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Abstract
This paper provides a general characterization of subgame-perfect equilibria for strategic timing

problems, where two firms have the (real) option to make an irreversible investment. Profit streams are
uncertain and depend on the market structure. The analysis is based directly on the inherent economic
structure of the model. In particular, determining equilibria with preemptive investment is reduced to
solving a single class of constrained optimal stopping problems. Further tools are derived for analyzing
Markovian state-space models. Applications to typical models from the literature complete commonly
insufficient equilibrium arguments, show when uncertainty leads to qualitatively different behavior, and
establish additional equilibria that are Pareto improvements.
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1 Introduction
Preemption is a well-known phenomenon in the context of irreversible investment. In their seminal paper,
Fudenberg and Tirole (1985) argue that the commitment power of irreversibility and subgame-perfectness
together imply that the first firm that adopts a new technology in some industry can deter other firms
from adopting soon; the second adopter’s benefits will be reduced by competition and thus not worth
the immediate adoption cost. In consequence, the firms try to preempt each other in order to win the
(temporary) monopoly profit.1

Such preemption is of particular interest when it counteracts an incentive to wait. In the deterministic
model of Fudenberg and Tirole (1985), the cost of adoption is decreasing in time. Alternatively, if uncertainty
is considered, then preemption eliminates the (real) option value of waiting for sufficiently good states. A
sizable literature thus argues for the drastic impact of competition on the valuation of real options, typically
using ideas from Fudenberg and Tirole (1985) and applying them to certain (value) functions of a stochastic
state instead of time.2

Several issues result from exploiting such analogies. First, additional arguments are needed for, e.g., the
optimality of waiting when obvious monotonicities hold in the deterministic case. Second, observing similar
geometries of value functions for different familiar classes of dynamics brings up the question of common,
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times.
2See Azevedo and Paxson (2014) for an extensive survey or specifically the papers mentioned in the following.
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deeper economic principles. Third, because equilibrium behavior in many stochastic models as well as the
deterministic one can be described by thresholds for a state that drives profitability, it is also important to
elaborate on qualitative differences.

Figures 1 and 2 illustrate some important principles and limitations of analogies. Figure 1 shows the
values of the firms in Fudenberg and Tirole (1985), discounted to time t0 = 0, if the first adoption happens
at t ≥ 0. If a single firm is the first to adopt, its value is L(t) and that of the other firm F (t); the value
obtained from simultaneous adoption is M(t). The strategic structure is quite clear: Initially, it is optimal
to wait, to benefit from the increase in L if the opponent does not adopt and from F > L > M else; then,
there is a phase with first-mover advantage L > F that may induce preemption; eventually, all payoffs are
identical and decreasing, and adoption becomes dominant if is has not happened before.
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Figure 1: Value functions from the model of Fudenberg and Tirole (1985).3
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Figure 2: Value functions from a typical stochastic model and its deterministic limit.4

Similar local orders can be seen in Figure 2, showing current values as functions of a stochastic exogenous
state x for a typical Markovian model. With a stochastically evolving state, however, the dynamics of
expected discounted values cannot be read from the figure, and intertemporal comparisons require different
arguments. To hint at the role of discounting, the volatility is reduced to zero in the right panel, where
x grows deterministically over the shown range. Then the values implicitly become functions of time, and
discounting leads back to the left panel of Figure 1. F , e.g., which is convex in x, becomes concave in t and
eventually decreases.

In this paper, we formulate a strategic investment model based on revenue streams that keeps the
stochastic structure completely general and analyze it by intertemporal tradeoffs with immediate economic

3The model of Fudenberg and Tirole (1985) that underlies these value functions is presented in Section 4.1, fn. 19. For
completeness, the specification on the left is π0(0) = π0(1) = 0, π1(1) = 0.03, π1(2) = 0.012, r = 0.02, c(t) = e

−(r+a)t,
a = 0.08 and on the right the same, except π0(0) = 0.006, π1(1) = 0.022.

4The model underlying these value functions is the main model in Section 4.1. For completeness, the specification on the
left is D00 = D01 = 0, D10 = 2.5, D11 = I

1 = I
2 = 1, r = 0.1, µ = 0.08, σ = 0.2 and on the right the same, except σ = 0.
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meaning. Mainly comparing revenue streams and implied opportunity costs, the verification of subgame-
perfect equilibria with preemption is reduced to solving a single class of non-strategic optimal stopping
problems for one firm. Thereby, on the one hand, we provide a method to generalize findings from specific
models in the literature to large classes of underlying stochastic shocks, and, on the other hand, a unified
view that yields more detailed economic insights into equilibrium behavior; many economically quite diverse
models can be nested. Because mutual preemption destroys value, we furthermore establish some principles
for when it can be avoided, and we identify times when it is impossible to delay investment in equilibrium.

Alongside, important general questions for equilibria of real-option games are addressed, such as:

• At what times is there a first-mover advantage for both firms that they may fight for by trying to
preempt each other?

• When and how is the first investment affected by a threat of preemption?

• Will a firm ever want to invest when it has a second-mover advantage?

Answers to these questions will be found by studying suitable optimal stopping problems.
More specific characterizations can be obtained for Markovian state-space models. We develop tools

that would apply to many other models than those from the literature, but we use them for two typical
ones, those of Grenadier (1996) and Pawlina and Kort (2006). In fact, these and other papers neglect to
verify equilibria in parts of the state space that are relevant for their results, in particular the optimality
of waiting; see Section 4 for details. Our results ensure a complete coverage. We also address neglected
equilibrium behavior that actually distinguishes stochastic models qualitatively from deterministic ones by
a particular risk that uncertainty can induce. We finally identify further equilibria for each model that may
be Pareto improvements and thus more plausible.

More generally, some models that can be nested here are those of Reinganum (1981) and Fudenberg and
Tirole (1985), which are deterministic; Mason and Weeds (2010), where revenue is linear in a geometric
Brownian motion; Pawlina and Kort (2006), adding asymmetry in investment costs; Boyarchenko and Lev-
endorskĭı (2014), a further extension to exponential Lévy processes; Weeds (2002), which includes Poisson
arrivals of R&D success but is formally equivalent to a symmetric setting with geometric Brownian motion
again, and similarly Grenadier (1996), including a construction delay.5

The paper is organized as follows. The general model is presented in Section 2. Section 3 characterizes
equilibria with and without preemption. The implications for typical state-space models are illustrated in
Section 4. Section 5 concludes. Some technical results are collected in Appendix A and proofs in Appendix
B. Appendix C elaborates on necessary conditions for equilibria, in particular on when investment cannot
be delayed any further.

2 The model
Consider two firms i ∈ {1, 2} that each can choose when to make one irreversible investment. For instance,
firm i may wish to enter some new market or to improve present operations by updating technology or
expanding production capacity. Each firm’s investment has a potential effect on both firms’ revenues.
Assume therefore that as long as no firm has invested, firm i’s per-period revenues are given by a process
(π0i
t ) that may depend on an exogenous state of the world. When firm i invests before its opponent, its

revenues switch to the process (πLit ), whereas when the opponent invests first, firm i’s revenues switch to the
process (πFit ). Once both firms have invested (possibly simultaneously), firm i’s revenues follow the process
(πBit ). In order to analyze opportunity costs of waiting by comparing revenue streams, the revenues πLi· and
πBi· applying after firm i’s investment are understood net of any capitalized investment cost.6 All revenues
are given in time t = 0 units.

5Thijssen et al. (2012) have a similar structure of the state space inspired by Fudenberg and Tirole (1985), but by direct
assumptions on value functions and not from modeling revenue streams.

6Any discounted investment cost that is strictly decreasing in time, like c(t) in Fudenberg and Tirole (1985), can be
capitalized by a change of variable, c(t) = e

−ry =
∫∞
y

e
−rz

r dz. If the discounted investment cost is stochastic and strictly
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Time is continuous, t ∈ R+, so only accrued revenues in intervals of time matter. Allowing for an
exogenous state of the world, assume the revenues thus to be product-measurable w.r.t. a given probability
space (Ω,F , P ) and time. Assume them in fact to be P ⊗ dt-integrable, i.e., E[

∫∞
0 |π

0i
t | dt] < ∞ etc., to

ensure finite expectations throughout. Correspondingly, any (in-)equalities between revenue processes are
understood to hold P ⊗ dt-a.e. and those between random variables P -a.s.

There is dynamic information about the state of the world, modeled by a filtration (Ft) satisfying the
usual conditions of right-continuity and completeness. Assume that the revenues (potentially) accrued up
to any time t ∈ R+ are Ft-measurable, i.e., the processes (

∫ t
0 π

0i
s ds) etc. are adapted to (Ft).

7

As a final economic assumption, the following orders are imposed. First, a single firm’s investment
cannot enhance the revenue of the opponent, i.e., for both i = 1, 2, πLi· ≥ πBi· (e.g., as the first investor
loses a monopoly premium when the laggard invests) and π0i

· ≥ πFi· (e.g., as the first investor steals some
business from the laggard). The special case π0i

· = πFi· is typical for market entry models and has additional
implications that will be pointed out. Second, firm 2 has a disadvantage in the sense of smaller investment
gains relative to being laggard, formally πB2

· − πF2
· ≤ πB1

· − πF1
· and πL2

· − πF2
· ≤ πL1

· − πF1
· . This

disadvantage arises, e.g., from a higher capitalized investment cost. Given the first part of the disadvantage,
that firm 2’s investment gain as laggard is at most that of firm 1, the second part also obtains if πL2

· − π
B2
· ,

firm 2’s potential revenue loss as first investor due to the laggard’s investment, is not greater than firm 1’s,
πL1
· − π

B1
· .

The firms’ payoffs are expected revenues. Therefore, the investment timing decisions are strategic if
some firm’s investment indeed affects the other’s revenue, i.e., if {πLi· > πBi· } or {π

0i
· > πFi· } have positive

measure for some i ∈ {1, 2}. We will formulate the problem as a dynamic game in continuous time.

2.1 The investment timing game
It is well known that continuous time games do not admit extensive forms based on histories of actions –
“invest” and “wait” in our case – unless reactions are restricted (see Simon and Stinchcombe, 1989, or
Alós-Ferrer and Ritzberger, 2008). A typical approach for analyzing timing games dynamically is thus that
players first make plans when to perform their single move that are conditional on no-one moving before
(cf. Fudenberg and Tirole, 1985, who call them “simple strategies”, or Laraki et al., 2005). From these
plans, only the time of the first move and the identity of the first movers are determined – by examining
whose planned time is minimal. The actual move times of any remaining players are then determined via
conditional continuation problems. To rule out non-credible threats, the game is reconsidered whenever a
move could potentially occur, under the hypothesis that no move has happened, yet, and plans for different
starting times are required to be consistent.

In this spirit, we use the following framework for stochastic models developed in Riedel and Steg (2017),
based on Fudenberg and Tirole’s (1985) approach.8 The central concept for dealing with uncertainty is
a stopping time with respect to the filtration (Ft), i.e., a random variable τ : Ω → [0,∞] := R+ ∪ {∞}
satisfying {τ ≤ t} ∈ Ft for all t ∈ R+. Let T denote the set of all stopping times. They are plans that
depend on the dynamic exogenous information (e.g., on perceived demand) by requiring the information at
any time t to reveal if the planned time τ has been reached or not. To determine behavior also off path,
each stopping time is furthermore nominated as the start of a subgame with the connotation that no-one has
moved, yet;9 in this second role, they are commonly denoted by ϑ. A feasible plan for the subgame starting
at some ϑ ∈ T is then another τ ∈ T satisfying τ ≥ ϑ. A complete strategy (for determining the first move)
is then a family of plans (τϑ;ϑ ∈ T ) satisfying τϑ ≥ ϑ and time-consistency, meaning that planned move

decreasing in expectation (a strict supermartingale), then one can use the monotone part of its Doob-Meyer decomposition in
place of c(t).

7This property holds, e.g., if the processes (π0i
t ) etc. are progressively measurable, i.e., if the restricted mappings π0i

· : Ω×
[0, T ]→ R etc. are FT ⊗ B([0, T ])-measurable for all T ∈ R+.

8A different approach inspired by Fudenberg and Tirole’s is formulated in Thijssen et al. (2012) and adopted by Boyarchenko
and Levendorskĭı (2014). Their strategies are unconditional on other players’ moves, but profiles must be jointly consistent.

9In contrast to discrete time, it is not enough to consider deterministic times t ∈ R+ and their information sets Ft (like in
a tree); see Riedel and Steg (2017).
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times are not changed before they are reached, i.e., for all ϑ, ϑ′ ∈ T one has

ϑ ≤ ϑ′ (a.s.) ⇒ τϑ ≤ τϑ
′

(a.s.), with equality on {τϑ ≥ ϑ′}. (2.1)

2.2 Continuation problems at first investment
Having defined plans that will determine the first move (resp. investment), we next stipulate continuation
payoffs for every possible outcome, i.e., state-dependent time and identity of the chosen firm(s). To specify
optimal conditional reactions, suppose that the opponent of firm i is the first to invest at arbitrary τ ∈ T
(e.g., due to a pair of initial plans where firm i’s is not minimal). Given that the opponent has invested,
firm i is now free to invest at any stopping time τ ′ ≥ τ , aiming to attain the conditional follower payoff

F i(τ) :=
∫ τ

0
π0i
s ds+ ess sup

τ
′≥τ

E

[∫ τ
′

τ

πFis ds+
∫ ∞
τ
′
πBis ds

∣∣∣∣Fτ

]
.10 (2.2)

The problem in (2.2) is equivalent to that for the reward process (
∫ t
τ
(πFis − π

Bi
s ) ds), which has an optimal

stopping time due to continuity and integrability. We can even devise optimal τ∗, τ
∗ ∈ T such that any

optimal τ ′ satisfies τ ≤ τ∗ ≤ τ ′ ≤ τ∗.11 Therefore, requiring optimal stopping times to be minimal
(maximal), resp. earliest (latest), uniquely defines a follower reaction attaining F i(τ). We fix the latest for
technical convenience (see Remark 2.1) and denote it by τ iF (τ) ∈ T . This choice is of course innocuous if
τ∗ = τ∗, like for all applications mentioned in the Introduction and similar models based on diffusions.

Now suppose on the contrary that firm i is the first to invest at τ ∈ T . Then the other firm j ∈ {1, 2}\{i}
is assumed to follow suit at τ jF (τ), in order to attain F j(τ), which yields firm i the conditional leader payoff

Li(τ) :=
∫ τ

0
π0i
s ds+ E

[∫ τ
j
F (τ)

τ

πLis ds+
∫ ∞
τ
j
F (τ)

πBis ds

∣∣∣∣Fτ

]
. (2.3)

Finally, if the firms invest simultaneously at τ ∈ T , as their plans coincide, then firm i’s conditional payoff
is

M i(τ) :=
∫ τ

0
π0i
s ds+ E

[∫ ∞
τ

πBis ds

∣∣∣∣Fτ

]
≤ min

{
F i(τ), Li(τ)

}
. (2.4)

The inequality holds because τ ′ = τ is feasible for any follower and πLi· ≥ πBi· . In particular, if no firm
invests in finite time, then firm i obtains

M i(∞) =
∫ ∞

0
π0i
s ds = F i(∞) = Li(∞).

Remark 2.1. Before using the continuation payoffs at arbitrary times for mapping initial plans to expected
payoffs, note the following regularity properties. Instead of families like (F i(τ); τ ∈ T ), it is much more
convenient to work with well-behaved, adapted processes (Lit), (F it ) and (M i

t ) for t ∈ [0,∞] that, if evaluated
at any stopping time τ ∈ T , yield the right-hand sides of (2.2), (2.3) and (2.4) and correspond to the
hypothesized follower behavior. In Lemma A.5 in Appendix A we establish such processes with right-
continuous paths (employing for (Lit) that every τ iF (τ) is the latest time attaining F i(τ)). The payoffs are
moreover sufficiently integrable to be bounded in expectation and such that pathwise limits at any stopping
time induce the corresponding limit in expectation.

10A random variable is measurable w.r.t. Fτ := {A ∈ F | ∀t ∈ R+ : A ∩ {τ ≤ t} ∈ Ft} if its value is known whenever τ
has occurred. The value of a stochastic process at τ ∈ T is an Fτ -measurable random variable if the process is progressively
measurable (cf. fn. 7), which holds for (

∫ t
0 π

0i
s ds) by adaptedness and path continuity.

11See, e.g., El Karoui (1981): If U = (Ut) denotes the Snell envelope of the reward process, i.e., the supermartingale

satisfying Uτ = ess sup
τ
′≥τ E[

∫ τ ′
0 (πFis − π

Bi
s ) ds |Fτ ] for every τ ∈ T , and U = M − A its Doob-Meyer decomposition

into martingale M = (Mt) and nondecreasing compensator A = (At), then τ∗ = inf{t ≥ τ |Ut =
∫ t

0 (πFis − π
Bi
s ) ds} and

τ
∗ = inf{t ≥ τ |At > Aτ}.
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2.3 Payoffs, randomization and equilibrium
In the subgame starting at ϑ ∈ T , if firms i, j ∈ {1, 2}, i 6= j, pick feasible plans τi, τj ≥ ϑ, then firm i’s
expected payoff will be

E
[
Liτi1{τi<τj} + F iτj1{τi>τj} +M i

τj
1{τi=τj}

∣∣∣Fϑ

]
. (2.5)

This space of payoffs is, however, too small to obtain equilibria when there are mutual preemption
incentives due to first-mover advantages Li· > F i· for both firms (like in Figures 1 and 2). We need to
allow for randomization and even some degree of coordination. We thus apply the extended mixed strategies
defined in Riedel and Steg (2017). However, the details are only provided in Appendix A for completeness,
in order to focus on standard optimal stopping problems here. Indeed, preemption continuation payoffs
are available from a general result in Riedel and Steg (2017), and in Proposition 2.3 we will show how to
assemble the corresponding continuation strategies with the solutions of our stopping problems, such that
the compound strategies remain equilibria when randomization is allowed throughout.

To wit, there are in principle two – linked – randomization tools in every subgame. First, for every
ϑ ∈ T , any firm i can specify a cumulative distribution function Gϑi (t) over time t ∈ [ϑ,∞] that may
react to the dynamic information (Ft).

12 These will here only take the degenerate form Gϑi (t) = 1{t≥τ} for
pure plans τ ∈ T .13 Second, partial coordination is facilitated by “atoms” αϑi (t) ∈ [0, 1] on every point in
continuous time t ∈ [ϑ,∞]. These are interpreted as probabilities of moving at each t if no-one has moved
before and, given enough regularity, allow the assignment of crucial limit outcomes from discrete time that
lack with standard distributions over continuous time, cf. Subsection 3.1.2.

Formally, an extended mixed strategy for a subgame, denoted by σϑi , thus consists of a pair of adapted
processes (Gϑi (t), αϑi (t)) satisfying regularity conditions given in Definition A.1. The set of all such strategies
is denoted by S ϑ. A strategy for the full game is then again a family σi = (σϑi ;ϑ ∈ T ) satisfying σϑi ∈ S ϑ

and time-consistency, meaning that the conditional probability of moving at any fixed time is not changed
before the latter is reached (Definition A.2). With only degenerate Gϑi , their time-consistency is (2.1) for the
corresponding pure plans; all processes αϑi must essentially be identical except for dropping the respective
past. The payoff of firm i from a pair of extended mixed strategies (σϑi , σ

ϑ
j ) in the subgame starting at

ϑ ∈ T is a linear extension of (2.5) (Definition A.3) and denoted by V ϑi (σϑi , σ
ϑ
j ); it equals (2.5) if σϑi , σ

ϑ
j

correspond to pure plans τi, τj ∈ T (with αϑi (t) = αϑj (t) = 0 for all t ∈ R+).

Definition 2.2 (Riedel and Steg, 2017, Definition 2.14). A subgame-perfect equilibrium is a profile (σ1, σ2) =
((σϑ1 , σ

ϑ
2 );ϑ ∈ T ) of time-consistent extended mixed strategies such that for all ϑ ∈ T , i, j ∈ {1, 2}, i 6= j,

and extended mixed strategies σϑa ∈ S ϑ it holds that

V ϑi (σϑi , σ
ϑ
j ) ≥ V ϑi (σϑa , σ

ϑ
j ),

i.e., such that each pair (σϑ1 , σ
ϑ
2 ) is an equilibrium in the subgame starting at ϑ ∈ T .

The following result allows us to employ continuation equilibrium payoffs at some ϑ′ ≥ ϑ that involve
extended mixed strategies, but to ignore randomization otherwise. In that context, it is for any τi, τj ∈ T

with values in [ϑ, ϑ′] understood that the pure plans τi, τj are carried out on {τi ∧ τj < ϑ′} and the
continuation strategies for ϑ′ on {τi = τj = ϑ′}. When treating all subgames this way, then time-consistency
must hold, but we will be given a single, aggregating process that specifies randomization for preemption.

Proposition 2.3.
12Touzi and Vieille (2002) show that such distribution functions are payoff-equivalent to randomizing over stopping times

before the start of the game.
13See Steg and Thijssen (2015) for an application where the players additionally randomize with a hazard rate when they

have second-mover advantages.
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(i) Suppose that ϑ, ϑ′ ∈ T , ϑ ≤ ϑ′, σϑ
′

= (σϑ
′

1 , σ
ϑ
′

2 ) ∈ S ϑ
′

×S ϑ
′

and τ1, τ2 ∈ T with τ1, τ2 ∈ [ϑ, ϑ′]. Let

V ϑi
(
τi, τj ;σ

ϑ
′)

:= E
[
1{τi∧τj<ϑ′}

(
Liτi1{τi<τj} + F iτj1{τi>τj} +M i

τj
1{τi=τj}

)
+1{τi=τj=ϑ′}V

ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)∣∣∣Fϑ

]
for any i, j ∈ {1, 2}, i 6= j.14 Then there is an extended mixed strategy σϑk ∈ S ϑ for each k = 1, 2
(given by Gϑk(t) = 1{τk<ϑ′}1{t≥τk} + 1{τk=ϑ′}G

ϑ
′

k (t) for every t ∈ R+ and αϑi = αϑ
′

i ), such that

time-consistency with σϑ
′

k holds and

V ϑi
(
σϑi , σ

ϑ
j

)
= V ϑi

(
τi, τj ;σ

ϑ
′)
. (2.6)

(ii) If σϑ
′

i in (i) is a best reply for firm i to σϑ
′

j at ϑ′ and if τi attains

ess sup
τ∈T ,τ∈[ϑ,ϑ′]

V ϑi
(
τ, τj ;σ

ϑ
′)
, (2.7)

then σϑi is a best reply for firm i to σϑj at ϑ.

(iii) Suppose (σϑk ;ϑ ∈ T ) is constructed as in (i) for k ∈ {1, 2}, where, for each ϑ, ϑ′ = τc(ϑ) ≥ ϑ from a
family of stopping times (τc(ϑ);ϑ ∈ T ) with associated στc(ϑ)

k ∈ S τc(ϑ), and τk = τϑk ∈ [ϑ, τc(ϑ)] for
stopping times (τϑk ;ϑ ∈ T ) satisfying time-consistency condition (2.1). Then (σϑk ;ϑ ∈ T ) is a time-
consistent extended mixed strategy if all στc(ϑ)

k are such that Gτc(ϑ)
k (t) = 1{t≥τc(ϑ)} and α

τc(ϑ)
k (t) =

1{t≥τc(ϑ)}α
o
k(t) for a fixed process αok satisfying αok(t) = 0 for all t ∈ [ϑ, τc(ϑ)) for any ϑ ∈ T .

If ϑ′ ≡ ∞, then V ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ) = M i
∞ and problem (2.7) simplifies to that of maximizing (2.5) over

τi ≥ ϑ, which means that equilibria in pure strategies persist if extended mixed strategies are admitted.
To verify time-consistency of randomization occurring (only) in the continuation equilibria, the process αok
aggregating them must not charge [ϑ, τc(ϑ)) in accordance with pure plans applying there.
Remark 2.4. The proof of Proposition 2.3 only assumes that the processes (Lit), (F it ) and (M i

t ) are, as ours,
measurable and satisfying the mild integrability condition “class (D)” that is standard for optimal stopping
and verified in Lemma A.5; cf. Remark 2.1.

3 Equilibrium characterization
The assumed orders between different revenues have important consequences for equilibria of the timing
game, independently of any more specific model for the uncertainty. This section illuminates the structure
of possible equilibria just by comparing revenue streams, to provide more detailed economic insights than
analyses based on reduced functional forms of payoffs for specific state-space models, and to provide complete
equilibrium verification arguments. We show that it suffices to solve a particular class of constrained optimal
stopping problems in order to construct subgame-perfect equilibria with preemption. As mutual preemption
may destroy option values unnecessarily, we also consider alternative equilibria that avoid preemption and
provide further arguments to simplify their verification. See also Appendix C, elaborating on when it is
indeed impossible to delay investment in any equilibrium.

3.1 Sufficient equilibrium conditions
In order to construct subgame-perfect equilibria, it is first determined when immediate investment is an
equilibrium, possibly due to a mutual preemption scheme.

14We deliberately abuse notation by reusing V ϑi (·) with different argument, intending to emphasize identity (2.6).
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3.1.1 Simultaneous investment

Immediate investment by both firms is an equilibrium at ϑ ∈ T if both follower options are worthless, i.e.,
if F iϑ = M i

ϑ for both i = 1, 2. First consider only pure plans, so that the payoffs are given by (2.5) with
τj = ϑ. If one firm i deviated to any plan τi > ϑ, it would become follower and actually invest at τ iF (ϑ),
which still attains F iϑ = M i

ϑ. In particular, if ϑ = τ iF (ϑ) for both i = 1, 2, then a unilateral deviation would
not even change the physical outcome and firm i’s payoff would stay F iϑ = M i

ϑ = Liϑ. Note, however, that
even in this case, when a follower would incur a loss by any hesitation, each firm i may only be willing to
invest proactively by the plan τi = ϑ because the other firm does so. If firm i’s investment was only triggered
by τ iF (τj) = τj < τi, then firm j might want to delay investment (cf. Appendix C).

With Proposition 2.3, simultaneous investment can also be sustained on the event {F 1
ϑ = M1

ϑ} ∩ {F
2
ϑ =

M2
ϑ} if its probability is not 1, and if extended mixed strategies appear elsewhere. For both purposes we

consider a continuation equilibrium at some ϑ′ ≥ ϑ, such that simultaneous investment occurs on {ϑ < ϑ′},
whereas the “continuation” equilibrium is carried out on {ϑ = ϑ′}.

Lemma 3.1. Suppose that ϑ, ϑ′ ∈ T , ϑ ≤ ϑ′, and that σϑ
′

= (σϑ
′

1 , σ
ϑ
′

2 ) are an equilibrium at ϑ′. If ϑ = ϑ′

off {F 1
ϑ = M1

ϑ}∩ {F
2
ϑ = M2

ϑ}, then the strategies from Proposition 2.3 for τ1 = τ2 = ϑ are an equilibrium at
ϑ. Firm i’s payoff at ϑ then is 1{ϑ<ϑ′}M

i
ϑ + 1{ϑ=ϑ′}V

ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ).

To see when simultaneous investment can be sustained, we can show that firm 1’s follower option is not
worth more than firm 2’s by πB2

· − π
F2
· ≤ π

B1
· − π

F1
· , so both are worthless if and only if τ ′ = ϑ attains F 2

ϑ .
Similarly, firm 1’s follower reaction time never exceeds firm 2’s.

Lemma 3.2. τ1
F (τ) ≤ τ2

F (τ) and F 1
τ −M

1
τ ≤ F

2
τ −M

2
τ for any τ ∈ T .

Lemma 3.2 results from the followers’ opportunity cost of waiting being given by πBi· − π
Fi
· , which for

firm 1 is not less than for firm 2. Thus, if firm 1 is follower, it cannot wait longer than firm 2 could. More
generally, firm 1 cannot gain more from waiting until any time than firm 2 could, so firm 1’s option value
F 1
τ −M

1
τ as follower is at most what firm 2’s would be.

3.1.2 Preemption

Critical phases of a timing game occur when both players have a first-mover advantage, i.e., in the set
P := {L1

· > F 1
· } ∩ {L

2
· > F 2

· } ⊆ Ω × R+. If any player plans to become leader in such a phase, then
a preemption scheme is triggered with both players trying to move before each other, to become leader.
Therefore, P is called preemption region.

Preemption incentives may cause equilibrium failure if only standard mixed strategies are considered.
Such problems arise when moving simultaneously is not an equilibrium, and if each player would prefer to
wait without preemptive pressure, like in Figure 1 (see Hendricks and Wilson, 1992). With an interval of
positive atoms αϑi (t), however, each firm i can build up a crucial “threat” to move very quickly if the other
firm hesitates for a positive amount of time, but controlling to some extent the risk of moving simultaneously
(resp. unconditionally) if the other uses such atoms, too. The outcomes are then reminiscent of discrete-time
limits, such that joint investment occurs only with some probability, whereas each firm also becomes leader
with some probability.

In the following equilibria established in Riedel and Steg (2017), both firms are in fact indifferent to
move or not. An exception occurs if one firm is indifferent to become leader or follower but the other not;
then the latter wins for sure. Let τP(ϑ) := inf{t ≥ ϑ |L1

t > F 1
t and L2

t > F 2
t } ∈ T denote the first hitting

time of P from any ϑ ∈ T ; so if we set ϑ′ = τP(ϑ), then it satisfies ϑ′ = τP(ϑ′).

Lemma 3.3.

(i) Whenever ϑ′ = τP(ϑ) for ϑ ∈ T , then there is (σϑ
′

1 , σ
ϑ
′

2 ) ∈ S ϑ
′

×S ϑ
′

forming an equilibrium at ϑ′,
such that firm i’s payoff is V ϑ

′

i (σϑ
′

i , σ
ϑ
′

j ) = F iϑ′1{Lj
ϑ
′>F

j

ϑ
′}

+Liϑ′1{Lj
ϑ
′=F

j

ϑ
′}

(for any i, j ∈ {1, 2}, i 6= j).
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(ii) The σϑ
′

k from (i) for k = 1, 2 are specifically such that Gϑ
′

k (t) = 1{t≥ϑ′} and α
ϑ
′

k (t) = 1{t≥ϑ′}α
o
k(t) for

αok = α
τP(ϑ0)
i with ϑ0 ≡ 0, which then also satisfies αok(t) = 0 for all t ∈ [ϑ, τP(ϑ)) for any ϑ ∈ T .

Lemma 3.3 follows directly from Proposition 3.1 in Riedel and Steg (2017), because their Assumption
2.1 is satisfied by our payoff processes (cf. Remark 2.1), and because F it ≥ M i

t for all t ∈ R+ (a.s.) due to
right-continuity for both i = 1, 2.

Assertion (i) gives us continuation payoffs to apply in Proposition 2.3, and if we do so for all ϑ ∈ T , then
assertion (ii) ensures that the corresponding (σϑi ;ϑ ∈ T ) satisfy time-consistency if the related, degenerate
Gϑi do so via condition (2.1) for pure plans. From a practical point of view, it may thus be assumed that
both firms plan to move no later than at τP(ϑ) in any subgame, and then for preemptive purposes, and the
corresponding payoffs result.

We can characterize the preemption region further by showing that firm 1’s first-mover advantage is
never less than firm 2’s, given that τ1

F (·) ≤ τ2
F (·) and the assumption πL1

· − π
F1
· ≥ π

L2
· − π

F2
· .

Lemma 3.4. L1
τ−F

1
τ ≥ L

2
τ−F

2
τ for any τ ∈ T , and thus P = {L2

· > F 2
· } and τP(ϑ) = inf{t ≥ ϑ |L2

t > F 2
t }

for every ϑ ∈ T .

Lemma 3.4 uses the fact that the revenue difference between being leader or follower is πLi· − π
Fi
· before

any follower would invest, which for firm 1 is not less than for firm 2. Firm 1 also prefers to be leader
between the own follower reaction time and that of firm 2, because it earns πL1

· instead of πB1
· . Firm 2, on

the contrary, cannot gain from being leader between those two times, as it can only obtain πB2
· instead of

πF2
· , which is never a gain before its own follower reaction time.
For firm 2 to have a first-mover advantage, πB1

· −π
F1
· must not be too profitable for firm 1: if ϑ = τ1

F (ϑ),
then L2

ϑ = M2
ϑ ≤ F 2

ϑ .
15 Moreover, investment must be sufficiently profitable in terms of the revenue

difference πL2
· − π

F2
· – firm 2’s only potential gain from being leader instead of follower. Firm 2 can in fact

only have a first-mover advantage if it still does when it is optimal to start the stream πL2
· − π

F2
· , because

starting it earlier cannot be an additional gain. This argument provides a criterion for whether P = ∅ that
will be formalized in Section 3.2.1. In particular, P = ∅ if πL2

· − π
F2
· ≤ πB1

· − π
F1
· , because then firm 1

would follow immediately at the latest optimal time to start πL2
· − π

F2
· . πL2

· must thus exceed πB2
· enough

for firm 2 to have any first-mover advantage, as by assumption πB2
· − π

F2
· ≤ π

B1
· − π

F1
· .

3.1.3 Subgame-perfect equilibria with preemption

The subsequent equilibrium construction is facilitated by the fact that independently of what happens in
the preemption region, no firm ever wants to invest when it has a second-mover advantage, so we can focus
on subsequent continuation problems. This finding results from the assumption that investment does not
benefit the other firm; in contrast to some suggestions in the literature, a second-mover advantage alone
does not suffice to delay investment in general. For the following formal statement also for extended mixed
strategies, note that S ϑ

′

⊆ S ϑ for ϑ ≤ ϑ′, and that using some strategy from S ϑ
′

(e.g., corresponding to
a pure plan τ ≥ ϑ′) in the subgame starting at ϑ means remaining idle on [ϑ, ϑ′).

Proposition 3.5. In any subgame and for any firm i ∈ {1, 2}, it is never optimal to become first investor
(sole or joint, and with any positive probability) while F i· > Li· .

Furthermore, letting τ iL>F (ϑ) = inf{t ≥ ϑ |Lit > F it } for arbitrary ϑ ∈ T and ϑ′ = min{τ iL>F (ϑ), τ iF (ϑ)},
then, in Proposition 2.3, τi = ϑ′ attains (2.7) for every τj ∈ T with τj ∈ [ϑ, ϑ′] whenever σϑ

′

i is a best reply
to σϑ

′

j at ϑ′.
More generally, given ϑ′ as before, it is no loss for firm i to consider only strategies from S ϑ

′

at ϑ, i.e.,
for any (σϑi , σ

ϑ
j ) ∈ S ϑ ×S ϑ there is σϑ

′

a ∈ S ϑ
′

with

V ϑi
(
σϑ
′

a , σ
ϑ
j

)
≥ V ϑi

(
σϑi , σ

ϑ
j

)
,

15If ϑ = τ
1
F (ϑ), then it is indeed not even on the boundary of P if τ ′ = ϑ does not attain F 2

ϑ , as then L
2
ϑ = M

2
ϑ < F

2
ϑ and

hence ϑ < τP (ϑ) by right-continuity of the processes.
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and σϑ
′

a is a best reply for firm i at ϑ to σϑj if σϑ
′

a ∈ S ϑ
′

and if it is a best reply at ϑ′ to some σϑ
′

j ∈ S ϑ
′

that is time-consistent with σϑj .

Idleness on [ϑ, ϑ′), where F i· ≥ L
i
· ≥M

i
· , is no loss because firm i can always secure at least the follower

payoff in expectation by planning to invest at the follower reaction time. Indeed, the follower payoff is
nondecreasing in expectation (a submartingale) until that time – if the opponent invests in the meantime,
that does not affect firm i’s reaction and can only defer the laggard revenue πFi· ≤ π0i

· – and at the own
reaction time, investing regardlessly is at least as good as becoming follower by πLi· ≥ π

Bi
· .

By Lemma 3.4, τ2
L>F (ϑ) = τP(ϑ), so we may let firm 2’s plan for any ϑ ∈ T be to wait until ϑ′ =

min{τP(ϑ), τ2
F (ϑ)} by Proposition 3.5. Indeed, we have a continuation equilibrium at ϑ′ with Gϑ

′

i (t) =
1{t≥ϑ′} for each i = 1, 2 by Lemmas 3.1 and 3.2, with simultaneous investment on {τ2

F (ϑ) < τP(ϑ)},
preemption on {τP(ϑ) ≤ τ2

F (ϑ)}, and payoffs at τP(ϑ) provided by Lemma 3.3 (i). In case of symmetric
revenues, we obtain an equilibrium at ϑ by switching roles. Otherwise, firm 1 may have a strict first-mover
advantage before τP(ϑ) and may want to exploit it. Specifically, given the preemption payoffs at τP(ϑ)
and L1

· = F 1
· = M1

· at τ2
F (ϑ), firm 1 can obtain L1

· anywhere before or at min{τP(ϑ), τ2
F (ϑ)}, except when

L2
· > F 2

· at τP(ϑ): then firm 1 will obtain F 1
· . As L2

t > F 2
t not before τP(ϑ), the best reply problem (2.7)

for firm 1 can thus be written as

ess sup
ϑ≤τ≤τP(ϑ)∧τ2

F (ϑ)
E
[
L1
τ1{L2

τ≤F
2
τ }

+ F 1
τ 1{L2

τ>F
2
τ }

∣∣∣Fϑ

]
. (3.1)

If problem (3.1) has a solution τ∗1 (ϑ), then its value is firm 1’s equilibrium payoff at ϑ by Proposition 2.3,
and that of firm 2 is E[F 2

τ
∗
1 (ϑ) |Fϑ], who obtains the follower payoff (in expectation) also when τ∗1 (ϑ) =

min{τP(ϑ), τ2
F (ϑ)}. We can summarize as follows.

Theorem 3.6. If there is a family of solutions (τ∗1 (ϑ);ϑ ∈ T ) to (3.1) that satisfies time-consistency
condition (2.1), and if we let τ∗2 (ϑ) = min{τP(ϑ), τ2

F (ϑ)} for every ϑ ∈ T , then there is a subgame-perfect
equilibrium in which the strategy for each firm i = 1, 2 in the subgame starting at any ϑ ∈ T , σϑi , is such
that Gϑi (t) = 1{t≥τ∗i (ϑ)} and α

ϑ
i (t) = 1{t≥ϑ}αoi (t) = 1{t≥τP(ϑ)}α

o
i (t) from Lemma 3.3.

If all revenues are symmetric, then there is a symmetric subgame-perfect equilibrium in which both firms
use the given strategy for firm 2.

Time-consistency of the τ∗1 (ϑ) can be ensured whenever there are solutions to (3.1), because then there
are respectively earliest ones due to right-continuity; it holds automatically for the τ∗2 (ϑ).16 For firm 1
it holds alternatively if each τ∗1 (ϑ) is a latest solution to (3.1), or if each τ∗1 (ϑ) is of threshold-type in a
state-space model.

The existence of a solution to (3.1) is generally not clear, however, because the process to be stopped has
a discontinuity at τP(ϑ) when ϑ < τP(ϑ) < τ2

F (ϑ) and L2
τP(ϑ) > F 2

τP(ϑ): then also L1
τP(ϑ) > F 1

τP(ϑ) by Lemma
3.4 and preemption causes a drop. A solution does exist if the process L2

· − F
2
· is lower semi-continuous,

because then L2
τP(ϑ) = F 2

τP(ϑ) on {ϑ < τP(ϑ)}, such that (3.1) reduces to

ess sup
ϑ≤τ≤τP(ϑ)∧τ2

F (ϑ)
E
[
L1
τ

∣∣∣Fϑ

]
. (3.2)

Indeed, the solutions of (3.2) coincide with the solutions of the conceptually simpler constrained stopping
problem

ess sup
ϑ≤τ≤τP(ϑ)∧τ2

F (ϑ)
E

[∫ τ

0
π01
s ds+

∫ ∞
τ

πL1
s ds

∣∣∣∣Fϑ

]
, (3.3)

because the follower reaction time τ2
F (τ) in L1

τ remains constant for τ ∈ [ϑ, τ2
F (ϑ)]. (3.3) has a solution by

continuity.
16The families (τP (ϑ);ϑ ∈ T ) and (τ2

F (ϑ);ϑ ∈ T ) satisfy time-consistency by construction and thus also (τ∗2 (ϑ);ϑ ∈ T ). As
the latter are the constraints in (3.1), any family of earliest solutions (τ∗1 (ϑ);ϑ ∈ T ) will then be time-consistent, too.
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Proposition 3.7. Assume that L2
· −F

2
· is lower semi-continuous from the left. Then there exists a subgame-

perfect equilibrium as in Theorem 3.6, with each τ∗1 (ϑ) the respectively earliest solution of (3.3).

In this equilibrium, each firm either plans to invest because that is the opponent’s plan (for preemption
or as the follower options become worthless), or firm 1 exploits that waiting is dominant for firm 2 and thus
acts like a constrained monopolist. Indeed, problem (3.3) is a constrained version of the monopoly problem

ess sup
τ≥ϑ

E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ

]
(3.4)

for i = 1. The two problems’ solutions are of course linked; cf. Section 4 and Appendix C. For instance,
whenever it is optimal to invest in (3.4), so it must be in the constrained problem (3.3). Therefore, only
the constraint τ ≤ τP(ϑ) matters in (3.3) if πL1

· − π
01
· ≥ πB1

· − π
F1
· , like for market entry with π01

· = πF1
· ,

because then the solution of (3.4) is to invest no later than at τ1
F (ϑ) ≤ τ2

F (ϑ).

3.2 Avoiding preemption
There can be other equilibria without preemption, even if the region P of potential preemption is non-empty.
Preemption can be avoided by profitable continuation equilibria, and this will be a Pareto improvement.
For instance, joint investment at a future time τJ ∈ T can be an equilibrium if it yields at least the same
expected payoff as becoming leader earlier on, like in the right panel of Figure 1. Therefore, τJ needs to be
an (at least constrained) optimal time for the problems

ess sup
τ≥ϑ

E
[
M i
τ

∣∣∣Fϑ

]
= ess sup

τ≥ϑ
E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πBis ds

∣∣∣∣Fϑ

]
. (3.5)

The firms can also plan to invest sequentially if one accepts to become follower when the other invests.
Either equilibria depend on the relative magnitudes of the revenue processes, however, so existence cannot
be ensured by simple regularity properties like continuity in Proposition 3.7. On the contrary, if πFi· = π0i

· ,
then F i· is nonincreasing in expectation (a supermartingale), as becoming follower later only leaves less
possibilities to invest optimally. Thus, if Liϑ > F iϑ, then firm i would not accept to obtain only a follower
payoff later on. For firm i to wait, it is therefore necessary that πFi· < π0i

· occurs (e.g., due to the first
investment stealing business from the other firm).

In the remainder of this section, we present some tools that help to verify whether preemption is avoidable.
These tools greatly reduce the number of stopping problems to consider. In particular for state-space models,
it may suffice to evaluate payoffs at a single threshold, like in Section 4. We do not assume any particular
stochastic structure here, yet, so the following tools read abstractly. However, they can then be applied to
many more complex stochastic shock processes than those illustrated in Section 4, and they nevertheless
still follow a clear intuition based on opportunity costs.

3.2.1 Characterizing the preemption region

First, to see if the preemption region is empty, it suffices to consider stopping times that are optimal for
some simple stopping problems. They are the solutions of the monopoly problem (3.4) if π0i

· = πFi· (like in
a market entry model).

Lemma 3.8. For any ϑ ∈ T , L2
ϑ > F 2

ϑ only if E[L2
τ
i
∆
− F 2

τ
i
∆
|Fϑ] > 0 for every time τ i∆ ∈ T that attains

ess sup
τ≥ϑ

E

[∫ τ

0
πFis ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ

]
(3.6)

for any i ∈ {1, 2}. When τ2
∆ = ϑ attains (3.6) for i = 2, then L2

ϑ−F
2
ϑ ≥ E[L2

τ−F
2
τ |Fϑ] for all τ ∈ [ϑ, τ1

F (ϑ)].
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Lemma 3.8 rests on the fact that for any τ ∈ [ϑ, τ2
F (ϑ)], the difference between L2

ϑ and F 2
ϑ on [ϑ, τ ] is that

between the monopoly or duopoly revenue and the laggard’s revenue, so at most πL2
· −π

F2
· . That difference

is nonpositive in expectation up to any solution of (3.6), where indeed τ2
∆ ≤ τ

2
F (ϑ) by πL2

· ≥ π
B2
· . Moreover,

the revenue difference between L2
ϑ and F 2

ϑ on [τ2
∆,∞) is at most that between L2

τ
2
∆

and F 2
τ

2
∆
, because firm

2’s follower reaction remains the same and, by becoming leader later, firm 2 receives the monopoly revenue
at least until the same time.

For state-space models like in Section 4, we get the following characterization. First, as noted in Subsec-
tion 3.1.2, a follower threshold for either firm i, say xiF ∈ R, is never contained in the preemption region,17

not even in its closure if investment at x1
F is not optimal for firm 2. As L2

· ≤ F 2
· for all states above such

xiF , the latter must lie above any non-empty preemption region. Second, by Lemma 3.8, any non-empty
preemption region must intersect the stopping regions from (3.6) for both i = 1, 2; a threshold solving that
problem, say xi∆ ∈ R, cannot lie above the preemption region. In particular, if x2

∆ ≥ x
1
F , then P = ∅. Third,

if firm 2 has no first-mover advantage at x2
∆, then it has none at any value that the state will attain before

crossing x1
F . Thus, if the state, starting from some x2

∆ < x1
F , will attain any intermediate value before

reaching x1
F , then it suffices to check whether there is a first-mover advantage for firm 2 at x2

∆; otherwise
the preemption region is empty, because x2

∆ cannot lie above it.

3.2.2 Verification of equilibria without preemption

For equilibria without preemption, but with delayed joint investment or sequential investment, it needs
to be verified that waiting at least as long as the opponent is optimal. Proposition 3.9 reduces such a
verification to stopping problems less complex than maximizing the leader payoff directly; cf. also Appendix
C. For state-space models, it may again suffice to consider deviations at a single threshold. Recall that,
when verifying an equilibrium corresponding to pure plans by Proposition 2.3, then problem (2.7) becomes
maximizing (2.5) over τi.

Proposition 3.9. Let ϑ, τ i∗, τ
j
∗ ∈ T with ϑ ≤ τ j∗ ≤ τ i∗ for some i, j ∈ {1, 2}, i 6= j. Suppose the strategies

of firms i and j for the subgame at ϑ ∈ T correspond to the pure plans τ i∗, τ
j
∗ , respectively. Then firm i’s

strategy is a best reply to firm j’s if F i
τ
j
∗

= M i

τ
j
∗
on {τ i∗ = τ j∗} and

(i) E[F i
τ
j
∗
|Fϑ] ≥ ess sup

τ∈[ϑ,τj∗ ]E[M i
τ |Fϑ] and

(ii) for each stopping time ϑ′ ≥ ϑ, on {ϑ′ < τ j∗}, one of the solutions τ iD(ϑ′) ∈ T of the problem

ess sup
τ∈[ϑ′,τj∗∨ϑ

′]
E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ
′

]
(3.7)

satisfies τ iD(ϑ′) < τ jF (ϑ′)⇒ Li
τ
i
D(ϑ′) − E[F i

τ
j
∗
|F

τ
i
D(ϑ′)] ≤ 0 (a.s.).

When ϑ′ attains (3.7), then Liϑ′ −E[F i
τ
j
∗
|Fϑ

′ ] ≥ E[Liτ −F
i

τ
j
∗
|Fϑ

′ ] for all stopping times τ ∈ [ϑ′, τ jF (ϑ′)].
Furthermore, if πL1

· − π
01
· ≥ πL2

· − π
02
· , πB1

· − π
01
· ≥ πB2

· − π
02
· , F 2

τ
2
∗

= M2
τ

2
∗
and (i), (ii) hold for i = 1,

then the strategies corresponding to the pure plans τ1
∗ = τ2

∗ are an equilibrium at ϑ.

Condition (i) is also necessary, as the terminal payoff is at most F i
τ
j
∗
(without preemption as modeled

in Section 3.1.2) and Li· ≥ M i
· . Condition (ii) addresses the leader payoff via the constrained monopoly

problems (3.7) (cf. (3.2) and (3.3)), saying that it suffices to check for deviations at solutions τ iD(ϑ′) < τ jF (ϑ′);
so there is nothing to check when ϑ′ = τ jF (ϑ′). The next claim implies that for threshold-type models it is
typically enough to consider ϑ′ = τ iD(ϑ): If firm i does not want to become leader then, it does not at any

17Here “the preemption region” refers to an area in the same state space in which the thresholds are defined, which is of
course an abuse of terminology regarding the previous definition of P.
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value that the state process will attain before crossing firm j’s follower threshold that determines τ jF (ϑ).
For states above that threshold, no deviations need to be considered.

Proposition 3.9 can be applied for equilibria of joint investment at some time τJ = τ1
∗ = τ2

∗ ≥ ϑ. Then,
on the one hand, F 2

τJ
= M2

τJ
is necessary, which automatically implies F 1

τJ
= M1

τJ
by Lemma 3.2. On the

other hand, (i) is then the clearly necessary condition that τJ must be an (at least constrained) optimal time
for maximizing the expected joint investment payoff E[M i

τJ
|Fϑ] (cf. (3.5) and also Lemma C.3). Given

such τJ , an equilibrium can be verified by condition (ii), where it suffices to consider firm 1 if the additional
revenue order holds.

Proposition 3.9 simplifies as follows for sequential investment.

Corollary 3.10. Let ϑ ∈ T , τ2
∗ := τ2

F (ϑ), and τ1
∗ := τS, where τS ∈ T is one of the solutions of (3.7) for

ϑ′ = ϑ, i = 1, and j = 2. Then the strategies corresponding to the pure plans τ1
∗ , τ

2
∗ are an equilibrium at ϑ

if condition (ii) of Proposition 3.9 is satisfied for i = 2 and j = 1.
Moreover, if πL1

· − π
01
· ≥ π

L2
· − π

02
· , then τ2

D(ϑ′) = τS attains (3.7) whenever ϑ′ ≤ τ1
∗ = τS.

Note that, in the setting of Corollary 3.10, condition (ii) of Proposition 3.9 holds if firm 2 does not have
a local first-mover advantage when τ2

D(ϑ′) < τ1
F (ϑ′) attains (3.7), as (F 2

t ) is a submartingale on [ϑ′, τ2
F (ϑ′)].

Under the additional revenue order in Corollary 3.10, this simply amounts to [τS ] not being in the preemption
region P.

4 Applications
As an illustration, the previous general results will now be applied to two typical models from the strategic
real options literature, in order to provide complete proofs for basic equilibrium outcomes that are dis-
cussed extensively in the literature, to derive neglected equilibria that may constitute Pareto improvements
or actually display behavior that qualitatively differs from deterministic models, and to argue that some
equilibria analyzed in the literature only exist under additional restrictions, if at all. The model of Pawlina
and Kort (2006) first serves as the main vehicle, because, as we allow for weak orders among its parameters,
it then also nests the models of Weeds (2002) and Fudenberg and Tirole (1985) (cf. fn. 19). Afterwards,
the results of Grenadier (1996) will be revisited using the same arguments, although his economic setting is
quite different.

4.1 Irreversible investment with asymmetric costs
The model of Pawlina and Kort (2006) is quite prototypic for the real options literature, but its equilibrium
analysis is not complete.18 Theorem 3.6 yields proper subgame-perfect equilibria. We will analyze them in
detail, in order to show some remarkable neglected behavior and to make the arguments applicable to other
models as well. The revenue streams for firm i ∈ {1, 2} in Pawlina and Kort (2006) are

π0i
t = e−rtxtD00, πLit = e−rt(xtD10 − rI

i),

πFit = e−rtxtD01, πBit = e−rt(xtD11 − rI
i),

}
(4.1)

with discount factor r > 0 and demand uncertainty reflected by a geometric Brownian motion (xt) satisfying

dxt = µxt dt+ σxt dBt, (4.2)

where (Bt) is Brownian noise, µ < r the expected growth rate and σ > 0 the volatility. The constants
D10 ≥ D11 and D00 ≥ D01 capture a negative impact of investment on the opponent’s revenue. The firms’

18There are two different, unrelated issues. First, their proposed preemption equilibrium investment, with the high cost firm
2 investing at the follower threshold x2

F , can only be seen as an outcome, but not as an equilibrium strategy; firm 1 would only
be willing to invest at the preemption point if there was a preemption threat. Second, and also in other papers like Grenadier
(1996) or Weeds (2002), noting a current second-mover advantage does not justify optimality of waiting, and only subgames
with low initial states are considered, despite the aim for subgame-perfectness.
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investment costs I2 ≥ I1 > 0 are also constant and capitalized here, because our general results were based
on comparisons of revenue streams and their implied opportunity costs of waiting (cf. fn. 6). This will also
help to solve constrained stopping problems in the following. By assuming only the given weak inequalities,
we can here nest the models of Weeds (2002) and Fudenberg and Tirole (1985).19 The present instances
of the follower problems (2.2) and the monopoly problems (3.4) are solved by investing when xt exceeds
some thresholds xiF and xiL, respectively, and the payoff processes (Lit), (F it ) and (M i

t ) are continuous (as
functions of the state xt).

20 In particular, simultaneous investment is an equilibrium for all states xϑ ≥ x
2
F .

If the preemption region in this model is non-empty, it is characterized by an open interval (
¯
x, x̄) of the

state space R+ with x̄ ≤ x1
F ≤ x2

F (where both inequalities are strict if I2 > I1 and D10 > D11 > D01),
such that we can simply call (

¯
x, x̄) preemption region. The proof of the following proposition generalizes to

other models driven by a continuous Markov process that affects revenues monotonically.

Proposition 4.1. Consider the specification (4.1). There are two numbers
¯
x ≤ x̄ ∈ (0, x1

F ] such that
L2
t > F 2

t ⇔ xt ∈ (
¯
x, x̄) for all t ∈ R+, with x̄ = x2

F if I1 = I2.

By Lemma 3.8 in Section 3.2.1 and the discussion thereafter it is enough to check if L2
0 − F

2
0 > 0 for

x0 = x2
∆, the threshold solving (3.6), which is the case if the cost-disadvantage I2/I1 is not too large;

otherwise firm 2 prefers to invest much later than firm 1 and the preemption region is empty (in particular
if x2

∆ ≥ x
1
F , when firm 1 would follow immediately).21

We can now characterize the equilibria of Theorem 3.6 for this model, which also have remarkable
outcomes not captured in Pawlina and Kort (2006). Existence is guaranteed by Proposition 3.7 thanks to
continuity, and it suffices to solve the simpler constrained monopoly problems (3.3). By the strong Markov
property, this amounts to finding the region in the state space R+ where immediate investment is optimal
in the problem for t = 0,

sup
τ≤τP(0)∧τ2

F (0)
E

[∫ ∞
τ

e−rs(xs(D10 −D00)− rI1) ds
]
. (4.3)

The constraint here takes the form min{τP(0), τ2
F (0)} = inf{t ≥ 0 |xt ∈ (

¯
x, x̄) ∪ [x2

F ,∞)} = inf{t ≥ 0 |xt ∈
[
¯
x, x̄] ∪ [x2

F ,∞)} (P -a.s.). Problem (3.3) is then solved by investing once the state xt hits the investment
region {x ∈ R+ | τ = 0 attains (4.3) for x0 = x} from time ϑ.

First, consider a non-empty preemption region (
¯
x, x̄) that is connected to the unconstrained monopoly

investment region [x1
L,∞), as it holds for the market entry variant of the model with D01 = D00, cf. Lemma

3.8. Then immediate investment is optimal in (4.3) for any state x0 ≥ x̄ ≥ x
1
L, as it is in the unconstrained

19In Weeds (2002), investment starts an R&D project with success arrival rate h > 0. The expected payoffs are equivalent to
those from (4.1) with augmented discount rate r + h instead of r, D00 = D01 = 0, D10 = h, D11 = h(r + h− µ)/(r + 2h− µ)
and I1 = I

2 = K. The model of Fudenberg and Tirole (1985) with their concrete discounted cost function c(t) = e
−(r+a)t is

equivalent to (4.1) with D00 = π0(0), D01 = π0(1), D10 = π1(1), D11 = π1(2), µ = a, augmented discount rate r + a instead
of r and σ = 0. The solutions derived for σ > 0 in Section 4.1 converge to the solutions for the deterministic case as σ → 0;
see fn. 20.

20If D11 > D01, then x
i
F = β1

β1−1 ·
I
i(r−µ)

D11−D01
, where β1 > 1 is the positive root of 1

2σ
2
β(β−1)+µβ−r = 0. If D11 ≤ D01, then

x
i
F =∞. Analogously, xiL = β1

β1−1 ·
I
i(r−µ)

(D10−D00)+ . These are standard from option pricing, as are the following representations.

L
i
t =
∫ t

0 e
−rs

xsD00 ds+ e
−rt(xtD10/(r − µ)− Ii + (xt/(x

j
F ∨ xt))

β1 (xjF ∨ xt)(D11 −D10)/(r − µ)), F it =
∫ t

0 e
−rs

xsD00 ds+

e
−rt(xtD01/(r−µ)+(xt/(x

i
F ∨xt))

β1 ((xiF ∨xt)(D11−D01)/(r−µ)−Ii)) andM i
t =
∫ t

0 e
−rs

xsD00 ds+e−rt(xtD11/(r−µ)−Ii).
If σ → 0, then the terms for σ > 0 converge to their deterministic counterparts. In particular, β1 increases to r/(µ+), so the
investment thresholds converge to those for the deterministic case by β1/(β1 − 1)→ r/(r−µ+), as does the expected discount
factor for the first time that the state xt exceeds a threshold x > x0, (x0/x)β1 .

21The precise condition (I2
/I

1)β1−1
< ((1 + c)β1 − 1)/(β1c) if c := (D10 − D11)/(D11 − D01) ∈ (0,∞) is obtained by

plugging x0 = x
2
∆ = β1

β1−1 ·
I
2(r−µ)

(D10−D01)+ into the expressions for L2
0 and F 2

0 in fn. 20; Pawlina and Kort (2006) obtain the same

condition by a graphical argument. The condition implies x2
∆ < x

1
F . The constraint on the cost ratio strictly exceeds 1 and is

strictly increasing in c to infinity by β1 > 1. If D10 > D01 ≥ D11, then x
1
F = ∞ and the preemption region is non-empty for

all I2 ≥ I1. Finally, if D10 ≤ max{D11, D01}, then x
2
∆ ≥ x

1
F and the preemption region is empty.
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problem. For states x0 < ¯
x, the preemption constraint in (4.3) is a constant upper threshold, so it is optimal

to wait there until xt exceeds either the constraint
¯
x or the unconstrained threshold x1

L; see Lemma A.7
in Appendix A. The subgame-perfect equilibrium is complete in this case: no investment for states strictly
below min{

¯
x, x1

L}, preemptive investment in [
¯
x, x̄] as described in Section 3.1.2, firm 1 investing as the leader

in [x1
L, x

2
F ) \ [

¯
x, x̄], and simultaneous investment for all states in [x2

F ,∞).
Next, if the preemption region is empty, then firm 1 only faces the upper constraint x2

F in (4.3). Again
by Lemma A.7, it is then optimal for firm 1 to invest as soon as xt exceeds either the constraint x2

F or
the unconstrained monopoly threshold x1

L. Note that for the market entry variant with D00 = D01 < D11,
x1
L ≤ x1

F < x2
F < ∞. However, even if firm 1 uses the unconstrained monopoly threshold, it is still

constrained by firm 2’s plan. Firm 1 can only maximize the leader payoff subject to firm 2 investing also
proactively in [x2

F ,∞).
The necessary conditions derived in Appendix C imply that preemption cannot be avoided if D00 =

D01 (like for market entry) and neither simultaneous investment in [x2
F ,∞) then by Lemma C.3, and the

equilibrium in each of the previous cases is unique. Indeed, if the preemption region is non-empty, then it
must contain the optimal stopping region for the continuous process L2

t − F
2
t , which takes positive values

only there. Then also L2
t must be stopped in that stopping region (the problem considered in Lemma C.1),

because L2
t = (L2

t − F
2
t ) + F 2

t and F 2
t is nonincreasing in expectation (a supermartingale) now.

So far, with x1
L ≤ x̄ or P = ∅, investment occurs if and only if demand is high enough, i.e., if the state is

at least min{
¯
x, x1

L} or min{x2
F , x

1
L}. This behavior is the same for the stochastic model and its deterministic

version, e.g., that in Fudenberg and Tirole (1985) (cf. fn. 19).

4.1.1 Preemption when demand falls

Qualitatively different behavior can be observed in the remaining case, a monopoly threshold lying above
a non-empty preemption region, x1

L > x̄ >
¯
x, which requires a sufficiently high pre-investment revenue

level D00 > D01. Firm 1 may then remain inactive even when it would invest immediately as follower (in
states above x1

F ), because it has higher opportunity costs as prospective leader. This phenomenon is not
addressed by Pawlina and Kort (2006), who only consider states below

¯
x, where the same behavior as before

holds: firm 1 waits until xt hits the constraint
¯
x < x1

L. Problem (4.3) becomes more interesting for states
in (x̄, x2

F ), where both constraints may be binding if that interval intersects the continuation region [0, x1
L)

of the unconstrained problem, and behavior may be more complex.
A lower constraint, like presently x̄, has a much stronger effect than any upper constraint as consid-

ered before. Two cases can be distinguished for the problem of delaying the revenue change πL1
t − π

01
t =

e−rt(xt(D10 −D00)− rI1) in [x̄, x2
F ]. The easier one is that xt(D10 −D00) > rI1 on all of (x̄, x2

F ), because
then any delay is a loss of revenue and it is optimal to invest immediately everywhere on (x̄, x2

F ). Never-
theless, this is already an effect of the lower constraint x̄. Without the constraint, it would be optimal to
forego some positive revenue, i.e., to wait when xt(D10 −D00) exceeds rI1 only little, to avoid the risk of
negative revenues from a decreasing state.22 With the constraint, however, the revenues from lower states
cannot be escaped. The more difficult case is that x(D10 −D00) < rI1 near the preemption region. Firm 1
must wait when this inequality holds, in order not to start with running losses, so one has to determine the
investment region towards the upper constraint, x2

F . It may then in fact be optimal to invest far before the
constraint is reached.

Proposition 4.2. Consider the specification (4.1) and suppose the corresponding preemption region (
¯
x, x̄) ⊆

(0, x1
F ] from Proposition 4.1 is non-empty. If x̄(D10−D00) ≥ rI1, then the solution of problem (4.3) for all

states x0 in (x̄, x2
F ) is to invest immediately, whereas if D10−D00 ≤ 0, the solution is to wait until the state

exits (x̄, x2
F ).

If 0 < x̄(D10 −D00) < rI1, then there is a unique threshold x̂ ∈ [rI1/(D10 −D00), x1
L) solving

(β1 − 1)A(x)xβ1 + (β2 − 1)B(x)xβ2 = I1 (4.4)
22The unconstrained optimal threshold xiL from fn. 20 exceeds rIi/(D10 −D00) for D10 > D00 and σ2

> 0.
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with (
A(x)
B(x)

)
=
[
x̄β1xβ2 − xβ1 x̄β2

]−1
(
xβ2 −x̄β2

−xβ1 x̄β1

)(
x̄D10−D00

r−µ − I1

xD10−D00
r−µ − I1

)
(4.5)

and β1 > 1 and β2 < 0 the roots of 1
2σ

2β(β−1)+µβ− r = 0, and the solution of problem (4.3) for all states
x0 in (x̄, x2

F ) is to invest when (xt) exits (x̄, x̂ ∧ x2
F ).

The “smooth-pasting” condition, which is frequently used to guess value functions, only holds in the last
case and only if x̂ ≤ x2

F . If x2
F (D10 −D00) ≤ rI1, then x̂ ≥ x2

F and the solution is to wait until the state
exits (x̄, x2

F ). It is easy to compute the solutions x̂ of (4.4), which are typically much lower than the upper
constraint x2

F or the unconstrained threshold x1
L. Thus, the risk of getting trapped at x̄ by preemption

induces much earlier investment; this is illustrated in Section 4.1.4. The effect cannot be observed in the
deterministic version of the model with a growing market (or falling cost).

4.1.2 Joint investment equilibria

If D00 > D01, then there are potentially many more equilibria than those from Theorem 3.6, as one can now
drop the premise that preemption occurs in the preemption region, or that simultaneous investment occurs
everywhere above x2

F .
First, Proposition 3.9 is now applied to verify equilibria of delayed joint investment, which cannot happen

below x2
F for firm 2 to invest simultaneously. The highest expected value of joint investment can be achieved

by solving (3.5), which yields a maximal threshold, say x1
M for firm 1. But one can also consider constrained

versions of that problem, with some investment threshold xJ ∈ [x2
F , x

1
M ]. Joint investment triggered by xJ

is an equilibrium if firm 1 does not want to become leader at the threshold solving problem (3.7), which is
min{xJ , x

1
L} by Lemma A.7 again.

Proposition 4.3. Consider the specification (4.1) and let x1
M ≥ x1

L ∈ [0,∞] denote the threshold solving
problem (3.5) for firm 1.23 Suppose x1

M ≥ x2
F . Then there exists a subgame-perfect equilibrium of simulta-

neous investment triggered by the threshold xJ ∈ [x2
F , x

1
M ] iff that yields firm 1 at least the expected payoff

L1
0 for x0 = x1

L < x2
F , which is iff

x1
L ≥ x

2
F ⇔ D10 ≤ D00 or I2

I1 ≤
(D11 −D01)+

D10 −D00

or if(
I2

I1

)β1−1[
1 +

(
x1
L

xJ

)β1
(
β1 − 1− xJ

x1
L

β1
D11 −D00
D10 −D00

)]
≤ β1

D10 −D11
D10 −D00

(
(D11 −D01)+

D10 −D00

)β1−1
(4.6)

with β1 > 1 from Proposition 4.2. The left-hand side of (4.6) is strictly positive and strictly decreasing in
xJ ∈ [x1

L, x
1
M ] if x1

L < x2
F .

If D10 ≤ D00, then it is never better to become leader than to invest jointly with the follower, which is
not better than maximizing the simultaneous investment payoff. Note that x1

L < x2
F implies D10 > D00,

and then the simultaneous investment equilibrium exists if and only if the cost disadvantage is not too large.
Otherwise, firm 2’s follower threshold becomes too large for firm 1 to give up the leader markup that it
can then obtain. If D10 > D00, then the second restriction on I2/I1 in Proposition 4.3 is weaker than the
first for xJ = x1

L, and it is further relaxed if xJ increases. If xJ = x1
M < ∞, then (4.6) coincides with

the maximal bound on I2/I1 identified by a graphical argument in Pawlina and Kort (2006), who impose
D11 > D00.

24 Proposition 4.3 also applies for D11 ≤ D00, when the firms, after both have invested, end up

23
x

1
M = β1

β1−1 ·
I
1(r−µ)

(D11−D00)+
, cf. fn. 20.

24
x

1
M <∞⇔ D11 > D00, and then xJ = x

1
M implies xJ/x

1
L = (D10 −D00)/(D11 −D00).
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no better than before. It can then still be optimal to invest at some threshold xJ only because the other
firm does, although both would prefer that neither invests.

Indeed, there may be many equilibria with “inefficient” joint investment in states above x2
F and where

the expected joint investment payoff could be improved. If (D11 − D00)x2
F < rI1, then M i

t increases in
expectation for states in the interval [x2

F , rI
1/(D11 −D00)+), because investment decreases revenue, and it

is hence optimal to wait in any constrained version of problem (3.5). Therefore, one can partition the latter
interval into arbitrary subintervals of alternating joint investment and idleness.

4.1.3 Sequential investment equilibria

Sequential investment without preemption may also be an equilibrium if the preemption region is non-
empty, which is a Pareto improvement compared to the equilibria of Pawlina and Kort (2006) if delayed
joint investment as in Section 4.1.2 is not feasible. Such an equilibrium can be verified by Corollary 3.10,
and it exists for the current specification if and only if firm 2 does not have a strict first-mover advantage
at x1

L, when firm 1 first invests.

Proposition 4.4. Consider the specification (4.1) and suppose x1
L < x2

F (whence D10 > D00). Then there
exists a subgame-perfect equilibrium with firm 1 planning to invest as soon as xt exceeds x1

L, and firm 2
planning to invest when xt exceeds x

2
F , iff x1

L 6∈ (
¯
x, x̄) from Proposition 4.1, which is iff

x1
L ≥ x

1
F ⇔ (D10 −D00)+ ≤ (D11 −D01)+

or

(β1 − 1)I
2

I1 +
(
I2

I1

)1−β1
(

(D11 −D01)+

D10 −D00

)β1

≥ β1

[
D10 −D01
D10 −D00

− D10 −D11
D10 −D00

(
(D11 −D01)+

D10 −D00

)β1−1]
(4.7)

with β1 > 1 from Proposition 4.2. The left-hand side of (4.7) is strictly increasing in I2/I1 and the right-
hand side is strictly positive if x1

L < x1
F .

If x1
L < x1

F , i.e., if firm 1 would invest earlier as monopolist than as follower, then it is not profitable for
firm 2 to become leader instead of follower at x1

L if and only if the cost disadvantage is large enough. As the
comparison is made at x1

L, the investment time as leader is fixed, and then a high investment cost favors
the follower value due to the option to choose the optimal investment time.

Finally, there may be equilibria with sequential investment as in Proposition 4.4 or preemption as in
Proposition 4.2 and where joint investment is delayed to some threshold xJ > x2

F , such that firm 1 can
optimize the leader payoff over larger intervals. This may separate the investment region from the sequential
equilibrium into one where firm 1 invests as leader and one where simultaneous investment occurs, with a
gap in between. Such equilibria are more difficult to characterize explicitly. If x2

F is between two investment
regions, the non-constant follower reaction prevents the simplifications used in the previous propositions.

4.1.4 Comparison of leader investment regions

In order to illustrate the potentially strong impact of preemption on states in (x̄, x2
F ) for varying parameter

values in Figure 3, the model is re-parameterized as follows. First, r, µ and σ determine β1,2 and together
with the ratio I1/(D11−D01) also firm 1’s follower threshold x1

F , which we fix and which is an upper bound
for x̄.

The distance between x̄ and x2
F , which is the region where firm 1 can invest as leader, grows in I2. Indeed,

x2
F obviously grows in I2, and if the preemption region (

¯
x, x̄) is non-empty, it strictly shrinks if I2 grows;25

25Suppose x0 < x
2
F , such that firm 2’s first-mover advantage L2

0 −F
2
0 is non-trivial. If I2 is increased, that has two negative

effects on L2
0−F

2
0 . First, it increases the investment cost stream e

−rt
rI

2 up to firm 2’s former follower investment time τ2
F (0),

which reduces L2
0. Second, it delays τ

2
F (0). The new revenue stream difference e−rt(xt(D11 −D01)− rI2) (with increased I2)

between the former and the new τ
2
F (0) has non-positive expectation by optimality of the new τ

2
F (0), and thus reduces L2

0−F
2
0 .
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Figure 3: Constrained leader stopping regions.

(
¯
x, x̄) collapses when I2/I1 = x2

F /x
1
F reaches a bound given in fn. 21 in terms of c = (D10−D11)/(D11−D01),

the loss of a monopolist relative to the gain of the follower when the latter invests. We pick those limit
values for I2 and x2

F for simplicity, thus making both functions of c, although then just
¯
x = x̄ = x2

∆, the
threshold solving (3.6). Now c also determines x̄ by x2

∆ = x2
F /(1 + c).

Equation (4.4) for x̂ can be reduced to the parameters β1,2 and x
1
L, the unconstrained monopoly threshold,

which is an upper bound on x̂ and itself satisfies x1
L = x1

F /(c+ d) with d := (D11 −D00)/(D11 −D01). The
latter ratio comes close to 1 if the leader’s investment has not much influence on the follower’s revenue, like
in a market entry situation; it becomes small when the leader steals considerable business from the follower,
like by a drastic innovation. d also controls the best simultaneous investment threshold by x1

M = x1
F /d.

In the equilibria from Theorem 3.6, firm 1 can freely decide when to invest in the interval (x̄, x2
F ).

Without the threat of preemption, it would not invest below min{x1
L, x

2
F }. However, given the threat of

preemption, firm 1 already invests when the state exceeds x̂, which may be much earlier as Figure 3 shows.
In the upper panel with a low value of d, the threat of preemption strongly matters for c ≥ 0.45. Firm 1
never chooses to wait at all in the lower panel with a moderate value of d. Joint investment at x1

M is an
equilibrium avoiding preemption if x1

L ≥ x
2
F ; it is not an equilibrium for d = 0.6 and c ≥ 0.45.
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4.2 Strategic real estate development with construction time
Similar reasoning as before shows on the one hand that equilibria discussed in Grenadier (1996) only exist
under certain parameter restrictions and on the other hand that there exist additional equilibria that are
Pareto improvements.

Grenadier (1996) models a real option game between two symmetric real estate owners, who may each
invest in redeveloping their property in order to earn higher rents. His model needs a slight translation for
our framework, as it includes a delay of construction: if an owner invests, it takes δ ≥ 0 time units until the
new building yields any revenues. The observations that we are going to point out do not depend on δ being
large or small. Before investment by any owner, both earn the deterministic rent R ≥ 0. Investment at cost
I > 0 terminates that rent, reduces the rent of the opponent to (1 − γ)R with γ ∈ [0, 1] and initiates new
own rent D1xt after the delay δ. (xt) is a geometric Brownian motion as in (4.2). Once both new buildings
are completed, each owner earns the rent D2xt, with 0 < D2 ≤ D1.

Grenadier’s model is strategically equivalent to specifying

π0i
t = e−rtR, πLit = e−rt(D1e

−(r−µ)δxt − rI),

πFit = e−rt(1− γ)R, πBit = e−rt(D2e
−(r−µ)δxt − rI)

in our framework. The equilibria proposed in Grenadier (1996) are justified by the insufficient argument
that waiting is optimal if the current follower payoff exceeds the current leader payoff. Nevertheless, there
exists a subgame-perfect equilibrium as in Theorem 3.6 by symmetry; it can be characterized as follows.
The follower problems (2.2) are again solved by investing once xt exceeds a threshold xF > 0, whence
simultaneous investment is an equilibrium for all states xϑ ≥ xF .

26 Problem (3.6) is solved by a threshold
x∆ = xFD2/D1, and the preemption region P is in fact non-empty if and only if D2 < D1. P can be
represented by an interval (

¯
x, x̄) of the state space by the same arguments as in the proof of Proposition

4.1, where now x̄ = xF .

4.2.1 Qualification of further equilibria

Depending on the parameter values, there may be other equilibria with delayed simultaneous investment,
with or without preemption in P. Let xL denote the threshold solving the present instance of the un-
constrained monopoly problem (3.4).27 For states above x̄ = xF , any investment will be simultaneous.
Contrarily to the claim made in Grenadier (1996), simultaneous investment cannot be delayed past the
threshold xM = xLD1/D2 ≥ xF solving problem (3.5). Indeed, in any equilibrium with preemption in P,
both firms get by symmetry at most the follower payoff at the time of investment. The same holds for any
equilibrium with only joint investment. In either case, investment must occur as soon as the state exceeds
xM , because then investing regardlessly gives the unique, maximal remaining payoff and any delay would
be a loss (cf. Lemma C.3 for details).

With preemption occurring in P, one can only consider delaying simultaneous investment in the interval
[x̄, xM ], i.e., delaying the revenue change πBit − π

0i
t = e−rt(D2e

−(r−µ)δxt − rI − R). This problem has the
same form as the one with two-sided constraint considered in Proposition 4.2 (recall also the illustration
in Section 4.1.4), with D2e

−(r−µ)δ replacing D10 −D00, I + R/r replacing I1 and xM replacing x2
F . Thus,

given now x̄ = xF , if D2e
−(r−µ)δxF ≥ rI +R, which means if

γ ≤
(
rI

R
+ 1
)(

1− β1 − 1
β1(r − µ)

)
, (4.8)

then investment cannot be delayed at all for states above xF , which is not recognized in Grenadier (1996).
In this case, the preemption region extends to such high states that any foregone revenue above it is a loss.
Note that the right-hand side of (4.8) is strictly positive.

26
xF = β1

β1−1 · e
(r−µ)δ(I + (1− γ)R/r)(r − µ)/D2 with β1 > 1 from fn. 20.

27
xL = β1

β1−1 e
(r−µ)δ(I+R/r)(r−µ)/D1 with β1 > 1 from fn. 20. This should not be confused with XL in Grenadier (1996),

which corresponds to the present
¯
x.
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Only if (4.8) fails will there exist a solution x̂ ∈ [(rI + R)e(r−µ)δ/D2, xM ) to the current version of
(4.4), such that investment can be held back in (xF , x̂). Only then the phenomenon discussed extensively
in Section V of Grenadier (1996) can arise, that preemption occurs when demand falls to xF .

However, if γ is sufficiently large to violate (4.8), then delayed joint investment may be attractive enough
to avoid preemption altogether, which will be a Pareto improvement w.r.t. Grenadier (1996). By the same
arguments as for Proposition 4.3, preemption can be avoided in an equilibrium of joint investment with the
threshold xM ≥ xF if and only if that yields firm 1 at least the expected payoff L1

0 for x0 = xL < xF , which
is if and only if

xL ≥ xF ⇔ γ ≥
(
rI

R
+ 1
)(

1− D2
D1

)
or if

γ ≥
(
rI

R
+ 1
)(

1−D2

(
β1

D1 −D2

D
β1
1 −D

β1
2

) 1
β1−1

)
with β1 > 1 from fn. 20. The last restriction on γ is indeed weaker than the previous one.

5 Conclusion
The equilibrium analysis of the general model in Section 3 was based directly on its primitives and not
on derived analytic properties of value functions, as it frequently happens in the growing literature on real
option games. By this more general perspective, there is on the one hand less risk to neglect verification
problems for equilibria and on the other hand a more detailed view of their economic structure. For models
that satisfy the general assumptions made here, the number of equilibrium verification problems has been
reduced considerably by economically meaningful arguments and it remains to solve a single class of optimal
stopping problems for one firm. Theorem 3.6 applies to many more examples from the literature than the
ones revisited in Section 4 (e.g., to those listed in the Introduction). The presented applications, which have
quite distinctive economic properties, show how the general results act in typical state-space models. By
the more complete approach, some neglected equilibrium behavior that qualitatively distinguishes stochastic
from deterministic models has been identified. In particular, two-sided constraints induce feedback effects
when the state evolves randomly. The arguments developed for the identification of additional equilibria
that may be Pareto improvements also generalize to other models, e.g., for the source of uncertainty.

Therefore, the general perspective taken here provides a foundation for a more complete analysis of
models of preemptive investment that fit into the framework and, moreover, a guideline for the analysis of
other models that do not satisfy the revenue orders assumed here.

A Some technical details
Definition A.1 (Riedel and Steg, 2017, Definition 2.7). An extended mixed strategy for firm i ∈ {1, 2} for
the subgame starting at ϑ ∈ T (in which no-one has moved, yet) is denoted by σϑi and consists of a pair of
processes (Gϑi , α

ϑ
i ) that each take values in [0, 1] and satisfy the following.

(i) Gϑi is adapted. It is a.s. non-decreasing, right-continuous, and satisfying Gϑi (s) = 0 for all s < ϑ.

(ii) αϑi is progressively measurable.28 It is a.s. right-continuous in all t ∈ R+ for which αϑi (t) ∈ (0, 1) and
satisfying αϑi (s) = 0 for all s < ϑ.

(iii)
αϑi (t) > 0⇒ Gϑi (t) = 1 for all t ≥ 0 a.s.

28Progressive measurability (cf. fn. 7) is generally stronger than adaptedness, but Gϑi is also progressively measurable by
being adapted and right-continuous.
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For every extended mixed strategy, define also Gϑi (0−) ≡ 0, Gϑi (∞) ≡ 1 and αϑi (∞) ≡ 1. Let S ϑ denote
the set of all extended mixed strategies for the subgame starting at ϑ.

Condition (iii) reflects that if a positive αϑi (t) is reached, and the other firm does not move at t, then
firm i is sure to move; cf. Subsection 3.1.2.29

Time-consistency for randomized plans means that conditional probabilities of moving at any given time
(as determined by Bayes’ rule) agree across subgames whenever possible.

Definition A.2 (Riedel and Steg, 2017, Definition 2.13). A time-consistent extended mixed strategy for firm
i ∈ {1, 2} for the timing game is a family of extended mixed strategies for all subgames, σi := (σϑi ;ϑ ∈ T ) =
((Gϑi , α

ϑ
i );ϑ ∈ T ), such that for all ϑ, ϑ′, τ ∈ T with ϑ ≤ ϑ′ ≤ τ it holds that (a.s.)

Gϑi (t) = Gϑi (ϑ′−) +
(
1−Gϑi (ϑ′−)

)
Gϑ
′

i (t) for all t ≥ ϑ′ and αϑi (τ) = αϑ
′

i (τ).

To define expected payoffs from randomized plans for the first move, denote any mass points of the
cumulative distribution functions by ∆Gϑi (τ̂ϑ) = Gϑi (τ̂ϑ)−Gϑi (τ̂ϑ−).

Definition A.3 (Riedel and Steg, 2017, Definition 2.11). Given a profile of extended mixed strategies
(σϑ1 , σ

ϑ
2 ) ∈ S ϑ ×S ϑ and i, j ∈ {1, 2}, i 6= j, the payoff of firm i in the subgame starting at ϑ ∈ T is

V ϑi
(
σϑi , σ

ϑ
j

)
:= E

[ ∫
[0,τ̂ϑ)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s) +

∫
[0,τ̂ϑ)

(
1−Gϑi (s)

)
F is dG

ϑ
j (s)

+
∑

s∈[0,τ̂ϑ)

∆Gϑi (s)∆Gϑj (s)M i
s + λϑL,iL

i

τ̂
ϑ + λϑL,jF

i

τ̂
ϑ + λϑMM

i

τ̂
ϑ

∣∣∣∣Fϑ

]
,

where τ̂ϑ = inf{t ≥ ϑ |αϑ1 (t) + αϑ2 (t) > 0} and λϑL,1, λ
ϑ
L,2 and λϑM are the outcome probabilities at τ̂ϑ from

Definition A.4, which satisfy λϑL,i + λϑL,j + λϑM = (1−Gϑi (τ̂ϑ−))(1−Gϑj (τ̂ϑ−)).

λϑL,1, λ
ϑ
L,2 and λϑM denote the additional outcome probabilities from the extensions αϑi , of only firm 1,

only firm 2 or both moving first. Their definition is based on the interpretation that αϑi (t) > 0 means an
atom at t, and then, by right-continuity, infinitely many follow immediately. Therefore, let the functions µL
and µM from [0, 1]2 \ {(0, 0)} to [0, 1] be defined by

µL(x, y) := x(1− y)
∞∑
n=0

[(1− x)(1− y)]n = x(1− y)
x+ y − xy

and µM (x, y) := xy

x+ y − xy
.

µL(ai, aj) is the probability that player i stops first if players i and j stop with probabilities ai and aj ,
respectively, in every stage of a repeated game. µM (ai, aj) is the probability of simultaneous stopping and
1− µL(ai, aj)− µM (ai, aj) = µL(aj , ai) is that of player j stopping first. Extra first-round behavior occurs
if an interval of atoms meets an isolated atom ∆Gϑi (τ̂ϑ) = Gϑi (τ̂ϑ)−Gϑi (τ̂ϑ−) of a cumulative distribution
function. Special treatment is moreover required when atoms become arbitrarily small, because µL lacks a
continuous extension at the origin; see Riedel and Steg (2017) for more details. Note that the probability
that τ̂ϑ is reached from ϑ with no firm having moved before is (1 − Gϑ1 (τ̂ϑ−))(1 − Gϑ2 (τ̂ϑ−)) and that
Definition A.1 (iii) implies (1−Gϑi (τ̂ϑ−)) = ∆Gϑi (τ̂ϑ) if τ̂ϑ = inf{t ≥ ϑ |αϑi (t) > 0}. If (1−Gϑi (τ̂ϑ−)) = 0,
then it is for notational convenience understood that (1−Gϑi (τ̂ϑ−))/(1−Gϑi (τ̂ϑ−)) := 0.

Definition A.4 (Riedel and Steg, 2017, Definition 2.9). Given ϑ ∈ T and a pair of extended mixed
strategies (Gϑ1 , α

ϑ
1 ), (Gϑ2 , α

ϑ
2 ), the outcome probabilities λϑL,1, λ

ϑ
L,2 and λϑM for firm 1 becoming leader, firm 2

becoming leader and simultaneous moving, respectively, at τ̂ϑ are defined as follows. Let i, j ∈ {1, 2}, i 6= j.
29The intuition is that by condition (ii) then either αϑi (t) = 1, so firm i moves for sure when t is reached, or right-continuity

implies that infinitely many positive atoms occur before any time past t, so that firm i will have moved if the other has not.
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If τ̂ϑ < τ̂ϑj := inf{t ≥ ϑ |αϑj (t) > 0}, then

λϑL,i := ∆Gϑi (τ̂ϑ)
(
1−Gϑj (τ̂ϑ−)

)[
1−

∆Gϑj (τ̂ϑ)
1−Gϑj (τ̂ϑ−)

]
= ∆Gϑi (τ̂ϑ)

(
1−Gϑj (τ̂ϑ)

)
,

λϑM := ∆Gϑi (τ̂ϑ)
(
1−Gϑj (τ̂ϑ−)

)
αϑi (τ̂ϑ)

∆Gϑj (τ̂ϑ)
1−Gϑj (τ̂ϑ−)

= ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)αϑi (τ̂ϑ).

If τ̂ϑ < τ̂ϑi := inf{t ≥ ϑ |αϑi (t) > 0}, then

λϑL,i :=
(
1−Gϑi (τ̂ϑ−)

)
∆Gϑj (τ̂ϑ) ∆Gϑi (τ̂ϑ)

1−Gϑi (τ̂ϑ−)
(
1− αϑj (τ̂ϑ)

)
= ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)

(
1− αϑj (τ̂ϑ)

)
,

λϑM :=
(
1−Gϑi (τ̂ϑ−)

)
∆Gϑj (τ̂ϑ) ∆Gϑi (τ̂ϑ)

1−Gϑi (τ̂ϑ−)
αϑj (τ̂ϑ) = ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)αϑj (τ̂ϑ).

If τ̂ϑ = τ̂ϑ1 = τ̂ϑ2 and either max{αϑ1 (τ̂ϑ), αϑ2 (τ̂ϑ)} = 1 or min{αϑ1 (τ̂ϑ), αϑ2 (τ̂ϑ)} > 0, then

λϑL,i := ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)µL(αϑi (τ̂ϑ), αϑj (τ̂ϑ)), λϑM := ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)µM (αϑ1 (τ̂ϑ), αϑ2 (τ̂ϑ)).

If τ̂ϑ = τ̂ϑ1 = τ̂ϑ2 , max{αϑ1 (τ̂ϑ), αϑ2 (τ̂ϑ)} < 1 and min{αϑ1 (τ̂ϑ), αϑ2 (τ̂ϑ)} = 0, then

λϑL,i := ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)
(
1− αϑj (τ̂ϑ)

)
·
(
αϑi (τ̂ϑ) +

(
1− αϑi (τ̂ϑ)

) 1
2

{
lim inf
t↘τ̂ϑ

α
ϑ
i (t)+αϑj (t)>0

µL(αϑi (t), αϑj (t)) + lim sup
t↘τ̂ϑ

α
ϑ
i (t)+αϑj (t)>0

µL(αϑi (t), αϑj (t))
})

,

λϑM := ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)− λϑL,i − λ
ϑ
L,j

= ∆Gϑi (τ̂ϑ)∆Gϑj (τ̂ϑ)
(
1− αϑi (τ̂ϑ)

)(
1− αϑj (τ̂ϑ)

)
µM (αϑ1 (τ̂ϑ+), αϑ2 (τ̂ϑ+)) if αϑ1 (τ̂ϑ+), αϑ2 (τ̂ϑ+) exist.

The last case uses µM (0, 0) := 0, the function’s continuous extension to the origin. λϑL,i is of course also
the probability of firm j becoming follower at τ̂ϑ.

Lemma A.5. In the setting of Section 2, consider four processes (πmt ) ∈ L1(dt⊗ P ), m = 0, L, F,B, such
that each process (

∫ t
0 π

m
s ds) is adapted, and let {τO(τ), τ ∈ T } be a family of stopping times satisfying

τ ≤ τO(τ) ≤ τO(τ ′) a.s. for all τ, τ ′ ∈ T with τ ≤ τ ′ a.s. Then there exist optional processes30 (Lt) and
(Ft) that are of class (D)31 and which satisfy

Lτ = L(τ) :=
∫ τ

0
π0
s ds+ E

[∫ τO(τ)

τ

πLs ds+
∫ ∞
τO(τ)

πBs ds

∣∣∣∣Fτ

]
and

Fτ = F (τ) :=
∫ τ

0
π0
s ds+ ess sup

τ
′≥τ

E

[∫ τ
′

τ

πFs ds+
∫ ∞
τ
′
πBs ds

∣∣∣∣Fτ

]
30This means that the processes are not only measurable on Ω× R+ w.r.t. F ⊗ B(R+), but also w.r.t. the optional σ-field,

generated by all right-continuous processes that are adapted to (Ft) (which are thus optional themselves).
31This is a mild integrability condition: A measurable process X is of class (D) if the family {Xτ | τ ∈ T , τ <∞} is uniformly

integrable, so that the family is bounded in L1(P ) and pointwise convergence of X at a stopping time implies convergence in
L

1(P ) as well.
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a.s. for every τ ∈ T . In particular, the process (Ft) can be chosen right-continuous. If lim τO(τn) = τO(τ)
a.s. for any τ ∈ T and sequence (τn)n∈N ⊆ T with τn ↘ τ a.s., then also (Lt) can be chosen right-
continuous.

All conditions are met when letting each τO(τ) be the latest stopping time attaining the value of F (τ) or
when letting each τO(τ) = τ .

Proof. First, rewrite F (τ) as

F (τ) =
∫ τ

0

(
π0
s − π

F
s

)
ds+ E

[∫ ∞
0

πBs ds

∣∣∣∣Fτ

]
+ ess sup

τ
′≥τ

E

[∫ τ
′

0

(
πFs − π

B
s

)
ds

∣∣∣∣Fτ

]
. (A.1)

The first term on the right-hand side is a continuous process evaluated at τ , which is by assumption
adapted and bounded by

∫∞
0 (|π0

s |+ |π
F
s |) ds ∈ L

1(P ), hence optional and of class (D). The second and third
terms are (super-)martingale-systems (cf. El Karoui, 1981, Proposition 2.26) of class (D) – particularly the
latter bounded by the family (E[

∫∞
0 (|πFs | + |π

B
s |) ds |Fτ ]; τ ∈ T ) of class (D). Thus, there exist optional

processes of class (D) that aggregate the two (super-)martingale-systems, respectively. The former, being a
martingale, may be chosen right-continuous. The latter is in fact the Snell envelope UY of the continuous
process (Yt) := (

∫ t
0 (πFs − π

B
s ) ds), whence UY is (right-)continuous in expectation and may thus be taken to

have right-continuous paths, a.s.
L(τ) can be written like (A.1), with a third term X(τ) := E[

∫ τO(τ)
0 (πLs −π

B
s ) ds |Fτ ]. Suppose first that

πLs − π
B
s ≥ 0 for all s ∈ R+, a.s. In this case,

E
[
X(τ ′)

∣∣Fτ

]
= X(τ) + E

[∫ τO(τ ′)

τO(τ)

(
πLs − π

B
s

)
ds

∣∣∣∣Fτ

]
≥ X(τ)

for all stopping times τ ′ ≥ τ (as τO(τ ′) ≥ τO(τ)), so X := (X(τ); τ ∈ T ) is a submartingale-system. X is
bounded by (E[

∫∞
0 (|πLs | + |π

B
s |) ds |Fτ ]; τ ∈ T ), hence of class (D). In general, the last argument applies

separately to (πLs − π
B
s )+ and (πLs − π

B
s )−, showing that X is the difference of two submartingale-systems,

which can be aggregated by two optional processes of class (D).
If lim τO(τn) = τO(τ) a.s. for any sequence (τn)n∈N ⊆ T with τn ↘ τ a.s., then X, being of class (D),

is right-continuous in expectation, and the aggregating submartingales can be chosen with right-continuous
paths.

Finally, as the process (Yt) defined above is continuous, the latest stopping time after τ that attains
F (τ), τF (τ), is the first time the monotone part of the Snell envelope UY increases. That monotone part
inherits continuity from (Yt). Thus chosen, τ ≤ τF (τ) ≤ τF (τ ′) on {τ ≤ τ ′} for all τ, τ ′ ∈ T . Now consider
a sequence of stopping times τn ↘ τ a.s., whence also τF (τn) decreases in n. By construction, we can
only have lim τF (τn) > τF (τ) ≥ τ when the monotone part of UY is constant on (τF (τ), lim τF (τn)]. By
continuity, it must then be constant on [τF (τ), lim τF (τn)]. However, the monotone part of UY increases at
τF (τ) by definition, so we must have τF (τ) = lim τF (τn) a.s.

Remark A.6. As the proof of Lemma A.5 relies on the aggregation of supermartingales of class (D), we may
furthermore assume that the processes (Lt) and (Ft) have left limits at any time t (see El Karoui, 1981,
Proposition 2.27).

Lemma A.7. Let (xt) be a geometric Brownian motion on (Ω,F , P ), satisfying

dxt = µxt dt+ σxt dBt

for a Brownian motion (Bt) adapted to (Ft). Moreover, let τx̃ := inf{t ≥ 0 |xt ≥ x̃} for any given constant
x̃ ∈ R+. Then the problem

sup
τ∈T , τ≤τx̃

E

[∫ ∞
τ

e−rt(Dxt − rI) dt
]

(A.2)
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with r > max{µ, 0}, D ∈ R and I > 0 is solved by τ∗ := inf{t ≥ 0 |xt ≥ x̃ ∧ x
∗}, where

x∗ = β1
β1 − 1 ·

I(r − µ)
D+

and β1 > 1 is the positive root of 1
2σ

2β(β − 1) + µβ − r = 0.

Proof. If D ≤ 0, then the integrand in (A.2) is always negative and the latest feasible stopping time is
optimal, which indeed satisfies τx̃ = τ∗ as now x∗ = ∞. For D > 0, Lemma A.7 is a special case of
Proposition 4.6 in Steg and Thijssen (2015), setting their Y0 = Dx0, µY = µ, σY = σ, X0 = c0 = cB = 0
and yP = (r − µY )(I − cA/r) = x̃.

B Proofs
Proof of Proposition 2.3. For (i), let ϑ, ϑ′ ∈ T with ϑ ≤ ϑ′. Consider first two arbitrary extended mixed
strategies for each i = 1, 2, σϑi ∈ S ϑ and σϑ

′

i ∈ S ϑ
′

, that are time-consistent (as in Definition A.2). Then
dGϑi (t) = (1 − Gϑi (ϑ′−))dGϑ

′

i (t) and (1 − Gϑi (t)) = (1 − Gϑi (ϑ′−))(1 − Gϑ
′

i (t)) for every t ≥ ϑ′. Suppose
that in fact αϑ

′

i (t) = 1{t≥ϑ′}α
ϑ
i (t) for all t ∈ R+. Then τ̂ϑ

′

= τ̂ϑ on {τ̂ϑ ≥ ϑ′}, and Definition A.4 implies

λϑL,i = (1−Gϑi (ϑ′−))(1−Gϑj (ϑ′−))λϑ
′

L,i; analogously for λϑM . Together, the payoffs from Definition A.3 then
satisfy

V ϑi
(
σϑi , σ

ϑ
j

)
= E

[ ∫
[ϑ,τ̂ϑ∧ϑ′)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s) +

∫
[ϑ,τ̂ϑ∧ϑ′)

(
1−Gϑi (s)

)
F is dG

ϑ
j (s)

+
∑

s∈[ϑ,τ̂ϑ∧ϑ′)

∆Gϑi (s)∆Gϑj (s)M i
s + 1{τ̂ϑ<ϑ′}

(
λϑL,iL

i

τ̂
ϑ + λϑL,jF

i

τ̂
ϑ + λϑMM

i

τ̂
ϑ

)

+
(
1−Gϑi (ϑ′−)

)(
1−Gϑj (ϑ′−)

)
V ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)∣∣∣∣Fϑ

]
(B.1)

(using iterated expectations). The last term needs no indicator for {τ̂ϑ ≥ ϑ′}, because by Definition A.1
(iii) this case must hold whenever (1−Gϑi (ϑ′−))(1−Gϑj (ϑ′−)) > 0.

Now let σϑ
′

1 , σ
ϑ
′

2 ∈ S ϑ
′

and τ1, τ2 ∈ T with τ1, τ2 ∈ [ϑ, ϑ′], and construct σϑk as indicated in Proposition
2.3 for k = 1, 2. The latter satisfy Definition A.1: Condition (ii) holds by ϑ′ ≥ ϑ and condition (iii)
by Gϑk(t) ≥ Gϑ

′

k (t) for all t ∈ R+. Gϑk satisfies condition (i) for the starting time τk, because it is the
composition of two processes clearly satisfying it, based on the events {τk < ϑ′}, {τk = ϑ′} ∈ Fτk

; Gϑk thus
satisfies condition (i) also for the starting time ϑ ≤ τk. Time-consistency with Gϑ

′

k holds by construction.
Now τ̂ϑ ≥ ϑ′ and Gϑ1 (t), Gϑ2 (t) ∈ {0, 1} for t < ϑ′, so (B.1) yields (2.6).

For (ii), suppose that σϑ
′

i is a best reply for firm i to σϑ
′

j at ϑ′. To show optimality of σϑi against σϑj at ϑ,
let σϑa ∈ S ϑ be arbitrary. σϑa is time-consistent with σϑ

′

a defined by Gϑ
′

a (t) = 1{t≥ϑ′}(1{Gϑa(ϑ′−)<1}(G
ϑ
a(t)−

Gϑa(ϑ′−))/(1 − Gϑa(ϑ′−)) + 1{Gϑa(ϑ′−)=1}) and αϑ
′

a (t) = 1{t≥ϑ′}α
ϑ
a(t) for every t ∈ R+. The latter satisfies

Definition A.1 for the starting time ϑ′ because Gϑa(ϑ′−) is Fϑ
′ -measurable, so V ϑ

′

i (σϑ
′

a , σ
ϑ
′

j ) ≤ V ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ).
Moreover, as σϑj is time-consistent with σϑ

′

j , (B.1) applied with τ̂ϑa := inf{t ≥ ϑ |αϑa(t) + αϑj (t) > 0} and
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Gϑj (t) ∈ {0, 1} for t < ϑ′ yields

V ϑi
(
σϑa , σ

ϑ
j

)
= E

[ ∫
[ϑ,τ̂ϑa ∧ϑ

′∧τj)
Lis dG

ϑ
a(s) + 1{τj<τ̂ϑa ∧ϑ′}

((
1−Gϑa(τj)

)
F iτj + ∆Gϑa(τj)M

i
τj

)
+ 1{τ̂ϑa<ϑ′}

(
λϑL,aL

i

τ̂
ϑ
a

+ λϑL,jF
i

τ̂
ϑ
a

+ λϑMM
i

τ̂
ϑ
a

)
+
(
1−Gϑa(ϑ′−)

)(
1−Gϑj (ϑ′−)

)
V ϑ
′

i

(
σϑ
′

a , σ
ϑ
′

j

)∣∣∣∣Fϑ

]
.

We aim to eliminate αϑa for t < ϑ′ without changing the payoff. On {τ̂ϑa < τj}, G
ϑ
j (τ̂ϑa ) = 0 and thus

λϑL,a = ∆Gϑa(τ̂ϑa ) = 1 − Gϑa(τ̂ϑa−) by Definition A.4. Now also dGϑa(s) = 0 for all s > τ̂ϑa , so we can
move 1{τ̂ϑa<τj}1{τ̂ϑa<ϑ′}L

i

τ̂
ϑ
a

∆Gϑa(τ̂ϑa ) from the second line into the first integral by integrating up to ϑ′ ∧ τj .

Moreover, then λϑL,j = λϑM = 0, so we can multiply the second line by 1{τ̂ϑa≥τj}. On {τ̂ϑa > τj}, ∆Gϑj (τ̂ϑa ) =

1−Gϑj (τ̂ϑa ) = 0 and thus λϑL,a = λϑL,j = λϑM = 0, so we can multiply the second line also by 1{τ̂ϑa≤τj} or in total

by 1{τ̂ϑa=τj}
. Then, on {τ̂ϑa = τj < ϑ′}, as ϑ′ ≤ inf{t ≥ ϑ |αϑ

′

j (t) > 0} = inf{t ≥ ϑ |αϑj (t) > 0}, Definition

A.4 implies λϑL,a = 0, λϑM = ∆Gϑa(τj)α
ϑ
a(τj) = (1−Gϑa(τj−))αϑa(τj) and λϑL,j = (1−Gϑa(τj−))(1− αϑa(τj)).

In the third line, (1−Gϑj (ϑ′−)) = 1{τj≥ϑ′}. These steps yield

V ϑi
(
σϑa , σ

ϑ
j

)
= E

[ ∫
[ϑ,ϑ′∧τj)

Lis dG
ϑ
a(s) + 1{τj<τ̂ϑa ∧ϑ′}

((
1−Gϑa(τj)

)
F iτj + ∆Gϑa(τj)M

i
τj

)
+ 1{τj=τ̂ϑa<ϑ′}

(
1−Gϑa(τj−)

)((
1− αϑa(τj)

)
F iτj + αϑa(τj)M

i
τj

)
+ 1{τj≥ϑ′}

(
1−Gϑa(ϑ′−)

)
V ϑ
′

i

(
σϑ
′

a , σ
ϑ
′

j

)∣∣∣∣Fϑ

]
.

If we now modify αϑa by multiplying it with 1{t≥ϑ′}, which does not inflict Definition A.1 and induces τ̂ϑa ≥ ϑ
′,

two things happen. The first indicator switches from 0 to 1 on {τ̂ϑa ≤ τj < ϑ′}. This has no effect on the
subset {τ̂ϑa < τj < ϑ′}, because then τ̂ϑa = inf{t ≥ ϑ |αϑa(t) > 0} by τj ≤ inf{t ≥ ϑ |αϑj (t) > 0}, implying
Gϑa(τ̂ϑa ) = 1 and (1 − Gϑa(τj)) = ∆Gϑa(τj) = 0. On the subset {τ̂ϑa = τj < ϑ′}, however, we may gain some
payoff. The other effect is that the second line vanishes, where we lose some payoff. Gain and loss can be
equated by also modifying Gϑa on {τ̂ϑa = τj < ϑ′}, precisely by setting Gϑa(t) = Gϑa(τj−)+αϑa(τj)(1−G

ϑ
a(τj−))

for every t ∈ [τj , ϑ
′), where αϑa(τj) is the original one.32 Hence, we may assume τ̂ϑa ≥ ϑ′ without changing

the payoff.
The cumulative distribution is now dealt with by a change of variable. Defining τGa (x) := inf{s ≥

0 |Gϑa(s) > x} for x ∈ [0, 1), it holds that
∫

[0,τ) L
i
s dG

ϑ
a(s) =

∫ 1
0 L

i

τ
G
a (x)1{τGa (x)∈[0,τ)} dx (a.s.) for any τ ∈ T ;

32To see that the modified Gϑa is still adapted and consistent with Gϑ
′

a , notice that {τ̂ϑa = τj < ϑ
′} ∈ Fτj

and that Gϑa(τj−)

and αϑa(τj) are Fτj
-measurable, so we can define an adapted process G

τj
a by

G
τj
a (t) = 1{t≥τj}1{τ̂ϑa=τj<ϑ

′}

(
G
ϑ
a(τj−) + α

ϑ
a(τj)

(
1−Gϑa(τj−)

))
+ 1{t≥τj}

(
1− 1

{τ̂ϑa=τj<ϑ
′}

)
G
ϑ
a(t).

Then the modified Gϑa is the process given by 1{t6∈[τj ,ϑ
′)}G

ϑ
a(t) + 1{t∈[τj ,ϑ

′)}G
τj
a (t) for every t ∈ R+ and, thus, also adapted.

The latter process is time-consistent with Gϑ
′

a , because we have Gϑa(ϑ′) = G
ϑ
′

a (ϑ′) = 1 on {τ̂ϑa = τj < ϑ
′} due to Gϑa(τ̂ϑa ) = 1.
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see Lemma B.2 in Riedel and Steg (2017) for details. Treating the other terms analogously yields

V ϑi
(
σϑa , σ

ϑ
j

)
= E

[ ∫ 1

0
Li
τ
G
a (x)1{τGa (x)∈[ϑ,ϑ′∧τj)}

dx

+ 1{τj<ϑ′}
∫ 1

0

(
F iτj1{τGa (x)∈(τj ,∞]} +M i

τj
1{τGa (x)∈[τj ,τj ]}

)
dx

+ 1{τj≥ϑ′}
∫ 1

0
V ϑ
′

i

(
σϑ
′

a , σ
ϑ
′

j

)
1{τGa (x)∈[ϑ′,∞]} dx

∣∣∣∣Fϑ

]
.

Using the optimal payoff at ϑ′, we obtain an upper bound. Collecting the integrals then yields

V ϑi
(
σϑa , σ

ϑ
j

)
≤ E

[∫ 1

0

(
Li
τ
G
a (x)1{τGa (x)<ϑ′∧τj}

+ 1{τj<ϑ′}
(
F iτj1{τGa (x)>τj}

+M i
τj

1{τGa (x)=τj}

)
+ 1{τj≥ϑ′}V

ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)
1{τGa (x)≥ϑ′}

)
dx

∣∣∣∣Fϑ

]
. (B.2)

As necessarily τGa (x) ≥ ϑ for every x ∈ (0, 1], we can bound the conditional expectation of the integrand,
and thus that of the integral, and therefore also the left-hand side of (B.2) by33

V ϑi
(
σϑa , σ

ϑ
j

)
≤ ess sup

τ≥ϑ
E
[
Liτ1{τ<ϑ′∧τj} + 1{τj<ϑ′}

(
F iτj1{τ>τj} +M i

τj
1{τ=τj}

)
+ 1{τ∧τj≥ϑ′}V

ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)∣∣∣Fϑ

]
.

In the essential supremum, the payoff is the same for τ ∧ ϑ′ in place of τ , and then, as τj ≤ ϑ′ and
{τ < ϑ′ ∧ τj} = {τ < τj} ∩ {τ ∧ τj < ϑ′}, the same as in (2.7). If the latter is attained by τi, then (2.6)
implies V ϑi (σϑi , σ

ϑ
j ) ≥ V ϑi (σϑa , σ

ϑ
j ) for any other σϑa ∈ S ϑ.

As to (iii), note that any σϑk as hypothesized is such that Gϑk(t) = 1{t≥τϑk }, clearly satisfying Definition
A.1 (i), and such that αϑk = α

τc(ϑ)
k , inheriting (ii) from the latter; condition (iii) holds by τϑk ≤ τc(ϑ). The

family (αϑk ;ϑ ∈ T ) satisfies the time-consistency property from Definition A.2, because αϑk = α
τc(ϑ)
k implies

αϑk(t) = 1{t≥ϑ}αok(t) under the hypothesis. The family (Gϑk ;ϑ ∈ T ) satisfies the time-consistency property
from Definition A.2, because Gϑk(t) = 1{t≥τϑk } and (τϑk ;ϑ ∈ T ) satisfies (2.1).

Proof of Lemma 3.1. Given τj = ϑ and the hypothesis, (2.7) becomes

ess sup
τ∈T ,τ∈[ϑ,ϑ′]

E
[
1{ϑ<ϑ′}

(
F iϑ1{τ>ϑ} +M i

ϑ1{τ=ϑ}

)
+ 1{ϑ=ϑ′}V

ϑ
′

i (σϑ
′

i , σ
ϑ
′

j )
∣∣∣Fϑ

]
= ess sup

τ∈T ,τ∈[ϑ,ϑ′]
E
[
1{ϑ<ϑ′}M

i
ϑ + 1{ϑ=ϑ′}V

ϑ
′

i (σϑ
′

i , σ
ϑ
′

j )
∣∣∣Fϑ

]
= 1{ϑ<ϑ′}M

i
ϑ + 1{ϑ=ϑ′}V

ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ),

which is attained by τi = ϑ, so the claim follows from Proposition 2.3.

Proof of Lemma 3.2. The stopping problem in (2.2) is equivalent to ess infτ ′≥τ E[
∫ τ ′
τ

(πBis −π
Fi
s ) ds |Fτ ]

(up to a constant). Optimality of τ iF (τ) and iterated expectations thus imply E[
∫ τ iF (τ)
τ
′ (πBis −π

Fi
s ) ds |Fτ

′ ] ≤
33The last step actually follows by way of contradiction, because we are integrating over uncountably many random variables

in (B.2) and bound their conditional expectations, each of which is defined only up to nullsets. Specifically, for a process (Xt)
of class (D), let Yϑ := ess supτ≥ϑ E[Xτ |Fϑ] and A = {Yϑ < E[

∫ 1
0 X

τ
G
a (x)

dx |Fϑ]}. If we had P [A] > 0, then E[1AYϑ] <

E[1A
∫ 1

0 X
τ
G
a (x)

dx] by A ∈ Fϑ and iterated expectations, and hence E[1AYϑ] <
∫ 1

0 E[1AXτGa (x)
] dx by Fubini. There would

thus exist an x ∈ (0, 1) with E[1AYϑ] < E[1AXτGa (x)
] = E[1AE[X

τ
G
a (x)

|Fϑ]], contradicting Yϑ ≥ E[X
τ
G
a (x)

|Fϑ].
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0 for all τ ′ ∈ [τ, τ iF (τ)] and E[
∫ τ ′
τ
i
F (τ)(π

Bi
s − π

Fi
s ) ds |F

τ
i
F (τ)] ≥ 0 for all τ ′ ≥ τ iF (τ), strictly on {τ ′ > τ iF (τ)},

as τ iF (τ) is the latest time attaining (2.2). With τ ′ = min{τ1
F (τ), τ2

F (τ)} and πB2
· − π

F2
· ≤ πB1

· − π
F1
· , we

thus have

0 ≤ E
[∫ τ

1
F (τ)

τ
′

(πB2
s − π

F2
s ) ds

∣∣∣∣Fτ
′

]
≤ E

[∫ τ
1
F (τ)

τ
′

(πB1
s − π

F1
s ) ds

∣∣∣∣Fτ
′

]
≤ 0.

The first inequality is strict on {τ2
F (τ) < τ1

F (τ)} (up to a P -nullset), so τ1
F (τ) ≤ τ2

F (τ) (P -a.s.).
Finally, F iτ −M

i
τ = ess supτ ′≥τ E[

∫ τ ′
τ

(πFis − π
Bi
s ) ds |Fτ ] is not greater for i = 1 than for i = 2.

Proof of Lemma 3.4. For any τ ∈ T we have

L2
τ − F

2
τ = E

[∫ τ
1
F (τ)

τ

(πL2
s − π

F2
s ) ds+

∫ τ
2
F (τ)

τ
1
F (τ)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fτ

]
(B.3)

and

L1
τ − F

1
τ = E

[∫ τ
1
F (τ)

τ

(πL1
s − π

F1
s ) ds+

∫ τ
2
F (τ)

τ
1
F (τ)

(πL1
s − π

B1
s ) ds

∣∣∣∣Fτ

]
,

where τ1
F (τ) ≤ τ2

F (τ) by Lemma 3.2. By the optimality of τ2
F (τ) for stopping the stream (πB2

s − π
F2
s ), the

second integral on the right-hand side of (B.3) has non-positive conditional expectation, cf. the proof of
Lemma 3.2. The first claim now follows from the assumptions πL1

· − π
F1
· ≥ πL2

· − π
F2
· and πL1

· ≥ πB1
· .

The remaining claims then follow from (L1
t − F

1
t )− (L2

t − F
2
t ) ≥ 0 for all t ∈ R+ a.s. by the first claim and

right-continuity.

Proof of Proposition 3.5. The following facts are the main arguments for the proof. First, letting
τ iL>F (τ) = inf{t ≥ τ |Lit > F it } for every τ ∈ T and i = 1, 2, we have M i

· ≤ Li· ≤ F i· on [τ, τ iL>F (τ))
by πLi· ≥ π

Bi
· and definition of τ iL>F (τ), respectively. Second, for all τ, τ ′ ∈ T with τ ≤ τ ′ ≤ τ iF (τ) we have

F iτ ≤ E[F iτ ′ |Fτ ], because τ iF (τ) = τ iF (τ ′) attains both F iτ , F
i
τ
′ , and π0i

· ≥ πFi· . Third, if τ = τ iF (τ), then
firm i’s payoff from the strategy corresponding to the pure plan τi = τ , i.e., στi given by Gτi (t) = 1{t≥τ} and
ατi (t) = 0 for every t ∈ R+, yields at least the payoff F iτ . Indeed, then Liτ ≥ M i

τ = F iτ by πLi· ≥ πBi· and
τ attaining F iτ , so for any strategy στj ∈ S τ , V τi (στi , σ

τ
j ) is (1 − Gτj (τ))Liτ + Gτj (τ)M i

τ ≥ F iτ on {τ < τ̂ τ},
and on {τ = τ̂ τ} it is at least F iτ (λτL,i + λτL,j + λτM ) = F iτ (1−Gτi (τ̂ τ−))(1−Gτj (τ̂ τ−)) = F iτ . Thanks to the
minimal payoff F i

τ
i
F (τ) at τ iF (τ), firm i can also ensure the minimal payoff F iτ for τ ≤ τ iF (τ), in particular if

τ = min{τ iL>F (ϑ), τ iF (ϑ)} for some ϑ ∈ T . Showing this and completing the proof for pure strategies would
be mainly a matter of suitable conditional expectations. For extended mixed strategies, however, we need
tools like in the proof of Proposition 2.3 in order to apply the same arguments.

We start with the third claim. Let any ϑ ∈ T , i, j ∈ {1, 2}, i 6= j, and σϑi , σ
ϑ
j ∈ S ϑ be given and

set ϑ′ = min{τ iL>F (ϑ), τ iF (ϑ)}. We want to show that it is no loss for firm i to remain idle on [ϑ, ϑ′).
First, to ensure a sufficient continuation payoff, construct σϑ

′

i that is time-consistent with σϑi by Gϑ
′

i (t) =
1{t≥ϑ′}(1{Gϑi (ϑ′−)<1}(G

ϑ
i (t)−Gϑi (ϑ′−))/(1−Gϑi (ϑ′−)) + 1{Gϑi (ϑ′−)=1}) and αϑ

′

i (t) = 1{t≥ϑ′}α
ϑ
i (t) for every

t ∈ R+. Construct σϑ
′

j likewise, and let Aϑ
′

V <F denote the event {V ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ) < F iϑ′} ∈ Fϑ
′ . Now define

the alternative continuation strategy σϑ
′

a ∈ S ϑ
′

by

Gϑ
′

a (t) = 1{ϑ′>ϑ}1Aϑ
′

V<F

1{t≥τ iF (ϑ′)} +
(

1− 1{ϑ′>ϑ}1Aϑ
′

V<F

)
Gϑ
′

i (t)

and αϑ
′

a (t) = (1 − 1{ϑ′>ϑ}1Aϑ
′

V<F

)1{t≥ϑ′}α
ϑ
i (t) for every t ∈ R+. σϑ

′

a agrees with σϑ
′

i on {ϑ′ = ϑ} and

off Aϑ
′

V <F , and then the continuation payoff is V ϑ
′

i (σϑ
′

i , σ
ϑ
′

j ). Otherwise, on {ϑ′ > ϑ} ∩ Aϑ
′

V <F , it is
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V ϑ
′

i (σϑ
′

a , σ
ϑ
′

j ) ≥ F iϑ′ . The latter bound can be obtained along the lines followed below, but needs fewer
details, so we save spelling out the argument; it uses that the continuation payoff at τ iF (ϑ′) is at least F i

τ
i
F (ϑ′)

as shown at the beginning of the proof.
Next, set σϑa = σϑ

′

a ∈ S ϑ
′

⊆ S ϑ, which does not charge [ϑ, ϑ′) and agrees with σϑi on {ϑ′ = ϑ}. In
perspective of (B.1), note that, although the continuation payoffs from σϑ

′

a and σϑ
′

i are also the same off
Aϑ
′

V <F , they can then accrue with different probabilities, because Gϑa(ϑ′−) = 0 ≤ Gϑi (ϑ′−) can be strict on
{ϑ′ > ϑ}. Now consider τ̂ϑj = inf{t ≥ ϑ |αϑj (t) > 0}. We have τ̂ϑj < inf{t ≥ ϑ |αϑa(t) > 0} on {τ̂ϑj < ϑ′}
and, as then ϑ < ϑ′ and thus ∆Gϑa(τ̂ϑj ) = 0, the probability that firm i obtains Li· or M

i
· at τ̂ϑj is null

by Definition A.4, whereas F i· is obtained with probability (1 − Gϑa(τ̂ϑj −))(1 − Gϑj (τ̂ϑj −)) = ∆Gϑj (τ̂ϑj ). On
{τ̂ϑj ≥ ϑ

′}, we have ϑ′ ≤ inf{t ≥ ϑ |αϑa(t)+αϑj (t) > 0} and the continuation payoff applies. (B.1) thus yields

V ϑi
(
σϑi , σ

ϑ
j

)
− V ϑi

(
σϑa , σ

ϑ
j

)
= E

[
1{ϑ′>ϑ}

(∫
[ϑ,τ̂ϑ∧ϑ′)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s) +

∫
[ϑ,τ̂ϑ∧ϑ′)

(
1−Gϑi (s)

)
F is dG

ϑ
j (s)

+
∑

s∈[ϑ,τ̂ϑ∧ϑ′)

∆Gϑi (s)∆Gϑj (s)M i
s + 1{τ̂ϑ<ϑ′}

(
λϑL,iL

i

τ̂
ϑ + λϑL,jF

i

τ̂
ϑ + λϑMM

i

τ̂
ϑ

)
−
∫

[ϑ,τ̂ϑj ∧ϑ
′)
F is dG

ϑ
j (s)− 1{τ̂ϑj <ϑ′}∆G

ϑ
j (τ̂ϑj )F i

τ̂
ϑ
j

+ 1
A
ϑ
′

V<F

(
1−Gϑi (ϑ′−)

)(
1−Gϑj (ϑ′−)

)
V ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)
−
(

1− 1
A
ϑ
′

V<F

)
Gϑi (ϑ′−)

(
1−Gϑj (ϑ′−)

)
V ϑ
′

i

(
σϑ
′

i , σ
ϑ
′

j

)
− 1

A
ϑ
′

V<F

(
1−Gϑj (ϑ′−)

)
V ϑ
′

i

(
σϑ
′

a , σ
ϑ
′

j

))∣∣∣∣Fϑ

]
.

Now we can apply the estimate F i· ≥ Li· ≥ M i
· on [ϑ, ϑ′) and collect the first six terms in the first two

integrals. The sum, when written as an integral, becomes
∫

[0,τ̂ϑ∧ϑ′) ∆Gϑj (s)F is dG
ϑ
i (s) and can be included

in the first integral, becoming
∫

[0,τ̂ϑ∧ϑ′)(1−G
ϑ
j (s−))F is dG

ϑ
i (s). Next, it always holds that

λϑL,i + λϑL,j + λϑM =
(
1−Gϑi (τ̂ϑ−)

)(
1−Gϑj (τ̂ϑ−)

)
=
(
1−Gϑi (τ̂ϑ)

)(
1−Gϑj (τ̂ϑ−)

)
+ ∆Gϑi (τ̂ϑ)

(
1−Gϑj (τ̂ϑ−)

)
=
(
1−Gϑi (τ̂ϑ)

)
∆Gϑj (τ̂ϑ) + ∆Gϑi (τ̂ϑ)

(
1−Gϑj (τ̂ϑ−)

)
,

where the last step is due to Gϑi (τ̂ϑ) < 1 ⇒ Gϑj (τ̂ϑ) = 1. The estimate of the fourth term can thus be
included in the first two integrals by integrating over [ϑ, ϑ′) in each. The fifth and sixth term can also be
combined as one integral over [ϑ, ϑ′) and then included in the second. Using also the definition of Aϑ

′

V <F in
the second and third to last terms and V ϑ

′

i (σϑ
′

a , σ
ϑ
′

j ) ≥ F iϑ′ on {ϑ
′ > ϑ} ∩Aϑ

′

V <F , we obtain

V ϑi
(
σϑi , σ

ϑ
j

)
− V ϑi

(
σϑa , σ

ϑ
j

)
(B.4)

≤ E
[
1{ϑ′>ϑ}

(∫
[ϑ,ϑ′)

(
1−Gϑj (s−)

)
F is dG

ϑ
i (s)−

∫
[ϑ,ϑ′)

Gϑi (s)F is dG
ϑ
j (s)−Gϑi (ϑ′−)

(
1−Gϑj (ϑ′−)

)
F iϑ′

)∣∣∣∣Fϑ

]
.

In order to estimate the expectation on the right-hand side, we can perform a change of variable on Gϑi
and Gϑj as in the proof of Proposition 2.3 with τGi (x) = inf{s ≥ 0 |Gϑi (s) > x} and τGj (y) analogously for
x, y ∈ [0, 1). The expectation then becomes

E

[
1{ϑ′>ϑ}

(∫ 1

0
1{τGi (x)∈[ϑ,ϑ′)}

(
1−Gϑj (τGi (x)−)

)
F i
τ
G
i (x) dx−

∫ 1

0
1{τGj (y)∈[ϑ,ϑ′)}G

ϑ
i (τGj (y))F i

τ
G
j (y) dy

−
∫ 1

0
1{τGi (x)∈[ϑ,ϑ′)}

(
1−Gϑj (ϑ′−)

)
F iϑ′ dx

)∣∣∣∣Fϑ

]
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= E

[
1{ϑ′>ϑ}

(∫ 1

0

∫ 1

0
1{τGi (x)∈[ϑ,ϑ′)}1{τGj (y)∈[τGi (x),∞]}F

i

τ
G
i (x) dy dx

−
∫ 1

0

∫ 1

0
1{τGj (y)∈[ϑ,ϑ′)}1{τGi (x)∈[ϑ,τGj (y)]}F

i

τ
G
j (y) dx dy

−
∫ 1

0

∫ 1

0
1{τGi (x)∈[ϑ,ϑ′)}1{τGj (y)∈[ϑ′,∞]}F

i
ϑ
′ dy dx

)∣∣∣∣Fϑ

]
= E

[
1{ϑ′>ϑ}

∫ 1

0

∫ 1

0

(
1{τGi (x)<ϑ′}1{τGj (y)≥τGi (x)}F

i

τ
G
i (x) − 1{τGj (y)<ϑ′}1{τGi (x)≤τGj (y)}F

i

τ
G
j (y)

−1{τGi (x)<ϑ′}1{τGj (y)≥ϑ′}F
i
ϑ
′

)
dx dy

∣∣∣∣Fϑ

]
= E

[∫ 1

0

∫ 1

0
1{ϑ′>ϑ}

(
1{τGi (x)<ϑ′}1{τGi (x)≤τGj (y)}

(
F i
τ
G
i (x) − F

i

τ
G
j (y)∧ϑ′

))
dx dy

∣∣∣∣Fϑ

]
.

For any x, y ∈ [0, 1), the integrand has nonpositive Fϑ-conditional expectation, because we can use the
estimate F i

τ
G
i (x) ≤ E[F i

τ
G
j (y)∧ϑ′ |Fτ

G
i (x)] on {τ

G
i (x) ≤ τGj (y) ∧ ϑ′} (as noted at the beginning of the proof)

with iterated expectations thanks to {ϑ′ > ϑ} ∩ {τGi (x) < ϑ′} ∩ {τGi (x) ≤ τGj (y)} ∈ F
τ
G
i (x); the conditional

expectation of the (double) integral is thus nonpositive as well (cf. fn. 33). As σϑa = σϑ
′

a ∈ S ϑ
′

, the proof of
the first part of the third claim is complete. The second part is an immediate consequence of the first one
and (B.1).

The second claim now follows from σϑi = σϑ
′

i for τi = ϑ′ in Proposition 2.3 and time-consistency of σϑj
with σϑ

′

j for any τj ∈ T with τj ∈ [ϑ, ϑ′].
As to the first claim, suppose σϑi is a best reply to σϑj ∈ S ϑ at ϑ ∈ T for some i, j ∈ {1, 2}, i 6= j. We

want to show that firm i never obtains the payoffs Li· or M
i
· while F

i
· > Li· , i.e.,

E

[ ∫
[ϑ,τ̂ϑ)

(
1−Gϑj (s)

)
1{F is>Lis} dG

ϑ
i (s) +

∑
s∈[ϑ,τ̂ϑ)

∆Gϑi (s)∆Gϑj (s)1{F is>Lis} +
(
λϑL,i + λϑM

)
1{F i

τ̂
ϑ>L

i

τ̂
ϑ}

]
= 0.

Suppose by way of contradiction that the left-hand side is positive. We are going to use the arguments
from the second claim, but we need to find a suitable starting point as we cannot guarantee that a vio-
lation occurs (already) on [ϑ, ϑ′) as defined before. Therefore, rewrite the sum on the left-hand side as∫

[ϑ,τ̂ϑ) ∆Gϑj (s)1{F is>Lis} dG
ϑ
i (s) and combine it with the integral. A change of variable like before on Gϑi in

the combined integral, using again τGi (x), yields

E

[∫
[ϑ,τ̂ϑ)

(
1−Gϑj (s−)

)
1{F is>Lis} dG

ϑ
i (s)

]
=
∫ 1

0
E

[
1{τGi (x)<τ̂ϑ}

(
1−Gϑj (τGi (x)−)

)
1{F i

τ
G
i (x)

>L
i

τ
G
i (x)

}

]
dx.

(B.5)

If this is positive, then the last expectation must be positive for all x from a subset of [0, 1) with positive
measure. In this case, fix an x0 from that subset such that the subset still has positive measure on (x0, 1),
and set τi = τGi (x0). Otherwise, by hypothesis λϑL,i + λϑM > 0 with positive probability on {F i

τ̂
ϑ > Li

τ̂
ϑ}; in

this case, set τi = τ̂ϑ. In order to use the estimate (B.4) – to show that it is strict – suppose first τi = ϑ. We
then have in either case F iϑ > Liϑ with positive probability, which implies ϑ < ϑ′ = min{τ iL>F (ϑ), τ iF (ϑ)}
as noted at the beginning of the proof. In the second case, the estimate (B.4) is then strict with positive
probability, as also M i

ϑ ≤ Liϑ < F iϑ. To see that it is also strict in the first case, note that we may then
assume Gϑj (ϑ) < 1 or ∆Gϑi (ϑ) > 0 with positive probability on {F iϑ > Liϑ}. Indeed, if ∆Gϑi (ϑ) = 0 and
Gϑj (ϑ) = 1 on that set, then τGi (x) > ϑ for all x ∈ (x0, 1) and thus Gϑj (τGi (x)−) = 1, which contradicts
the definition of x0. By definition of x0, ϑ additionally satisfies ϑ < τ̂ϑ (still with positive probability
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in the first case). Therefore, the estimate of the first integral in (B.4) becomes strict. Indeed, by right-
continuity we still have F i· > Li· ≥ M i

· on an interval to the right of ϑ. If Gϑj (ϑ) < 1, then Gϑj (t) < 1
on an interval by right-continuity, which is charged by dGϑi because Gϑi (t) > Gϑi (ϑ−) for all t > ϑ by
definition of τGi (x0); otherwise, at least Gϑj (ϑ−) < 1, and we must have ∆Gϑi (ϑ) > 0 (all with positive
probability). We would thus obtain E[V ϑi (σϑi , σ

ϑ
j ) − ess sup

σ
ϑ
′

b ∈S
ϑ
′ V ϑi (σϑ

′

b , σ
ϑ
j )] < 0, contradicting the

hypothesis. Finally, to remove the assumption τi = ϑ, note that in both cases (1−Gϑi (τi−))(1−Gϑj (τi−)) > 0
with positive probability – in the second case, because always λϑM+λϑL,i+λ

ϑ
L,j = (1−Gϑi (τ̂ϑ−))(1−Gϑj (τ̂ϑ−))

and λϑL,j ≥ 0. Therefore, if we define time-consistent continuation strategies στii and σ
τi
j as before by

G
τi
i (t) = 1{Gϑi (τi−)<1}(G

ϑ
i (t) − Gϑi (τi−))/(1 − Gϑi (τi−)) + 1{Gϑi (τi−)=1}1{t≥τi} and α

τi
i (t) = 1{t≥τi}α

ϑ
i (t),

and analogously for j, then (B.1) implies that στii must be a best reply to στij . But now, λτiL,i+λ
τi
M = (λϑL,i+

λϑM )/[(1−Gϑi (τi−))(1−Gϑj (τi−))] whenever the denominator is positive, which implies also τi ≤ τ̂ϑ = τ̂ τi

as well as (1 − Gτij (s−))dGτii (s) = (1 − Gϑj (s−))dGϑi (s)/[(1 − Gϑj (τi−))(1 − Gϑi (τi−))] for all s ≥ τi. By
definition of x0, if B.5 is positive, then the integral on the right-hand side is still positive over x ∈ [x0, 1),
and it is equivalent to the integral on the left-hand side over [τi, τ̂

ϑ). Now all the previous arguments apply
at τi.

Proof of Lemma 3.8. First, note that there are solutions τ i∆ ≤ τ
i
F (ϑ) ≤ τ2

F (ϑ) to (3.6) for i = 1, 2, as the
respective process to be stopped is continuous and integrable. The estimate follows from the assumption
πLi· − π

Fi
· ≥ π

Bi
· − π

Fi
· , cf. the proof of Lemma 3.2.

By the optimality of τ i∆ in (3.6), E[
∫ τ i∆
ϑ

(πLis − π
Fi
s ) ds |Fϑ] ≤ 0. Therefore, as πL2

· − π
F2
· ≤ πLi· − π

Fi
· ,

(B.3) can only be strictly positive if

E

[∫ τ
1
F (ϑ)

τ
i
∆

(πL2
s − π

F2
s ) ds+

∫ τ
2
F (ϑ)

τ
1
F (ϑ)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fϑ

]
> 0

(which can in fact only be the case if P [τ i∆ < τ1
F (ϑ)] > 0), and which implies

E
[
L2
τ
i
∆
− F 2

τ
i
∆

∣∣∣Fϑ

]
= E

[∫ τ
1
F (τ i∆)

τ
i
∆

(πL2
s − π

F2
s ) ds+

∫ τ
2
F (ϑ)

τ
1
F (τ i∆)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fϑ

]
> 0,

because τ1
F (τ i∆) ≥ τ1

F (ϑ), τ2
F (τ i∆) = τ2

F (ϑ) and πL2
· ≥ π

B2
· .

For all stopping times τ ∈ [ϑ, τ1
F (ϑ)], indeed τ iF (τ) = τ iF (ϑ), i = 1, 2, and thus L2

ϑ−F
2
ϑ−E[L2

τ−F
2
τ |Fϑ] =

E[
∫ τ
ϑ

(πL2
s − π

F2
s ) ds |Fϑ] ≥ 0 if τ2

∆ = ϑ attains (3.6).

Proof of Proposition 3.9. For the first claim, it suffices by Proposition 2.3 to verify that τ i∗ maximizes
E[Li

τ
i1{τ i<τj∗} + M i

τ
i1{τ i=τj∗} + F i

τ
j
∗
1{τ i>τj∗} |Fϑ] ≤ E[Li

τ
i1{τ i<τj∗} + F i

τ
j
∗
1{τ i∗≥τj∗} |Fϑ] over all stopping

times τ i ≥ ϑ. The right-hand side is attainable by the stopping time τ i1{τ i<τj∗}+∞1{τ i∗≥τj∗}, so τ
i
∗ is a best

reply to τ j∗ if and only if F i
τ
j
∗

= M i

τ
j
∗
on {τ i∗ = τ j∗} and τ = τ j∗ attains

ess sup
ϑ≤τ≤τj∗

E
[
Liτ1{τ<τj∗} + F i

τ
j
∗
1{τ≥τj∗}

∣∣∣Fϑ

]
.

By iterated expectations, this is equivalent to Liϑ′ − E[F i
τ
j
∗
|Fϑ

′ ] ≤ 0 on {ϑ′ < τ j∗} for all stopping times
ϑ′ ≥ ϑ. To establish the latter under conditions (i) and (ii), fix arbitrary ϑ′ ≥ ϑ and let τ iD(ϑ′) ∈ T attain
(3.7) (such τ iD(ϑ′) exists by continuity and integrability of the process to be stopped), whence E[

∫ τ iD(ϑ′)
ϑ
′ (πLis −

π0i
s ) ds |Fϑ

′ ] ≤ 0. On {ϑ′ < τ j∗}, we then have

Liϑ′ − E
[
M i

τ
j
∗

∣∣∣Fϑ
′

]
= E

[∫ τ
j
F (ϑ′)

ϑ
′

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]
(B.6)
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≤ E
[∫ τ

j
F (ϑ′)∨τ iD(ϑ′)

ϑ
′

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)∨τ iD(ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

j
F (ϑ′)∨τ iD(ϑ′)

τ
i
D(ϑ′)

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)∨τ iD(ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]
= E

[
1{τ iD(ϑ′)<τjF (ϑ′)}

(
Li
τ
i
D(ϑ′) −M

i

τ
j
∗

)
+ 1{τ iD(ϑ′)≥τjF (ϑ′)}

(
M i

τ
i
D(ϑ′) −M

i

τ
j
∗

)∣∣∣Fϑ
′

]
.

The first equality uses the convention
∫ a
b
· ds = −

∫ b
a
· ds for a < b. The first inequality is due to πLi· ≥ πBi·

and the second due to the optimality of τ iD(ϑ′). The last equality is analogous to the first, using iterated
expectations and τ iD(ϑ′) < τ jF (ϑ′) ⇒ τ jF (τ iD(ϑ′)) = τ jF (ϑ′). After replacing M i

τ
j
∗
by F i

τ
j
∗
in the first and last

terms of (B.6), conditions (i) and (ii) make the last nonpositive (taking iterated expectations at τ iD(ϑ′)),
and thus also Liϑ′ − E[F i

τ
j
∗
|Fϑ

′ ] ≤ 0.
To prove the next claim, note that, for any stopping time τ ∈ [ϑ′, τ jF (ϑ′)], we have τ jF (τ) = τ jF (ϑ′) and

thus Liϑ′ − E[Liτ |Fϑ
′ ] = E[

∫ τ
ϑ
′(πLis − π

0i
s ) ds |Fϑ

′ ] ≥ 0 when ϑ′ attains (3.7).
For the final claim, consider any stopping time τ2

∗ ≥ ϑ such that F 2
τ

2
∗

= M2
τ

2
∗
; then also F 1

τ
2
∗

= M1
τ

2
∗
by

Lemma 3.2. Suppose furthermore that (i) and (ii) hold for i = 1, so τ1
∗ = τ2

∗ is a best reply for firm 1.
To prove that τ2

∗ is also a best reply for firm 2 to τ1
∗ = τ2

∗ if πL1
· − π

01
· ≥ πL2

· − π
02
· and πB1

· − π
01
· ≥

πB2
· − π02

· , we show that (B.6) is then not greater for i = 2 than for i = 1. Therefore, note that for
each i = 1, 2, F i

τ
2
∗

= M i
τ

2
∗
implies E[1A

∫ τ iF (ϑ′)
τ

2
∗

(πBis − πFis ) ds |Fϑ
′ ] = 0 for any set A ⊆ {τ iF (ϑ′) ≥ τ2

∗ }
(taking iterated expectations at τ2

∗ ), in particular for A = {τ1
F (ϑ′) > τ2

∗ }, as τ
2
F (ϑ′) ≥ τ1

F (ϑ′). Moreover,
E[1{τ1

F (ϑ′)>τ2
∗}
∫ τ2

F (ϑ′)
τ

1
F (ϑ′)

(πB2
s −π

F2
s ) ds |Fϑ

′ ] ≤ 0 by optimality of τ2
F (ϑ′) (and iterated expectations at τ1

F (ϑ′)),

so E[1{τ1
F (ϑ′)>τ2

∗}
∫ τ1

F (ϑ′)
τ

2
∗

(πB2
s − π

F2
s ) ds |Fϑ

′ ] ≥ 0.
Now, rewriting (B.6) for i = 2, we obtain

E

[∫ τ
1
F (ϑ′)∧τ2

∗

ϑ
′

(πL2
s − π

02
s ) ds+ 1{τ1

F (ϑ′)≤τ2
∗}

∫ τ
2
∗

τ
1
F (ϑ′)

(πB2
s − π

02
s ) ds

+1{τ1
F (ϑ′)>τ2

∗}

∫ τ
1
F (ϑ′)

τ
2
∗

(πL2
s − π

B2
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

1
F (ϑ′)∧τ2

∗

ϑ
′

(πL1
s − π

01
s ) ds+ 1{τ1

F (ϑ′)≤τ2
∗}

∫ τ
2
∗

τ
1
F (ϑ′)

(πB1
s − π

01
s ) ds

+1{τ1
F (ϑ′)>τ2

∗}

∫ τ
1
F (ϑ′)

τ
2
∗

(πL2
s − π

F2
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

1
F (ϑ′)∧τ2

∗

ϑ
′

(πL1
s − π

01
s ) ds+ 1{τ1

F (ϑ′)≤τ2
∗}

∫ τ
2
∗

τ
1
F (ϑ′)

(πB1
s − π

01
s ) ds (B.7)

+1{τ1
F (ϑ′)>τ2

∗}

∫ τ
1
F (ϑ′)

τ
2
∗

(πL1
s − π

F1
s ) ds+

∫ τ
2
F (ϑ′)

τ
1
F (ϑ′)

(πL1
s − π

B1
s ) ds

∣∣∣∣Fϑ
′

]
.

The last inequality uses the assumption πL1
· − π

F1
· ≥ π

L2
· − π

F2
· , as well as τ1

F (ϑ′) ≤ τ2
F (ϑ′) and πL1

· ≥ π
B1
· .

Rearranging (B.7) using E[1{τ1
F (ϑ′)>τ2

∗}
∫ τ iF (ϑ′)
τ

2
∗

(πBis − π
Fi
s ) ds |Fϑ] = 0 yields (B.6) for i = 1.

Proof of Corollary 3.10. We only need to verify optimality for firm i = 2 by applying Proposition 3.9
with τ1

∗ = τS ≤ τ2
F (ϑ) = τ2

∗ . Then indeed F 2
τ

2
∗

= M2
τ

2
∗
. Moreover, condition (i) is satisfied as M2

· ≤ F 2
· and
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(F 2
t ) is a submartingale on [ϑ, τ2

F (ϑ)] by πF2
· ≤ π02

· . Hence, τ2
∗ is optimal if the remaining condition (ii) is

satisfied.
For the second claim, note that if πL1

· −π
01
· ≥ π

L2
· −π

02
· , then E[

∫ τS
τ

(πL2
s −π

02
s ) ds |Fτ ] ≤ E[

∫ τS
τ

(πL1
s −

π01
s ) ds |Fτ ] ≤ 0 for any stopping time τ ∈ [ϑ, τS ] by the optimality of τS , and τ

2
D(ϑ′) = τS ∨ϑ

′ thus attains
the current instance of (3.7).

Proof of Proposition 4.1. By the strong Markov property, it suffices to consider t = 0. If the preemption
region is empty, then we can set

¯
x = x̄ and pick any number in (0, x1

F ]. The upper and lower bounds for
a non-empty preemption region are obtained as follows. First, note that L2

0 = M2
0 ≤ F 2

0 for all x0 ≥ x1
F .

Second, for all x0 > 0, L2
0 ≤ E[

∫∞
0 e−rs(xsD10 − rI2) ds] = x0D10/(r − µ) − I2 by D10 ≥ D11, and

F 2
0 ≥ E[

∫∞
0 e−rsxsD01 ds] = x0D01/(r − µ) – the value of never investing as follower. Thus, L2

0 − F
2
0 ≤

x0(D10 −D01)/(r − µ)− I2 ≤ 0 on the non-empty interval (0, (r − µ)I2/(D10 −D01)+).
Now suppose L2

0 > F 2
0 for some x0 = x̂ ∈ (0, x1

F ) and also for some x0 = x̌ < x̂, and assume by
way of contradiction that L2

0 ≤ F 2
0 for x0 = x′ ∈ (x̌, x̂). We must then have x′ > rI2/(D10 − D01)+,

because otherwise L2
0 − F 2

0 = E[
∫ τ ′

0 e−rs(xs(D10 − D01) − rI2) ds] + E[L2
τ
′ − F 2

τ
′ ] ≤ 0 if x0 = x̌ and

x′ ∈ (x̌, rI2/(D10 −D01)+ ∧ x1
F ], where τ ′ := inf{s ≥ 0 |xs ≥ x

′} ≤ τ1
F (0). By the same argument, we must

also have L2
0 > F 2

0 for x0 = x̌ ∨ rI2/(D10 −D01) < x′. But then, if we set x0 = x′ and τ̂ := inf{s ≥ 0 |xs 6∈
(x̌∨rI2/(D10−D01), x̂)} ≤ τ1

F (0), we obtain L2
0−F

2
0 = E[

∫ τ̂
0 e
−rs(xs(D10−D01)−rI2) ds]+E[L2

τ̂−F
2
τ̂ ] > 0,

whence the set {x > 0 |L2
0 > F 2

0 given x0 = x} is convex. Moreover, that set is open, as L2
0−F

2
0 is continuous

in x0.
Suppose finally that I2 = I1 and that the preemption region is non-empty, i.e., by Lemma 3.8 and the

discussion thereafter, that the threshold solving (3.6) satisfies x2
∆ < x1

F = x2
F . For any x0 ∈ [x2

∆, x
2
F ) then

L2
0 − F

2
0 = E[

∫ τ2
F (0)

0 (xs(D10 −D01)− rI2) ds] > 0, as x2
∆ solves (3.6) uniquely.

Proof of Proposition 4.2. x̄ < x2
F can be any two numbers from (0,∞] in this proof, i.e., we only assume

x̄ finite. For initial states x0 ∈ (x̄, x2
F ), the constraint τP(0) ∧ τ2

F (0) in problem (4.3) is the exit time from
the given interval, and (4.3) is equivalent to

sup
τ≤inf{s≥0 | xs 6∈(x̄,x2

F )}
E

[∫ ∞
τ

e−rs
(
xs(D10 −D00)− rI1) ds]. (B.8)

If x̄(D10 − D00) ≥ rI1, then the expected payoff difference between stopping at time 0 and any feasible
τ ≥ 0 is E[

∫ τ
0 e
−rs(xs(D10−D00)−rI1) ds] ≥ 0, such that immediate stopping is optimal. If D10−D00 ≤ 0,

also E[
∫ τP(0)∧τ2

F (0)
τ

e−rs(xs(D10−D00)− rI1) ds] ≤ 0 for any τ ≤ τP(0)∧ τ2
F (0), such that waiting until the

constraint is optimal.
Now suppose 0 < x̄(D10 −D00) < rI1, whence D10 > D00 and x1

L <∞. Note that

E

[∫ ∞
0

e−rs
(
xs(D10 −D00)− rI1) ds] = x0

D10 −D00
r − µ

− I1

is the value of stopping immediately in (B.8). Letting x0 = x, we will first verify that the value function of
problem (B.8) is

V (x) :=
{
A(x̂)xβ1 +B(x̂)xβ2 if x ∈ (x̄, x̂),
xD10−D00

r−µ − I1 else,
(B.9)

and thus (x̄, x̂)c the sought stopping region, under the hypothesis that either x̂ ∈ [rI1/(D10 − D00), x2
F )

solves (4.4) or “≤” holds for x̂ = x2
F . Afterwards, we will establish existence of a unique such x̂.

V (x) as defined in (B.9) is continuous, because A(x̂) and B(x̂) given by (4.5) are the solution to the
continuity conditions

Ax̄β1 +Bx̄β2 = x̄
D10 −D00
r − µ

− I1, Ax̂β1 +Bx̂β2 = x̂
D10 −D00
r − µ

− I1. (B.10)
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V (x) is also twice continuously differentiable on (x̄, x2
F ), except possibly at x̂. At x̂ < x2

F , the first derivative
of V is continuous, however, because (4.4) is the differentiability condition β1Ax̂

β1−1 + β2Bx̂
β2−1 = (D10 −

D00)/(r−µ) multiplied by x̂, minus the second continuity condition in (B.10). We can thus apply Itō’s lemma
to see that (e−rtV (xt)) is a continuous, bounded supermartingale until τ = inf{t ≥ 0 |xt 6∈ (x̄, x2

F )}, with
zero drift for xt ∈ (x̄, x̂) and drift e−rt(rI1−xt(D10−D00)) dt < 0 for xt ∈ (x̂, x2

F ). As that supermartingale
coincides with the payoff process at τ = inf{t ≥ 0 |xt 6∈ (x̄, x2

F )}, it remains to show that V (x) dominates
the payoff process for x ∈ (x̄, x2

F ), which it does by construction for x ∈ [x̂, x2
F ].

For x ∈ (x̄, x̂), V ′′(x) = xβ2−2[β1(β1 − 1)A(x̂)xβ1−β2 + β2(β2 − 1)B(x̂)]. As βk(βk − 1) > 0, k = 1, 2,
the difference V (x)− x(D10 −D00)/(r− µ) + I1 would be convex if A(x̂), B(x̂) ≥ 0, and it vanishes at both
endpoints x̄, x̂. By (4.4), that difference’s derivative is non-positive at x̂, where the difference would thus
take its minimum. It would hence vanish on all of [x̄, x̂], but V (x) cannot be affine on non-empty (x̄, x̂). So,
we must have A(x̂)∧B(x̂) < 0. If we had B(x̂) ≥ 0, then A(x̂) < 0 and V (x) would be strictly decreasing on
(x̄, x̂), contradicting V (x̂) ≥ V (x̄); thus, B(x̂) < 0. Going back to V ′′(x), which can switch sign at most once,
it must start strictly negative at x̄. If it stays non-positive, the difference V (x)− x(D10−D00)/(r−µ) + I1

is concave and thus non-negative on (x̄, x̂). If V ′′(x) eventually becomes positive, then the convex part of
V (x) − x(D10 − D00)/(r − µ) + I1 takes its minimum 0 at x̂ as argued before, such that the difference is
non-negative at the transition, and thus non-negative for the first, concave part. In summary, (e−rtV (xt))
is a supermartingale until xt leaves (x̄, x2

F ), dominating the payoff e−rt(xt(D10 −D00)/(r− µ)− I1), which
it coincides with for xt ∈ {x̄} ∪ [x̂, x2

F ], so the latter is the stopping set in [x̄, x2
F ].

Next, we show that there is a unique threshold x̂ ∈ [rI1/(D10 −D00), x1
L) solving (4.4), and then finally

consider the constraint x2
F .

As the first step, note that B(x) < 0 in (4.5) for all x ∈ (x̄, x1
L]. Indeed, as the first term [x̄β1xβ2 −

xβ1 x̄β2 ]−1 is negative for x > x̄ by β1 > 1 and β2 < 0, we have B(x) < 0 ⇔ x−β1 [x(D10 − D00)/(r −
µ) − I1] > x̄−β1 [x̄(D10 − D00)/(r − µ) − I1]. The derivative of the latter function of x can be written as
x−β1−1[β1I

1 − (β1 − 1)x(D10 −D00)/(r − µ)] > 0 for all x < x1
L = β1(r − µ)I1/((β1 − 1)(D10 −D00)).

As the second step, note that, withA = A(x1
L) andB = B(x1

L), we haveA·(x1
L)β1+B·(x1

L)β2 = I1/(β1−1)
by using the definition of x1

L in (B.10), and thus (β1−1)A·(x1
L)β1+(β2−1)B·(x1

L)β2 = I1+(β2−β1)B·(x1
L)β2 >

I1 in contrast to “=” in (4.4).
The third step is to show that “≤” holds in (4.4) for the candidate x̂ = rI1/(D10−D00) ∈ (x̄, x2

F ), where
the inclusion is exactly the current considered case. By similar arguments as above, using the continuity
condition (B.10), V (x) then satisfies

V (x) = E

[∫ ∞
τ̂

e−rs
(
xs(D10 −D00)− rI1) ds], x0 = x ∈ [x̄, x̂],

where we let τ̂ := inf{s ≥ 0 |xs 6∈ (x̄, x̂)}. For x̂ = rI1/(D10−D00), the integrand would be strictly negative
until τ̂ , so V (x) > x(D10−D00)/(r− µ)− I1 for all x ∈ (x̄, x̂). At x = x̂, however, equality holds by (B.10)
and thus V ′(x̂−) = β1A(x̂)x̂β1−1 + β2B(x̂)x̂β2−1 ≤ (D10 −D00)/(r − µ). Together with (B.10), the latter
inequality implies also “≤” in (4.4).

As the last step, as the function (β1 − 1)A(x)xβ1 + (β2 − 1)B(x)xβ2 is continuous, it must attain I1 at
some x̂ ∈ [rI1/(D10 − D00), x1

L) by the second and third steps. The latter interval is non-empty by the
estimate for x1

L at the beginning of the proof.
Concerning uniqueness, suppose x̂1, x̂2 ∈ [rI1/(D10 −D00), x1

L) solve (4.4). With either solution, as we
have proved above, V (x) is the value function of problem (B.8) for any x2

F ≥ x1
L, and (B.8) is solved by

both τ̂k := inf{s ≥ 0 |xs 6∈ (x̄, x̂k)}, k = 1, 2. In particular, for any x0 ∈ [x1, x2],

V (x0) = x0
D10 −D00
r − µ

− I1 = E

[∫ ∞
τ̂2

e−rs
(
xs(D10 −D00)− rI1) ds]

⇒ 0 = E

[∫ τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds].
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Thus, letting τ̌1 := inf{s ≥ 0 |xs ≤ x̂1} ≤ τ̂2 and still x0 ∈ [x1, x2],

0 = E

[∫ τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds]

= E

[∫ τ̌1∧τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds+

∫ τ̂2

τ̌1∧τ̂2
e−rs

(
xs(D10 −D00)− rI1) ds].

The second integral vanishes itself in expectation, whereas the first integrand is strictly positive for xs ∈
(x̂1, x̂2). Therefore, the latter interval must be empty.

The proof is complete for x̂ ≤ x2
F . Finally, if rI

1/(D10 −D00) < x2
F < x̂, then the “≤” in (4.4) that we

derived above for the candidate x = rI1/(D10 −D00) must be strict, and thus also “<” must hold in (4.4)
for x2

F , because otherwise x̂ ≤ x2
F by continuity of (β1− 1)A(x)xβ1 + (β2− 1)B(x)xβ2 . Now the verification

argument above applies if we consider instead x̂ := x2
F with “≤” in (4.4).

Proof of Proposition 4.3. The stopping times τJ(ϑ) := inf{t ≥ ϑ |xt ≥ xJ}, ϑ ∈ T , satisfy time con-
sistency ϑ′ ≤ τJ(ϑ) ⇒ τJ(ϑ′) = τJ(ϑ) for any two ϑ ≤ ϑ′ ∈ T by construction. τJ(ϑ) is a mutual best
reply at ϑ if the conditions from Proposition 3.9 hold. By xJ ≥ x2

F , F
2
τJ (ϑ) = M2

τJ (ϑ). Under the current
specification, it suffices to verify conditions (i) and (ii) for firm 1.

Condition (i) holds, as by Lemma A.7, waiting until the threshold xJ ≤ x1
M is optimal for the con-

strained problem of stopping M1
t up to it; cf. the unconstrained problem (3.5). Analogously, the threshold

min{xJ , x
1
L} solves problem (3.7). Condition (ii) thus holds if x1

L ≥ x
2
F or, using the strong Markov property,

if 0 ≥ DJ(x) := L1
0 − E[M1

τJ (0)] given x0 = x ∈ [x1
L, x

2
F ).

By Proposition 3.9, if x1
L < x2

F solves (3.7) and we let τ(x) = inf{t ≥ 0 |xt ≥ x} ≤ τ2
F (0) for any

x ∈ [x1
L, x

2
F ), then DJ(x1

L) ≥ E[L1
τ(x) −M

1
τJ (0)] = E[DJ(x)], where the last identity is due to xτ(x) = x. It

thus remains to verify DJ(x1
L) ≤ 0 for x1

L < x2
F .

If x1
L < x2

F , then the former is finite and we can write λ := xJ/x
1
L ∈ [1,∞]. Then also x1

L < xJ and thus
(cf. fn. 20, accounting for possibly x2

F =∞)

0
!
≥ DJ(x1

L) = x1
LD10
r − µ

− I1 − x2
F (D10 −D11)

r − µ

(
x1
L

x2
F

)β1

− x1
LD00
r − µ

−
(
xJ(D11 −D00)

r − µ
− I1

)(
x1
L

xJ

)β1

= β1
β1 − 1I

1 − I1 − β1
β1 − 1I

1D10 −D11
D10 −D00

(
I1

I2
(D11 −D01)+

D10 −D00

)β1−1

−
(
λ

β1
β1 − 1I

1D11 −D00
D10 −D00

− I1
)
λ−β1 .

Rearranging yields condition (4.6). The derivative of the square bracket in (4.6) w.r.t. λ is strictly negative
for λ ∈ (0, x1

M/x
1
L), given β1 > 1, where it is important to note that λ(D11 −D00) < D10 −D00, because

D10 > D00 for x1
L < x2

F and (D10 −D00)/(D11 −D00) = x1
M/x

1
L > λ if D11 > D00. Using the latter fact

also shows that, for λ = x1
M/x

1
L, the square bracket is either 1− (x1

L/x
1
M )β1 ≥ 0 or 1, if x1

M is finite or not,
respectively.

Finally, necessity of DJ(x1
L) ≤ 0 for x1

L < x2
F ≤ xJ is obvious.

Proof of Proposition 4.4. By the hypothesis x1
L < x2

F and Lemma A.7, the solution of problem (3.7) for
ϑ′ = ϑ, i = 1, and j = 2 with τ2

∗ = τ2
F (ϑ) = inf{t ≥ ϑ |xt ≥ x2

F } is τS(ϑ) := τ1
L(ϑ) = inf{t ≥ ϑ |xt ≥

x1
L} ∈ T . These stopping times for firm 1 satisfy time consistency ϑ′ ≤ τS(ϑ) ⇒ τS(ϑ′) = τS(ϑ) for any

two ϑ ≤ ϑ′ ∈ T by construction, as do the stopping times τ2
F (ϑ).

To verify the equilibrium at ϑ ∈ T by Corollary 3.10, note that now πL1
· − π

01
· ≥ πL2

· − π
02
· , whence

problem (3.7) is solved by τ2
D(ϑ′) = τS(ϑ)∨ ϑ′. We thus have an equilibrium if x1

L ≥ x
1
F (≥ x̄) or, using the

strong Markov property, if 0 ≥ DS(x) := L2
0 − E[F 2

τS(0)] given x0 = x ∈ [x1
L, x

1
F ).

By Proposition 3.9, if x1
L < x1

F and letting τ(x) = inf{t ≥ 0 |xt ≥ x} ≤ τ
1
F (0) for any x ∈ [x1

L, x
1
F ), then

DS(x1
L) ≥ E[L2

τ(x)−F
2
τS(0)] = E[DS(x)], where the last identity is due to xτ(x) = x. It therefore remains to
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verify DS(x1
L) ≤ 0 for x1

L < x1
F , i.e., x

1
L 6∈ (

¯
x, x̄). The latter condition is (cf. fn. 20, accounting for possibly

x1
F = x2

F =∞)

0
!
≥ DS(x1

L) = x1
LD10
r − µ

− I2 − x1
F (D10 −D11)

r − µ

(
x1
L

x1
F

)β1

− x1
LD01
r − µ

−
(
x2
F (D11 −D01)

r − µ
− I2

)(
x1
L

x2
F

)β1

= β1
β1 − 1I

1D10 −D01
D10 −D00

− I2 − β1
β1 − 1I

1D10 −D11
D10 −D00

(
(D11 −D01)+

D10 −D00

)β1−1

− 1
β1 − 1I

2
(
I1

I2
(D11 −D01)+

D10 −D00

)β1

.

Rearranging yields condition (4.7). The derivative of its left-hand side w.r.t. I2/I1 is strictly positive for
x1
L < x1

F , given β1 > 1, because then (D11−D00)+/(D10−D00) < 1. By the same fact, the right-hand side
of (4.7) is strictly positive.

To show necessity of x1
L 6∈ (

¯
x, x̄), suppose the contrary, whence x1

L < x1
F and DS(x1

L) > 0 by definition.
For any x ≤ x1

L,

DS(x) = E
[
DS(x1

L)
]

+ L2
0 − E

[
L2
τS(0)

]
= DS(x1

L) + E

[∫ τS(0)

0
(πL2
s − π

02
s ) ds

]
= DS(x1

L) + x(D10 −D00)
r − µ

− I2 − x1
L(D10 −D00)

r − µ

(
x

x1
L

)β1

,

which converges continuously to DS(x1
L) > 0 as x→ x1

L, so DS(x) > 0 for some x < x1
L.
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Supplement to
Preemptive investment under uncertainty

Jan-Henrik Steg

C Necessary equilibrium conditions
In the equilibria derived in Section 3, it may often be the case that investment is only optimal because the
other firm plans to invest at the same date. Possibly other equilibria exist, with both firms investing later
and that then both prefer, but on which they have to coordinate. Here, we derive times when investment is
indeed unavoidable in equilibrium. The proofs of all following results are collected in Subsection C.2.

Equilibria are obviously related to optimally stopping the leader payoff processes, typically subject to
certain constraints. The next lemma shows that given the assumptions πLi· ≥ π

Bi
· and π0i

· ≥ π
Fi
· , equilibrium

investment must not happen later than when firm i would invest if it had the exclusive right to invest first,
i.e., if it considered the unconstrained problem of when to become leader.

Due to the dynamic follower reaction in Liτ , this is a complex problem. It may for instance not be
optimal to invest when the general circumstances are so favorable that any monopolist or follower would
invest immediately: When only πBi· can be realized, it may be better to invest when the follower will react
with a lag.34 In order to become leader optimally, it is however necessary that a monopolist would invest.

Lemma C.1. Whenever τ = ϑ is the only stopping time attaining

ess sup
τ≥ϑ

E
[
Liτ

∣∣∣Fϑ

]
(C.1)

for some i ∈ {1, 2}, then investment must happen immediately in any equilibrium at ϑ ∈ T , i.e., (σϑ1 , σ
ϑ
2 )

must be such that max{Gϑ1 (ϑ), Gϑ2 (ϑ)} = 1. Whenever τ = ϑ attains (C.1), it also attains (3.4), i.e.,

ess sup
τ≥ϑ

E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ

]
. (3.4)

Lemma C.1 rests on the observation that if it is optimal to become leader immediately in (C.1), then
there is no superior future follower payoff, either: If firm i had the choice when to become follower, it would
generally prefer times τ iF (τ) in order to avoid the low revenue πFi· ≤ π

0i
· . At any τ

i
F (τ), however, becoming

follower is not better than becoming leader due to πBi· ≤ π
Li
· .

Problem (C.1) becomes much easier by fixing continuation equilibria, like simultaneous investment at
τ2
F (ϑ), which make it impossible to become leader later. By such a constraint, firm 2’s follower reaction will
always be the same, and firm 1 will not cannibalize any revenue πL1

· past τ2
F (ϑ) if it invests before. Firm 1’s

leader problem thus becomes equivalent to a constrained monopolist’s problem. The following constrained
version of Lemma C.1 follows the same logic, but it is important that firm 1 will not regret to receive πB1

·
from τ2

F (ϑ) on by investing before.35

Lemma C.2. Suppose that firm 2’s strategy in an equilibrium for the subgame at ϑ ∈ T induces investment
no later than at τ2

F (ϑ). Whenever τ = ϑ is the latest stopping time attaining

ess sup
τ∈[ϑ,τ2

F (ϑ)]
E
[
L1
τ

∣∣∣Fϑ

]
, (C.2)

34See furthermore Subsection C.1 on the monopolists’ and leaders’ problems for standard diffusion models.
35Firm 2, on the contrary, may prefer to become follower at τ1

F (ϑ) and effectively invest later. If firm 2 can become leader
up to τ2

F (ϑ), it may expect a delayed follower reaction and high revenue πL2
· in (τ1

F (ϑ), τ2
F (ϑ)], and the problem cannot be

simplified.
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then investment must happen immediately in any equilibrium at ϑ ∈ T , i.e., (σϑ1 , σ
ϑ
2 ) must be such that

max{Gϑ1 (ϑ), Gϑ2 (ϑ)} = 1. (C.2) has the same solutions as

ess sup
τ∈[ϑ,τ2

F (ϑ)]
E

[∫ τ

0
π01
s ds+

∫ ∞
τ

πL1
s ds

∣∣∣∣Fϑ

]
. (C.3)

If a monopolist’s investment gain πL1
· −π

01
· is not less than a follower’s, πB1

· −π
F1
· (like in typical market

entry with π01
· = πF1

· ), then the latest solution of (C.3) does not exceed τ1
F (ϑ), because then any delay only

means foregone revenue for a follower in (2.2), and firm 1 would now lose no less as prospective leader. Then
(C.3) has the same solutions as firm 1’s unconstrained monopoly problem (3.4) (cf. Lemma C.1).

Another continuation equilibrium that potentially induces earlier investment is preemption at τP(ϑ) as
in Section 3.1.2. In this case (or P = ∅), firm 2 can never realize payoffs exceeding F 2

· , and investment
has to occur immediately at all respectively latest optimal times to become follower. Indeed, such times
have to satisfy τ = τ2

F (τ) (as it is otherwise no loss to become follower at τ2
F (τ) and receive π02

· ≥ πF2
·

longer), and then firm 2 can enforce the payoff F 2
τ = L2

τ = M2
τ by investing regardlessly. Moreover, a

stopping time satisfying ϑ = τ iF (ϑ) can only maximize firm i’s follower payoff if it also maximizes the
simultaneous investment payoff. Conversely, an optimal time for simultaneous investment must also be
optimal for becoming follower, as the opportunity cost of waiting for the former, πBi· − π

0i
· , is at most that

for the latter by π0i
· ≥ π

Fi
· .

Lemma C.3. Suppose that both firms’ strategies in an equilibrium for the subgame at ϑ ∈ T are respectively
time-consistent with strategies for ϑ′ = τP(ϑ) that are an equilibrium as in Lemma 3.3. Then investment
must happen immediately whenever τ = ϑ is the only stopping time attaining

ess sup
τ≥ϑ

E
[
F iτ

∣∣∣Fϑ

]
(C.4)

for i = 2.
For any ϑ ∈ T and i ∈ {1, 2}, (C.4) is attained by every stopping time τ iM ≥ ϑ that attains (3.5), i.e.,

ess sup
τ≥ϑ

E
[
M i
τ

∣∣∣Fϑ

]
= ess sup

τ≥ϑ
E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πBis ds

∣∣∣∣Fϑ

]
. (3.5)

If τ iM ≥ ϑ attains (C.4), then τ iF (τ iM ) also attains (3.5). In particular, the respectively latest solutions of
(C.4) and (3.5) agree.

(C.4) and (3.5) thus have a latest solution τ iM ≥ τ iF (ϑ). That inequality may be strict in general. If
π0i
· = πFi· , however, like in typical market entry models, then (3.5) equals F iϑ and τ iF (ϑ) is the latest time

attaining (C.4).

C.1 Leader problem for diffusion models
The solutions – and in particular the stopping regions – for the monopoly problem (3.4) and problem
(C.1) of when to optimally become leader typically differ. Consider a model in which the profit streams
are driven by a diffusion (Yt) such that each firm i has a follower threshold, say yiF solving (2.2) with
τ iF (τ) = inf{t ≥ τ |Yt ≥ yiF }, and firm 1 also has a monopoly threshold, say y1

L ≤ y1
F solving (3.4), and

where L1
t can be represented as a continuous function of the state Yt. Now one can apply arguments of Jacka

(1993) relying on the semi-martingale property of (L1
t ), which the proof of Lemma A.5 actually establishes.

Denote the finite-variation part of (L1
t ) by (At). The Snell envelope (St) of (L1

t ), i.e., the value process of
optimally stopping (L1

t ), is now continuous (as a function of the state) as well, and its monotone decreasing
part (Bt) is given by dBt = 1{St=L1

t}
dAt+ 1

2dL
0
t (St−L

1
t ). The last term is the local time of (St−L

1
t ) spent

at 0 (i.e., in the stopping region), which is absolutely continuous w.r.t. 1{St=L1
t}
dAt ≤ 0.
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Now suppose the stopping region {S· = L1
· } is that of the monopoly problem, {Y· ≥ y1

L}, whence
dL0

t (St − L
1
t ) lives on the boundary {Y· = y1

L}. For Yt ∈ [y1
L, y

2
F ), (L1

t ) has a drift given by the foregone
monopoly profit stream, dAt = −πL1

t dt, whence dL0
t (St − L1

t ) ≡ 0 if (Yt) has a transition density, cf.
Theorem 6 of Jacka (1993).

As (L1
t ) is of class (D), so is (St), which thus converges to S∞ = L1

∞ = 0 in L1(P ) as t→∞. Therefore,
the martingale part of (St) is simply E[−B∞ |Ft], and St = E[−

∫∞
t

1{Ss=L1
s}
dAs |Ft]. Noting moreover

that (L1
t ) has a drift given by the foregone duopoly stream for Yt > y2

F , i.e., dAt = −πB1
t dt, we then obtain

St = E

[∫ ∞
t

(
1{Ys∈[y1

L,y
2
F )}π

L1
s + 1{Ys>y2

F }
πB1
s

)
ds−

∫ ∞
t

1{Ys=y2
F }
dAs

∣∣∣∣Ft

]
. (C.5)

By applying similar reasoning to firm 1’s monopoly problem (3.4), which is solved by τ1
L(t) = inf{s ≥ t |Ys ≥

y1
L}, its value is E

[∫∞
τ

1
L(t) π

L1
s ds

∣∣Ft

]
= E

[∫∞
t

1{Ys≥y1
L}
πL1
s ds

∣∣Ft

]
, i.e., E

[∫∞
τ

1
L(t) 1{Ys<y1

L}
πL1
s ds

∣∣Ft

]
= 0.

Therefore, if Yt ≥ y
1
L, then (C.5) can be rewritten as

St = E

[∫ ∞
t

(
1{Ys<y2

F }
πL1
s + 1{Ys>y2

F }
πB1
s

)
ds−

∫ ∞
t

1{Ys=y2
F }
dAs

∣∣∣∣Ft

]
.

In this hypothesized stopping region for (L1
t ), also St = L1

t , in particular for Yt ≥ y
2
F ≥ y

1
L, i.e.,

St = E

[∫ ∞
t

πB1
s ds

∣∣∣∣Ft

]
.

With y2
F in the stopping region, −1{Ys=y2

F }
dAs ≥ 0, and by assumption πL1

· ≥ πB1
· . Moreover, 1{Ys=y2

F }
is a P ⊗ dt nullset if Y has a transition density, such that equating the two last expressions for St implies
indeed

E

[∫ ∞
t

1{Ys<y2
F }

(
πL1
s − π

B1
s

)
ds

∣∣∣∣Ft

]
= 0

(and E
[
−
∫∞
t

1{Ys=y2
F }
dAs

∣∣Ft

]
= 0). This contradicts the typical strict ordering πL1

· > πB1
· .

C.2 Proofs
Proof of Lemma C.1. The key argument is that when Liϑ > E[Liτ |Fϑ] for all stopping times τ > ϑ, then
we must also have Liϑ ≥ E[F iτ |Fϑ] for any τ ≥ ϑ, strictly on {τ > ϑ}, as follows. First note that
F iτ − E[F i

τ
i
F (τ) |Fτ ] = E[

∫ τ iF (τ)
τ

(πFis − π0i
s ) |Fτ ] ≤ 0, because τ iF (τ iF (τ)) = τ iF (τ). Moreover, note that

Li
τ
i
F (τ) ≥ F i

τ
i
F (τ) by πLi· ≥ πBi· . Together with the hypothesis, it must thus hold that Liϑ > E[F iτ |Fϑ] on

{τ > ϑ} for any τ ∈ T and Liϑ ≥ F iϑ using τ = ϑ. Recall that also F iτ ≥ M i
τ for any τ ∈ T , so Liϑ is the

highest possible payoff.
Now let σϑ1 , σ

ϑ
2 ∈ S ϑ. By definition,

V ϑi
(
σϑi , σ

ϑ
j

)
= E

[∫
[ϑ,τ̂ϑ)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s) +

∫
[ϑ,τ̂ϑ)

(
1−Gϑi (s)

)
F is dG

ϑ
j (s)

+
∑

s∈[ϑ,τ̂ϑ)

∆Gϑi (s)∆Gϑj (s)M i
s + λϑL,iL

i

τ̂
ϑ + λϑL,jF

i

τ̂
ϑ + λϑMM

i

τ̂
ϑ

∣∣∣∣Fϑ

]
.

For an upper estimate, apply M i
τ ≤ F iτ ≤ E[F i

τ
i
F (τ) |Fτ ] ≤ E[Li

τ
i
F (τ) |Fτ ] for τ = τ̂ϑ and define τ ′ ∈ T

by τ ′ = τ̂ϑ on {Li
τ̂
ϑ ≥ E[Li

τ
i
F (τ̂ϑ) |Fτ̂

ϑ ]} ∈ F
τ̂
ϑ and τ ′ = τ iF (τ̂ϑ) ≥ τ̂ϑ otherwise. Then E[Liτ ′ |Fτ̂

ϑ ] =
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max{Li
τ̂
ϑ , E[Li

τ
i
F (τ̂ϑ) |Fτ̂

ϑ ]}. Moreover, apply M i
s ≤ F is (for all s ∈ R+ a.s. due to right-continuity), write

the sum as
∫

[ϑ,τ̂ϑ) ∆Gϑi (s)F is dG
ϑ
j (s), and combine it with the second integral to obtain

V ϑi
(
σϑi , σ

ϑ
j

)
≤ E

[ ∫
[ϑ,τ̂ϑ)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s) +

∫
[ϑ,τ̂ϑ)

(
1−Gϑi (s−)

)
F is dG

ϑ
j (s)

+(λϑL,i + λϑL,j + λϑM )Liτ ′
∣∣∣∣Fϑ

]
.

In fact, we want to establish the upper bound Liϑ(1−Gϑj (ϑ))+F iϑG
ϑ
j (ϑ). Using ∆Gϑi (ϑ) = Gϑi (ϑ), ∆Gϑj (ϑ) =

Gϑj (ϑ), Gϑj (ϑ−) = 0 and λϑL,i + λϑL,j + λϑM = (1 − Gϑi (τ̂ϑ−))(1 − Gϑj (τ̂ϑ−)), and then performing a change
of variable on Gϑi and Gϑj as in the proof of Proposition 2.3 with τGi (x) = inf{s ≥ 0 |Gϑi (s) > x} and
analogously τGj (y) for x, y ∈ [0, 1), we obtain

V ϑi
(
σϑi , σ

ϑ
j

)
−
(
Liϑ(1−Gϑj (ϑ)) + F iϑG

ϑ
j (ϑ)

)
≤ E

[
−Liϑ(1−Gϑj (ϑ))(1−Gϑi (ϑ)) +

∫
(ϑ,τ̂ϑ)

(
1−Gϑj (s)

)
Lis dG

ϑ
i (s)

+
∫

(ϑ,τ̂ϑ)

(
1−Gϑi (s−)

)
F is dG

ϑ
j (s) + (1−Gϑi (τ̂ϑ−))(1−Gϑj (τ̂ϑ−))Liτ ′

∣∣∣∣Fϑ

]
= E

[
−
∫ 1

0

∫ 1

0
1{τGj (y)∈(ϑ,∞]}1{τGi (x)∈(ϑ,∞]}L

i
ϑ dy dx

+
∫ 1

0

∫ 1

0
1{τGi (x)∈(ϑ,τ̂ϑ)}1{τGj (y)∈(τGi (x),∞]}L

i

τ
G
i (x) dy dx

+
∫ 1

0

∫ 1

0
1{τGj (y)∈(ϑ,τ̂ϑ)}1{τGi (x)∈[τGj (y),∞]}F

i

τ
G
j (y) dx dy

+
∫ 1

0

∫ 1

0
1{τGi (x)∈[τ̂ϑ,∞]}1{τGj (y)∈[τ̂ϑ,∞]}L

i
τ
′ dy dx

∣∣∣∣Fϑ

]
.

For any x, y ∈ [0, 1), the Fϑ-conditional expectation of the integrand in the third double integral does
not decrease if we replace F i

τ
G
j (y) by Li

τ
i
F (τGj (y)), because we can use the estimate F iτ ≤ E[F i

τ
i
F (τ) |Fτ ] ≤

E[Li
τ
i
F (τ) |Fτ ] for τ = τGj (y) with iterated expectations thanks to {τGj (y) ∈ (ϑ, τ̂ϑ)} ∩ {τGi (x) ≥ τGj (y)} ∈

F
τ
G
j (y); the conditional expectation of the (double) integral thus does not decrease, either (cf. fn. 33). Then,

in order to collect the last three double integrals, define τ ′x,y ∈ T for each (x, y) ∈ [0, 1)2 by τ ′x,y = τGi (x) on
{τGi (x) ∈ (ϑ, τ̂ϑ)}∩{τGj (y) > τGi (x)}, τ ′x,y = τ iF (τGj (y)) ≥ τGj (y) on {τGj (y) ∈ (ϑ, τ̂ϑ)}∩{τGi (x) ≥ τGj (y)} and
τ ′x,y = τ ′ ≥ τ̂ϑ on {τGi (x) ≥ τ̂ϑ}∩{τGj (y) ≥ τ̂ϑ}. Note that all these events are contained in F

τ
G
i (x)∧τGj (y)∧τ̂ϑ

and that their union is {τGi (x) ∧ τGj (y) > ϑ} ∈ Fϑ. Therefore,

V ϑi
(
σϑi , σ

ϑ
j

)
−
(
Liϑ(1−Gϑj (ϑ)) + F iϑG

ϑ
j (ϑ)

)
≤ E

[∫ 1

0

∫ 1

0
1{τGi (x)∧τGj (y)>ϑ}

(
Liτ ′x,y

− Liϑ
)
dy dx

∣∣∣Fϑ

]
, (C.6)

which is nonpositive when Liϑ > E[Liτ |Fϑ] for all stopping times τ > ϑ (cf. fn. 33 again). The inequality
is strict when investment does not occur immediately for sure, i.e., when max{Gϑi (ϑ), Gϑj (ϑ)} < 1, because
then τGi (x) ∧ τGj (y) > ϑ for all (x, y) ∈ (Gϑi (ϑ), 1) × (Gϑj (ϑ), 1) and τ̂ϑ > ϑ, so also τ ′x,y > ϑ for all these
(x, y). In this case, σϑi cannot be optimal. Indeed, consider σϑn ∈ S ϑ that are on {max{Gϑi (ϑ), Gϑj (ϑ)} < 1}
given by Gϑn(t) = 1{t≥ϑ+1/n} and α

ϑ
n(t) = 0 for n ∈ N, n > 2. Then, by right-continuity of Li· and ϑ < τ̂ϑ,

limn→∞ V ϑi (σϑn, σ
ϑ
j ) = Liϑ(1−Gϑj (ϑ)) + F iϑG

ϑ
j (ϑ). This proves the first claim.
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As to the second claim, suppose by way of contradiction that τ = ϑ attains (C.1), but that there exists
a stopping time τ ′ ≥ ϑ such that E[

∫ τ ′
ϑ

(πLis − π
0i
s ) ds |Fϑ] < 0 with positive probability. On that event,

Liϑ =
∫ ϑ

0
π0i
s ds+ E

[∫ τ
j
F (ϑ)

ϑ

πLis ds+
∫ ∞
τ
j
F (ϑ)

πBis ds

∣∣∣∣Fϑ

]

<

∫ ϑ

0
π0i
s ds+ E

[∫ τ
′

ϑ

π0i
s ds+

∫ τ
j
F (ϑ)

τ
′

πLis ds+
∫ ∞
τ
j
F (ϑ)

πBis ds

∣∣∣∣Fϑ

]
≤ E

[
Liτ ′
∣∣∣Fϑ

]
,

because τ jF (τ ′) ≥ τ jF (ϑ) and πLi· ≥ π
Bi
· , which contradicts the optimality of τ = ϑ in (C.1).

Remark C.4. The F -events on which τ > ϑ ⇒ Liϑ > E[Liτ |Fϑ] a.s. for the stopping times τ ≥ ϑ can be
aggregated into an Fϑ-event as follows: With A(τ) := {τ > ϑ} ∈ Fϑ and B(τ) := {Liϑ > E[Liτ |Fϑ]} ∈
Fϑ for any stopping time τ ≥ ϑ, the given property can be written as 1{B(τ)} − 1{A(τ)} = 0 a.s. for
all τ ≥ ϑ (as B(τ) ⊆ A(τ)). The latter holds for any F -event if and only if it is a subset of C0 :=
{ess infτ≥ϑ(1{B(τ)} − 1{A(τ)}) = 0} (up to a nullset). As all 1{B(τ)} − 1{A(τ)} are Fϑ-measurable random
variables, so is ess infτ≥ϑ(1{B(τ)} − 1{A(τ)}). Indeed, as 1{B(τ)} − 1{A(τ)} ≥ ess infτ≥ϑ(·), also 1{B(τ)} −
1{A(τ)} ≥ E[ess infτ≥ϑ(·) |Fϑ] a.s. for all τ ≥ ϑ and thus ess infτ≥ϑ(·) ≥ E[ess infτ≥ϑ(·) |Fϑ] a.s. by the
definition of ess inf(·). However, as the left- and right-hand sides have the same expectation, equality holds
a.s.

Moreover, there exists a sequence of mutually disjoint sets (Cn) and a sequence of stopping times (τn)
such that

⋃
Cn = Ω \ C0 (up to a nullset), inf τn ≥ ϑ and, on each Cn, τn > ϑ and Liϑ = E[Liτn |Fϑ]

a.s. This follows from the fact that the family {1{B(τ)} − 1{A(τ)} | τ ≥ ϑ} is directed downwards, as by all
1{B(τ)}−1{A(τ)} being {−1, 0}-valued, for any τ1, τ2 ≥ ϑ also τ3 := τ1 + (1{A(τ2)}−1{B(τ2)})(τ2− τ1) ≥ ϑ is
a stopping time that satisfies 1{A(τ3)} − 1{B(τ3)} = min(1{A(τ1)} − 1{B(τ1)},1{A(τ2)} − 1{B(τ2)}). There thus
exists a sequence (τn) ⊆ T with inf τn ≥ ϑ and 1{B(τn)} − 1{A(τn)} ↘ ess infτ≥ϑ(1{B(τ)} − 1{A(τ)}) a.s., so
P [{1{B(τn)} = 1{A(τn)}} \ C0]↘ 0. Now one can recursively set Cn = A(τn) \ (B(τn) ∪ Cn−1).

Proof of Lemma C.2. First, note that there exists an optimal stopping time for (C.3) (and also a latest
one), because the process to be stopped is continuous and integrable. For any stopping time τ ∈ [ϑ, τ2

F (ϑ)],
τ2
F (τ) = τ2

F (ϑ) and thus L1
ϑ − E[L1

τ |Fϑ] = E[
∫ τ
ϑ

(πL1
s − π

01
s ) ds |Fϑ] is the same payoff difference as that

between ϑ and τ in (C.3). Therefore, when ϑ is uniquely optimal in (C.3), then also L1
ϑ > E[L1

τ |Fϑ]
on {τ > ϑ}. Regarding the other possible payoffs, as argued in the proof of Lemma C.1, M1

τ ≤ F 1
τ ≤

E[F 1
τ

1
F (τ) |Fτ ] ≤ E[L1

τ
1
F (τ) |Fτ ], where now τ1

F (τ) ≤ τ2
F (τ) = τ2

F (ϑ) for τ ∈ [ϑ, τ2
F (ϑ)]. Hence, L1

ϑ exceeds
the expectations of L1

τ , F
1
τ and M1

τ conditional on Fϑ for any stopping time τ ∈ (ϑ, τ2
F (ϑ)]. The same

property for any τ > ϑ was used in the proof of Lemma C.1 only for estimating the right-hand side of
(C.6). We obtain the same conclusion now (with i = 1, j = 2), because if Gϑ2 (τ2

F (ϑ)) = 1, then τ ′x,y ≤ τ
2
F (ϑ)

for all (x, y) ∈ [0, 1). Indeed, then τG2 (y) ≤ τ2
F (ϑ) for all y ∈ [0, 1) and thus, as τ ′x,y ≤ τ iF (τGj (y)), now

τ ′x,y ≤ τ
1
F (τGj (y)) ≤ τ2

F (τGj (y)) = τ2
F (ϑ) by Lemma 3.2.

Proof of Lemma C.3. When τ = ϑ is the only stopping time attaining (C.4), then, as observed before
Lemma C.3, ϑ = τ2

F (ϑ) and thus F 2
ϑ = L2

ϑ = M2
ϑ by Lemma 3.2. Then firm 2’s payoff at ϑ is F 2

ϑ for
σϑ2 ∈ S ϑ given by Gϑ2 (t) = 1{t≥ϑ} and αϑ2 (t) = 0 for all t ∈ R+ and any σϑ1 ∈ S ϑ. Any pair of strategies
with max{Gϑ1 (ϑ), Gϑ2 (ϑ)} < 1 that are respectively time-consistent with strategies for ϑ′ = τP(ϑ) given by
Lemma 3.3 can be shown to yield a lower payoff along the lines of the proof of Lemma C.1. Then τ̂ϑ ≤ τP(ϑ).
Moreover, M2

s ≤ L2
s ≤ F 2

s for all s ∈ [ϑ, τP(ϑ)) a.s. by right-continuity and Lemma 3.4, respectively. Thus,
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using (B.1) for ϑ′ = τP(ϑ) and that λϑL,i + λϑL,j + λϑM = (1−Gϑi (τ̂ϑ−))(1−Gϑj (τ̂ϑ−)), we obtain

V ϑ2
(
σϑ2 , σ

ϑ
1
)
≤ E

[ ∫
[ϑ,τ̂ϑ)

(
1−Gϑ1 (s)

)
F 2
s dG

ϑ
2 (s) +

∫
[ϑ,τ̂ϑ)

(
1−Gϑ2 (s−)

)
F 2
s dG

ϑ
1 (s)

+(1−Gϑ2 (τ̂ϑ−))(1−Gϑ1 (τ̂ϑ−))F 2
τ̂
ϑ∧τP(ϑ)

∣∣∣∣Fϑ

]
.

Performing the change of variable and setting τ ′x,y = min{τG2 (x), τG1 (y), τ̂ϑ}, the analogue of (C.6) which
we obtain is

V ϑ2
(
σϑ2 , σ

ϑ
1
)
− F 2

ϑ ≤
∫ 1

0

∫ 1

0
1{τG2 (x)∧τG1 (y)>ϑ}E

[
F 2
τ
′
x,y
− F 2

ϑ

∣∣∣Fϑ

]
dy dx,

with analogous conclusions to those after (C.6).
As to the further claims, first note that there exists an optimal stopping time τ iM ≥ ϑ for (3.5) and also a

latest one, because the process to be stopped is continuous and integrable. An optimal τ iM satisfies the neces-
sary and sufficient conditions E[

∫ τ iM
τ

(π0i
s −π

Bi
s ) ds |Fτ ] ≥ 0 on {τ ≤ τ iM} and E[

∫ τ
τ
i
M

(π0i
s −π

Bi
s ) ds |F

τ
i
M

] ≤ 0
on {τ ≥ τ iM} for all stopping times τ ≥ ϑ, the last inequality being strict on {τ > τ iM} if τ

i
M is the latest

solution. We will derive the analogous properties for the process (F it ); therefore, consider an arbitrary
stopping time τ ≥ ϑ.

For the first property, note that on {τ ≤ τ iM} we have

E
[
F i
τ
i
M∧τ

i
F (τ)

∣∣Fτ

]
− F iτ = E

[∫ τ
i
M∧τ

i
F (τ)

τ

(π0i
s − π

Fi
s ) ds

∣∣∣∣Fτ

]
≥ 0

by π0i
· ≥ π

Fi
· and τ iF (τ iM ∧ τ

i
F (τ)) = τ iF (τ). Moreover, on the subset {τ iM > τ iF (τ)} we have

E
[
F i
τ
i
M

∣∣F
τ
i
F (τ)

]
− F i

τ
i
F (τ) = E

[∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ iM )

τ
i
M

(πFis − π
Bi
s ) ds

∣∣∣∣Fτ
i
F (τ)

]
≥ 0

by the optimality of τ iM and the definition of τ iF (τ iM ); cf. the proof of Lemma 3.2. Together, E[F i
τ
i
M
|Fτ ]−

F iτ = E[F i
τ
i
M
− F i

τ
i
M∧τ

i
F (τ) |Fτ ] + E[F i

τ
i
M∧τ

i
F (τ) |Fτ ]− F iτ ≥ 0.

For the second property, note that E[F i
τ
i
F (τ) |Fτ ] − F iτ = E[

∫ τ iF (τ)
τ

(π0i
s − πFis ) ds |Fτ ] ≥ 0, again by

π0i
· ≥ πFi· and τ iF (τ iF (τ)) = τ iF (τ), so it suffices to show E[F i

τ
i
F (τ) |Fτ

i
M

] ≤ F i
τ
i
M

on {τ ≥ τ iM}. Then
τ iF (τ) ≥ τ iF (τ iM ) and hence

E
[
F i
τ
i
F (τ)

∣∣F
τ
i
M

]
− F i

τ
i
M

= E

[∫ τ
i
F (τ iM )

τ
i
M

(π0i
s − π

Fi
s ) ds+

∫ τ
i
F (τ)

τ
i
F (τ iM )

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]

≤ E
[∫ τ

i
F (τ iM )

τ
i
M

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ)

τ
i
F (τ iM )

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]
≤ 0,

where we have used the definition of τ iF (τ iM ) in the first estimate, and the optimality of τ iM in the last. The
last inequality is strict on {τ > τ iM} if τ

i
M is the latest solution of (3.5).

Now suppose that the stopping time τ iM ≥ ϑ optimally stops (F it ) from ϑ ∈ T , i.e., it satisfies
E[F i

τ
i
M
|Fτ ] ≥ F iτ on {τ ≤ τ iM} and E[F iτ |Fτ

i
M

] ≤ F i
τ
i
M

on {τ ≥ τ iM} for all stopping times τ ≥ ϑ.
As E[F i

τ
i
F (τ iM ) |Fτ

i
M

] ≥ F i
τ
i
M

as noted above, we must then have equality, i.e., τ iF (τ iM ) is optimal, too, and
we may set τ iM = τ iF (τ iM ) for simplicity to show optimality of τ iF (τ iM ) in (3.5). Therefore, consider again an
arbitrary stopping time τ ≥ ϑ.
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On {τ ≤ τ iM}, then τ
i
F (τ) ≤ τ iF (τ iM ) = τ iM and hence

0 ≤ E
[
F i
τ
i
M

∣∣Fτ

]
− F iτ = E

[∫ τ
i
F (τ)

τ

(π0i
s − π

Fi
s ) ds+

∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ

]

≤ E
[∫ τ

i
F (τ)

τ

(π0i
s − π

Bi
s ) ds+

∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ

]
by the definition of τ iF (τ), which yields the first optimality property for τ iM in (3.5).

On {τ ≥ τ iM}, we have τ iF (τ) ≥ τ iM and hence

0 ≥ E
[
F iτ
∣∣F

τ
i
M

]
− F i

τ
i
M

= E

[∫ τ

τ
i
M

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ)

τ

(πFis − π
Bi
s ) ds

∣∣∣∣Fτ
i
M

]
≥ E

[∫ τ

τ
i
M

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]
by the definition of τ iF (τ) again, which yields the second optimality property for τ iM in (3.5).
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