
=: J1 + J2 + J3.

Arguing as in the proof of (41) and using (44), the mathematical expectation of J1 + J2 can be estimated

as follows

E(J1 + J2) ≤ CE(1 + |u0|
16 + ‖u0‖

4
1
4
).

The same idea as used in the proof of [11, inequality (3.15)] yields

EJ3 ≤
1

4
E max

1≤m≤M
‖Um‖4

1
4
+ CE‖u0‖

4
1
4
+ CkE

M−1

∑
j=0

‖Uj‖4
1
4
,

from which altogether with (44) we infer that

EJ3 ≤ CE(1 + |u0|
16 + ‖u0‖

4
1
4
) +

1

4
E max

1≤m≤M
‖Um‖4

1
4
.

Thus, summing up we have shown that there exists a constant C > 0 such that

E max
1≤m≤M

‖Um‖4
1
4
≤ CE(1 + |u0|

16 + ‖u0‖
4
1
4
).(45)
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Now, we estimate E

(

∑
M−1
j=0 ‖Uj+1 − Uj‖2

1
4

)2
+ E

(

k ∑
M
j=1‖Uj‖2

3
4

)2
. To do this we first observe that

from (39) we infer that

(

1

2

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4

)2

+

(

2k
M−1

∑
j=0

‖Uj+1‖2
1
4

)2

≤ C

(

k
M−1

∑
j=0

|Uj|4‖Uj+1‖2
1
2

)2

+C

(M−1

∑
j=0

‖G(Uj)∆j+1W‖2
1
4

)2

+ C

(M−1

∑
j=0

〈A
1
4 Uj, A

1
4 πNG(Uj)∆j+1W〉

)2

.

(46)

Then, using the same strategies to estimate the Ji-s (or Ji ), the sum of the three terms in the right

hand side of the above quality can be bounded from above by

[

E

(

max
0≤j≤M

|Uj|16

)]
1
2
[

E

(

k
M

∑
j=1

‖Uj‖2
1
2

)4
]

1
2

+ CMk2
M

∑
j=0

E‖Uj‖4
1
4
+ Ck

M

∑
j=0

E‖Uj‖4
1
4
,

which along with the estimate for E max1≤m≤M‖Um‖4
1
4

and the inequalities (27) and (28) implies that

(

1

2

M−1

∑
j=0

‖Uj+1 − Uj‖2
1
4

)2

+

(

2k
M−1

∑
j=0

‖Uj+1‖2
1
4

)2

≤ E(1 + |u0|
16 + ‖u0‖

4
1
4
).(47)

The last estimate along with (45) completes the proof of (30) and hence the whole proposition. �

4. ERROR ANALYSIS OF THE NUMERICAL SCHEME (25): PROOF OF THEOREM 2.8

This section is devoted to the analysis of the error ej = u(tj) − Uj at the time tj between the

exact solution u of (1) and the approximate solution given by (25). Since the precise statement of

the convergence rate is already given in Theorem 2.8, we proceed directly to the promised proof of

Theorem 2.8.

Before giving the proof of Theorem 2.8 we state and prove the following important result.

Lemma 4.1. Let β be as in Theorem 2.8. Then,

(i) there exists a constant C7 > 0 such that

(48) E‖u(t)− u(s)‖2
β ≤ C7[(t − s)2−2β + (t − s)2( 1

4−β) + (t − s)],

for any t, s ≥ 0 and t 6= s.

(ii) There also exists a positive constant C8 such that

(49) E

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr ≤ C8

(

(t − s)
3
2−2β + (t − s)2( 1

4−β) + (t − s)2−2β
)

,

for any t > s ≥ 0.

Proof of Lemma 4.1. As in the statement of the lemma we divide the proof into two parts.

Proof of item (i). Let t, s ∈ [0, T] such that t 6= s. Without loss of generality we assume that t > s.

Thanks to (12) of Remark 2.5 we have

‖u(t)− u(s)‖2
β ≤ C|Aβ− 1

4 (I − e−(t−s)A)A
1
4 u(s)|2 + C

∣

∣

∣

∣

∫ t

s
Aβe−(t−r)AB(u(r), u(r))dr

∣

∣

∣

∣

2

+C

∣

∣

∣

∣

∫ t

s
Aβe−(t−r)AG(u(r))dW(r)

∣

∣

∣

∣

2

.

Before proceeding further we recall that there exists a constant C > 0 such that for any γ > 0 and

t ≥ 0, we have

‖A−γ(I − e−tA)‖L(H) ≤ Ctγ.
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Applying this inequality, the Hölder inequality, Assumption (B1)′, the Itô isometry and Assumption

(G) imply

E

(

‖u(t)− u(s)‖2
β

)

≤C(t − s)E

(

∫ t

s
(t − r)−2β‖u(r)‖2

1
4
‖u(r)‖2

1
2−

1
4
dr

)

+ C(t − s)2( 1
4−β)

E‖u(s)‖2
1
4
+ E

∫ t

s
|e−(t−r)AAβG(u(r))|2dr

≤C(t − s)2−2β
E

(

sup
r∈[s,t]

‖u(r)‖2
1
4

sup
r∈[s,t]

‖u(r)‖2
1
2−

1
4

)

+ C[(t − s)2( 1
4−β) + (t − s)]E

(

sup
r∈[s,t]

‖u(r)‖4
1
4

)

,

from which along with (15) we easily infer that

E

(

‖u(t)− u(s)‖2
β

)

≤ C[(t − s)2−2β + (t − s)2( 1
4−β) + (t − s)].

Thus, we have just finished the proof of the first part of the lemma.

Proof of item (ii). Let t > s ≥ 0. Using (12) of Remark 2.5, it is not difficult to see that

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr ≤C
∫ t

s

(

∫ t

r
|A

1
2+βe−(t−τ)AB(u(τ), u(τ))|dτ

)2

dr

+ C
∫ t

s

∣

∣

∣

∣

∫ t

r
A

1
4+βe−(t−τ)A[A

1
4 G(u(τ))]dW(τ)

∣

∣

∣

∣

2

dr

+ C
∫ t

s
|Aβ− 1

4 (e−(t−r)A − I)A
3
4 u(s)|2dr,

from which and the assumption on B we infer that

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr ≤C sup
0≤τ≤T

(

‖u(τ)‖2
1
4
‖u(τ)‖2

1
2−

1
4

)

∫ t

s

(

∫ t

r
(t − τ)−

1
2−βdτ

)2

dr

+ C
∫ t

s

∣

∣

∣

∣

∫ t

r
A

1
4+βe−(t−τ)A[A

1
4 G(u(τ))]dW(τ)

∣

∣

∣

∣

2

dr

+ C
∫ t

s
(t − r)2( 1

4−β)‖u(s)‖2
3
4
dr.

Taking the mathematical expectation and using (15) yield

E

(

1Ωk

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr

)

≤C(t − s)2−2β + C(t − s)2( 1
4−β)

E

∫ T

0
‖u(r)‖2

1
2+β

dr

+
∫ t

s
E

(∣

∣

∣

∣

∫ t

r
A

1
4+βe−(t−τ)AA

1
4 G(u(τ))dW(τ)

∣

∣

∣

∣

2)

dr.

Owing to the Itô isometry, the assumption (G) and (15), we obtain

E

(

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr

)

≤ E

(

sup
0≤τ≤T

(1 + ‖u(τ)‖2
1
4
)

)

∫ t

s

∫ t

r
(t − τ)−

1
2−2βdτdr

+(t − s)2−2β + (t − s)2( 1
4−β),

from which altogether with (15) we infer that there exists a constant C > 0 such that

E

(

∫ t

s
‖u(t)− u(r)‖2

1
2+β

dr

)

≤ C(t − s)2−2β + C(t − s)2( 1
4−β) + C(t − s)

3
2−2β,

for any t > s ≥ 0. �

We now give the promised proof of Theorem 2.8.
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Proof of Theorem 2.8. Since the embedding Vβ ⊂ H is continuous for any β ∈ (0, 1
4), it is sufficient to

prove the main theorem for β ∈ (0, 1
4).

Note that the numerical scheme (25) is equivalent to

(Uj+1, w) +
∫ tj+1

tj

〈AUj+1 + πNB(Uj, Uj+1), w〉ds = (Uj, w) +
∫ tj+1

tj

〈w, πNG(Uj)dW(s)〉(50)

for any j ∈ {1, . . . , M} and w ∈ V. Integrating (1) and subtracting the resulting equation and the

identity (50) term by term yield

(ej+1 − ej, w) +
∫ tj+1

tj

〈Aej+1 + A(u(s)− u(tj+1)) + B(u(s), u(s))− πNB(Uj, Uj+1), w〉ds

=
∫ tj+1

tj

〈w, [G(u(s))− πNG(Uj)]dW(s)〉.

(51)

Observe that if v ∈ D(A
1
2+α) with α > β, then A2βv ∈ D(A

1
2+α−β) ⊂ D(A

1
2−α), Av ∈ D(Aα− 1

2 ) and

the duality product 〈Av, A2βv〉 is meaningful. Thus, we are permitted to take w = 2A2βej+1 in (51)

and derive that

‖ej+1‖2
β − ‖ej‖2

β + ‖ej+1 − ej‖2
β + 2k‖ej+1‖2

1
2+β

− 2
∫ tj+1

tj

‖A
1
2+β(u(s)− u(tj+1))‖ 1

2+β‖ej+1‖ 1
2+βds

≤ 2
∫ tj+1

tj

∣

∣

∣(Aβ− 1
2 [B(u(s), u(s))− πNB(Uj, Uj+1)], A

1
2+βej+1)

∣

∣

∣ ds

+2
∫ tj+1

tj

〈A2βej+1, [G(u(s))− πNG(Uj)]dW(s)〉,

where we have used the identity (v − x, 2A2βv) = ‖v‖2
β − ‖x‖2

β + ‖v − x‖2
β. Now, by using the

identity v = (πN + [I − πN])v, the fact that

B(u(s), u(s))− πNB(Uj, Uj+1) =B(u(s), u(s))− πNB(u(tj), u(tj+1))

+ πNB(u(tj), u(tj+1))− B(Uj, Uj+1),

the Cauchy-Schwarz inequality, the Cauchy inequality ab ≤ a2

4 + b2, a, b > 0 and Assumption (B1)

we obtain

‖ej+1‖2
β − ‖ej‖2

β + ‖ej+1 − ej‖2
β + k‖ej+1‖2

1
2+β

≤ 2Lj + 16C2
0

5

∑
i=1

Nj,i + 2Wj,(52)

where for each j ∈ {0, . . . , M − 1} the symbols Lj, Nj,i, i = 1, . . . , 5, and Wj are defined by

Lj :=
∫ tj+1

tj

‖u(s)− u(tj+1)‖
2
1
2+β

ds,

Nj,1 :=
∫ tj+1

tj

‖u(s)− u(tj+1)‖
2
β(‖Uj‖2

β + ‖u(s)‖2
β)ds,

Nj,2 :=
∫ tj+1

tj

‖ej+1‖2
β(‖Uj+1‖2

β + ‖u(s)‖2
β)ds,

Nj,3 :=
∫ tj+1

tj

‖u(s)− u(tj)‖
2
β(|U

j+1|2 + |u(s)|2)ds,

Nj,4 :=
∫ tj+1

tj

‖ej‖2
β(|U

j+1|2 + |u(s)|2)ds,

Nj,5 :=
∫ tj+1

tj

‖(I − πN)B(u(s), u(s))‖2
β− 1

2
ds,

Wj :=
∫ tj+1

tj

〈A2βej+1, [G(u(s))− πNG(Uj)]dW(s)〉.
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Let m ∈ [1, M] an arbitrary integer. Summing (52) from j = 0 to m − 1 , multiplying by 1Ωk
, taking

the mathematical expectation, and finally taking the maximum over m ∈ [1, M] imply

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+ k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤ E‖e0‖2
β + 16C2

0

M−1

∑
j=0

5

∑
i=1

E
[

1Ωk
Nj,i

]

+ 2
M−1

∑
j=0

E
[

1Ωk
Lj

]

+ 2 max
1≤m≤M

m−1

∑
j=0

E
[

1Ωk
Wj

]

.

Invoking the two items of Lemma 4.1 and the fact that ‖u(s)‖2
β + max0≤j≤M ‖Uj‖2

β ≤ f (k) on the set

Ωk we infer that

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+ k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤ E‖e0‖2
β + 16C2

0k f (k)
M−1

∑
j=0

E

(

1Ωk
[‖ej+1‖2

β + ‖ej‖2
β]
)

+ 2C8 f (k)Mk[Ψ(k) + k1+ 1
2−β]

+64C2
0C8[ f (k)]

2 Mk[Ψ(k) + k] + 16C2
0

M−1

∑
j=0

Nj,5 + 2 max
1≤m≤M

m−1

∑
j=0

E
[

1Ωk
Wj

]

,

(53)

where ψ(k) := k2−2β + k2( 1
4−β). Now, thanks to Assumption (B1)′ we have

1Ωk

∫ tj+1

tj

‖(I − πN)B(u(s), u(s))‖2
β− 1

2
ds = 1Ωk

∫ tj+1

tj

∞

∑
n=N+1

λ
2β−1
n |Bn(u(s), u(s))|2ds

≤ λ
2β−1
N

∫ tj+1

tj

1Ωk

∞

∑
n=0

|Bn(u(s), u(s))|2ds

≤ λ
2β−1
N

∫ tj+1

tj

1Ωk
|B(u(s), u(s))|2ds

≤ Cλ
2β−1
N k sup

s∈[0,T]

‖u(s)‖4
1
4
.

Hence, owing to (15) we find a constant C > 0 such that

E1Ωk

∫ tj+1

tj

‖(I − πN)B(u(s), u(s))‖2
β− 1

2
ds ≤ Cλ

2β−1
N k.

Notice also that

M−1

∑
j=0

‖ej+1‖2
β(‖Uj+1‖2

β + ‖u(s)‖2
β)

=
M−1

∑
j=0

‖Uj+1 − Uj + Uj − u(tj) + u(tj)− u(tj+1)‖
2
β(‖Uj+1‖2

β + ‖u(s)‖2
β)

≤ 3
M−1

∑
j=0

(

‖Uj+1 − Uj‖2
β + ‖ej‖2

β + ‖u(tj)− u(tj+1)‖
2
β

)

( max
0≤j≤M

‖Uj+1‖2
β + ‖u(s)‖2

β).

Therefore,

E

(

1Ωk

M−1

∑
j=0

‖ej+1‖2
β(‖Uj+1‖2

β + ‖u(s)‖2
β)

)

− C f (k)E
M−1

∑
m=0

‖ej‖2
β + f (k)C7[ψ(k) + k]

≤ C



E

(

M−1

∑
j=0

‖Uj+1 − Uj‖2
β

)2




1
2 (

E max
0≤j≤M

‖Uj‖4
β + E sup

s∈[0,T]

‖u(s)‖4
β

) 1
2

.
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As long as the initial data is concerned, we have

E‖e0‖2
β = ‖[πN + (I − πN)]u0 − πNu0‖

2
β(54)

≤
∞

∑
n=N+1

λ
2(β− 1

4 )
n λ

1
2
N |u0,n|

2(55)

≤ λ
2(β− 1

4 )
N ‖u0‖

2.(56)

From all the above observations, (53), Assumption (B1)′, (26)-(28) and (30) we infer that there exists

a constant C9 > 0 such that

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+ k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤ C9 f (k)[Ψ(k) + k1+ 1
2−β] + C9 f (k)[Ψ(k) + k] + C9

(

λ
2β−1
N + λ2(β− 1

4 )
)

+ 2 max
1≤m≤M

m−1

∑
j=0

E
[

1Ωk
Wj

]

+C9k f (k)
M−1

∑
m=0

max
1≤j≤m

E

[

1Ωk
‖ej‖β

]

+ 16C2
0k f (k) max

1≤m≤M
E

[

1Ωk
‖em‖2

β

]

.

(57)

Now we deal with the term containing Wj. After subtracting from Wj the martingale M0 with

mean zero defined by

M0 =
∫ tj+1

tj

〈Aβej+1, Aβ[G(u(s))− πNG(Uj)]dW(s)〉,

then taking the mathematical expectation, using the Young inequality and the Itô isometry give

E1Ωk
Wj ≤ CE1Ωk

∥

∥

∥

∥

∫ tj+1

tj

[G(u(s))− πNG(Uj)]dW(s)

∥

∥

∥

∥

2

β

+
1

4
E1Ωk

‖ej+1 − ej‖2
β

≤ C
∫ tj+1

tj

E1Ωk
‖G(u(s))− πNG(Uj)‖2

L(H,Vβ)
ds +

1

4
E1Ωk

‖ej+1 − ej‖2
β

≤
3

∑
i=1

E[1Ωk
Wj,i] +

1

4
E1Ωk

‖ej+1 − ej‖2
β,

where the first two symbols Wj,i, i ∈ {1, 2} satisfy the following equalities and inequalities

E[1Ωk
Wj,1] = C

∫ tj+1

tj

E1Ωk
‖πNG(u(s))− πNG(u(tj))‖

2
L(H,Vβ)

ds

≤ CC2
3

∫ tj+1

tj

E‖u(s)− u(tj)‖
2
βds

≤ CC2
3C2

7k[k2−2β + k2( 1
4−β) + k];

E[1Ωk
Wj,2] = C

∫ tj+1

tj

E1Ωk
‖πN G(u(tj))− πNG(U j)‖2

L(H,Vβ)
ds

≤ CC2
3kE1Ωk

‖ej‖2
β,

where Lemma 4.1 was used to get the last line.
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The third term Wj,3 satisfies

E[1Ωk
Wj,3] =

∫ tj+1

tj

E

(

1Ωk
‖(I − πN)G(u(s))‖2

L(H,Vβ)

)

ds

=
∫ tj+1

tj

E

(

1Ωk

∞

∑
n=N+1

λ
2(β− 1

4 )
n λ

1
2
n sup

h∈H,‖h‖H≤1

|Gn(u(s))h|
2

)

ds

≤λ
2(β− 1

4 )
N

∫ tj+1

tj

E

(

1Ωk

∞

∑
n=1

λ
1
2
n sup

h∈H,‖h‖H≤1

|Gn(u(s))h|
2

)

ds

≤λ
2(β− 1

4 )
N kE

(

1Ωk
sup

s∈[0,T]

‖G(u(s))‖2
L(H,V 1

4
)

)

.

Now, using Assumption (G) and the estimate (15) we infer that

E[1Ωk
Wj,3] ≤ CC2

3λ
2(β− 1

4 )
N k,

for any j ∈ [0, M]. Thus, summing up we have obtained that

2 max
1≤m≤M

m−1

∑
j=0

E
[

1Ωk
Wj

]

≤ CC2
3C2

7T[ψ(k) + k] + CC2
3Tλ

2(β− 1
4 )

N

+CC2
3k

M−1

∑
m=0

max
1≤j≤m

E[1Ωk
‖ej‖2

β] +
1

2

M−1

∑
m=0

E

(

1Ωk
‖em+1 − em‖2

β

)

.

By plugging this last estimate into (53), we find a constant C10 > 0 such that

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+ 2k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤ C10 f (k)[Ψ(k) + k + k1+ 1
2−β] + C10 f (k)[Ψ(k) + k] + C10λ

2β−1
N + C10λ

2(β− 1
4 )

N

+C10k[ f (k) + 1]
M−1

∑
m=0

max
1≤j≤m

E

[

1Ωk
‖ej‖β

]

.

Now, an application of the discrete Gronwall lemma yields

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+ 2k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤

(

C10 f (k)[Ψ(k) + k + k1+ 1
2−β] + C10 f (k)[Ψ(k) + k] + C10λ

2β−1
N + C10λ

2(β− 1
4 )

N

)

eC10T[ f (k)+1].

Since

min{k2−2β, k1+ 1
2−β, k2( 1

4−β), k} = k2( 1
4−β) and min{λ

2(β− 1
4 )

N , λ
2β−1
N } = λ

2(β− 1
4 )

N ,

for any β ∈ [0, 1
4 ), and kε f (k) = kε log k−ε ≤ 1

2 , then for any k > 0 and ε ∈
(

0, 2( 1
4 − β)

)

, we derive

that there exists a constant C > 0 such that

max
1≤m≤M

E

[

1Ωk
‖em‖2

β

]

+
M−1

∑
j=0

E

[

1Ωk
‖ej+1 − ej‖2

β

]

+2k
M

∑
j=1

E

[

1Ωk
‖ej‖2

1
2+β

]

≤ Ck−2ε[k2( 1
4−β) + λ

−2( 1
4−β)

N ].

(58)

This estimate completes the proof of the Theorem 2.8. �

5. MOTIVATING EXAMPLES

In this section we give two examples of evolution equations to which we can apply our abstract

result.
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5.1. Stochastic GOY and Sabra shell models. The first examples we can take is the GOY and Sabra

shell models. To describe this model let us denote by C the field of complex numbers, CN the set of

all C-valued sequences, and we set

H =

{

u = (un)n∈N ⊂ C;
∞

∑
n=1

|un|
2
< ∞

}

.

Let k0 be a positive number and λn = k02n be a sequence of positive numbers. The space H is a

separable Hilbert space when endowed with the scalar product defined by

〈u, v〉 =
∞

∑
k=1

ukv̄k, for u, v ∈ H,

where z̄ denotes the conjugate of any complex number z.

We define a linear map A with domain

D(A) = {u ∈ H;
∞

∑
n=1

λ4
n|un|

2
< ∞},

by setting

Au = (λ2
nun)n∈N, for u ∈ D(A).

It is not hard to check that A is a self-adjoint and strictly positive operator. Moreover, the embedding

D(Aα) ⊂ D(Aα+ε) is compact for any α ∈ R and ε > 0. Thanks to this observation we can and will

assume that there exists an orthonormal basis {ψn; n ∈ N} of H such that

Aψn = λnψn.

We can characterize the spaces D(Aα), α ∈ R as follow

D(Aα) = {u = (un)n∈N ⊂ C;
∞

∑
n=1

λ4α
n |un|

2
< ∞}.

For any α ∈ R the space Vα = D(Aα) is a separable Hilbert space when equipped with the scalar

product

(59) ((u, v))α =
∞

∑
k=1

λ4α
k ukv̄k, for u, v ∈ Vα.

The norm associated to this scalar product will be denoted by ‖u‖α, u ∈ Vα. In what follows we set

V = D(A
1
2 ).

Now, let α0 >
1
2 and {wj; j ∈ N} be a sequence of mutually independent and identically dis-

tributed standard Brownian motions on filtered complete probability space U = (Ω,F, F, P) satisfy-

ing the usual condition. We set

W(t) =
∞

∑
n=0

λ−α0
n wn(t)ψn.

The process W defines a H-valued process with covariance A−2α0 which is of trace class. We also

consider a Lipschitz map g : [0, ∞) → R such that |g(0)| < ∞. We define a map G : H → L(H, V 1
4
)

defined by

G(u)h = g(‖u‖0)h, for any u ∈ H, h ∈ H.

This map satisfies Assumption (G).

With the above notation, the stochastic evolution equation describing our randomly perturbed

GOY and Sabra shell models is given by

(60)

{

du = [Au + B(u, u)]dt + G(u)dW,

u(0) = u0,
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where B(· , ·) is a bilinear map defined on V × V taking values in the dual space V∗. More precisely,

we assume that the nonlinear term

B : C
N × C

N → C
N,

(u, v) 7→ B(u, v) = (b1(u, v), . . . , bn(u, v), . . . )

for the GOY shell model (see [30]) is defined by

bn(u, v) := (B(u, v))n

:= iλn

(

1

4
vn−1un+1 −

1

2
(un+1vn+2 + vn+1un+2) +

1

8
un−1vn−2

)

,

and for the Sabra shell model, it is defined by

bn(u, v) := (B(u, v))n :=
i

3
λn+1 [vn+1un+2 + 2un+1vn+2]

+
i

3
λn [un−1vn+1 − vn−1un+1]

+
i

3
λn−1 [2un−1vn−2 + un−2vn−1] ,

for any u = (u1, . . . , un, . . . ) ∈ CN and v = (v1, . . . , vn, . . .) ∈ CN.

Lemma 5.1. (a) For any non-negative numbers α and β such that α + β ∈ (0, 1
2 ], there exists a constant

c0 > 0 such that

(61) ‖B(u, v)‖−α ≤ c0







‖u‖ 1
2−(α+β)‖v‖β for any u ∈ V 1

2−(α+β), v ∈ Vβ

‖u‖β‖v‖ 1
2−(α+β) for any v ∈ V 1

2−(α+β), u ∈ Vβ.

(b) For any u ∈ H, v ∈ V

(62) 〈B(u, v), v〉 = 0.

Proof. The item (b) was proved in [19, Proposition 1], thus we omit its proof.

Item (a) can be viewed as a generalization of [19, Proposition 1]. We will just prove the latter item

for the Sabra shell model since the proofs for the two models are very similar. Let u ∈ V 1
2−(α+β),

v ∈ Vβ, and w ∈ Vα such that ‖w‖α ≤ 1. We have

|〈B(u, v), w〉| =|
∞

∑
n=1

bn(u, v)w̄n| ≤
∞

∑
n=1

|bn(u, v)||wn|

≤
1

3

∞

∑
n=1

λn+1 (|un+1| · |vn+2|+ |un+2| · |vn+1|) |wn|

+
1

3

∞

∑
n=1

λn (|un−1| · |vn+1|+ |un+1| · |vn−1|) |wn|

+
1

3

∞

∑
n=1

λn−1 (|un−1| · |vn−2|+ |un−2| · |vn−1|) |wn|

≤I1 + I2 + I3.

For the term I1 we have

I1 ≤
1

3

∞

∑
n=1

λn+1|un+1| · |vn+2||wn|+
1

3

∞

∑
n=1

λn+1|un+2| · |vn+1||wn|

≤I1,1 + I1,2.
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We will treat the term I1,1. By Hölder’s inequality we have

I1,1 ≤
1

3

∞

∑
n=1

k02λ1−2α|un+1| · |vn+2|λ
2α
n |wn|

≤
2

3
k0

(

∞

∑
n=1

k02λ
2−4(α+β)
n |un+1|

2λ
4β
n |vn+2|

2

) 1
2
(

∞

∑
n=1

λ4α
n |wn|

2

) 1
2

.

Since ‖w‖α ≤ 1 and λn+p = k
p
02pλn we can find a constant C > 0 depending only on α, β and k0 such

that

I1,1 ≤ C

(

max
k∈N

λ
2−4(α+β)
n+1 |un+1|

2

) 1
2

(

∞

∑
n=1

λ
4β
n+2|vn|

2

) 1
2

≤ C





1
2

∑
n=1

λ
4[ 1

2−(α+β)]
n+1 |un+1|

2





1
2 (

∞

∑
n=1

λ
4β
n+2|vn|

2

) 1
2

,

from which we easily derive that

I1,1 ≤ C‖u‖ 1
2−(α+β)‖v‖β.

One can use an analogous argument to show that

I1,2 ≤ C‖u‖ 1
2−(α+β)‖v‖β.

Hence,

I1 ≤ C‖u‖ 1
2−(α+β)‖v‖β.

Using a similar argument we can also prove that for any non-negative numbers α and β satisfying

α + β ∈ (0, 1
2 ] there exists a constant C > 0 such that

I2 + I3 ≤ C‖u‖ 1
2−(α+β)‖v‖β,

for any u ∈ V 1
2−(α+β) and v ∈ Vβ. Therefore, for any non-negative numbers α and β satisfying

α + β ∈ (0, 1
2 ] we can find a constant C > 0 such that

‖B(u, v)‖−α ≤ C‖u‖ 1
2−(α+β)‖v‖β,

for any u ∈ V 1
2−(α+β) and v ∈ Vβ. Interchanging the role of u and v we obtain that for any two

numbers α and β as above there exists a positive constant C such that

‖B(u, v)‖−α ≤ C‖v‖ 1
2−(α+β)‖u‖β,

for any v ∈ V 1
2−(α+β) and u ∈ Vβ. Thus, we have just completed the proof of the lemma for the

Sabra shell model. As we mentioned earlier, the case of the GOY model can be dealt with a similar

argument. �

For more mathematical results related to shell models we refer to [3], [6], [7], and references therein.

5.2. Stochastic nonlinear heat equation. Let O be a bounded domain of Rd, d = 1, 2. We assume

that its boundary ∂O is of class C∞. Throughout this section we will denote by Hθ(O), θ ∈ R, the

(fractional) Sobolev spaces as defined in [43] and H1
0(O) be the space of functions u ∈ H1 such that

u|O = 0. In particular, we set H = L2(O) and we denote its scalar product by (·, ·).

We define a continuous bilinear map a : H1
0(O)× H1

0(O) → R by setting

a(u, v) = (∇u,∇v),

for any u, v ∈ H1
0(O). Thanks to the Riesz representation there exists a densely linear map A with

domain D(A) ⊂ H such that

〈Av, u〉 = a(v, u),

for any u, v ∈ H1
0(O). It is well known that A is a self-adjoint and definite positive and its eigenfunc-

tions {ψn; n ∈ N} ⊂ C∞(O) form an orthonormal basis of H. The family of eigenvalues associated to
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{ψn; n ∈ N} is denoted by {λn; n ∈ N}. Observe that the asymptotic behaviour of the eigenvalues

is given by λn ∼ λ1n
2
d . For any α ∈ R we set Vα = D(Aα), in particular we put V := D(A

1
2 ). We

always understand that the norm in Vα is denoted by ‖·‖0.

Now, let α0 >
d+1

4 and {wj; j ∈ N} be a sequence of mutually independent and identically

distributed standard Brownian motions on filtered complete probability space U = (Ω,F, F, P) sat-

isfying the usual condition. We set

W(t) =
∞

∑
n=0

λ−α0
n wn(t)ψn.

The process W defines a H-valued with covariance A−2α0 which is of trace class. We also consider a

Lipschitz map g : [0, ∞) → R such that |g(0)| < ∞. We define a map G : H → L(H, V 1
4
) defined by

G(u)h = g(‖u‖0)h, for any u ∈ H, h ∈ H.

This map satisfies Assumption (G).

The second example we can treat is the stochastic nonlinear heat equation

du − [∆u − |u|u]dt = g(‖u‖0)dW,(63a)

u = 0 on ∂O,(63b)

u(0, x) = u0 x ∈ O.(63c)

This stochastic system can be rewritten as an abstract stochastic evolution equation

du + [Au + B(u, u)]dt = G(u)dW, u(0) = u0 ∈ H,

where A and G are defined as above and the D(A− 1
2 )-valued nonlinear map B is defined on H ×

D(A
1
2 ) or D(A

1
2 )× H by setting

B(u, v) = |u|v,

for any (u, v) ∈ H × D(A
1
2 ) or (u, v)D(A

1
2 )× H. It is clear that

〈Av + B(u, v), v〉 ≥ ‖v‖2
1
2
,(64)

for any u, v ∈ V. Here we should note that thanks to the solution of Kato’s square root problem in [2,

Theorem 1], see also [34, Section 7], we have ‖u‖ 1
2
≃ |∇u| for any u ∈ H1

0(O), i.e, V = H1
0(O).

Now we claim that for any numbers α ∈ [0, 1
2) and β ∈ (0, 1

2 ) such that α + β ∈ (0, 1
2), there exists

a constant c0 > 0 such that

(65) ‖B(u, v)‖−α ≤ c0







‖u‖ 1
2−(α+β)‖v‖β for any u ∈ V 1

2−(α+β), v ∈ Vβ

‖u‖β‖v‖ 1
2−(α+β) for any v ∈ V 1

2−(α+β), u ∈ Vβ,

and

(66) ‖B(u, v)‖− 1
2
≤ c0‖u‖ 1

4
‖v‖ 1

4
for any v ∈ V 1

4
, u ∈ V 1

4
.

To prove these inequalities, let β > 0 such that α + β <
1
2 . Since

(

1

2
− α

)

+

(

1

2
− 1 + 2(α + β)

)

+

(

1

2
− β

)

= 1,

we have

(67) |〈|u|v, w〉| ≤ C0‖u‖Lr‖v‖Ls‖w‖Lq ,

where the constants q, r, s are defined through

1

q
=

1

2
− α,

1

s
= α + β,

1

r
=

1

2
− β.

Recall that Vα ⊂ H2α ⊂ Lq with 1
q = 1

2 − α if α ∈ (0, 1
2) and q ∈ [2, ∞) arbitrary if α = 1

2 . Then,

we derive from (67) that the second inequality in (65) holds. By interchanging the role of r and s we
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derive that the first inequality in (65) also holds. One can establish (66) with the same argument. The

estimates (65) and (66) easily imply (3) and (7).

Now we need to check that B(·, ·) satisfies (4). For this purpose we observe that there exists a

constant C > 0 such that

|B(u, v)| ≤ C‖u‖0‖v‖L∞ ,

which with the continuous embedding V 1
2+ε ⊂ L∞ for any ε > 0 implies (4).
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