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1. Introduction

Let us consider two Borel probability measures µ and σ on Rd satisfying the stationary
Fokker–Planck–Kolmogorov equations L∗µµ = 0 and L∗σσ = 0, where L∗µ and L∗σ are formally
adjoint operators to second order elliptic operators

Lµu = tr(AµD
2u) + div(bµu) and Lσu = tr(AσD

2u) + div(bσu).

Below we explain in which sense the equations are understood. The indices µ and σ in the
notation for coefficients do not mean any dependence on the measures, but only serve for distin-
guishing two different equations satisfied by two given measures. The diffusion matrices Aµ(x),
Aσ(x) are assumed throughout to be symmetric and positive definite. The main problem this
paper is concerned with is obtaining bounds on distances between the measures µ and σ through
certain distances between the diffusion coefficients Aµ and Aσ and the drift coefficients bµ and bσ.
In obtaining such bounds an important role is played by the Poisson equation

Lµu = ψ,

so considerable attention will be paid to investigation of solutions to such equations on the whole
space Rd. We shall give a brief survey of already known methods of obtaining estimates and
give a number of new results, which concern not only estimates for stationary distributions, but
also the Poisson equation itself.

Investigation of dependence of solutions on the coefficients of the Fokker–Planck–Kolmogorov
equation is important for the whole number of nonlinear problems: existence and uniqueness
of solutions to stationary McKean–Vlasov equations, continuity and differentiability of distrib-
utions of diffusion processes with respect to a parameter, and optimal control. If, for example,
in the case Aµ = Aσ = I we have obtained an estimate ‖µ − σ‖TV ≤ C‖bµ − bσ‖L2(σ), where
‖ · ‖TV is the total variation norm of a signed measure (defined as the sum of values on the
whole space of its positive and negative parts), then with its aid we can derive an existence and
uniqueness theorem for the nonlinear equation

∆µ− div(b(x, µ)µ) = 0,

in which the drift bµ now depends on the solution µ, in the following way. Let us consider a
mapping F on the space of probability measures defined as follows: F (σ) = µ if L∗σµ = 0, where
Lσ is the operator with the drift bσ. If |b(x, µ) − b(x, σ)| ≤ qC−1‖µ − σ‖TV , where 0 < q < 1,
then the mapping F satisfies the estimate

‖F (σ1)− F (σ2)‖TV ≤ q‖σ1 − σ2‖TV ,
1
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i.e., F is a contracting mapping (see [8] and [9]).
In the paper [8], in the case of locally bounded coefficients bµ, bσ and Aµ = Aσ = I, an

estimate for the L2(µ)-norm of the gradient of the function
√
dσ/dµ via the L2(σ)-norm of the

difference bµ−bσ was obtained. Under the additional assumption that the measure µ satisfies the
logarithmic Sobolev inequality, this estimate yields estimates for the entropy of σ with respect
to µ, for the Kantorovich distance between µ and σ, and for the total variation norm of the
difference σ − µ. An example of the Fokker–Planck–Kolmogorov equation whose probability
solution satisfies the logarithmic Sobolev inequality is (see [12, Theorem 5.6.36]) the equation
with the unit diffusion matrix and a drift b satisfying the monotonicity condition

〈b(x)− b(y), x− y〉 ≤ −κ|x− y|2.

In this paper, we generalize this result to the case of nonconstant and different diffusion matrices
and show that if in place of the logarithmic Sobolev inequality we require that µ satisfies the
Poincaré inequality, then one can obtain an estimate for the Hellinger integral, from which an
estimate for the total variation of the difference σ − µ follows. Note that a sufficient condition
ensuring the Poincaré inequality for the solution µ is (see [2, Theorem 1.4], [16, Theorem 1.1]) the
symmetry of the operator Lµ on L2(µ) and the existence of a Lyapunov function, in particular,
no monotonicity of b is required. However, the symmetry of Lµ is a very substantial restriction
(see also [19] and [25]). Say, for the unit diffusion matrix it is fulfilled only when the drift
coincides with the logarithmic gradient of the density of the solution. There is also the whole
number of papers (see [2], [3], [4], [5], [15], [16], [17], [18], [24], [26], [31], [32], [33], [34], and [35]),
in which the conditions for the validity of inequalities of log-Sobolev type are derived in terms
of certain curvatures connected with the coefficients of the equation (such as the Bakry Γ2-
condition). However, these criteria require higher smoothness of the coefficients and are difficult
to verify through the coefficients of the equation. With the aid of the Poisson equation we
obtain new sufficient conditions under which the solution satisfies the Poincaré and logarithmic
Sobolev inequalities.

In the paper [9], another approach has been considered to obtaining estimates for distances
between µ and σ based on the properties of solutions to the Poisson equations Lµu − λu = ψ
and Lµu = ψ. As above, two typical situations have been studied there: 1) b satisfies the
monotonicity condition and 2) there exists a Lyapunov function. In the first situation estimates
on the gradient for solutions to the Poisson equation have been obtained with the aid of the
maximum principle (it is here that the monotonicity of b is needed). In the second situation
estimates of solutions to the Poisson equation from the paper [29] have been used, which imposes
very restrictive conditions on the coefficients (this case is commented in more detail below). Such
conditions are connected with the method of constructing and studying solutions to the Poisson
equation based on analysis of the formula expressing the solution u to the equation Lµu = ψ as

the expectation of the variable
∫ ∞

0
ψ(Xt) dt with the solution Xt to the corresponding stochastic

equation; in addition, this method employs estimates of the rate of convergence of transition
probabilities of the diffusion process Xt to the stationary distribution µ. Moreover, the estimate
for the gradient in [29, Theorem 1 and Theorem 2] was actually obtained under the assumption
of the global boundedness of the coefficients.

In this paper, we suggest an alternative approach (not using probability representations) to
the study of the Poisson equation, which enables us to obtain more general results under much
less restrictive conditions on the coefficients. Finally, we apply these results for obtaining new
bounds on the total variation of the difference σ − µ and the Poincaré and logarithmic Sobolev
inequalities for the solution. Note that for transition probabilities, i.e., solutions to parabolic
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Fokker–Planck–Kolmogorov equations, analogous questions have been studied in the paper [14].
Close estimates for the maximum of the difference between two transition probability densities
and their applications are studied in [22] and [23]. A survey of the theory of Fokker–Planck–
Kolmogorov equations is given in [12] and [11], for uniqueness questions see also [13].

Let W p,k(Rd) denote the Sobolev class of functions belonging to Lp(Rd) along with their
generalized partial derivatives up to order k. The Sobolev norm ‖f‖p,k is defined as the sum
of the Lp-norms of the aforementioned functions. Let W p,k

loc (Rd) denote the class of functions f
such that ζf ∈ W p,k(Rd) for all functions ζ from the class C∞0 (Rd) of infinitely differentiable
functions with compact support.

The inner product and norm in Rd are denoted by 〈x, y〉 and |x|, respectively. Let B(0, R)
denote the closed ball of radius R centered at zero.

Let
LA,bu = tr(AD2u) + 〈b,∇u〉.

Let p > d. Throughout, if the otherwise is not stated explicitly, we assume that the coefficients
A and b satisfy the following conditions:

(Ha) the matrix A(x) = (aij(x))1≤i,j≤d is symmetric, positive definite and its elements aij

belong to the Sobolev class W p,1
loc (Rd) (we always pick continuous versions of the functions aij);

(Hb) b(x) = (bi(x))1≤i≤d is a Borel vector field on Rd and bi ∈ Lp
loc(R

d).
We shall say that a Borel probability measure µ on Rd (i.e., µ ≥ 0 and µ(Rd) = 1) satisfies

the stationary Fokker–Planck–Kolmogorov equation

L∗A,bµ = 0 (1.1)

if aij , bi ∈ L1
loc(µ) and ∫

Rd

LA,bu dµ = 0 ∀u ∈ C∞0 (Rd).

In the sense of distributions equation (1.1) can be written in the form (the so-called “double
divergence form”)

∂xi∂xj (a
ijµ)− ∂xi(b

iµ) = 0
with summation with respect to the repeated indices. Under our conditions on the coefficients
the measure µ has a continuous strictly positive density % with respect to Lebesgue measure and
% ∈W p,1

loc (Rd). For this density the equation can be written in the divergence form

∂xi(a
ij∂xj%) + ∂xi((∂xja

ij − bi)%) = 0.

Note that a sufficient condition for the existence and uniqueness of a probability measure µ
satisfying equation (1.1) is the existence of a function V ∈ C2(Rd) and a number C > 0 such
that lim

|x|→+∞
V (x) = +∞ and LA,bV (x) ≤ −C outside some ball.

This paper consists of the introduction and three sections. Section 2 is concerned with esti-
mates obtained under the assumption that the solution satisfies the logarithmic Sobolev or the
Poincaré inequality. In Section 3 we discuss bounds obtained with the aid of the Poisson equa-
tion and consider sufficient conditions for the validity of Poincaré-type and logarithmic Sobolev
inequalities. In the last section we study the Poisson equation itself.

2. Estimates on the basis of the logarithmic Sobolev inequality and the
Poincaré inequality

Suppose that measures µ = %µ dx and σ = %σ dx are probability solutions to the equations
L∗Aµ,bµ

µ = 0 and L∗Aσ ,bσ
σ = 0, the coefficients of which satisfy conditions (Ha) and (Hb), which

will be assumed throughout.
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Let us introduce the following notation:

hµ = (hi
µ)d

i=1, hi
µ = biµ −

d∑
j=1

∂xja
ij
µ ,

hσ = (hi
σ)d

i=1, hi
σ = biσ −

d∑
j=1

∂xja
ij
σ .

Set

Φ =
(Aµ −Aσ)∇%σ

%σ
+ hσ − hµ.

We observe that Φ = bσ − bµ if Aµ = Aσ.
Further for shortness of notation in place of LAµ,bµ and LAσ ,bσ we write Lµ and Lσ, respec-

tively.
Let

v(x) =
%σ(x)
%µ(x)

. (2.1)

Let W p,1(µ) denote the weighted Sobolev class obtained by completing C∞0 (Rd) with respect to
the Sobolev norm ‖f‖p,1,µ, which differs from the usual one by the measure µ used in place of
Lebesgue measure. By the indicated properties of the density of the measure, functions from this
class do not differ locally from functions of class W p,1

loc (Rd). Hence W p,1(µ) consists of functions
of class W p,1

loc (Rd) with finite norm ‖ · ‖p,1,µ.
The next assertion generalizes Theorem 1 from [8], where the matrix A was constant.

Theorem 2.1. Suppose that |A−1/2
µ Φ| ∈ L2(σ) and at least one of the following conditions is

fulfilled:
(i) (1 + |x|)−2aij

µ , (1 + |x|)−1|bµ| ∈ L1(µ),
(ii) there exists a function V ∈ C2(Rd) such that V ≥ 0, lim

|x|→+∞
V (x) = +∞,

LµV (x) ≤MV (x)

for all x and some number M > 0 and

〈Φ,∇V 〉(1 + V )−1 ∈ L1(σ).

Then we have ∫
Rd

|A1/2
µ ∇v|2

v
dµ ≤

∫
Rd

|A−1/2
µ Φ|2 dσ.

If Aµ ≥ αI, then this estimate yields that
√
v ∈W 2,1(µ).

Since the proof repeats the justification of Theorem 1 from [8] with minor technical changes,
we confine ourselves to an informal reasoning.

Proof. We observe that the function v given by (2.1) satisfies the equation

L∗µ(%µv) = div(Φ%σ).

For smooth functions u,w and f there hold the equalities

L∗µ(uw) = wL∗µu+ uL∗µw + 2〈A∇u,∇w〉+ uwdivhµ,

L∗µf(u) = f ′(u)L∗µu+ f ′′(u)|A1/2∇u|2 + (uf ′(u)− f(u))divhµ.

Let f ∈ C2((0,+∞)) and f ′′ ≥ 0. Then

L∗µ
(
f(v)%µ

)
= %µL

∗
µf(v) + 2f ′(v)〈A∇v,∇%µ〉+ f(v)%µdivhµ,
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which on account of the expression above for L∗µ(f(v)) gives the equality

f ′′(v)|A1/2
µ ∇v|2%µ = L∗µ

(
f(v)%µ

)
− f ′(v)div(Φ%σ).

Multiplying this equality by a nonnegative function ψ ∈ C∞0 (Rd) and integrating by parts we
obtain∫

Rd

f ′′(v)|A1/2
µ ∇v|2%µψ dx =

∫
Rd

f(v)%µLµψ dx+

+
∫

Rd

f ′′(v)〈∇v,Φ〉v%µψ dx+
∫

Rd

f ′(v)〈∇ψ,Φ〉v%σ dx.

The hypothesis of the theorem ensures the existence of a sequence of functions ψN such that
ψN → 1, |∇ψN | → 0, LµψN → 0 and the integrals of the form indicated above with the functions
∇ψN and LψN tend to zero (for a rigorous reasoning, see [8]). Substituting ψN in place of ψ
and letting N go to infinity, we obtain∫

Rd

f ′′(v)|A1/2
µ ∇v|2%µ dx =

∫
Rd

f ′′(v)〈∇v,Φ〉v%µ dx.

Applying the inequality

〈∇v,Φ〉v ≤ 1
2
|A1/2∇v|2 +

1
2
|A−1/2Φ|2v2,

we arrive at the estimate∫
Rd

f ′′(v)|A1/2
µ ∇v|2%µ dx ≤

∫
Rd

f ′′(v)|A−1/2Φ|2v2%µ dx.

After substitution f(v) = v log v we obtain the assertion of the theorem. �

Given a number CS and a Borel measurable matrix-valued mapping A, we shall say that a
probability measure µ satisfies the logarithmic Sobolev inequality with the constant CS and the
matrix A if

Entµf
2 :=

∫
Rd

f2 log(f2) dµ−
∫

Rd

f2 dµ log
∫

Rd

f2 dµ ≤ CS

∫
Rd

|A1/2∇f |2 dµ

for every function f ∈ C∞0 (Rd). Under our assumptions this inequality extends to all functions
f ∈W 2,1(µ) if A is bounded.

We recall (see [10]) that on the set of probability measures with finite moment of order p the
Kantorovich p-metric is defined by

Wp(µ, σ) = inf
(∫

Rd

∫
Rd

|x− y|p π(dx dy)
)1/p

,

where inf is taken over all probability measures π on Rd × Rd with projections µ and σ on the
factors.

Corollary 2.2. If in addition to the conditions of Theorem 2.1 it is known that the measure
µ satisfies the logarithmic Sobolev inequality with the constant CS and the matrix Aµ, then the
following assertions are true.

(i) We have the entropy estimate

Entµv ≤
CS

4

∫
Rd

|A−1/2
µ Φ|2 dσ.
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(ii) If the measures µ and σ have finite second moments, then we have the estimate on the
Kantorovich 2-metric

W2(µ, σ)2 ≤
C2

S

4

∫
Rd

|A−1/2
µ Φ|2 dσ.

(iii) We have the estimate for the total variation

‖µ− σ‖2
TV ≤ CS

2

∫
Rd

|A−1/2
µ Φ|2 dσ.

Proof. Assertion (i) follows from Theorem 2.1 and the logarithmic Sobolev inequality. Since the
logarithmic Sobolev inequality implies the so-called transport inequality (see [10])

W2(µ, σ)2 ≤ 2−1CSEntµv,

assertion (i) yields assertion (ii). Finally, assertion (iii) follows from assertion (i) and the
known Pinsker–Kulback–Csiszár inequality ‖µ− σ‖TV ≤

√
2Entµv (see, for example, [7, Theo-

rem 2.12.24]). �

Example 2.3. Let Aµ = Aσ = I and suppose that for some positive κ we have the inequality

〈bµ(x)− bµ(y), x− y〉 ≤ −κ|x− y|2.
Then the measure µ satisfies the logarithmic Sobolev inequality with the constant 2/κ (see [12,
Theorem 5.6.36]) and with this constant in place of CS there hold the aforementioned estimates
in (i)–(iii), moreover, the integral in the right-hand side in this case equals ‖bµ − bσ‖2

L2(σ).

Example 2.4. Let us consider the partial case of the previous example with µ = e−V dx and
bµ = −∇V . The monotonicity condition on bµ becomes the convexity condition on V with
the estimate D2V ≥ κI. Then we obtain that the entropy of σ with respect to µ is estimated
by ‖∇V + bσ‖L2(σ). Let now σ = e−H dx and bσ = −∇H. Applying a generalization of the
transport inequality (see [10, Theorem 3.3.1]), we obtain∫

Rd

|∇ΦV −∇ΦH |2e−H dx ≤ K

2κ

∫
Rd

|∇V −∇H|2e−H dx,

where ∇ΦV and ∇ΦH are 2-optimal mappings taking the measure e−V dx and e−H dx to a given
measure m = e−P dx such that D2P ≥ K · I and K > 0. We recall that the 2-optimal mapping
taking the measure e−V dx to the measure m = e−P dx is a Borel transformation of the first
measure to the second one minimizing the integral∫

Rd

|T (x)− x|2 e−V dx

over all transformations T of the first measure to the second one. It is known that such a
minimizing mapping exists, is unique and has the form ∇ΦV with some convex function ΦV .

Given a number CP and a Borel measurable matrix-valued mapping A, we shall say that a
probability measure µ satisfies the Poincaré inequality with the constant CP and the matrix A
if ∫

Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣2 dµ ≤ CP

∫
Rd

|A1/2∇f |2 dµ

for every function f ∈ C∞0 (Rd). Under our assumptions this inequality extends to all functions
f ∈W 2,1(µ) if A is bounded.

We recall that the Hellinger integral (see [7, p. 300]) is the quantity

H(µ, σ) =
∫

Rd

√
%µ%σ dx.
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Corollary 2.5. If in addition to the conditions of Theorem 2.1 it is known that the measure
µ satisfies the Poincaré inequality with the constant CP and the matrix Aµ, then the following
estimates are valid:

1−H(µ, σ)2 ≤ CP

4

∫
Rd

|A−1/2
µ Φ|2 dσ,

‖µ− σ‖2
TV ≤ CP

∫
Rd

|A−1/2
µ Φ|2 dσ.

Proof. By the Poincaré inequality∫
Rd

∣∣∣∣√v − ∫
Rd

√
v dµ

∣∣∣∣2 dµ ≤ CP

4

∫
Rd

|A1/2
µ ∇v|2

v
dµ.

For the proof of the first inequality it suffices to observe that∫
Rd

∣∣∣∣√v − ∫
Rd

√
v dµ

∣∣∣∣2 dµ = 1−H(µ, σ)2.

The second inequality follows from the first one and the inequality ‖µ−σ‖TV ≤ 2
√

1−H(µ, σ)2
(see [7, Theorem 4.7.36]). �

Example 2.6. Let Aµ = Aσ = I and bµ = −∇V , where V ∈ C2(Rd), the function V is bounded
from below and the function e−V is a probability density. It is known (see [12, Theorem 4.1.11])
that the measure µ = e−V dx is a unique probability solution to the equation L∗µµ = 0. Suppose
that there exist a function W ∈ C2(Rd) with W ≥ 1 and positive numbers θ, β, and R such that

LµW ≤ −θW + βIB(0,R).

According to [2, Theorem 1.4] the measure µ satisfies the Poincaré inequality with the unit matrix
and constant CP = θ−1(1 + β · βR), where βR is the constant from the Poincaré inequality for
the measure µ restricted to B(0, R). Thus, all assertions of Corollary 2.5 are fulfilled with this
constant CP , moreover, the integral in the right-hand side in this case equals ‖∇V + bσ‖2

L2(σ).

Example 2.7. There are other conditions on the measure µ = e−V dx under which the Poincaré
inequality holds, for example, it is proved in [6] that for this it suffices that V be convex. Using
this result, one can show that

‖e−V − σ‖TV ≤ CV ‖∇V + bσ‖L2(σ)

for every convex function V ∈ C2(Rd) such that e−V dx is a probability measure and for every
probability measure σ satisfying the equation L∗σσ = 0 (without any restrictions on bσ, except
for condition (Hb)). In particular, if σ = e−H dx and bσ = −∇H, then

‖e−V − e−H‖TV ≤ CV

(∫
Rd

|∇H −∇V |2e−H dx

)1/2

.

Let us observe that the last inequality can be easily derived directly without using estimates for
distances between solutions to Fokker–Planck–Kolmogorov equations.

Finding conditions ensuring that a probability solution to the stationary FPK equation sat-
isfies the logarithmic Sobolev inequality or the Poincaré inequality is a difficult problem, such
conditions are not easily expressed in terms of the coefficients of the equation, especially in the
case of a nonconstant diffusion matrix. Hence an alternative approach is necessary. In addi-
tion, as we shall see below, the estimates obtained with the aid of the Poisson equation enable
us to derive some analogs of Sobolev and Poincaré inequalities for probability solutions to the
Fokker–Planck–Kolmogorov equation.
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3. Estimates on the basis of the properties of solutions to the Poisson equation

The idea of this approach is very simple. Suppose that for every bounded smooth function ψ
we are able to solve the Poisson equation

Lµu = ψ̃

with the right-hand side

ψ̃ := ψ −
∫

Rd

ψ dµ.

Then for the solution u we have∫
Rd

ψ d(µ− σ) =
∫

Rd

〈∇u,Φ〉 dσ.

In the last equality we write ψ in place of ψ̃, since the integral of any constant against the measure
µ − σ is zero. If, for example, we know that the boundedness of ψ yields the boundedness of
|∇u|, then we immediately obtain the estimate

‖µ− σ‖TV ≤ C‖Φ‖L1(σ).

If for the boundedness of |∇u| the boundedness of |∇ψ| is needed (this is the case if we obtain
this estimate by differentiating the equation Lu = ψ and applying the maximum principle), then
we obtain the estimate

W1(µ, σ) ≤ C‖Φ‖L1(σ).

Estimates of this form have been obtained in [9], we recall the formulations of the corresponding
assertions at the end of this section. However, it is possible to use the equation Lu = ψ only for
estimating |u|, and to derive estimates on the gradient |∇u| from the equality∫

Rd

|A1/2
µ ∇u|2 dσ = −

∫
Rd

[uψ + u〈Φ,∇u〉] dσ.

In this case we obtain an estimate on ‖µ− σ‖TV via ‖Φ‖L2(σ). This is the approach we discuss
in this section.

The next result is a partial case of Theorem 4.7 from the next section (here f(s) = s, Θ = 1),,
but we mention this case here for using in the proof of the theorem below.

Proposition 3.1. Suppose that A and b satisfy conditions (Ha) and (Hb) and there exist a
positive function V ∈ C2(Rd), a positive number γ and a ball Q of radius R centered at zero
such that

LA,bV (x) ≤ −γV (x) for all x ∈ Rd \Q.
Then, for every smooth function ψ such that sup |ψ/V | <∞ and∫

Rd

ψ dµ = 0,

there exists a solution u ∈W p,2
loc (Rd) to the equation LA,bu = ψ such that

sup
Rd

∣∣∣ u
V

∣∣∣ ≤ C sup
Rd

∣∣∣ψ
V

∣∣∣.
The number C depends on d, γ, R, ‖aij‖W p,1(Q1), ‖bi‖Lp(Q1), and supx∈Q1

‖A(x)−1‖, and also
on the minimum of the function V on Q1 and the maximum of the function V and absolute
values of its first and second derivatives on Q1, where Q1 is the ball of radius R+ 1 centered at
zero.
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Theorem 3.2. Suppose that there exist a positive function V ∈ C2(Rd), a positive number γ
and a ball Q of radius R centered at zero such that

LAµ,bµV (x) ≤ −γV (x) whenever x ∈ Rd \Q.

Suppose also that the functions

V 2, (1 + |x|)−1|Φ|V 2, |A−1/2
µ Φ|2V 2, (1 + |x|)−1|biµ|V 2, (1 + |x|)−2|aij

µ |V 2

are integrable with respect to the measure σ on all of Rd. Then one has the estimate

‖V (µ− σ)‖TV ≤ C

(∫
Rd

|A−1/2
µ Φ|2 dσ

)1/2(∫
Rd

[V 2 + |A−1/2
µ Φ|2V 2] dσ

)1/2

,

where C depends on the quantities listed above in Proposition 3.1.

Proof. Let ψ ∈ C∞0 (Rd) and |ψ| ≤ V . We observe that ‖V ‖L1(µ) = C1 <∞ and the function

ψ̃ = ψ −
∫

Rd

ψ dµ

satisfies the inequality |ψ̃| ≤ V + C1 ≤ C2V (we recall that V is a positive continuous function
tending to +∞). By Proposition 3.1 there exists a solution u to the equation Lu = ψ̃ such that
|u| ≤ C3V .

Let ζN = ζ(x/N), where ζ ∈ C∞0 (Rd), ζ ≥ 0, ζ(x) = 1 if |x| < 1 and ζ(x) = 0 if |x| > 2.
Since L∗µ(σ) = div(Φσ), we have∫

Rd

Lµ(u2ζN ) + 〈Φ,∇(u2ζN )〉 dσ = 0.

The expression J := 2−1Lµ(u2ζN ) + 2−1〈Φ,∇(u2ζN )〉 equals

ζNuψ̃ + ζN |A1/2
µ ∇u|2 + u〈Aµ∇ζN ,∇u〉+

u2

2
LµζN + u〈Φ,∇u〉ζN +

u2

2
〈Φ,∇ζN 〉.

Applying the inequality xy ≤ 4−1x2 + y2 to the third and fifth terms, we obtain

J ≥ ζNuψ̃ + 2−1ζN |A1/2
µ ∇u|2 − u2|A1/2

µ ∇ζN |2 +
u2

2
LµζN − u2|A−1/2

µ Φ|2ζN +
u2

2
〈Φ,∇ζN 〉.

We now apply the estimates |u| ≤ C3V and |ψ̃| ≤ C2V :

J ≥ −ζNC2C3V
2 + 2−1ζN |A1/2

µ ∇u|2 − C2
3V

2|A1/2
µ ∇ζN |2

− C2
3

2
V 2|LµζN | − C2

3V
2|A−1/2

µ Φ|2ζN − C2
3

2
V 2|Φ| |∇ζN |.

Integrating this inequality with respect to σ and letting N →∞, we arrive at the estimate∫
Rd

|A1/2
µ ∇u|2 dσ ≤ C4

∫
Rd

[V 2 + |A−1/2
µ Φ|2V 2] dσ.

Taking into account this estimate and acting similarly with the expression∫
Rd

Lµ(uζN ) dσ = −
∫

Rd

〈Φ,∇(uζN )〉 dσ,

we arrive at the inequality ∫
Rd

ψ̃ dσ ≤
∫

Rd

|A−1/2
µ Φ| |A1/2

µ ∇u| dσ.
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Applying the Cauchy–Bunyakovskii inequality, we estimate the right-hand side by

C

(∫
Rd

|A−1/2
µ Φ|2 dσ

)1/2(∫
Rd

[
V 2 + |A−1/2

µ Φ|2V 2
]
dσ

)1/2

.

It remains to recall the definition of ψ̃ and write the left-hand side of the inequality as follows:∫
Rd

ψ d(σ − µ).

Since ψ was an arbitrary function from C∞0 (Rd) satisfying the bound |ψ| ≤ V , the obtained
inequalities yield the assertion of the theorem. �

Example 3.3. Let Aµ = Aσ = I and

〈bµ(x), x〉 ≤ −γ|x|2, where γ > 0.

Suppose that |bµ(x)| + |bσ(x)| ≤ C0(1 + |x|)m for some numbers m ≥ 1 and C0 > 0. If the
measure σ has a finite moment of order 2m+ 2, then the conditions of Theorem 3.2 are fulfilled
and the estimate

‖(1 + |x|)2(µ− σ)‖TV ≤ C‖bµ − bσ‖L2(σ)

(
‖(1 + |x|)2‖L2(σ) + ‖(1 + |x|)2(bµ − bσ)‖L2(σ)

)
holds, where C depends on γ, C0, and m.

The next result was obtained in [9, Theorem 2.2] in a somewhat different form, but in its
formulation a condition was omitted that was necessary for applying in the proof a theorem
from [29] (more precisely, Theorem 2 from [29], where in the formulation the restriction on
the drift coefficient b is also omitted, without which the reasoning from [29] for estimating the
gradient of the solution is not applicable; actually, the justification given there is valid only for
a bounded drift coefficient b). We now give a corrected stronger assertion.

Theorem 3.4. Suppose that Aµ and Aσ satisfy condition (Ha) and Aµ is uniformly bounded
along with A−1

µ and let the functions aij
µ be uniformly continuous with a modulus of continuity ω.

Suppose that for some positive numbers κ, γ1, γ2, γ3 and m there hold the inequalities

〈bµ(x), x〉 ≤ γ1 − γ2|x|κ, |bµ(x)| ≤ γ3(1 + |x|)m.

If |Φ|(1 + |x|)m ∈ L1(σ), then

‖µ− σ‖TV ≤ C

∫
Rd

(1 + |x|)m|Φ| dσ,

where C depends on d, κ, γ1, γ2, γ3, m, the modulus of continuity ω, and ‖aij‖W p,1(B(0,R)),
where R depends only on γ1, γ2, κ, and the sup-norms of Aµ, A−1

µ .

Proof. Let ψ ∈ C∞0 (Rd) and |ψ| ≤ 1. According to Example 4.9(iii) (see below) there exists a
bounded solution u to the equation Lµu = ψ̃, where

ψ̃ = ψ −
∫

Rd

ψ dµ.

By Proposition 4.10 we have the estimate

|∇u(x)| ≤ C(1 + |x|)m.

As above, using the sequence of functions ζk, we justify the inequality∫
Rd

ψ̃ dσ ≤
∫

Rd

|∇u| |Φ| dσ,

from which the assertion of the theorem follows. �
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We now formulate yet another result (see [9, Theorem 2.1]) based on estimates of the gradient
obtained by means of differentiating the equation and applying the maximum principle.

Theorem 3.5. Suppose that Aµ and Aσ satisfy the Lipschitz condition with some constant
Λ > 0, are bounded and Aµ ≥ αI, Aσ ≥ αI with some constant α > 0. Let bµ and bσ satisfy
condition (Hb). Suppose that bµ ∈ L1(µ+ σ), Φ ∈ L1(σ), |x| ∈ L1(σ) and there exists a number
κ > d2Λ2/(4α2) such that for all x, y we have

〈bµ(x)− bµ(y), x− y〉 ≤ −κ|x− y|2.

Then the measure µ has a finite first moment and

W1(µ, σ) ≤ 1
m

∫
Rd

|Φ| dσ, m = κ− d2Λ2

4α2
.

In addition, there exists a number C > 0 depending only on Λ, α, d and κ such that

‖µ− σ‖TV ≤ C

∫
Rd

|Φ| dσ.

Let us observe that in the case of a constant matrix Aµ = Aσ the estimate on the Kantorovich
metric from the last theorem is fulfilled with m = κ, which agrees with the bounds obtained
in [8]. In addition, in this case the constant C in the estimate for the total variation does not
depend on the dimension d. This can be easily deduced from the justification of this estimate
given in [9] and the fact that the estimate on the gradient of the solution to the Poisson equation
from [30, Theorem 3.11] used in this justification does not depend on dimension.

Theorem 3.5 enables us to prove some analogs of the transport inequality and the Poincaré
inequality for solutions to the stationary Fokker–Planck–Kolmogorov equation.

Corollary 3.6. Suppose that the coefficients Aµ and bµ satisfy the conditions of Theorem 3.5.
Let

F =
Aµ∇%µ

%µ
− hµ.

Then for every probability measure f · µ with a smooth positive density f , the inequality

W1(µ, fµ) ≤ 1
m

∫
Rd

|Aµ∇f | dµ+
1
m

∫
Rd

|F |f dµ

holds, and in the case where µ = e−V dx, bµ = −∇V , D2V ≥ κI and Aµ = I this inequality has
the form

W1(µ, fµ) ≤ 1
κ

∫
Rd

|∇f | dµ.

Proof. It suffices to apply the previous theorem to the measures µ and σ = f ·µ, where σ satisfies
the equation with the matrix Aµ and drift

bσ =
Aµ∇f
f

+ (F + bµ),

which is verified directly. �

Modifying the reasoning used to derive the estimate of the total variation of the difference
µ− σ, we can obtain a Poincaré-type inequality.

Theorem 3.7. Let Aµ and A−1
µ be uniformly bounded. Suppose that for some positive numbers

κ, γ1, γ2, γ3 and m we have

〈bµ(x), x〉 ≤ γ1 − γ2|x|κ, |bµ(x)| ≤ γ3(1 + |x|)m.
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Then, for every function f ∈ C∞0 (Rd),∫
Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣ dµ ≤ C

∫
Rd

(
1 + |x|m + |bµ − βµ|

)
|∇f | dµ,

where

βi
µ =

d∑
j=1

∂xj (a
ij
µ %µ)
%µ

and the number C depends on the quantities mentioned in Theorem 3.4.

Proof. Let ψ ∈ C∞0 (Rd). Set

ψ̃ = ψ −
∫

Rd

ψ dµ.

We observe that ∫
Rd

(
f −

∫
Rd

f dµ

)
ψ dµ =

∫
Rd

fψ̃ dµ.

Let u be the solution to the equation Lu = ψ̃. Integrating by parts we obtain the equality∫
Rd

(
f −

∫
Rd

f dµ

)
ψ dµ =

∫
Rd

−〈Aµ∇u,∇f〉 dµ+
∫

Rd

〈∇u, q〉f dx,

where

qj = bjµ%µ −
d∑

i=1

∂xi

(
aij

µ %µ

)
, divq = 0.

Since divq = 0, we have ∫
Rd

〈∇u, q〉f dx = −
∫

Rd

〈∇f, q〉u dx.

Let |ψ| ≤ 1. Then |u(x)| ≤ C1 and |∇u(x)| ≤ C1(1 + |x|)m for all x and some number C1.
Applying these estimates, we obtain the inequality∫

Rd

(
f −

∫
Rd

f dµ

)
ψ dµ ≤ C

∫
Rd

(
|1 + |x|m + |bµ − βµ|

)
|∇f | dµ,

which yields the assertion of the theorem. �

Remark 3.8. Suppose in addition to the hypotheses of the previous theorem that the matrix
Aµ is Lipschitz. Applying the Cauchy–Bunyakovskii inequality to the right-hand side of the
inequality from Theorem 3.7, we obtain∫

Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣ dµ ≤ C

(∫
Rd

(
|1 + |x|m + |bµ − βµ|

)2
dµ

)1/2(∫
Rd

|∇f |2 dµ
)1/2

.

According to [12, Theorem 3.1.2], we have the estimate∫
Rd

∣∣∣∇%µ

%µ

∣∣∣2 dµ ≤ C1 + C1‖bµ‖L2(µ)2 .

Thus, we arrive at the inequality∫
Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣ dµ ≤ C̃

(∫
Rd

|∇f |2 dµ
)1/2

,

where C̃ is expressed through C, ‖|x|m‖L2(µ), ‖bµ‖L2(µ), the Lipschitz constant and the sup-
norms of Aµ and A−1

µ .
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Theorem 3.9. Suppose that Aµ satisfies (Ha) and the coefficient bµ is locally bounded and there
exists a function V ∈ C2(Rd) such that V > 0, lim

|x|→+∞
V (x) = +∞ and, for some number γ > 0,

the inequality

LµV (x) +
|Aµ(x)1/2∇V (x)|2

V
≤ −γV (x)

holds outside some ball Q of radius R centered at zero. Let Q1 be the ball of radius R+1 centered
at zero. Then for every function f ∈ C∞0 (Rd) we have the inequality∫

Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣2 dµ ≤ C

∫
Rd

|A1/2
µ ∇f |2(1 + |A−1/2

µ (bµ − βµ)|)2 dµ,

where C depends on d, ‖aij
µ ‖W p,1(Q1), supx∈Q1

|biµ(x)|, supx∈Q1
‖Aµ(x)−1‖, V , γ, and R.

In the partial case where bµ = βµ and Aµ is bounded this inequality coincides with the classical
Poincaré inequality ∫

Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣2 dµ ≤ C

∫
Rd

|∇f |2 dµ.

Proof. Let ψ ∈ C∞0 (Rd). Set

ψ̃ = ψ −
∫

Rd

ψ dµ.

Arguing as in the previous theorem, we arrive at the equality∫
Rd

(
f −

∫
Rd

f dµ

)
ψ dµ =

∫
Rd

−〈Aµ∇u,∇f〉 dµ+
∫

Rd

〈∇f, q〉u dx,

where the vector field q is defined in the proof of the previous theorem. The right-hand side of
the last equality is estimated by the expression(∫

Rd

|A1/2
µ ∇u|2 dµ

)1/2(∫
Rd

|A1/2
µ ∇f |2(1 + |A−1/2

µ (bµ − βµ)|)2 dµ
)1/2

.

Applying estimate (4.4) from Example 4.5 (where we replace B by Rd), we finally obtain the
inequality∫

Rd

(
f −

∫
Rd

f dµ

)
ψ dµ ≤ C‖ψ‖L2(µ)

(∫
Rd

|A1/2
µ ∇f |2(1 + |A−1/2

µ (bµ − βµ)|)2 dµ
)1/2

,

which yields the assertion of the theorem. �

Corollary 3.10. Suppose that in addition to the conditions of the theorem it is known that
aij

µ ∈ C3
b (Rd) and bµ ∈ C2(Rd). Set

W (x) = max
|x−y|≤1

(
1 + |bµ(y)|+ |Dbµ(y)|+ |D2bµ(y)|

)
.

Then, for every function f ∈ C∞0 (Rd),∫
Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣2 dµ ≤ C

∫
Rd

|∇f |2W 2 dµ,

where C depends on d, ‖aij
µ ‖C3

b (Rd), supx∈Q1
|biµ(x)|, supx∈Rd ‖Aµ(x)−1‖, V , γ, and R.

Proof. It suffices to apply the estimate∣∣∣∇%(x)
%(x)

∣∣∣ ≤ C1W (x)

from [27, Theorem 5.2]. �
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Example 3.11. Suppose that Aµ and A−1
µ are uniformly bounded, aij

µ ∈ C3
b (Rd) and bµ ∈

C2(Rd). Suppose also that there exist positive numbers γ1, γ2, γ3 and m such that

〈bµ(x), x〉 ≤ γ1 − γ2|x|2, |bµ(x)|+ |Dbµ(x)|+ |D2bµ(x)| ≤ γ3(1 + |x|)m.

Then the probability solution µ to the equation L∗µµ = 0 satisfies the following Poincaré-type
inequality: ∫

Rd

∣∣∣∣f − ∫
Rd

f dµ

∣∣∣∣2 dµ ≤ C

∫
Rd

|∇f |2(1 + |x|)2m dµ.

Indeed, for justification it suffices to apply the last corollary.

Let us show that under the conditions of the last example there is an analog of the logarithmic
Sobolev inequality.

Theorem 3.12. Suppose that Aµ and A−1
µ are uniformly bounded, aij

µ ∈ C3
b (Rd), bµ ∈ C2(Rd).

Suppose also that there exist positive numbers γ1, γ2, γ3 and m such that

〈bµ(x), x〉 ≤ γ1 − γ2|x|m+1, |bµ(x)|+ |Dbµ(x)|+ |D2bµ(x)| ≤ γ1(1 + |x|)m.

Then for the probability solution µ to the equation L∗µµ = 0 there exists a number C such that
for every function f ∈ C∞0 (Rd) we have∫

Rd

f2 log(f2) dµ−
∫

Rd

f2 dµ log
(∫

Rd

f2 dµ

)
≤ C

∫
Rd

|∇f |2(1 + |x|)m+4 dµ+ C

∫
Rd

|f |2(1 + |x|)m dµ, (3.1)∫
Rd

f2 log(f2) dµ−
∫

Rd

f2 dµ log
(∫

Rd

f2 dµ

)
≤ C

∫
Rd

|∇f |2(1 + |x|)m+4 dµ+ C. (3.2)

In particular, the inclusion |∇f |2| log |∇f ||1−δ ∈ L1(µ), where δ is a number from (0, 1), yields
the inclusion f2 log(f2) ∈ L1(µ).

Proof. The reasoning practically repeats part of the justification of an analogous (and even more
general) inequality from the paper [1]. An important role is played by the following estimates
from [27]:∣∣∣∣∇%µ(x)

%µ(x)

∣∣∣∣ ≤ C1(1 + |x|)m, exp
(
−C2(1 + |x|)m+1

)
≤ %(x) ≤ exp

(
−C3(1 + |x|)m+1

)
.

Suppose first that ‖f‖L2(µ) = 1. We have∫
Rd

f2 log(f2) dµ =
∫

Rd

f2
(
log(f2) + log %µ

)
dµ−

∫
Rd

f2 log %µ dµ. (3.3)

Let us estimate the second term in the right-hand side. Let

ψ = − log %µ +
∫

Rd

log %µ dµ.

The bounds on %µ given above yield that |ψ(x)| ≤ C4(1+ |x|)m+1. According to Example 4.9(iv)
with α = 1 and the estimate from Proposition 4.10 there exists a solution u to the equation
Lu = ψ such that

|u(x)| ≤ C5(1 + |x|)2, |∇u(x)| ≤ C5(1 + |x|)m+2.

Since ‖f‖L2(µ) = 1, we have

−
∫

Rd

f2 log %µ dµ =
∫

Rd

f2Ludµ−
∫

Rd

log %µ dµ,
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where the second term is estimated by some constant and the first term after integration by
parts takes the following form:∫

Rd

−2〈Aµ∇u,∇f〉f dµ+
∫

Rd

2〈∇f, bµ − βµ〉uf dµ.

Applying to this expression the estimates for the functions u, |bµ| and |βµ|, we arrive at the
inequality ∫

Rd

f2Ludµ ≤ C6

∫
Rd

|f ||∇f |(1 + |x|)m+2 dµ.

From the elementary estimate

|f ||∇f |(1 + |x|)m+2 ≤ 2−1|f |2(1 + |x|)m + 2−1|∇f |2(1 + |x|)m+4

we obtain

−
∫

Rd

f2 log %µ dµ ≤ C7 + C7

∫
Rd

|∇f |2(1 + |x|)m+4 dµ+ C7

∫
Rd

|f |2(1 + |x|)m dµ.

Let us consider the first term in the right-hand side of (3.3). Since for δ > 0 we have t ≤ Cδe
δt,

the inequality ∫
Rd

f2
(
log(f2) + log %µ

)
dµ ≤ Cδ

∫
Rd

|f |2+2δ%1+δ
µ dx

holds. Applying Hölder’s inequality, one can estimate the integral in the right-hand side by the
expression

‖f2%µ‖Ld/(d−1)(Rd)

(∫
Rd

|f |2δd%δd
µ dx

)1/d

.

Let δ = 1/d. Then the second multiplier equals 1. Let us apply to ‖f2%µ‖Ld/(d−1)(Rd) the Sobolev
inequality

‖f2%µ‖Ld/(d−1)(Rd) ≤ 2C(d)
∫

Rd

|f ||∇f | dµ+ C(d)
∫

Rd

|∇%µ|
%µ

|f |2 dµ.

Since |f ||∇f | ≤ 2−1|f |2 + 2−1|∇f |2 and |∇%µ(x)|%µ(x)−1 ≤ C2(1 + |x|)m, we have∫
Rd

f2
(
log(f2) + log %µ

)
dµ ≤ C8

∫
Rd

|∇f |2 dµ+ C8

∫
Rd

|f |2(1 + |x|)m dµ.

Combining the obtained estimates and replacing f by f/‖f‖L2(µ), we arrive at the inequality∫
Rd

f2 log(f2) dµ−
∫

Rd

f2 dµ log
(∫

Rd

f2 dµ

)
≤ C9

∫
Rd

|∇f |2(1 + |x|)m+4 dµ+ C9

∫
Rd

|f |2(1 + |x|)m dµ.

Thus, inequality (3.1) is proved. Applying to the product |f |2(1+ |x|)m the elementary inequal-
ity ab ≤ εa log a + eb/ε with a sufficiently small ε and taking into account that the function
exp(M |x|m) belongs to L1(µ) for every M (see [12, Section 2.3]), we obtain inequality (3.2).
The last assertion of the theorem is verified similarly. �
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4. The Poisson equation

Let A and b satisfy conditions (Ha) and (Hb) with p > d. Suppose that there exist a positive
function V ∈ C2(Rd) and a number γ > 0 such that

lim
|x|→+∞

V (x) = +∞ and LA,bV ≤ −γ outside some ball Q.

Then there exists a unique probability solution µ to the equation L∗A,bµ = 0, moreover, µ = % dx,
where % ∈W p,1

loc (Rd).
Let us also fix a larger ball Q1 ⊃ Q. There exists a sufficiently large number c for which

the bounded domain B = {x : V (x) < c} contains the closure of Q1 and has the boundary
∂B = {x : V (x) = c} of finite perimeter. The latter is true for almost every number c, as shown
in [20, § 5.5], moreover, for B and ∂B the usual formula of reducing the volume integral to the
surface integral is valid.

Let ψ ∈ C∞0 (Rd) and ∫
Rd

ψ% dx = 0.

For the sequel the following observation will be useful: if a function u ∈W p,2(B) is such that
u−M ∈W p,1

0 (B) for some constant M (we shall say that u is constant on ∂B), then∫
B
LA,bu % dx =

∫
∂B
〈A∇u, ν〉% ds, (4.1)

where ν is the outer normal to ∂B. In addition, if LA,bu = ψ on B, the support of ψ is contained
in B and the function u is constant on ∂B, then∫

∂B
〈A∇u, ν〉% ds = 0.

Let us consider on B the Dirichlet problem

LA,bu = ψ, u|∂B = 0.

It is known (see [28, §5.6]) that the solution u exists and belongs to W p,2(B) ∩W p,1
0 (B), where

W p,1
0 (B) is the closure of C∞0 (B) with respect to the Sobolev norm ‖ · ‖p,1.

Lemma 4.1. We have the estimate∫
B
|
√
A∇u|2% dx = −

∫
B
ψu% dx.

Proof. Since u2 and ∇(u2) vanish on ∂B, by the integration by parts we obtain the equality∫
B
LA,b(u2)% dx = 0.

It remains to observe that

LA,b(u2) = 2uLA,bu+ 2|
√
A∇u|2 = 2uψ + 2|

√
A∇u|2.

The lemma is proved. �

Let f ∈ C2((0,+∞)), f > 0, f ′ > 0. Set

H(V ) =
f ′(V )
f(V )

, G(V ) =
f ′(V )
f(V )

LV +
f ′′(V )
f(V )

|
√
A∇V |2,

Ψ =
ψ

f(V )
.
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Suppose that there exists a positive continuous function Θ such that

G(V ) + |
√
A∇V |2H(V )2 ≤ −Θ on Rd\Q. (4.2)

This function Θ will be involved in the hypotheses of several results below.

Let us subtract from the function u the quantity |Q|−1

∫
Q
u dx and retain the same symbol.

Now ∫
Q
u dx = 0

and the function u is constant on ∂B. Note that for the new function u the estimate from
Lemma 4.1 holds.

The function
w := f(V )−1u

satisfies the equation
LA,bw + 2〈A∇w,∇V 〉H(V ) + wG(V ) = Ψ

with the right-hand side Ψ defined above and is constant on ∂B.

Lemma 4.2. For every m ≥ 1, we have the estimate∫
B
w2mΘ% dx ≤ 2m

∫
Q
w2m

(
Θ +G(V ) + |

√
A∇V |2H(V )2

)
% dx+

∫
B

Θ1−2mΨ2m% dx.

Proof. According to equality (4.1) we have∫
B
LA,b(w2m)% dx =

∫
∂B

2mw2m−1〈A∇w, ν〉% ds,

where ν = ∇V/|∇V |, since ∂B = {V = c}. Let u = uc on ∂B. Then w = wc = ucf(c)−1 on ∂B.
Since

∇w =
∇u
f(c)

−H(c)wc∇V on ∂B,

we have∫
∂B

2mw2m−1〈A∇w, ν〉% ds

= 2mw2m−1
c f(c)−1

∫
∂B
〈A∇u, ν〉% ds− 2mw2m

c H(c)
∫

∂B
〈A∇V,∇V 〉|∇V |−1% dx.

The first integral in the right-hand side equals zero and the second integral is nonnegative.
Therefore, one has ∫

B
LA,b(w2m)% dx ≤ 0.

Let us write LA,b(w2m) in more detail:

(2m)−1LA,b(w2m) = w2m−1LA,bw + (2m− 1)w2m−2|
√
A∇w|2

= −2w2m−1〈A∇w,∇V 〉H(V )− w2mG(V ) + w2m−1Ψ + (2m− 1)w2m−2|
√
A∇w|2.

Since
2w2m−1〈A∇w,∇V 〉H(V ) ≤ |

√
A∇w|2w2m−2 + |

√
A∇V |2H(V )2w2m,

we have
(2m)−1LA,b(w2m) ≥ −w2m

(
G(V ) + |

√
A∇V |2H(V )2

)
+ w2m−1Ψ.
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Multiplying the last inequality by % and integrating over B, we arrive at the estimate

−
∫

B
w2m

(
G(V ) + |

√
A∇V |2H(V )2

)
% dx ≤ −

∫
B
w2m−1Ψ% dx.

Since
G(V ) + |

√
A∇V |2H(V )2 ≤ −Θ outside Q,

we have ∫
B
w2mΘ% dx ≤

∫
Q
w2m

(
Θ +G(V ) + |

√
A∇V |2H(V )2

)
% dx−

∫
B
w2m−1Ψ% dx.

Let us estimate the expression w2m−1Ψ with the aid of Young’s inequality:

|w2m−1Ψ| ≤ (1− (2m)−1)w2mΘ + (2m)−1Θ1−2mΨ2m.

Applying this estimate to
∫

B
w2m−1Ψ% dx, we obtain the assertion of the lemma. �

Corollary 4.3. We have the estimate

sup
B

∣∣∣ u

f(V )

∣∣∣ ≤ sup
Q

∣∣∣ u

f(V )

∣∣∣ + sup
B

∣∣∣ ψ

f(V )Θ

∣∣∣
Proof. According to Lemma 4.2 we have(∫

B
w2mΘ% dx

)1/2m

≤ (2m)1/2m max
Q

|w|
(∫

Q

∣∣Θ +G(V ) + |
√
A∇V |2H(V )2

∣∣% dx)1/2m

+
(∫

B

∣∣∣Ψ
Θ

∣∣∣2m
Θ% dx

)1/2m

.

Letting m→∞, we obtain the desired estimate on supB |uf(V )−1|. �

We observe that the condition LA,bV ≤ −γ outside the ball Q, indicated at the beginning of
the section, along with Harnack’s inequality enables us to estimate the value %(0) from below,
hence also estimate % from below on any ball centered at the origin. Indeed, by Harnack’s
inequality there exists a number C1 such that on the ball Q1 we have

C−1
1 %(0) ≤ %(x) ≤ C1%(0).

The condition LA,bV ≤ −γ outside Q can be written as LV ≤ −γ + (LV )IQ everywhere on Rd.
It is known (see [12, Theorem 2.3.2]) that

γ ≤
∫

Q
|LV |% dx,

which along with the previous estimates gives the two-sided estimate

γC−1
1

(∫
Q
|LV | dx

)
≤ %(0) ≤ C1%(x) for all x ∈ Q1.

In addition, the known a priori estimate (see [12, Theorem 1.7.4])

‖%‖W p,1(Q) ≤ C2‖%‖L1(Q1)

and the equality ‖%‖L1(Rd) = 1 yield the existence of a constant C3 for which

sup
Q
% ≤ C3.

The constants C1, C2 and C3 depend only on d, ‖aij‖W p,1(Q1), ‖bi‖Lp(Q1), and supx∈Q1
‖A(x)−1‖.
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Corollary 4.4. Suppose (only in this corollary) that the coefficient b is locally bounded. Then
we have the estimate ∫

B

∣∣∣ u

f(V )

∣∣∣2Θ% dx ≤ C

∫
B

|ψ|2f(V )2

Θ
% dx,

where C depends on d, ‖aij‖W p,1(Q1), supx∈Q1
|bi(x)|, supx∈Q1

‖A(x)−1‖, Θ, f , V , γ, and c1.

Proof. By Lemma 4.2 with m = 1 we have∫
B

∣∣∣ u

f(V )

∣∣∣2Θ% dx ≤ C1

∫
Q
u2% dx+

∫
B

|ψ|2f(V )2

Θ
% dx. (4.3)

According to the remark made above there exists a constant C2 such that C−1
2 ≤ % ≤ C2 on Q.

Applying these inequalities and the Poincaré inequality for estimating the L2-norm of u, we
obtain ∫

Q
u2% dx ≤ C3

∫
Q
|A1/2∇u|2% dx.

With the aid of Lemma 4.1 we obtain∫
Q
u2% dx ≤ C3

∫
B
|ψ| |u|% dx,

where the right-hand side can be estimated as follows:

C3

∫
B
|ψ| |u|% dx ≤ 1

2C1

∫
B

∣∣∣ u

f(V )

∣∣∣2Θ% dx+
1
2
C1C

2
3

∫
B

|ψ|2f(V )2

Θ
% dx.

Applying these estimates to the right-hand side of (4.3), we complete the proof. �

Example 4.5. Suppose that the coefficient b is locally bounded and there exists a function
V ∈ C2(Rd) such that lim

|x|→+∞
V (x) = +∞ and for some number γ > 0 one has

LA,bV (x) + |
√
A(x)∇V (x)|2 ≤ −γ if x 6∈ Q.

Then ∫
B
u2% dx ≤ C

∫
B
ψ2% dx,

where C is a constant of the type indicated in Corollary 4.4. Indeed, it suffices to apply Corol-
lary 4.4 with the functions Θ = γ and f(t) = arctg(log(1 + t)). Combining this estimate with
the assertion of Lemma 4.1, we obtain the inequality∫

B
|
√
A∇u|2% dx ≤ C

∫
B
ψ2% dx. (4.4)

Corollary 4.6. We have the estimate

sup
B

∣∣∣ u

f(V )

∣∣∣ ≤ C

∫
B
|ψ|f(V )% dx+ C sup

B

∣∣∣ ψ

f(V )Θ

∣∣∣,
where C depends on d, ‖aij‖W p,1(Q1), ‖bi‖Lp(Q1), supx∈Q1

‖A(x)−1‖, Θ, f , V , γ, and c1.

Proof. The known estimate (see [12, Theorem 1.7.4])

‖u‖W p,1(Q) ≤ C1

(
‖u‖L2(Q1) + ‖ψ‖Lp(Q1)

)
with some number C1 and the Sobolev embedding theorem yield the estimate

max
Q

|u| ≤ C2‖u‖L2(Q1) + C2 sup
Q1

|ψ|. (4.5)
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The Poincaré inequality gives

‖u‖L2(Q1) ≤ CP ‖∇u‖L2(Q1).

According to what has been said above, there exists CH > 0 such that %(x) ≥ CH if x ∈ Q1.
Therefore,

sup
Q
|u| ≤ C3‖‖

√
A∇u‖L2(% dx,B) + C3 sup

Q1

|ψ|,

where C3 depends on CP , CH , C2 and supx∈Q1
‖A(x)−1‖. By Lemma 4.1 we have

‖
√
A∇u‖2

L2(% dx) ≤
∫

B
|ψ| |u|% dx.

Recall that u = wV . We arrive at the inequality

sup
Q
|u| ≤ C3

(∫
B
|ψ| |u|% dx

)1/2

+ C3 sup
Q1

|ψ|,

which yields the estimate

sup
Q
|u| ≤ C3

(
sup
B
|uf(V )−1|

)1/2
(∫

B
|ψ|f(V )% dx

)1/2

+ C3 sup
Q1

|ψ|.

Substituting this in the inequality from Corollary 4.3, we obtain

sup
B
|uf(V )−1| ≤ C4

(
sup
B
|uf(V )−1|

)1/2
(∫

B
|ψ|f(V )% dx

)1/2

+ C4 sup
B
|ψf(V )−1Θ−1|.

Estimating the first term in the right-hand side by means of the inequality

C4

(
sup
B
|uf(V )−1|

)1/2
(∫

B
|ψ|f(V )% dx

)1/2

≤ 2−1 sup
B
|uf(V )−1|+ 2−1C2

4

∫
B
|ψ|f(V )% dx,

we arrive at the desired estimate with some number C. �

Now we can prove an existence theorem for the equation LA,bu = ψ. Recall that V is the
function mentioned at the beginning of this section and the function Θ is introduced in (4.2).

Theorem 4.7. Suppose that condition (4.2) is fulfilled. Then, for every function ψ ∈ L1(µ)
such that

sup
Rd

∣∣∣ ψ

f(V )Θ

∣∣∣ <∞ and
∫

Rd

ψ dµ = 0,

there exists a function u ∈W 2,p
loc (Rd) satisfying the equation LA,bu = ψ and the inequality

sup
Rd

∣∣∣ u

f(V )

∣∣∣ ≤ C

∫
Rd

|ψ|f(V )% dx+ C sup
Rd

∣∣∣ ψ

f(V )Θ

∣∣∣,
where C depends only on d, ‖aij‖W p,1(Q1), ‖bi‖Lp(Q1), supx∈Q1

‖A(x)−1‖, Θ, f , γ, c1, and also
on the minimum of the function V on Q1 and the maximum of the function V and absolute
values of its first and second derivatives on Q1.

Proof. We first consider the case where ψ ∈ C∞0 (Rd). Let {cn} be a sequence of numbers
increasing to +∞ and let Bn = {x : V (x) < cn} be bounded domains with sufficiently smooth
boundaries ∂Bn = {x : V (x) = cn}. We shall consider only those numbers n for which the
support of ψ is contained in Bn. Let un be the solution to the Dirichlet problem

LA,bun = ψ, un|∂Bn = 0.
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Let us subtract from un the quantity |Q|−1

∫
Q
un dx and denote the new function again by un.

As proved above, for un one has the estimate (with a constant independent of n)

sup
Bn

∣∣∣ un

f(V )

∣∣∣ ≤ C

∫
Rd

|ψ|f(V )% dx+ C sup
Rd

∣∣∣ ψ

f(V )Θ

∣∣∣.
Thus, the sequence {un} is uniformly bounded on every ball (starting from a number depending
on this ball), which implies the uniform boundedness of the Sobolev norms ‖un‖W 2,p on every
ball, because un satisfies the equation LA,bun = ψ (see [28, Theorem 5.6.2]). Therefore, passing
to a subsequence, we can assume that the functions un converge uniformly and in W 2,p on every
ball to some solution u of the equation LA,bu = ψ. It is clear that for this solution the indicated
estimate is fulfilled. The case of a general function ψ reduces to the considered one as follows.
Let ζn ∈ C∞0 and ζn → ψ in L1(µ). Let us fix some nonnegative function ζ ∈ C∞0 (Rd) with
‖ζ‖L1(µ) = 1. Set

ψn = ζn − ζ

∫
Rd

ζn dµ.

We now solve the equation with the right-hand side ψn and choose in the constructed sequence
of solutions a convergent subsequence. �

Let us also give a sufficient condition for the uniqueness of a solution, which is a simple
application of the maximum principle.

Theorem 4.8. Suppose that there exist positive functions V1 and V2 and a ball Q such that

LA,bV1(x) ≤ 0 if x /∈ Q and lim
|x|→+∞

V1(x)
V2(x)

= +∞.

Then the equation LA,bu = 0 has no nonconstant solutions in the class of functions u for which

sup
Rd

∣∣∣ u
V2

∣∣∣ <∞.

Proof. Let us consider the function u− εV1. We have

LA,b(u− εV1) ≥ 0 if x /∈ Q.
Since u is growing not faster than V2 and lim

|x|→+∞
V1(x)V2(x)−1 = +∞, outside some ball the

function u− εV1 is negative and by the maximum principle

u(x) ≤ εV1(x) + sup
Q

(u− εV1).

Letting ε→ 0, we obtain u ≤ supQ u. This means that the maximum of the solution is attained
in the interior of the domain and by the strong maximum principle the solution is constant. �

Let us consider some examples.
Let V (x) = 1 + |x|2, let the matrix A be uniformly bounded, and let

〈b(x), x〉 ≤ C1 − C2|x|γ .
Let α < γ. Since LA,b(eC|x|

α
) < 0 outside some ball, by Theorem 4.8 any two solutions growing

not faster than eC|x|
α

with some C differ by a constant. Thus, the solutions considered in the
following examples illustrating Theorem 4.7 are unique in the class of functions which grow not
faster than the indicated exponent, i.e., satisfy the condition

sup
|x|>1

log(1 + |u(x)|)
|x|α

<∞. (4.6)
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Example 4.9. (i) Let f(t) = log t. The condition of Theorem 4.7 is fulfilled with the function

Θ(x) = M(1 + |x|γ−2)(log(1 + |x|))−1

with a suitable number M . Thus, for a function ψ such that

|ψ(x)| ≤ C2 + C2|x|γ−2,

there exists a solution u to the equation LA,bu = ψ which is unique in the class of functions with
condition (4.6) and for this solution we have

|u(x)| ≤ C + C log |x|.

(ii) Let f(t) = arctg(log t). The condition of Theorem 4.7 is fulfilled with the function

Θ(x) = M(1 + |x|γ−2)(log(1 + |x|))−2

with a suitable number M . For a function ψ such that

|ψ(x)| ≤ C2 + C2(log(1 + |x|))−2|x|γ−2,

there exists a solution u to the equation LA,bu = ψ bounded on Rd and this solution is unique
in the class of functions with condition (4.6).

(iii) Let now f(t) = et and γ > 2. The conditions of Theorem 4.7 are fulfilled with Θ(x) =
M(1 + |x|)γ with a suitable number M . Thus, for a function ψ such that

|ψ(x)| ≤ C2(1 + |x|)−γe|x|
2
,

there exists a solution u to the equation LA,bu = ψ which is unique in the class of functions with
condition (4.6) and for this solution we have

|u(x)| ≤ Ce|x|
2
.

(iv) Let f(t) = tα. Then the condition of the theorem is fulfilled with Θ(x) = (1 + |x|)γ−1.
Thus, for a function ψ such that

|ψ(x)| ≤ C2(1 + |x|)2α+γ−1,

there exists a unique solution u to the equation LA,bu = ψ such that

|u(x)| ≤ C(1 + |x|)2α.

In the next proposition, using an idea from [29] and taking into account the growth of coeffi-
cients, we derive an estimate on the growth of the gradient of the solution.

Proposition 4.10. Let A and A−1 be uniformly bounded and let the matrix elements aij be
uniformly continuous. Then there exists a constant C, depending on the coefficients of the
equation, such that the solution u to the equation LA,bu = ψ satisfies the pointwise estimate

|∇u(x)| ≤ C(1 + sup
y∈B(x,1)

|b(y)|) sup
y∈B(x,1)

|u(y)|+ C(1 + sup
y∈B(x,1)

|b(y)|)−1 sup
y∈B(x,1)

|ψ(y)|.

In particular, if

|ψ(x)| ≤ C1(1 + |x|)k, |u(x)| ≤ C1(1 + |x|)m, |b(x)| ≤ C1(1 + |x|)t,

then
|∇u(x)| ≤ C2

(
(1 + |x|)m+t + C2(1 + |x|)k

)
.
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Proof. We shall assume that x = 0. The general case reduces to this one by a shift. Let
λ = 1 + supB(0,1) |b|. Set u(x) = v(λx). Then the function v satisfies the equation with the new
coefficients

aij
λ (y) = aij(y/λ), biλ(y) = λ−1b(y/λ), ψλ(y) = λ−2ψ(y/λ).

We observe that |biλ| ≤ 1 and the modulus of continuity of the function aij
λ (y) is estimated by

the modulus of continuity of the function aij . Let q > d. According to [21, Theorem 9.11] one
has the estimate

‖v‖W 2,q(B(0,1/2)) ≤ C(‖v‖Lq(B(0,1)) + ‖ψλ‖Lq(B(0,1))).
Estimating the norms in the right-hand side by sup |v| and sup |ψλ|, and applying to the left-hand
side the Sobolev embedding theorem, we arrive at the estimate

sup
B(0,1/2)

|∇v| ≤ C ′( sup
B(0,1)

|v|+ sup
B(0,1)

|ψλ|).

Returning to the function u and coordinates x, we obtain the desired inequality. �
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