Estimates for Invariant Probability Measures
of Degenerate SPDEs with Singular and
Path-Dependent Drifts*

Feng-Yu Wang
Center of Applied Mathematics, Tianjin University, Tianjin 300072, China

wangfy@tju.edu.cn

July 17, 2018

Abstract

In terms of a nice reference probability measure, integrability conditions on the
path-dependent drift are presented for (infinite-dimensional) degenerate PDEs to have
regular positive solutions. To this end, the corresponding stochastic (partial) differ-
ential equations are proved to possess the weak existence and uniqueness of solutions,
as well as the existence, uniqueness and entropy estimates of invariant probability
measures. When the reference measure satisfies the log-Sobolev inequality, Sobolev
estimates are derived for the density of invariant probability measures. Some results
are new even for non-degenerate SDEs with path-independent drifts. The main results
are applied to nonlinear functional SPDEs and degenerate functional SDEs/SPDEs.
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1 Introduction

It is well known that hypoelliptic differential operators with smooth coefficients share similar
properties with the elliptic ones. For instances, the Hérmander theorem [12] ensures the
smoothness of heat kernels (see Malliavin [17] for a probabilistic proof), the Index theorem
has been proved by Bismut [4]. See also [5, 22, 23] and references within for Harnack
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inequality for hypoelliptic equations and asymptotics of heat kernels. In this paper, we
investigate estimates of positive solutions to (infinite-dimensional) hypoelliptic equations
with singular and path-dependent drifts.

Consider, for instance, the following second order differential operator in R%:

f::in—i—Xo,

i=1

where X, - - -, X,, are locally bounded vector fields. A function p € Lj,.(R?) is called a weak
solution to Z*p = 0 if

| @2 ntaa=o. recr@,

Similarly, a locally finite signed measure v is called a solution to the equation .Z*v = 0 if
ZLfdv =0, fe€CrRY.
Rd

When Xy, - -, X,,, are smooth such that Lie{ X, -, X,,} hasrank d (i.e. {Xy,---,X,,}
satisfies the Hérmander condition), a positive solution p to the equation .Z*p = 0 is locally
Holder continuous with respect to the intrinsic distance and satisfies the local Harnack
inequality, see [5] and references within.

When the operator is non-degenerate, i.e. rank{Xy,--- , X,,} = d, the drift X is allowed
to be very singular. More precisely, rewrite .Z = tr(aV?) + b - V, where b € L}, (R? — R9)

loc

and a = oo* for some o € L}, (R? — R?®@R?) such that a > AI for some A € C(R%; (0, 00)).

loc
If a is differentiable in the distribution sense and |Va| + |b| € L} (R?) for some p > d, then
any positive solution to the equation .Z*r = 0 for measures has a strictly positive density
p € WEP(RY), see [2, 3] and references within for more results in the literature. Recently,
explicit integrability conditions are presented in [33] to imply the existence, uniqueness and
global regularity estimates on probability solutions to the equation Z*v = 0.

Here, we investigate probability solutions to Z*r = 0 for more general and more
singular situations. For instance, we consider differential operators on the path space
€ = C([-7,0];R%) for some 7 > 0 (in the following, R? will be extended to an Hilbert
space). For any h, g € L*([—7,0];R%), let (b, g)a = [* (h(0), g(6))df. We introduce the class

7 C of cylindrical functions of type B

§— f(f(o)v <hlv€>2> e ’<hm€>2)7 n=>1h; € Ol([_T’ O];Rd)'

Consider the following path-dependent operator .7, ;: for the above type function f € .#C
and £ € €,

Zonf (€)= (2 0y (€000, + 30D ) £ (o, (o €)2) (€(0))
+ 37 {(hs(0),£00)) = ((=7), £(=7)) = (b 2 H{AS(E0), )} (s, €2, (1, )2),

k=1



where a := (a;;)1<ij<a > 0 (maybe degenerate) is C% but b := (by,-- ,bg) : € — R? only
satisfies an integrability condition with respect to a probability measure p. So, b might be
only p-a.e. defined without any continuity. We will construct the Markov semigroup gener-
ated by .Z,, (i.e. weak solutions to the corresponding SDE), and investigate the invariant
probability measures. In general, an invariant probability measure v of the semigroup solves
the equation Z£",v = 0 in the sense that

[5 (Lo P Ew(de) =0, feFC

To explain how far we will go beyond the existing study, let us briefly recall the main
result in [33]. Consider the following SDE on R%:

(1.1) AX (1) = {Zo + 0 ZHX(1)dt + o(X ())dW (2),

where W (t) is the d-dimensional Brownian motion; Z : RY — R¢ is measurable; 0 € C?(R? —
R? ® RY) such that o(z) is invertible for every x € R? and the intrinsic metric

po(z,y) = sup{|f(:c) —f(y)|: f€C®RY,|o*Vf| < 1}, z,y € RY
is complete; and
1A
(1.2) Zo =3 Y {05(00%)i; = (007)50;V }e;
ij=1

for some V' € C?(R%) and the standard orthonormal basis {e;}%, of R% Let po(dx) =
e V@ dz, and let HY%(j0) be the closure of C§°(R?) under the norm

11120y = {01 f + 10"V f[2)} 2.

The following result is taken from [33, Theorem 2.1 and Theorem 2.3] where the constant
is replaced by 2k as the noise therein is v/2WW (¢) rather than W (t).

Theorem 1.1 ([33]). Let 0 € C*(R? — R?Y @ RY) such that o(z) is invertible for every
x € RY, let Zy be in (1.2) for some V € C*(RY), and let po(dz) = e~V @dz.

(1) If for some constant € € (0,1)

/ ee‘Z(x”Lailp"(O’x)2,lto(dx) < 00,
Rd

then for any initial points the SDE (1.1) has a unique non-explosive solution, and the
associated Markov semigroup PZ is strong Feller with at most one invariant probability
measure.



(2)

Let po be a probability measure satisfying the (defective) log-Sobolev inequality

(1.3) po(f*log %) < kpo(lo"V 7)) + B, [ € CF*(RY), mo(f?) =

for some constants k > 0,6 > 0. If
(1.4) o (117 NZPY = [ Lol 1 N2 40 < oo
R4

holds for some constants € > 0 and X\ > &, then P? has a unique invariant probabil-

ity measure v, which is absolutely continuous with respect to oy and p = 517”0 has a

continuous, strictly positive version such that \/p, log p € H *(po) with

1o (lo*V/p?) < —{log,uo (M) + 8} < oo,
pol|o"Vlog pl*) < dpuo(|Z]) <

(1.5)

Since an invariant probability measure v of PZ solves the equation Zjv = 0, due to
the integration by parts formula, Theorem 1.1(2) provides regularity estimates on positive
solutions to the singular elliptic PDE

<%Tr(aa*v2) +(Zy—0Z2) - V)P =0.

We will improve and extend the above assertions in the following four aspects:

The noise may be degenerate: [0*V f| = 0 does not imply Vf = 0, so that the log-
Sobolev inequality (1.3) is invalid. Moreover, o is not necessarily C?-smooth.

The drift Z may be path-dependent, for which the corresponding SDE is called func-
tional SDE.

The state space may be infinite-dimensional such that the study applies to nonlinear
or semilinear functional SPDEs.

Derive stronger estimates on the density of the invariant probability measure.

We now introduce the framework of the present study in details.

Reference SDE. Let H and H be two separable Hilbert spaces, and let .2 (H;H) be the
class of bounded linear operators from H to H. The cylindrical Brownian motion on H is
formally defined by

=> Bi(t)é

i>1

where {&;};>1 is an orthonormal basis of H, and {B;(t)};>; are independent one-dimensional
Brownian motions on a complete filtration probability space (£2,{.%#}i>0,P). Let V be a



Banach space densely embedded into H, and let V* be its dual space with respect to H. We
call V.C H C V* the Gelfand triple. Consider the following reference SDE on H:

(1.6) AX (1) = Zo(X(8))dt + o(X (£))dW (1),

where Zg : H - V*and 0 : H - & (]ﬂl; H) are measurable. A continuous adapted process
X(t) on H is called a (variational) solution to (1.6) with initial value X (0), if

]E/Ot{

for all t € (0,00) and v € V, and P-a.s.

v (Zo(X (5)),v)v| + {o (X ()} v|* }ds < o0

(X(t),v)m = <X(O),U>H—|—/O v (Zo(X(8)),v)v ds+/0 ({o(X(s)}v,dW(s))z, veV,t>0.

See [16] and reference within for the existence and uniqueness of variational solutions under
framework of monotone SPDEs due to [21, 13]. When the initial value X (0) = z, we denote
the solution by X*(t). When the initial value X (0) has distribution 1, on H, we also denote
the solution by X"°(¢) to emphasize the initial distribution.

When H = V = R?, the variational solution reduces to the usual strong (i.e. pathwise)
solution of SDEs. When V = H and Zy(z) = Az + Zy(x), where Z, € C(H;H) and A is a
self-adjoint operator on H generating a Cjy-contraction semigroup 7; such that

B[ (17 (X6l + T Za(X ()]s < 0. ¢,

i>1

it coincides with the mild solution in the sense of [8, 9].
Throughout the paper, we assume:

(A) Let Zy : H — V* and o - H — Z(H; H) be measurable such that for any Fy-measurable
random variable X (0) on H, the SDE (1.6) has a unique variational solution, and the
associated Markov PP given by

P f(z) =E[f(X*(t)], t>0,z € H, f € B,(H)
has a unique invariant probability measure fi.

Under assumption (A), for any probability measure v on H, we have

E[f(X"(t))] = / ELF(X*(t)Io(da) = vo(PY).

In particular, E[f(X*(t))] = po(f) for t > 0 and f € %,(H).
Let 7 > 0. For any £ € C([—7,00);H) and ¢t > 0, define & € € := C([—7,0]; H) by

&0) =&t +46), 6e[-7,0].

5



We call (&;):>0 the segment of (£(t))s>—,. For an .#jy-measurable random variable £ on €, let
XE(t) = £ r)(t) + X O () 1000 (t), >0,

recall that X¢©(¢) is the solution to (1.6) with initial value £(0). Let (XF);>o be the segment
process of (X4(t))i>_r, i.e.

(1.7) X50) = XE(t+0), 6e[-7,0]

When ¢ has distribution v, we also denote Xf by X} to emphasize the initial distribution.
Then

(1.8) SUf(€) =E[f(X])], €€C,f€By(€),t>0

gives rise to a Markov semigroup S on %,(%).

Reference probability measure p. Let p be the distribution of the %-valued random
variable X*° defined by X#0(6) := X# (7 +6),0 € [—7,0]. Recall that X*°(¢) is the solution
to (1.6) with initial distribution pg. It is easy to see that p is the unique invariant probability
measure of the Markov semigroup S?.

Since X5(0) := X&(t) = X¢O)(¢) for t > 0,

(St+7'f)(x> = (Sz?+‘rf)<£>7 g S %75(0) =, f € *@b<(g>

provides a family of contractive linear operators (S;;,)i>0 from %, (%) to %,(H). By the
Markov property, this implies

19) (St f)(£(0)) = (S, £)(E) = E[(S2F)(XF)] = E[(S-£)(X;(0))]
' = E[(S-/)(X Q)] = P)(S-f)(£(0)), £€F,t>0,f€B(F).

Singular and path-dependent SDE. Consider the following SDE on H:
(1.10) dX (t) = {Zo(X(t)) + U(X(t))Z(Xt)} dt + o (X (t))dW (¢),

where Z : € — H and (X,);o is the segment process of (X(t));>_,. Even in the path-
independent case, when o is degenerate or H is infinite-dimensional, to ensure the strong
existence and uniqueness one needs certain continuity conditions on the drift, see [6, 7, 30,
35, 38] and references within for details. So, to investigate (1.10) by using integrability
conditions of Z with respect to the reference measure p, we only look at the weak solution.

Definition 1.1. Let {§ € €. A %-valued continuous process (X¢ g)t>0 under a complete
filtration probability space (Q,{.Z}1>0,P) is called a weak solution of (1.10) starting at &,
if it is .Z-adapted with X = ¢ and for some H-cylindrical Brownian motion W (t) on the
same probability space P-a.s.

(XE(t), v)m =(£(0), v)m + /0 ve(Zo(XE(5)) + 0(X5(s)) Z(XE),v),ds

6



+ [ o EE v a0 1200V,

The equation is said to have weak uniqueness if any two weak solutions with same initial
point are equal in law.

When (1.10) has weak existence and uniqueness, let P¢ denote the distribution of the
weak solution starting at &, and define

SEO = [ ) B, feBE) e 20

A probability measure v on ¢ is called an invariant probability measure of SZ, if v(SZ f) =
v(f) holds for all t > 0 and f € %,(%).

The remainder of the paper is organized as follows. Under condition ju(efl?I”) < oo for
some £ > 0, we prove the weak existence and uniqueness of solutions (Section 2) as well as the
uniqueness of invariant probability measure (Section 3). Moreover, the existence of invariant
probability measures and entropy estimate of the density are proved in Section 4 using the
hyperboundedness of P?. Finally, the existence of invariant probability measures and Sobolev
estimates on the density are addressed in Section 5 by using the log-Sobolev inequality (1.3),
for which the Hérmander condition is adopted. The main results are applied to concrete
models of degenerate functional SDEs/SPDEs. We emphasize that some estimates in Section
5 are new even for non-degenerate SDEs with path-independent drifts, see Theorem 5.1 and
Theorem 5.2 below for details.

2 Weak solutions

Let pu(ef?l’) < oo for some constant ¢ > 0. We will prove, for p-a.e. & € €, that the
equation (1.10) has a unique weak solution with distribution P¢ satisfying

(2.1) IP5<{7 € C([0,00); %) : /OT | Z(7,)|?ds < 00, T > 0}) = 1.

When 7 = 0 and P satisfies the Harnack inequality (2.5) below, the assertion holds for all
initial point € H (in this case ¢ = H).
To formulate the associated Markov semigroup, we introduce the process

(2.2) RE(t) := exp {/Ot(Z(Xf),dW(s» — %/Ot |Z|2(X§)ds}, t >0,

where X* is the segment solution to (1.6) with inital value £ € €. By u(e?’) < oo, this
process is well defined for p-a.e. & We will use SZ to denote the semigroup of segment
solutions to (1.10). But when 7 = 0, we use P? to replace SZ for the notation consistency
with Theorem 1.1.



Theorem 2.1. Assume (A) and p(ef1?1”) < oo for some constant ¢ > 0.

(1) For p-a.s. £ € €, R%(t) is a martingale and the equation (1.10) has a weak solution
starting at € satisfying (2.1). Moreover, the associated Markov semigroup SZ is given

by
(2.3) (ST =E[f(XD)R®)], >0, feL™(n)

(2) For any &€ € €, (1.10) has at most one weak solution with distribution P& satisfying
(2.1).

(3) Let 7 = 0. If there exist p > 1 and ®, € C((0,00) x H?) such that

t ds
2.4 - oo, t>0,z, H,
24 / el @, e TS

and P? satisfies the Harnack inequality
(2.5) (PP (x) < ™S9 P fP(y), t> 0, f € BT (H),z,y € H,

then for any x € H, R*(t) is a martingale, the equation (1.10) has a unique weak
solution satisfying (2.1) starting at x, and the Markov semigroup is given by

(2.6) (PZf)(z) =E[f(X*(t))R*(t)], t>0, zx € H, fe B(H).

Remark 2.1. Although the reference measure y is less explicit, the condition p(ef1? |2) < 00
can be verified by using the marginal distribution pg, which is explicitly given in applications,
for instance, in (1.1) po(dz) = e”V®da. Let, for instance,

72(6) = / h(EB)A0, €€,

T

where h is a measurable function on H. Then

W) = BP0 — el 12 nexvot ol

< Ee Jo MXH0()%ds < ! /T Ee ™ MY 6D ds = (e ).

T Jo

Therefore, u(e1?) < oo follows from pig(e*™ ") < 0.

To prove Theorem 2.1, we first present the following lemma.
Lemma 2.2. Assume (A) and p(e1?”) < 0o for some constant e > 0.

(1) The process

t 1 t
w0 = e | [(zeave) - g [zreeas) oo
0 0
is a martingale. Consequently, for u-a.e. £ € €, R(t) is a martingale.

8



(2) Let 7 = 0. If (2.5) holds for some p > 1 and ®, satisfying (2.4), then R*(t) is a
martingale for any v € H.

Proof. (1) By the stationarity of X/ and pu(el?") < oo, we have
T
IE/ |Z(XM)|?ds = Tu(|Z*) < o0, T > 0.
0
So, P-a.s.

t
Tn ::inf{tZO:/ |Z(X§L)]2d52n}Too as n T oo.
0

By Girsanov’s theorem (see e.g. [18]), (R*(t A 7,,))¢>0 is a martingale for every n > 1, so
that Fatou’s lemma gives

E(R*(t)|.7,) = E(lim inf RA(E A T)

n—o0

9}) < lim infE(R“(t A Tn)

T n—oo

= liminf R*(s A 7,) = R'(s), t>s>0.
n—oo
. . . T 2 . . T €112
Thus, (R*(t)):>o is a supmartingale. Since E [/ |Z(X#)[*ds < co implies E [, [Z(X%)[*ds <
oo for p-a.e. £, the above argument also implies that (RS(t));o is a supmartingale for y-a.e.
¢. Noting that ER*(t) = [, ER*(t)dyu, we conclude that (R¥(t));>o and (R(t))>o for p-a.e.
¢ are martingales provided ER¥(t) = 1 for all ¢ > 0.
By the stationarity of X} and Jensen’s inequality, we have

2e

e Jif1zP(xtyas < L / Eesl?P 3 ds = pu(el?1) < oo
2 )y

Then Girsanov’s theorem ensures that (R*(t)):cjo,2e] is a martingale. In particular,

(2.7) ER*(t) =ERS(t) =1, t € 0,2¢],p-ae. £

Assuming that ER*(t) = 1 for ¢ € [0,2ke] and some k > 1, it remains to prove ER(t) = 1
for t € [2ke, 2(k + 1)e]. Let ¢t = 2ke and

W(t) =W(t+t)—W(t), t>0.

Then W(t) is a cylindrical Brownian motion on the same probability space with respect to
filtration .%;, . By (A), (1.6) with W (t) replacing W (t) has existence and uniqueness as
well. Let X¢ be the segment process of the solution with X§ = ¢ defined as in (1.7). By the
Markov property,

=(t) = ]E(effl (Z(XE) AW (3) =5 [y 12P(XE)ds, Z,)

_ {E(e TR Z(RE) AW (s))— 1 fih |Z|2(5c§)ds) H
e=xl!

= {ER(t —t1)}[(_yp. t=t0
31

9



Since the law of X/ is p, this and (2.7) imply =(¢) =1 a.s. for all ¢ € [t1,t; + 2¢], so that
E(R* ()| F1,) = B*(01)Z(E) = B (f).

So, by the assumption ER*(t;) = 1, we obtain ER*(t) = 1 for t € [2ke, 2(k + 1)e].
(2) By Girsanov’s theorem and the Markov property, it suffices to find out a constant
t > 0 such that

(2.8) Eet o 120 6)Pds g 4 e L.

By (2.5), we have
pofe”®02) (PL) () < prg(e77) < o0

Combining this with (2.4) and Jensen’s inequality, for any A > 0 and ¢, := = we obtain

pPA
A JiN 1 z(x2(s))2d LM 51212
E[eMo 120X )R] < t_/ PYes 2P (1)ds
(2.9) L L 1
< [ ol (e )} Fds < oo, v €L
A JO
In particular, (2.8) holds for some constant ¢ > 0. []

Proof of Theorem 2.1. (1) By Lemma 2.2 and Girsanov’s theorem, for p-a.s. &,
t
WE(t) .= W(t) — / Z(X8)ds, tel0,T)
0

is a cylindrical Brownian motion on H under the probability measure Q¢ defined on .Z., by
Q*(A) = E[LuRY(T)], T >0,A€ Fr,

and (X¢(t));>0 is a weak solution of (1.10) with respect to the cylindrical Brownian motion
WE&(t). Note that Q¢ is well defined according to the martingale property of R(t) and the
Kolmogorov consistency theorem. Therefore, the associated Markov semigroup of the weak
solution is given by (2.3).

(2) For ¢ € € and each i = 1,2, let (X®(t));0 be a weak solution to (1.10) starting
at ¢ with respect to the cylindrical Brownian motion W (¢) under a complete filtration

probability space (0 {Z7},50,PD), such that the distribution P satisfies (2.1). We
intend to prove P§ = P5. By (2.1), we have

t
ﬂgi) :=inf{t20:/ |Z(X8(i))|2dszn}TooasnToo, =12
0

For every ¢+ = 1,2 and n > 1,

1

TT(Li)/\t T7(li)/\t .
RYD(t) := exp [—/ <Z(X§i>),dw<i>(s)>—§/ 1Z)2(XNds|, t>0
0 0

10



is a P®-martingale. Define the probability measure Q,(f ) on FY by letting
QV(A) = By [1aRI(T)], T>0,Ae . ZY.
By Girsanov’s theorem,

A

t/\T,,Si)
WO(t) .= w(t) +/ Z(X$)ds, t>0
0

is a @g)—cylindrical Brwonian motion on H. Therefore, up to time Ty(Li), X@(t) solves the
SDE (1.6) with the QY-cylindrical Brownian motion W (t) replacing W (t). By the path-
wise (also weak) uniqueness of (1.6) according to (A), (X (t), W®(t))  under QY
coincides in law with (X¢(¢), W (t)) ; under P, where T' > 0 and

te[0, AT

te[0,TATS

t
78 = inf {t >0: / |Z(X8)2ds > n}
0
Therefore, for any F' € %,(C([0,T];H) x C([0,T]; H)),
Ep) [1{751')2T}F(X(i)([0> 7)), w9([o, T]))]

T ‘ Sy (2D, aW @ ()= [ 127X P)ds
_EQS) |:1{Supt€[0,T] |X(">(t)|§n}e 0 s /s

A .

x F(X“)([O,T]), <W(’> . / Z(Xp)ds)([o,T]))}

X5),dW ()3 [ 12)2(x$)ds

{Supte[o,T] |X&(

X F(Xf([o,T]), (W—/'Z(Xﬁ)ds>([O,T])>], i=1,2.

0

Consequently,

Ext [ 050y P (X0, 7). WO(0,TD) | = Eeen [L g0,y F(XD([0,T]), WE(0,771)

() >T)
holds for any n > 1. Letting n — oo we obtain

Epn [ F (XD ([0, 71), W0, T]) | = Bpen | F(X (0, 70), W([0,77))

for any T > 0 and F € %,(C([0,T]; H) x C([0,T]; H)). Therefore, P$ = P5.
(3) Let 7 = 0. By Lemma 2.2(2) and the Girsanov theorem, (X*(t));>o is a weak solution
to (1.10) satisfying (2.1) for the H-cylindrical Brownian motion

W () = W(t) — /OtZ(Xr(s))ds, £>0

under the probability measure Q¥, which is defined on .%,, by
Q% (A) :=E[14R*(T)], T >0,A € Fr.
Then the proof is finished by combining this with (2). O

11



3 Uniqueness of invariant probability measure

Since by Theorem 2.1 SZ is a Markov semigroup on L (1), it is meaningful to consider the
class of invariant probability measures absolutely continuous with respect to p:

Py ={pu: p=>0,ulp) =1, u(pS7f) = p(pf) for t > 0, f € B(6)}.

Recall that when 7 = 0 we use PZ to replace S7.
Theorem 3.1. Assume (A) and p(e1?") < oo for some e > 0.

(1) If there exists t > 0 such that P has a strictly positive density p?(z,y) with respect to
Lo, then v € Py implies that p = j—; has a strictly positive version, and &5 contains
at most one element.

(2) In the situation of Theorem 2.1(3), the Markov semigroup P? defined on %y (H) has
at most one invariant probability measure.

Proof. (1) Let v = pu € 5. We first prove that p has a strictly positive version; i.e. pu is
absolutely continuous with respect to v. For measurable A C € with v(A) = 0, we intend
to prove p(A) = 0. Since v is SZ-invariant, we have

| EIRE A d8) = v(S710) = v(d) = .
Noting that Rf+T > 0 for p-a.e. (hence, v-a.e.) &, this implies
(S 1a) = [ BILACYEv(de) =0,

€

Letting po(z) = p(p|€(0) = z) be the regular conditional expectation of p with respect to p
given £(0), from this and (1.9) we obtain

o(({BYY 90, La) = io(po (S, 1)) = v(S%y, 1) = 0,

where due to p) > 0 and po(po) = 1,

(Pto)*Po = /HP?(Z, )po(z)po(dz) > 0.

So, 110(S;14) = 0. Combining this with (1.9) and that p is S%-invariant, we obtain u(A) =
1(S214) = p10(S-14) = 0.

Next, according to 34, Proof of Proposition 3.1(3)], the uniqueness follows if SZ . has
a strictly positive density with respect to v. Since p is equivalent to v as proved above,
and SZ. . is equivalent to Sy, . according to (2.3), it suffices to prove that Sy, . has a strictly
positive density with respect to u. Let (S2)* be the adjoint operator of S? in L?(u1), and let

pP(&,m) = pP(£(0),n(0). For any f € (), (1.9) yields

S0, £(€) = PY(S. £)(€(0)) = /H (S0 F) ()2 (E(0), y)po(dly)
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- [g (S°F) (P, myu(dn) = / F)(SY (€, ) (ma(dn).

Since p} > 0 implies pY > 0, this implies that S, has a strictly positive density (&,7) —
(S (€, ) (n)-

(2) By [34, Proposition 3.1], P? has at most one invariant probability measure if there
exist £ > 0,¢ > 1 and a measurable function ¥ : H? — (0, c0) such that

(3.1) PZf(x) < (PZf(y) ¥(x,y), fe B (H),z,yeH
By (2.9), for any r > 1 there exists a constant () > 0 such that

Lo(z,t) :=E[(R*(t))" + (R*(t)) "] < o0, te€0,t(r)],z €H.
Then (2.6) and (2.5) yield

7 f(x) = E[f(X" (1) R( \/ngtPOfZ() VIl ) (PP f () ezt
)

S\/Fz(ar,t)(E[f“”(Xy(t))Ry(t)]) (E[(RY())~1]) ez (tow)
Ty, ) (T (y, 1) om0 (BZ fo (),

Therefore, (3.1) holds for ¢ = 4p and some function ¥, and the proof is thus finished. H

4 Entropy estimate using hyperboundedness

In this section, we assume that P is hyperbounded, i.e. there exist py > 1 and ¢y > 0 such
that

1
(4.1) HRE%HLQ(uo)—w?PO(uo) = Ssup M0(|Pt%f|2p°)2”0 < 00.
po(f?)<1

According to Gross [10], when P? is symmetric in L?(pg), for instance, Z; is given by (1.2) and
po(dz) = eV @dz, (4.1) is equivalent to the defective log-Sobolev inequality (1.3) for some
constants k > 0,5 > 0. However, in the non-symmetric case, the latter is strictly stronger
than (4.1), see Examples 4.1 and 4.2 below for hypercontractive Markov semigroups without
the log-Sobolev inequality. So, the following result is new even for 7 = 0 and H = R

Theorem 4.1. Assume (A) and (4.1) for some to > 0 and py > 1. If u(e’?) < oo for
3p0 1)(t0+‘r

50— , then there exists v = pu € Pz such that

some constant \ >

(to + 7)(3po — 1) log pu(eM?1") + 4Xpo 10g | P2 || 12 () £200 (o)

(42)  plplogp) < 2M(po — 1) — (3po — 1)(to + 7)

Proof. Let ¢ =ty + 7 and

cn

1
(4.3) Up 1= — pSEdt, n>1,
cn Jo

13



where the probability measure pS? is defined by (uS?)(A) := u(SZ14),A € B(€). It
suffices to find a subsequence n; — oo such that v,, — v weakly for some probability
measure v := ppu with density p satisfying (4.2). We complete the proof by the following
three steps.

(a) Let co = || Pl n2(uy— 1200 (u) < 00 and p = 1 + ”ST_OI > 1. We first prove

e(3po=1) 5, ) 220D

(4.4) E[efo” F(Xi)ds }<c"{u(e P f)} € By(E).

Since p is an invariant probability measure of the segment process Xy, (1.9) implies

po(Sierf) = [ BUCEDulde) = [ BUFCCE () = BFCE)] = u(f)
% 3
fort > 0 and f € %,(%). Combining this with (1.9) and using Jensen’s inequality, we obtain

po(|Sef17°) = (| Py (S-f)I*°) < g™ mo((S- f)*)P°
< CQpO{,lL IS f }po on{u }po7 f e LQ(N)-

For any F' € %,(%), we consider the Feymann-Kac semigroup

(4.5)

(STF)E) = E[F(xE)eh FDE] | £ e ,(%).

By the Hélder/Jensen inequalities, (1.9) and (4.5), we obtain
GF p12p) Bl (X6 ls F(X5ds 2 d
(S5 = [ (BLACxeeli 7o) uag)
ElfP(X¢ Eerit Jo F(XHds)2(p—1) d
< [ {@re) e RIS

< L <scfp)2<§<o>>(1 / cEe:%ﬂXSds)Q(pDu(dg)

C
2pg(p—1) po—1

(o { () * )

c(3pg—1)

< 03u(f2”){u(e ot F)} 2 < 0.

So, SF is bounded in L?° (1) with

po—1
1 c(Bpo—1) p U

||SfHL2p(u) ch{,u(e po—1 )}210017.

By the semigroup property, this leads to

Eelo" FX0ds — (S 1) < ST | pongy < [ = cg{ﬂ(e Po-T )} v
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Therefore, (4.4) holds.
(b) For any ¢ € (0,1), we intend to prove

(4.6) E[R"(en) log R (en)] < - ( E o [co{ﬂ(eii?iﬁiiilzﬁ)}’%}

We will apply the following Young inequality (see [1, Lemma 2.4]): for a probability measure
A on a measurable space M,

(4.7) A(fg) < A(flog f) +logA(e?), f.g € B*(M),A(f) = 1.

By the Young inequality and (4.4),

E[R"(cn) log B (cn)] = %E [R“(cn) /0 B \Z(X;‘)]st}

< eE[R"(cn)log R*(cn)] + slog]E[e% o ‘Z(Xg)‘st]

c(3pg—1)

<eE [R“(cn) log R“(Cn)] + % log [co{u(e%(po—MZP)}pgp;l}

When Z is bounded we have E[R¥(cn)log R*(cn)] < 2[|Z||%, < oo, so that this implies
(4.6). In general, let Z,, = Z1{zj<m},m > 1. Define R% (t) as R¥(t) using Z,, replacing Z.
Then the assertion for bounded Z implies

p(l—¢)

Due to Fatou’s lemma, we prove (4.6) by letting m — oo.
(c) By (2.3), (4.5), (4.6) and (4.7), for any f > 0 we have

C(3P0*1)‘Z‘2) po—1

E[R" (cn)log RE, (cn)] < log [CO{N(QWW1> I ]’ m = L.

1 cn
vn(f) = — | E[R*(cn)f(XH)]ds

cn Jo

1 1 -
(4.8) < —E[R"(cn)log R*(cn)] + — log E[elo” /(X)d]

cn cn

c(B3pg—1) | 2 po—1 1 c(3pg—1) Pop*l
< ot =y o8 [l I ] 4 og [eo{ e T ) 7]

This implies that v, is absolutely continuous with respect to p, and (4.2) holds for p,, := %L:

replacing p. Indeed, taking f = R1, in (4.8) for pu(A) =0 and R > 0, we obtain

c(Bpg—1) po—1

log [co{u(e%@o*l)'Z‘Q)} 270 } + C—lplog co>, R > 0.

1 €
JA) < [ —
vald) = R(cp(l—s)
Letting R — oo we prove v,(A) = 0 for u(A) = 0, so that v, has a density p, with respect

to u. Next, applying (4.8) to f = c(é’;o__ll) log(p, Am +m™!) and letting m — oo, we obtain

c(3pg—1) pg—1

po—1 € |22 1
nlogp,) < ————1 [ 2<(po—1) 2p0 } -1 )
11(pnlog pn) < S co{ pu(e> o )} g

c(3po — 1)
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Taking £ = €820=1 < (0, 1) such that <32=Y — 1 we arrive at

2A(po—1) 2¢(po—1)
5(3p0 — 1) )\IZ|2 po—1 3p0 — 1
p(pnlog pn) < log |co{p(e w0 | + ———logc
(o n) < Sy — 1y 8 Lol e [ o iy les
2C]90(3p0 — 1) AlZ12 po—1 2p0
= log |c M2 2 log ¢
230 1) — 3o~ DJ(po — 1) 08 Lol [ 2 logeo
¢(3po — Dlog p(eM”) + Dpologey
, n>1.
2X(po — 1) — ¢(3pp — 1)

Therefore, {p, }n>1 is uniformly integrable in L'(u), so that for some subsequence n;, — oo
we have p,, — p weakly in L'(u). Then v, — v := pu strongly and p satisfies (4.2). O

We first consider a simple example to show that the integrability condition in Theorem
4.1 is asymptotically sharp for small ¢.

Example 4.1 Let H=R? 7 =0,0 = /2] and Zy, = —z. Then po(dz) = (2r)Y/2e 21" dx
is the standard Gaussian measure. It is well known by Nelson [20] (see also Gross [10]), we
have

(1 —|—e2t°).

DO | —

H HL2 (po)— L3P0 (po) — 1 to > 07p0 =

32”(‘;;375)0 = tgif;‘;f;‘j) — Lasty = 0, for any A\ > % there exists tg > 0 such that

Since 5

A > 321?;;)1?- By Theorems 3.1 and 4.1, if [, ANZ@P =312 42 < 00 then there exists a unique

v = pg € ¥z and

] t0(3e2t0 —1)log ,uo(e)“Z‘Q) t0(3e2t0 —1)
log) < int{ : A}
po(plog p) < in 2A(e2to — 1) — to(3e2to — 1)~ 2(e2to — 1) <

On the other hand, for any A < %, there exists Z with uo(e’\‘ZP) < oo but PZ does not have

2
A Z| )

any invariant probability measure. For instance, when Z(x) = = we have (e < oo for

any A < % but PZ = e*® does not have invariant probability measure.

Below we consider three more examples. The first two are degenerate SDEs and semilinear
SPDEs for which the defective log-Sobolev inequality does not hold, and the last belongs to
monotone SPDEs where the defective log-Sobolev inequality is unknown. See [15, 26, 30|
for more examples of hyperbounded Markov semigroups without the defective log-Sobolev
inequality.

Example 4.2 (Infinite-dimensional stochastic Hamiltonian system). Let H; be a
separable Hilbert space. Consider the following SPDE for (X (¢),Y (¢)) on H := Hy x Hj:

dX(t) = {Y(t) — LX(t)}dt,
dY (t) = {Z(X,,Y;) — LY (£)}dt + dW (2),
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where W (t) is the standard cylindrical Brownian motion on H;, Z : ¥ — Hj is measurable,
(L, 2(L)) is a positive definite self-adjoint operator on H; with discrete eigenvalues 0 < A; <
Ay < --- satisfying > %, A% < oo for some constant § € (0,1). Then the reference SDE
with Z = 0 has a unique invariant probability measure po = N(0, (2L)~1) x N (0, (2L)™1),
where N (0, (2L)71) is the centered Gaussian measure on H; with covariance (2L)~!. By [32,
Theorem 4.1] with Z = 0,A = 0,B = I,L; = Ly = L such that 6 = 0, the associated
Markov semigroup P? is hypercontractive. So, Theorem 4.1 applies. Moreover, the Harnack
inequality in [32, Lemma 4.2] implies that P has a strictly positive density with respect to
tto- Then Theorem 3.1 implies the uniqueness of invariant probability measure of SZ.

Example 4.3 (Finite-dimensional stochastic Hamiltonian system). Consider the
following degenerate SDE for (X (¢),Y (¢)) on H = R?®:

dX(t) = Y (t)dt,
dY'(t) = {Z(X,, Y,) — X(t) = Y(¢) }dt + dW(?),

Let P? be the Markov semigroup for the SDE with Z = 0. By [11, Theorem 4.4], for any
p > 1 there exists a constant ¢ > 0 such that

clz

(PP (@) < (B T, t> 0,2,y € R, f € B (RY),

cz—y[?

T3 satisfies

Since @,(s,z,y) ==

3d
2

po(e” P2 YY > e po(B(z, 1 A s%)) > a(x)(1As) s> 0,z € R*™

for some positive a € C(R*), (2.4) holds for p > 24, Therefore, when pio(ef71) < oo for
some € > 0, Theorem 3.1(2) implies that P? is a Markov semigroup on %,(R??) having at
most one invariant probability measure.

Moreover, by [32, Example 5.1] with W = 0, P? has unique invariant probability measure

pio(dz) := (27) =%~ 21" dz on R*, and
1Pl 22 (o)L (o) = 1

holds for some constant t, > 0. Therefore, by Theorem 4.1, if pi(eM?”) < oo for some
A > 4ty then PZ has a (unique, as observed above) invariant probability measure v with

density p := f—;fo satisfying

Ato log po(eN?1)

A — 4ty

to(plog p) <

Example 4.4 (Monotone SPDE). Let 0(0) € ZLus(H, H), the class of Hilbert-Schmidt
operators from H to H, and let & > 2 be a constant. Assume that 7 +— v« (Zo(rvy + v2), v3)v
is continuous in r € R for any vy, v9,v3 € V, and there exist constants C,d > 0 such that

2ve (Zo(v1) — Zo(va), 01 — va)y + [lo(v1) — o(v2) |7, < Cllvr — vallfy — 6llvr — valf¥,
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1 Zo(v)|ly= < C + Cllv]|&™! for all vy, vy, v € V.

According to [15, Theorem 1.4], the equation (1.6) has a unique variational solution for
any initial value and the Markov semigroup P? is hyperbounded with respect to the unique
invariant probability measure po. Moreover, according to [34], the Harnack inequality in
(15, Theorem 1.2] implies that PP has a positive density with respect to pg. So, Theorem
3.1(1) and Theorem 4.1 apply. When « > 2, [15, Theorem 1.4] ensures (4.1) for any ¢ty > 0
and pg > 1 > 0, so that by these results u(e’\|Z|2) < oo for some A > 47 implies that &4
contains a unique measure v, which has a strictly positive density p with respect to u, and

1(plog p) < oo.

5 Sobolev estimates using log-Sobolev inequality

In this section, we aim to extend Theorem 1.1 to degenerate SDEs with path-dependent
drifts. When 7 > 0, we will consider the Sobolev regularity of the marginal density of the
invariant probability measure. For a probability measure v on € and 6 € [—7,0], let vy be
the #-marginal distribution of v, i.e.

vo(A) =v({£ €@ :£0) e A}), Aec B(H).

In particular, by the stationarity of X*0(t), we have py = o for 6 € [—7,0].
We mainly consider the finite-dimensional case, but make a simple infinite-dimensional

extension in §5.4. Let H = R? and H = R™ for some d,m > 1, and let V € C?*(R?) such
that po(dz) := e”V@dx is a probability measure on R?. Let 0 € C*(R? — R? ® R™) and
let Zy be in (1.2). Then the operator

1 d d

(51) .ﬁ/ﬂo = 5 Z (aa*)ij&aj + Z<Zo, el>8z
ij=1 i=1
defined on Cg°(RY) is symmetric in L?(p); namely,

—po(fLog) = ([, 9) = 1mo((6*V f,0"Vg)), f.g € CFRY).

Let H}?(up) be the closure of C5°(R?) with respect to the Sobolev norm

1£ 11220y = {0(IF 2 + 0"V £[2)}2.

Then (&, H>*(0)) is a symmetric Dirichlet form on L*(pg) and the associated Markov
process can be constructed as the solution to the SDE

(5.2) dX (t) = Zo(X(t))dt + o (X (£))dW (2),

where W (t) is the m-dimensional Brownian motion.
As in Section 4, we investigate the following functional SDE

(5.3) dX(t) ={o(X (1) Z(Xy) + Zo(X(t)) }dt + o(X ())dW (1)
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by using integrability conditions on the measurable map Z : € — R™. Besides the existence
of invariant probability measure and the entropy estimate presented in Theorem 4.1, we aim
to derive more and stronger density estimates including those given in Theorem 1.1. To this
end, we make the following assumption (H), where the log-Sobolev inequality is essentially
stronger than the hyperboundedness of P used in Section 4.

Let Lie{Uy,---,U,} be the Lie algebra induced by vector fields {Uy,---,U,}. More
precisely, let oy = {U; : 1 <i < m} and

g, ={[UU:=0U0" -UU: UU €Uk}, k>1.
Then Lie{Uy,--- ,U,,} is the linear space spanned by Ug>0.%%.

(H) Let V € C*(RY) such that po(dz) := e~V @dx is a probability measure on RY. There
exists k > 2 such that o € C*(R?Y — R? @ R™) and vector fields

d
UZ‘ ::Zcrjz@j, 1§@§m

j=1

satisfy the Hormander condition up to the k-th order of Lie brackets. Let Zy be in
(1.2). Moreover, 1 € H}(ug) with &(1,1) = 0, and the log-Sobolev inequality (1.3)
holds for some constants k > 0 and 3 > 0.

This assumption implies that the solution to (5.2) is non-explosive, the associated Markov
semigroup P? has strictly positive symmetric density p?(z,y) with respect to the unique
invariant probability measure po, and P? is hyperbounded. Since the Dirichlet form is

irreducible, the hyperboundedness of P is equivalent to ||P?||12(u0)—r4(uo) = 1 for large
t > 0 (i.e. the hypercontractivity), see [19, 28]. Consequently, the Poincaré inequality
(5.4) po(f?) < CE(f, f), [ e Hy* (o), po(f) =0

holds for some constant C' > 0.

5.1 Main result and examples

Let 7 > 0 and let g on € := C([—7,0]; R?) be the unique invariant probability measure of
the segment solution to (5.2). We will need the condition pu(e!?”) < oo for A big enough in
terms of k and 7. Let

/\,w:inf{)\>/i: <1+m><1—m> 216}.

When 7 = 0, we have A,y = k. Then for any A > A, . we have

2V A >\/X

RN =

gx - > 1.
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Theorem 5.1. Assume (H). If u(eMN?1*) < oo for some A\ > A, then Py contains a unique
probability measure v = pu. Moreover:

(1) For any p € (1, 25), there exists a constant k = k(p, \) > 1 such that

(5.5) u(p?) < kp(e 2P,

(2) The marginal density py := Sﬁ does not depend on 6 € [—7,0], and has a continu-

D
ous, strictly positive version such that log po, p2 € HY*(po) for p € (1, qfil) with the
following estimates holding for some constant k = k(p, \) > 1:

ol V/al?) < s {log () + 5} < oo;
(56) o (lo"V log po[2) < 4p1(|2]?) < o0
po(lo" s P+ o) < k{u(e ™)}
Since Theorem 1.1 does not imply p? € H ?(0), the last estimate is new even in the non-

degenerate case without delay (i.e. 7 = 0). We present below two examples of degenerate
diffusion processes satisfying the log-Sobolev inequality such that Theorem 5.1 applies.

Example 5.1 (Gruschin type diffusions). Let d =2 and [ € N. Let
Ul(z) =01, Us(x) =20y, x=(x1,15) € R
Then the Hormander condition is satisfied. Let m > 2,¢; € R, ¢y # 0 and ¢3,¢4 > 0 such
that po(de) := e~V(@)dx is a probability measure for
V(2) :=c1 + (cs|lzy — | 4 cqmd)™.

Obviously, 1 € H?(uy) with &(1,1) = 0. Moreover, by [27, Proposition 4.1], (1.3) holds
for some constant x > 0 and 8 = 0. Therefore, assumption (H) is satisfied.

Example 5.2 (Diffusions on Heisenberg group). Consider the following vector fields
3.
on R”: - 2 \
U1($> :81—?83, Ug(l') 2824-?83, xr = (33'1,.1’2,1'3) GR .

tAo

Then the Hormander condition is satisfied. The Markov semigroup e'*° generated by the

Kohn-Laplacian A := U? + U has a strictly positive smooth density p;:

©20)0) = [ n@f@ds, feBE).t>0
R3
For fixed to > 0, let V(z) = —log py, () so that puo(dz) := e V@ dx = p;, (z)dz. Obviously,
1 € HY?(uo) with &(1,1) = 0. Moreover, according to [14, Corollary 1.2], there exists a

universal constant ¢ > 0 such that the log-Sobolev inequality (1.3) holds for k = toc and
B =0 (see [31] for more results on functional inequalities). So, assumption (H) holds.

In the next two subsections, we prove Theorem 5.1 for 7 = 0 and 7 > 0 respectively.
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5.2 Proof of Theorem 5.1 for 7 =0

When 7 = 0, Theorem 5.1 reduces to the following result where SZ is replaced by P7Z for
notation consistency with Theorem 1.1.

Theorem 5.2. Assume (H) and let 7 = 0. For any A > k and p € (1, \/—i), there exists

NG
a constant Cy x such that uo(e)“z‘2) < oo implies that &5 has a unique element v = ppy,

where p is continuous, strictly positive satisfying log p, p?/?> € HY?(uo), (1.5) and

(5.7) 110 (| V 5| + pP) < Cypr{po(eN?")} oo,

We first prove this result for bounded Z with compact support. Let £, = £+ (0Z) -V,
where % is in (5.1). Then an invariant probability measure v of P? solves the equation
L%v = 0 in the sense that

/ Lzfdv =0, fe CP(RY).
R4
The following lemma extends [33, Lemma 4.2] to the present degenerate case.

Lemma 5.3. Assume (H) and let 7 = 0. If |Z| € ﬂpe[Loo)Lfoc(Rd) and v = pug is a

probability measure such that Ly,v = 0, then p has a continuous, strictly positive version. If
moreover Z is bounded and has compact support, then p € HY?*(ug) and

(5.5) |V i =2 [ (7.0 a1 € ).

Proof. We first prove that p has a continuous, strictly positive version using results in [5].
Let v; stand for the i-th component of a vector v, and let

Ai(z,u, &) =& —2uZi(z), r€RLueR EECR™, 1<i<m.
It follows from the integration by parts formula and L%v = 0 that
/d > A py (Urp, -+ Upp)) Ui fdpan = Z/d(Um —2pZ;)Uifdpo
Re T — /R
5 9) i=1 i=1

(5. m
— - Z/Rd (aiv{(e TN} + 207V ZUf ) pdw = —20(Lf) = 0, [ € CE(RY),
=1

Obviously,
Az, u, )] =D |Ai(x,u, §)] < 20ul - | Z](2) + 4],
i=1

1
Az, u,) - € 2 [ = [ Z](2)ul - [€] = SIEP° = 2uP|Z (@),

where |Z| € L} (u) for any p € [1,00). Then by [5, Theorem 3.1 and Theorem 3.35], p

loc
has a locally Holder continuous version (denoted again by p) with respect to the intrinsic
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distance induced by o. By the Hormander condition, the intrinsic distance induces the
classical topology in R?, so that this version p is continuous. Moreover, for any compact set
K there exists a constant C(K) > 0 such that

supp < C(K) + C(K)inf p.
K K

Since the equation (5.9) is linear in p, this inequality also holds for np replacing p, so that

O(K)

supp < ——= + C(K)infp, n>1.
K n K

Letting n — oo we obtain
sup p < C(K)inf p,
K K

which implies that p is strictly positive since po(p) = 1.

Now, let Z be bounded with compact support. Since p is locally bounded due to the
continuity, pZ is globally bounded. In particular, pZ € L2(R? — RY; ug). By (5.4) and the
completion of H?(u), {o*Vh : h € HY?*(ug)} is a closed subspace of L2(R? — R%; py).
Let h € H2?(ug) such that 0*Vh is the orthogonal projection of pZ on this subspace. Since
L7v =0, we have

no(pLof) = v(Lzf) —v({Z,0"V f))
= —o((pZ, 0"V f)) = =&(h, f) = po(h % f), f € C(RY).

By (5.4), {4 f: f € C(RY)} is dense in {f € L*(uo) : pro(f) = 0}, so this implies p = h+c
for some constant c. Hence, p € H? (1) and

S0 Vp,0"V 1) = molplZ, 0"V ), T € O (RS,

Due to the boundedness of pZ, this is equivalent to (5.8). O

Lemma 5.4. Assume (H) and let 7 = 0. For any A > k and p € (1,%), there exists a
constant Cy, x such that for any bounded Z with compact support, if a probability measure v :=

pio solves Lyv = 0, then p has a continuous, strictly positive version such that log p, pP/? €

H}*(po), and (1.5), (5.7) hold.

Proof. By Lemma 5.3, p has a continuous, strictly positive version such that p € H?(u0)
and (5.8) holds. According to step (a) in the proof of [33, Theorem 2.3|, (5.8) implies
log p,\/p € Hy*(po) and (1.5). To prove (5.7), let f, :== (n7' + pAn)’~', n > 1. Then
fu € H2(j15) and by (5.8),

— * - % 2y _ p2 * *
= (|7 Vo An+n ) = s [ (090 Ve
P’ . p* .

P
2

<puo(|Zl(pAn+n"")2|o*V(pAn+n7")E|)

< py/ Lo (1 Z2(p A n+ n1)p).
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Next, it follows from (4.7) and (1.3) that

po((p An+n~)P)
A

,u0(|Z|2(p/\n—i—n_1)p) — log,uo(e’\‘z‘z)

1 T VY e o
(5.11) < SHo ((pMH” )" log MO((pAn—f—n_l)p))
;1 +fuo((p/\n+” ).

Noting that the log-Sobolev inequality (1.3) implies the super Poincaré inequality (see [24]
or [25])

(5.12) 1o(f2) < oo™V 12) + e g f), >0, f € HY (o)

for some constant ¢ > 0, we obtain

[NIIS]

(5.13) po((p An+n ) <rl,+ e g ((pAn+n)5) v >0,
Combining (5.10)-(5.13), we arrive at

L, < p*uo(|Z)(p A +n~h)P)
K O 0 )\‘Z‘
§p2<x_fn+ﬁ+lgl)ﬁ\( )u((p/\n—Fn )))
MZ‘ PN 2
P
)

<p
=%[{ff+r B +log o (M)},

+{ec(1+’" )(B + log (e }uo( /\n—l—n_l)g)ﬂ, r > 0.

(5.14)

]
(A] +ﬁ+ ogu

Now, we are ready to complete the proof by induction in p as follows.
(i) Assume that p < 2. Since py(p) = 1, we have

(5.15) po((pAn+n"H8)" < {uo(p+1)}P <22 =4, n>1.

So, (5.14) implies

Y [{ff 78 + 1og 10 () o+ 4{e (B + log po(eX X))} |, 7> 0.

Since p? < 2, letting
A — P’k
T =TpN = > 0,
g p?(6 + log i (eN?1))

we obtain

8p2€c(1+rp,,\)(5 + log M0<e,\|z|2))
A — P2k

I, <

2
< apppio(eN?)rr n > 1
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for some constant a, , > 0. Combining this with (5.13) for e.g. 7 = 1 and (5.15), we may
find out a constant C), y > 0 such that

(5.16) Lot 1((p A)?) < Conpio(@?F)a, > 1.

Letting n — oo we conclude that p?/2 € H?(j0) and (5.7) holds.

(ii) Assume that (5.7) holds with p € (1, %) N [0, k] for some k > 2, we aim to prove it
for p € (1, %) N [0, 2k]. Tt suffices to consider p € (1, %) N (k,2k] and k < % In this case,
by the assumption there exists a constant aj y > 1 such that

10(p") < agapo(eM?)owa,

Since p < 2k, we have

_ 2\ por
po((p An+n 1)p/2)2 < {MO(Pk)}p/k < CY?A,UO(@MZ‘ Jpeck.x

Substituting this into (5.14) and repeating the argument in (i), we prove (5.7) for some
constant C), y > 0. O

Proof of Theorem 5.2. By the Hormander theorem, (H) implies that P has a strictly posi-
tive density with respect to jg. So, the uniqueness of v € &5 follows from Theorem 3.1(1).

To prove the existence, for any n > 1, let Z,, = Z1{z/4|.|<n}- Then Z,, is bounded with
compact support. By Theorem 4.1 and Lemma 5.4, P?" has an invariant probability measure
Un = pnllo, Where p, is continuous, strictly positive such that log p,, pf/ ’e H!?(110) and
(1.5), (5.7) hold for p, replacing p. In particular, {pﬂ/z}nzl is bounded in H}?(up). Then, as
explained in step (b) in the proof of [33, Theorem 2.3(1)], the defective log-Sobolev inequality
(1.3) implies that {pﬁ/ *Y,>1 is relatively compact in L2(1). So, up to a subsequence, P
pP? in L?(pg) for some probability density p with respect to po. Moreover, logp, pP/? €
H?(uo) and (1.5), (5.7) hold. It remains to prove that v := pug is an invariant probability
measure of PZ, where p has a continuous, strictly positive version according to Lemma 5.3.

For any f € %,(RY), by v,(P?"f) = vul(f), pn — p in L*(19) and the boundedness of

to(pP), we obtain

[W(PZS) = v()] = | Tim po(pu(PES = 1))

1
< limsup po(po| P2 f — PP f]) < Climsup po (|7 f — P2 f|9) ¢

n—oo n—oo

(5.17)
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for some constant C' > 0 and ¢ := ;25. By (2.3) and 7 = 0, we have

o (|P7 f — PP f1%)
— B £(X% (1)) { eJs (Z(X7(9))dW ()3 [5 12(X*(s))[2ds
Lo

_ ef(f(Zn(X”“‘( $)),dW ()= 3 [0 1Zn (X (s ))|2ds}] |qM0 dx)
(5.18) < E[| f(X (1)) {els X0 AW ) =5 [ 1Z2(XH0 (o) Pds

— om0 AW () =3 fy |2 (X 0 ()28 14]
< Hqu (]EqufO (XH0(s)), dW(s)>qu0t |Z(X“0(s))|2ds)%

(E‘efo (Z—Zn)(XH0(5)),dW () =L [ 1(Z=Zn)(XH0(s))[2ds _ 1‘ )

2
AZ| )

Since po(e < 00, for any a > 1 and measurable function g with |g| < |Z],

Eezafo g(XP0(s)),dW (s))—a [ [g(XH0(s))[ds

1

{(Ee4afo g(X10(s)),dW (s)) 8a2f5|g<X“o(s))\2ds)Ee(8a2—2a>fé\g<xuo<s>>|2ds}5

< (8a2-20)1]Z[2\) 5 NZ]?Y < t< N
hS (Mo(e )) < y\/to(e ) <oo, t< 302 — 90

So, for small enough ¢ > 0, by (5.18) and the dominated convergence theorem we prove
lim,, o0 pto (| PZf — P77 £|9) = 0. Then (5.17) implies v(PZ f) = v(f) for small ¢ > 0 and all
f € %,(RY). Therefore, v is an invariant probability measure of PZ. O

5.3 Proof of Theorem 5.1 for 7 > 0

Again we start from bounded Z.

Lemma 5.5. Assume (H) and let Z be bounded. Then SZ has an invariant probability
measure v = pp such that p € Nye(1,00LP (1) Moreover, vy = vy for 0 € [—7,0], and it has
a continuous, strictly positive density py with respect to o such that log pg, p p/ € HY? ()
for any p > 1. Moreover, for any A > k and p € (1, \/TE), there exists k = k’(p, A) > 0 such
that (5.6) holds.

Proof. Since (1.3) implies the hyperboundedness of P, the existence of invariant probability
measure v = pu is ensured by Theorem 4.1, which is the weak limit of a subsequence of
{Vn}n>1 in (4.3). Below we first prove the assertion on the marginal density, then prove
p € LP(u) for all p > 1.

(a) The marginal density. Let § € [—7,0]. Since v is SZ-invariant, for any f € %,(R?)
and fo(§) := f(£(0)), we have

vo(f) = i fs) = v(P% ) = L E[fo(X¢ ) RE(—0)] w(d)
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_ /% FOXE(=0 + 0))(de) = [g FEO)AE) = ol f).

Therefore, vy = 1.

Moreover, for any f € C°(R?) and f3(€) := f(£(0)), we have

E[f(X"(t))R"(t)] = v(S7 fo) = v(fo) = wo(f), t>0.

On the other hand, let Z|¢o) = v(Z]£(0)) be the regular conditional expectation of Z under
probability v given £(0). By It6’s formula,

t

E[f(X ()R (1)] - no(f) = / E[(Lz1, /)X ())R"(5)]ds = / oLzt f)ds.

Therefore, vy(Lz,,, f) = 0 for all f € C5°(RY), ie. L

Zley V0 = 0. We then finish the proof

by considering the following two situations.
(i) Z is supported on a bounded subset of €. Then Z|¢q) has compact support. Since
by Jensen’s inequality

uo(e”Z‘“o’P) - u(eAlu(zlﬁ(o))F) < /L[p(e”ZPIf(O))] _ M(exlzlz’) < o0,

the desired assertion on p, follows from Lemma 5.4.

(ii) In general, let Z™ = Z1y|<,y for n > 1. Then for every n > 1, StZ<"> has an invariant
probability measure ™ = p{™ 1, with the marginal density pém satisfying (5.6) in place of
p. As shown in the proof of Theorem 4.1 that up to a subsequence p™ — p weakly in
LY(u), v := pp is an invariant probability measure of SZ, and py satisfies (5.6). Note that
by Lemma 5.3, py has a continuous, strictly positive version, so that the Poincaré inequality
(5.4) implies log pg € L*(py), see step (a) in the proof of [33, Theorem 2.3(1)] for details.

Therefore, after proving p € LP(u) (hence, py € LP(1g)) in the next step, we conclude that

log po, pg € Hy*(tho)-

(b) p € LP(pu) for p > 1. Let f > 0 with ,u(fﬁ) < 1. Since Z is bounded, for any
a > 1 there exists a constant ¢(a) > 0 such that E[(R"(7))*] < c¢(a) < o0o. Let ¢ € (1, ;57).
Combining this with (1.9) and (2.3) and using py € L*(pug) for any o > 1, we obtain

v(f) = v(SZf) = Bf(X*)R(7)] < er{BLf(X2)]}0

1 p p—1 ﬁ p—(p—1)q
(5.19) = cr{po(poS+ )} < er{po((SrfO) @)} 7 {po(pg™ ™ "")}
<e{u(fr)}7 . feB(?)
for some constants ¢, co > 0. Therefore, p € LP(u). O

Proof of Theorem 5.1. By Hormander’s theorem, (H) implies that P has a strictly positive
density with respect to pg. So, the uniqueness of v follows from Theorem 3.1(1). Below, we
prove the existence and assertions (1) and (2).
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(a) We first assume that Z is bounded. By Lemma 5.5, it remains to prove (5.5) for

p<pyi= . Since A > A, ;, we have
1 \/_
=—(1++/1+8\/7) >
= j0 VISR > 0
and
200V VA vR) T2

Since pfjl = qx, when p € (1,p,) is close enough to p) we have

p 1 Apsv/\
QA<F<2(Z73+ p3— \/—3 \/_) D3,
so that
p—1 VA - \/_
and

Y2 pg(p—l)

— > 1.
pr—p psp—1)—

pri=ps(p—1)>p, pr:=
It is easy to see that (5.20) is equivalent to

“75—1_\5—\/%(1_ P )>>p—1_

P22 VA ps(p — 1

Then there exists 6 € (1, %) depending on p, A such that % = pT By (1.9) and Lemma
5.5, there exists a constant k = k(p, A) such that

P26 0—1

/% P(EELF (XE)1(AE) = po(poS, 17) < {10l } s {uo(S, £ )} 5"
< (kMNP YRy u(FE)Y T < (ep(X PPV F >0, u(f7T) <1

(5.21)

Noting that

1 1 1 1+ —1)—p+p-—-1
- pp—1)-ptp-1_,
Pr P2 P3 p(p—l)

by Hélder’s inequality and (5.21), we obtain

o(f) = U(PZf) L p(€)ELF (X6 RE(r)) ()

1

o7 ([ emimxnn)” @) S
4
< (Ve (o) (BI(R(r))])7s, f > 0,u(f77) < 1
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To estimate E[(R*(7))P3], recall that for any continuous martingale M (t) we have

EepsM(n)—5-(M)(7) < (Eezp3M<T>—2p§<M>(T>)%(Eep3<2p3—1><M><T>)% < (Eepsmm—lxm(ﬂ);

Taking M(t) = [,(Z(X%),dW(s)) and noting that ps(2p; — 1)7 = A by the definition of ps,
we obtain

(B(R!(r)))" < E[erm @ DI IZXORE]

<L /TE[ep3(2p3—1>Tz<X5>2]dS (NP,
0

T

Combining this with (5.22), we arrive at

w(pf) = v(f) < p(pP)mkp(2F)E, f >0, u(f71) < 1

for some constant k = k(p, ). Since p; > p and p € LP(u) due to Lemma 5.5, this implies
the desired estimate (5.5).

(b) In general, for any n > 1,let Z™ = Z 1{1z|<ny- Then SZ ™ has an invariant probability
measure v := p™ 1 such that (5.5) and (5.6) hold for p™ and pém replacing p and py with
constants independent of n. In particular, p™ converges weakly in L'(x) to some p, and as
shown in the proof of Theorem 4.1 that v := pu is an invariant probability measure of SZ
satisfying (5.5) and (5.6). Moreover, applying Lemma 5.3 to the marginal distribution v
(recall that L*Z|5(0) 1o = 0), we conclude that py has a continuous, strictly positive version.

O

5.4 The infinite-dimensional case

By finite-dimensional approximations, it is easy to extend Theorem 5.1 to the infinite-
dimensional case. For simplicity, here we only consider an Ornstein-Uhlenbeck type reference
process on H.

Let W (t) be the cylindrical Brownian motion on H, and let L, o be self-adjoint operators
such that for some orthonormal basis {e;};>; of H

Le; = Nie;,  oe; = qie;, 1>1
holds for some constants \;, ¢; satisfying
2
. . 2 qz‘
A _%2% > 0, %121{‘(]1 > 0, ;)\_f < oo for some ¢ € (0,1).
Then for any initial point, the SDE
(5.23) dX(t) = —=LX(t)dt + odW (t)

has a unique continuous mild solution, and the associated Markov semigroup P? is symmetric
in L?(uo) for py being the centered Gauss measure on H of covariance operator @ with

Qe; = ;—iei, ¢ > 1. When 7 > 0, let i be the distribution of X*° as introduced in Section 1.
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Next, according to [10], we have the following log-Sobolev inequality

(5.24) holf?log 12) < iuoqa VIP), feFCE molf?) =1,

where ZCg° = {z — f((z,e1), - ,(x,e,)) : n>1,f € CF(R™)} is the class of smooth
cylindrical functions.
Below we extend Theorem 5.1 to the SDE

(5.25) dX(t) = {0 Z(X;) — LX(t) }dt + odW (1)
by using finite-dimensional approximations.

For any n > 1, let m, : H — H,, := span{ey, - - - ,e,} be the orthogonal projection. Then
T, X (t) is a Markov process on H, which is symmetric with respect to ué") = po o,

and (5.24) implies the same log-Sobolev inequality for ué") on H, replacing o on H. Let

Z ¢ — H be measurable satisfying conditions in Theorem 5.1. T hen Zn = Zlg, also
satisfies these conditions, where %), := C([—7,0];H,,) C €. So, letting 1™ be the marginal
distribution of 1 on %, the corresponding finite-dimensional Markov semigroup S7" has an
invariant probability measure v = p(™ ™ with p™ and pg") satisfying (5.5) and (5.6)
respectively. Thus, up to a subsequence, p™ o m, — p weakly in LP(u), and (S7" f) o m, —
SZfin L1 () for any bounded cylindrical function f on H. Therefore, v := pu € &, with
p and pg satisfying (5.5) and (5.6) respectively.

Moreover, let P? be the Markov semigroup of the linear equation (5.23). According to
e.g. [29, Theorem 3.2.1|, P? satisfies the following Harnack inequality for some constant

C >0 C ?
(P f(x))" < (P.fP(y)) exp {59'%_—_1)?

By [29, Theorem 1.4.1], this implies that P? has a strictly positive density with respect to
to. Therefore, by Theorem 3.1, v € &4 is unique, and the density p has a strictly positive
version. In particular, the marginal density pg has a strictly positive version as well. This
together with the Poincaré inequality (5.4) implies log pg € L?(p), see step (a) in the proof
of [33, Theorem 2.3(1)].

In conclusion, we have the following result, where )\, ; and gy are given before Theorem
5.1.

Theorem 5.6. In the above framework, let k = /\% If u(e’\‘ZP) < o0 for some A > A, ;, the
Py contains a unique measure v = pu, where p is strictly positive such that (5.5) and (5.6)
hold for any p € (1, ;25) and some constant k = k(X,p) > 0.

}, t>0,p>1,[f€ B (H).
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