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Abstract

Let P2(Rd) be the space of probability measures on Rd with finite second moment.
The path independence of additive functionals of McKean-Vlasov SDEs is characterized
by PDEs on the product space Rd ×P2(Rd) equipped with the usual derivative in
space variable and Lions’ derivative in distribution. These PDEs are solved by using
probabilistic arguments developed from [2]. As consequence, the path independence of
Girsanov transformations are identified with nonlinear PDEs on Rd ×P2(Rd) whose
solutions are given by probabilistic arguments as well. In particular, the corresponding
results on the Girsanov transformation killing the drift term derived earlier for the
classical SDEs are recovered as special situations.

AMS subject Classification: 60J60, 58J65.
Keywords: McKean-Vlasov SDEs, additive functional, Girsanov transformation, L-derivative.

1 Introduction

In recent years, McKean-Vlasov stochastic differential equations (SDEs), also called distribu-
tion dependent or mean field SDEs, have received increasing attentions for their theoretically
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importance in characterizing non-linear Fokker-Planck equations from physics. On the other
hand, SDEs have been developed as crucial mathematical tools modelling economic and fi-
nance systems. In the real world, the evolution of these systems is not only driven by micro
actions (drift and noise), but also relies on the macro environment (in mathematics, distri-
bution of the systems). So, it is reasonable to characterize economic and finance systems by
using distribution dependent SDEs.

Let P(Rd) be the space of all probability measures on Rd, and let

P2(Rd) =

{
µ ∈P(Rd) : µ(| · |2) :=

∫
Rd
|x|2µ(dx) <∞

}
.

Then P2(Rd) is a Polish space under the Wasserstein distance

W2(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|2π(dx, dy)

) 1
2

, µ, ν ∈P(Rd),

where C (µ, ν) is the set of couplings for µ and ν; that is, π ∈ C (µ, ν) is a probability measure
on Rd × Rd such that π(· × Rd) = µ and π(Rd × ·) = ν.

Let Wt be an m-dimensional Brownian motion on a standard filtered probability space
(Ω,F , {Ft}t≥0,P), and denote by Lξ the distribution of a random variable ξ on Rd. Consider
the following McKean-Vlasov SDE on Rd:

(1.1) dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dWt,

where
σ : [0,∞)× Rd ×P2(Rd)→ Rd⊗m, b : [0,∞)× Rd ×P2(Rd)→ Rd

are continuous such that for some increasing function K : [0,∞)→ [0,∞) there holds

|b(t, x, µ)− b(t, y, ν)|+ ‖σ(t, x, µ)− σ(t, y, ν)‖HS
≤ K(t)

(
|x− y|+ W2(µ, ν)

)
, t ≥ 0, x, y ∈ Rd, µ, ν ∈P2(Rd)

(1.2)

and

(1.3) ‖σ(t,0, δ0)‖HS + |b(t,0, δ0)| ≤ K(t), t ≥ 0,

where δ0 is the Dirac measure at 0 ∈ Rd. For any t ≥ 0, let L2(Ω → Rd,Ft,P) be the
class of Ft-measurable square integrable random variables on Rd. By (1.2) and (1.3), for
any s ≥ 0 and Xs ∈ L2(Ω→ Rd,Fs,P), (1.1) has a unique solution (Xt)t≥s with

(1.4) sup
t∈[s,T ]

E|Xt|2 <∞, T ≥ s.

See [11] for more results on gradient estimates and Harnack inequalities of the associated
nonlinear semigroup, and [7, 8] and references within for the existence and uniqueness under
weaker conditions.
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In this paper, we aim to characterize the path independence of the additive functional

(1.5) Af ,g
s,t :=

∫ t

s

f(r,Xr,LXr)dr +

∫ t

s

〈g(r,Xr,LXr), dWr〉, 0 ≤ s ≤ t,

where
f : [0,∞)× Rd ×P2(Rd)→ R, g : [0,∞)× Rd ×P2(Rd)→ Rm

are continuous, so that Af ,g
s,t for t ≥ s is a well-defined local semi-martingale. Throughout

the paper we consider the time interval [0, T ] for a fixed constant T ∈ [0,∞]. When T =∞
we regard [0, T ] as [0,∞).

Definition 1.1. The additive functional (Af ,g
s,t )T≥t≥s≥0 is called path independent, if there

exists a measurable function

V : [0, T ]× Rd ×P2(Rd)→ R

such that for any s ∈ [0, T ) and Xs ∈ L2(Ω→ Rd,Fs,P), the solution (Xt)t∈[s,T ] to the SDE
(1.1) from time s satisfies

(1.6) Af ,g
s,t = V (t,Xt,LXt)− V (s,Xs,LXs), 0 ≤ s ≤ t < T.

The motivation of the study comes from mathematical statement of equilibrium financial
market. In their seminal paper [1] Black and Scholes described the price dynamics (or the
wealth growth) by using SDEs under a so-called real world probability measure. But for
an equilibrium financial market there exists a so-called risk neutral measure having a path
independent density with respect to the real world probability, see [6]. That is, under the risk
neutral measure the solution of (1.1) becomes a martingale, and the density of the neutral
probability with respect to the real world one depends only on the initial and current states
but not those in between.

For instance, let f = 1
2
|g|2. Then Af ,g

s,t becomes

(1.7) Ag
s,t :=

1

2

∫ t

s

|g(r,Xr,LXr)|2dr +

∫ t

s

〈g(r,Xr,LXr), dWr〉, 0 ≤ s ≤ t.

By the Girsanov theorem, when

(1.8) Ee
1
2

∫ t
s |g(r,Xr,LXr )|2dr <∞,

dQg
s,t := e−A

g
s,tdP is a probability measure. So, to adopt Qg

s,t as a risk neutral measure, we
need to verify the path independence of the additive functional Ag

s,t in the sense of (1.6). In
particular, when

(1.9) b = σb̃ for some measurable b̃ : [0,∞)× Rd ×P2(Rd)→ Rm,

and (1.8) holds for g := b̃, let

(1.10) As,t :=
1

2

∫ t

s

|b̃(r,Xr,LXr)|2dr +

∫ t

s

〈b̃(r,Xr,LXr), dWr〉, 0 ≤ s ≤ t.
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Then dQs,t := e−As,tdP is a probability measure such that

W̃r := Wr +

∫ r

s

b̃(u,Xu,LXu)du, r ∈ [s, t]

is an m-dimensional Brownian motion, and hence

Xr = Xs +

∫ r

s

σ(u,Xu,LXu)dW̃u, r ∈ [s, t]

is a Qs,t-martingale as required for an equilibrium financial market. We would like to inves-
tigate the path independence of the additive functional As,t such that Qs,t is a risk neutral
measure.

In Section 2, we will characterize the path independence of Af ,g
s,t using PDEs on Rd ×

P2(Rd), see Theorem 2.2 below for details. Following the idea of [2], such type PDEs are
solved using solutions of an associated SDE, see Theorem 2.3 for details. As a consequence,
the path independence of Ag

s.t in (1.7) and As,t in (1.10) is identified with nonlinear PDEs
on Rd ×P2(Rd), see Corollaries 2.4 and 2.5 below. When the SDE is distribution indepen-
dent, i.e. b(t, x, µ) and σ(t, x, µ) do not depend on µ ∈ P2(Rd), Corollary 2.5 recovers the
corresponding existing results derived in [10, 13, 14], see also [9, 12] for extensions to SDEs
with jumps and semi-linear SPDEs. Finally, complete proofs of these results are presented
in Section 3.

2 Main results

To state our results, we first recall the definition of L-derivative for functions on P2(Rd),
which was introduced by P.-L. Lions in his lectures [3] at College de France, see also [2, 5].
In the following we introduce a straightforward definition without using abstract probability
spaces as in previous references. Let ∂t denote the partial differential in time parameter
t ≥ 0, ∂x or ∂y the gradient operator in variables x or y ∈ Rd, and ∂2x the Hessian operator
in x ∈ Rd. Let Id : Rd → Rd be the identity map, i.e. Id(x) = x for x ∈ Rd. It is easy to see
that for any µ ∈P2(Rd) and φ ∈ L2(Rd → Rd, µ), we have µ ◦ (Id + φ)−1 ∈P2(Rd).

Definition 2.1. Let T ∈ (0,∞], and set [0, T ] = [0,∞) when T =∞.

(1) A function f : P2(Rd)→ R is called L-differentiable at µ ∈P2(Rd), if the functional

L2(Rd → Rd, µ) 3 φ 7→ f(µ ◦ (Id + φ)−1)

is Fréchet differentiable at 0 ∈ L2(Rd → Rd, µ); that is, there exists (hence, unique)
ξ ∈ L2(Rd → Rd, µ) such that

(2.1) lim
µ(|φ|2)→0

f(µ ◦ (Id + φ)−1)− f(µ)− µ(〈ξ, φ〉)√
µ(|φ|2)

= 0.

In this case, we denote ∂µf(µ) = ξ and call it the L-derivative of f at µ.
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(2) A function f : P2(Rd) → R is called L-differentiable on P2(Rd) if the L-derivative
∂µf(µ) exists for all µ ∈P2(Rd). If moreover (∂µf(µ))(y) has a version differentiable
in y ∈ Rd such that (∂µf(µ))(y) and ∂y(∂µf(µ))(y) are jointly continuous in (µ, y) ∈
P2(Rd)× Rd, we denote f ∈ C(1,1)(P2(Rd)).

(3) A function f : [0, T ] × Rd ×P2(Rd) → R is said to be in the class C1,2,(1,1)([0, T ] ×
Rd ×P2(Rd)), if the derivatives

∂tf(t, x, µ), ∂xf(t, x, µ), ∂2xf(t, x, µ), ∂µf(t, x, µ)(y), ∂y∂µf(t, x, µ)(y)

exist and are jointly continuous in the corresponding arguments (t, x, µ) or (t, x, µ, y).
If f ∈ C1,2,(1,1)([0, T ] × Rd ×P2(Rd)) with all these derivatives bounded on [0, T ] ×
Rd ×P2(Rd), we denote f ∈ C1,2,(1,1)

b ([0, T ]× Rd ×P2(Rd)).

(4) Finally, we write f ∈ C ([0,∞)×Rd ×P2(Rd)), if f ∈ C1,2,(1,1)([0, T ]×Rd ×P2(Rd))
and the function

(t, x, µ) 7→
∫
Rd

{
‖∂y∂µf‖+ ‖∂µf‖2

}
(t, x, µ)(y)µ(dy)

is locally bounded, i.e. it is bounded on compact subsets of [0, T ]× Rd ×P2(Rd).

For readers’ understanding of the L-derivative, we present below an example for a class of
functions inducing the Borel σ-algebra on P2(Rd). See [2, Example 2.2] for concrete choices
of F and hi.

Example 2.1. Let n ∈ N, {hi}1≤i≤n ⊂ C2(Rd) with ‖∂2xhi‖∞ < ∞ and let F ∈ C1(Rn).
Then the function

P2(Rd) 3 µ 7→ f(µ) := F (µ(h1), · · · , µ(hn))

is in C(1,1)(P2(Rd)) with

∂µf(µ)(y) =
n∑
i=1

(∂iF )(µ(h1), · · · , µ(hn))∂yhi(y), µ ∈P2(Rd), y ∈ Rd.

Proof. By the chain rule it suffices to prove for f(µ) := µ(h1), i.e. n = 1 and F (r) = r.
Since ‖∂2xhi‖∞ <∞, there exists a constant C > 0 such that

|hi(x)|+ |∂xhi(x)|2 ≤ C(1 + |x|2), x ∈ Rd,

so that h1 ∈ L1(µ) and ∂xh1 ∈ L2(Rd → Rd, µ) for µ ∈P2(Rd). Then, for any φ ∈ L2(Rd →
Rd, µ), by Taylor’s expansion we have

lim
‖φ‖L2(µ)→0

|f(µ ◦ (Id + φ)−1)− f(µ)− µ(〈∂h1, φ〉)|
‖φ‖L2(µ)

= lim
‖φ‖L2(µ)→0

1

‖φ‖L2(µ)

∣∣∣∣ ∫
Rd

{
h1(x+ φ(x))− h1(x)− 〈∂xh1(x), φ(x)〉

}
µ(dx)

∣∣∣∣
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≤ lim
‖φ‖L2(µ)→0

‖∂2xh1‖∞
2‖φ‖L2(µ)

∫
Rd
|φ(x)|2µ(dx) ≤ lim

‖φ‖L2(µ)→0
‖∂2xh1‖∞‖φ‖L2(µ) = 0.

So, by definition, ∂µf(µ)(y) = ∂yh1(y).

Let us explain that the above definition of L-derivative coincides with the Wasserstein
derivative introduced by P.-L. Lions using probability spaces. Given µ ∈ P2(Rd), let
(Ω̃, F̃ , P̃) = (Rd,B(Rd), µ) and X = Id. Then X is a random variable with LX |P̃ = µ.
For any square integrable random variable Y , we have φ := Y ∈ L2(Rd → Rd, µ). Moreover,
since X = Id, for any A ∈ B(Rd),

(µ ◦ (Id + φ)−1)(A) = µ({x : (Id + φ)(x) ∈ A}) = µ({x : x+ φ(x) ∈ A})
= P̃({x : X(x) + Y (x) ∈ A}) = P̃(X + Y ∈ A)

= LX+Y |P̃(A).

So, (µ ◦ (Id + φ)−1) = (LX+Y |P̃), and (2.1) means that

L2(Ω̃→ Rd, P̃) 3 Y 7→ f(LX+Y |P̃)

is Fréchet differentiable with derivative ∂µf(µ) := ξ, which coincides with [3, Definition 6.1]
given by P.-L. Lions. Note that the atomless restriction on the probability space therein is
to ensure the existence of a random variable with distribution µ. It is crucial that (see [5,
Proposition A.2]) the definition of ∂µf(µ) ∈ L2(Rd → Rd, µ) dose not depend on the choice

of probability space (Ω̃, F̃ , P̃) and random variable X with LX |P̃ = µ. So, in particular, we
may take the above specific choice (Ω̃, F̃ , P̃) = (Rd,B(Rd), µ) and X = Id.

The following differential operator on [0,∞) × Rd ×P2(Rd) associated with the SDE
(1.1) has been introduced in [2]: for any V ∈ C1,2,(1,1)([0,∞)×Rd×P2(Rd)) and (t, x, µ) ∈
[0,∞)× Rd ×P2(Rd), let

Lσ,bV (t, x, µ) =
1

2
tr
(
σσ∗∂2xV )(t, x, µ) + 〈b, ∂xV 〉(t, x, µ)

+

∫
Rd

[1

2
tr
{

(σσ∗)(t, y, µ)∂y∂µV (t, x, µ)(y)
}

+
〈
b(t, y, µ), ∂µV (t, x, µ)(y)

〉]
µ(dy).

(2.2)

Our first result is the following characterization on the path independence of the functional
Af ,g
s,t in (1.5).

Theorem 2.2. Assume that σ and b satisfy (1.2) and (1.3) for some locally bounded function
K. Let T ∈ [0,∞], f ∈ C([0, T ] × Rd ×P2(Rd)) and g ∈ C([0, T ] × Rd ×P2(Rd) → Rm).
For any V ∈ C ([0, T ]× Rd ×P2(Rd)), Af ,g

s,t is path independent in the sense of (1.6) if and
only if

(2.3)

{
(∂t + Lσ,b)V (t, x, µ) = f(t, x, µ),

(σ∗∂xV )(t, x, µ) = g(t, x, µ),
t ∈ [0, T ], x ∈ Rd, µ ∈P2(Rd).
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To provide a class of (f ,g) such that the additive functional Af ,g
s,t is path independent in

the sense of (1.6), we adopt the idea of [2] to solve the PDE (2.3) using an SDE accompying
with (1.1). To state this accompying SDE, for any µ ∈P2(Rd) and s ≥ 0, let (Xµ

s,t)t≥s solve
(1.1) from time s with LXµ

s,s
= µ. Let

(2.4) P ∗s,tµ = LXµ
s,t
, t ≥ s, µ ∈P2(Rd).

As shown in [11] that P ∗s,t is a nonlinear semigroup satisfying

(2.5) P ∗t,rP
∗
s,t = P ∗s,r, 0 ≤ s ≤ t ≤ r.

Now, for any x ∈ Rd, µ ∈P2(Rd) and s ≥ 0, let (Xx,µ
s,t )t≥s solve the SDE

(2.6) dXx,µ
s,t = b(t,Xx,µ

s,t , P
∗
s,tµ)dt+ σ(t,Xx,µ

s,t , P
∗
s,tµ)dWt, Xx,µ

s,s = x.

We have the following result.

Theorem 2.3. Assume that bi, σij, f ∈ C1,2,(1,1)
b ([0, T ]×Rd×P2(Rd)), 1 ≤ i ≤ d, 1 ≤ j ≤ m.

Then for any Φ ∈ C2,(1,1)
b (Rd ×P2(Rd)),

V (t, x, µ) := E
(

Φ(Xx,µ
t,T , P

∗
t,Tµ)−

∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr

)
, t ∈ [0, T ], x ∈ Rd, µ ∈P2(Rd)

is the unique solution to the first PDE in (2.3) with V (T, ·, ·) = Φ(·, ·).
Consequently, for such a function V , Af ,g

s,t is path independent in the sense of (1.6) if and
only if

(2.7) g(t, x, µ) = σ∗∂xE
(
V (T,Xx,µ

t,T , P
∗
t,Tµ)−

∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr

)
.

Next, we consider f := 1
2β
|g|2 for a constant β 6= 0. Then the additive functional Af ,g

s,t

reduces to

(2.8) Ag;β
s,t :=

1

2β

∫ t

s

|g(r,Xr,LXr)|2dr +

∫ t

s

〈g(r,Xr,LXr), dWr〉, 0 ≤ s ≤ t.

This covers Ag
s,t in (1.7) for β = 1. As a consequence of Theorems 2.2 and 2.3, we have the

following result on the path independence of Ag;β
s,t and the corresponding nonlinear PDE:

(2.9) (∂t + Lσ,b)V (t, x, µ) =
1

2β
|σ∗∂xV |2(t, x, µ), (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

Corollary 2.4. Assume that σ and b satisfy (1.2) and (1.3) for some locally bounded function
K. Let T ∈ (0,∞] and 0 6= β ∈ R.

(1) Let V ∈ C ([0, T ]×Rd×P2(Rd)). Then Ag;β
s,t is path independent in the sense of (1.6)

if and only if V solves the nonlinear PDE (2.9) and g = σ∗∂xV .
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(2) Let bi, σij ∈ C
1,2,(1,1)
b ([0, T ] × Rd × P2(Rd)) for 1 ≤ i ≤ d, 1 ≤ j ≤ m. For any

Φ ∈ C2,(1,1)
b (Rd ×P2(Rd)) with inf Φ > 0,

(2.10) V (t, x, µ) := −β log
{
EΦ(Xx,µ

t,T , P
∗
t,Tµ)

}
, (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd)

is the unique solution to the nonlinear PDE (2.9) with

V (T, x, µ) = −β log Φ(x, µ), (x, µ) ∈ Rd ×P2(Rd).

Finally, we consider the path independence of the functional As,t in (1.10). Let

LσV (t, x, µ) =
1

2
tr
(
σσ∗∂2xV )(t, x, µ) +

1

2
|σ∗∂xV |2(t, x, µ)

+

∫
Rd

[1

2
tr
{

(σσ∗)(t, y, µ)∂y∂µV (t, x, µ)(y)
}

+
〈
(σσ∗∂yV )(t, y, µ), ∂µV (t, x, µ)(y)

〉]
µ(dy).

(2.11)

Corollary 2.5. Assume that σ and b satisfy (1.2) and (1.3) for some locally bounded function
K. Let T ∈ (0,∞].

(1) Let V ∈ C ([0, T ]× Rd ×P2(Rd)). Then (1.9) holds for b̃ := σ∗∂xV and As,t in (1.10)
is path independent in the sense of (1.6) if and only if

(2.12)

{
(∂t + Lσ)V (t, x, µ) = 0,

b(t, x, µ) = (σσ∗∂xV )(t, x, µ),
t ∈ [0, T ], x ∈ Rd, µ ∈P2(Rd).

(2) A function V ∈ C1,2,(1,1)
b ([0, T ]×Rd ×P2(Rd)) solves (2.12) if and only if there exists

Φ ∈ C2,(1,1)
b (Rd ×P2(Rd)) with inf Φ > 0 such that{

V (t, x, µ) = −1
2
E
{

log Φ(Xx,µ
t,T , P

∗
t,Tµ)

}
,

b(t, x, µ) = (σσ∗∂xV )(t, x, µ), t ∈ [0, T ], x ∈ Rd, µ ∈P2(Rd).

Since b(t, x, µ) = (σσ∗∂xV )(t, x, µ) implies that both Xx,µ
t,T and P ∗t,Tµ may depend on V ,

unlike Theorem 2.3 and Corollary 2.4(2) providing solutions of (2.3) and (2.9) respectively,
Corollary 2.5(2) only gives an alternative version of (2.12) but not solutions. To construct
a nontrivial solution of (2.12), the nonlinear term∫

Rd

〈
(σσ∗∂yV )(t, y, µ), ∂µV (t, x, µ)(y)

〉
µ(dy)

in Lσ causes an essential difficulty. To overcome this difficulty, many other things have to
be treated. So, we would like to leave this problem to a forthcoming paper.
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3 Proofs

We need the following Itô’s formula for distribution dependent functionals, see [2, Proposition
6.1] or [5, Proposition A.8] under stronger conditions on σ and f .

Lemma 3.1 (Itô’s formula for distribution dependent functional). For any f ∈ C ([0,∞)×
Rd ×P2(Rd)), f(t,Xt,LXt) is a semi-martingale with

(3.1) df(t,Xt,LXt) = (∂t + Lσ,b)f(t,Xt,LXt)dt+ 〈(σ∗∂xf)(t,Xt,LXt), dWt〉,

where Lσ,b is in (2.2).

Proof. Let µt = LXt and

b̄(t, x) = b(t, x, µt), σ̄(t, x) = σ(t, x, µt), f̄(t, x) = f(t, x, µt), t ≥ 0, x ∈ Rd.

Then (Xt)t≥0 solves the classical SDE

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dWt.

By the definition 2.1 (4), f ∈ C ([0,∞)×Rd×P2(Rd)) implies that f̄(t, x) is C2-smooth in
x ∈ Rd. So, if f̄(t, x) is C1 in t ≥ 0, we will be able to apply the classical Itô’s formula to
derive

df(t,Xt,LXt) = df̄(t,Xt) = 〈(σ̄∗∂xf̄)(t,Xt), dWt〉

+

{
∂tf̄ +

1

2

d∑
i,j=1

(σ̄σ̄∗)ij∂xi∂xj f̄ +
d∑
i=1

b̄i∂xi f̄

}
(t,Xt)dt

= 〈(σ∗∂xf)(t,Xt,LXt), dWt〉+ (∂tf̄)(t,Xt)dt

+

{
1

2

d∑
i,j=1

(σσ∗)ij∂xi∂xjf +
d∑
i=1

bi∂xif

}
(t,Xt,LXt)dt.

Therefore, to finish the proof, it suffices to show that f̄(t, x) is differentiable in t ≥ 0 and

(∂tf̄)(t, x) = ∂tf(t, x, ν)|ν=µt + ∂tf(s, x, µt)|s=t
=: (∂tf)(t, x, µt) + (∂µt f)(t, x, µt),

(3.2)

where

(∂µt f)(t, x, µt) : =
1

2

d∑
i,j=1

∫
Rd

[
(σσ∗)ij(t, y, µt)∂yj{(∂µf)i(t, x, µt)}(y)

]
µt(dy)

+
d∑
i=1

∫
Rd

[
bi(t, y, µt)(∂µf)i(t, x, µt)

]
µt(dy),

(3.3)
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is continuous in (t, x) ∈ [0,∞) × Rd, since f ∈ C ([0,∞) × Rd × P2(Rd)) and for any
T ∈ (0,∞), {µt : t ∈ [0, T ]} is a compact set in P2(Rd). Below we prove (3.2) by two steps.

(a) According to [5, Proposition A.6], if

(3.4) E
∫ T

0

{
|b(t,Xt, µt)|2 + ‖σ(t,Xt, µt)‖4HS

}
dt <∞,

then for any f ∈ C ([0,∞)× Rd ×P2(Rd)),

f̄(t, x, µt+s)− f(t, x, µt) =

∫ t+s

t

dr

∫
Rd

[1

2

d∑
i,j=1

(σσ∗)ij(r, x, µr)∂yj{(∂µf)i(r, y, µr)}(y)

+
d∑
i=1

bi(r, y, µr)(∂µf)i(r, x, µr)(y)
]
µr(dy), s > 0.

(3.5)

By conditions on b, σ and f , this implies (3.2).
(b) In general, let T > 0 be fixed. By (1.2) and (1.3) we have

(3.6) |b(t, x, µt)|2 + ‖σ(t, x, µt)‖2HS ≤ C
(

1 + |x|2 + W2
2(µt, δ0)

)
, x ∈ Rd, t ∈ [0, T ]

for some constant C > 0. This, together with (1.4), implies

E
∫ T

0

{
|b(t,Xt, µt)|2 + ‖σ(t,Xt, µt)‖2HS

}
dt <∞.

So, to verify (3.4), we need to make approximations on σ. For any k ∈ N, let

φk(x) =
(
{xi ∧ k} ∨ {−k}

)
1≤i≤d, x ∈ Rd.

Let σ(k)(t, x, µ) = σ(t, φk(x), µ), and let X
(k)
t solve the SDE

(3.7) dX
(k)
t = b(t,X

(k)
t ,L

X
(k)
t

)dt+ σ(k)(t,X
(k)
t ,L

X
(k)
t

)dWt, X
(k)
0 = X0.

Then as explained in (a), µ
(k)
t := L

X
(k)
t

satisfies

f(t, x, µ
(k)
t+s)− f(t, x, µ

(k)
t )

=

∫ t+s

t

dr

∫
Rd

[1

2

d∑
i,j=1

(σ(k)(σ(k))∗)ij(r, x, µ
(k)
r )∂yj{(∂µf)i(r, y, µ

(k)
r )}(y)

+
d∑
i=1

bi(r, y, µ
(k)
r )(∂µf)i(r, x, µ

(k)
r )(y)

]
µ(k)
r (dy), s > 0.

(3.8)

We intend to show that with k →∞ this implies (3.5) and hence, completes the proof.
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By Itô’s formula and using (1.2) and (1.3), we may find out a constant C > 0 such that

d|Xt −X(k)
t |2 ≤ dMt+C

{
|Xt −X(k)

t |2 + E|Xt −X(k)
t |2+

‖σ(t,Xt, µt)− σ(k)(t,Xt, µt)‖2HS
}

dt, t ∈ [0, T ]
(3.9)

holds for some martingale Mt. By (1.2) and the definition of σ(k), for some constant C ′ > 0
we have

‖σ(t,Xt, µt)− σ(k)(t,Xt, µt)‖2HS ≤ C ′|Xt − φk(Xt)|2 ≤ C ′|Xt|21{|Xt|≥k}.

Combining this with (3.9) and using Gronwall’s lemma, we arrive at

E|Xt −X(k)
t |2 ≤ C ′e2Ct

∫ t

0

E
[
|Xs|21|Xs|≥k

]
ds, t ∈ [0, T ].

This, together with (1.4), implies

lim
k→∞

sup
t∈[0,T ]

W2(µt, µ
(k)
t )2 ≤ lim

k→∞
sup
t∈[0,T ]

E|Xt −X(k)
t |2 = 0.

In particular, {µ(k)
t : t ∈ [0, T ], k ≥ 1} is compact in P2(Rd). So, from the continuity of

σb, ∂µf , and ∂y∂µf, the linear growth of |σb|, and the condition f ∈ C ([0,∞)×Rd,P2(Rd)),
it is easy to see that with k →∞ (3.8) implies (3.5).

Proof of Theorem 2.2. (1) Let µt = LXt . Applying the Itô formula (3.1) yields

dV (t,Xt, µt) = (∂tV + Lσ,bV )(t,Xt, µt)dt+ 〈(σ∗∂xV )(t,Xt, µt), dWt〉.(3.10)

This, together with (2.3), gives

(3.11) dV (t,Xt, µt) = f(t,Xt, µt)dt+ 〈g(t,Xt, µt), dWt〉, t > 0.

Whence, (1.6) follows by integrating (3.11) from s to t.
(2) On the other hand, for any s ∈ [0, T ) and µ ∈ P2(Rd), let Xs ∈ L2(Ω → Rd,Ft,P)

with LXs = µ, and let (Xt)t∈[s,T ] solve (1.1) from time s. By combining (3.10) with (3.11)
and using the uniqueness of decomposition for semi-martingale, we infer that

f(t,Xt, µt) = (∂tV + Lσ,bV )(t,Xt, µt), g(t,Xt, µt) = (σ∗∂xV )(t,Xt, µt), t ∈ [s, T ],

where µt := LXt with µs = µ. In particular, for any s ∈ [0, T ) and any µ ∈ P2(Rd), we
have

f(s,Xs, µ) = (∂tV + Lσ,bV )(s,Xs, µ), g(s,Xs, µ) = (σ∗∂xV )(s,Xs, µ),

where LXs = µ. By the continuity of functions in these formulas, we obtain

f(s, x, µ) = (∂tV + Lσ,bV )(s, x, µ),

g(s, x, µ) = (σ∗∂xV )(s, x, µ), s ∈ [0, T ], µ ∈P2(Rd), x ∈ suppµ.
(3.12)
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To prove these formulas for all x ∈ Rd, for any ε > 0 we let νε be the centered Gaussian
measure on Rd with covariance εI, where I is the identity matrix. Then

(3.13) µε := µ ∗ νε → µ in P2(Rd) as ε ↓ 0.

Moreover, since νε has full support for ε > 0, we have suppµε = Rs for ε > 0 as well. So, by
(3.12), for any µ ∈P2(Rd) and ε > 0, we have

f(s, x, µε) = (∂tV + Lσ,bV )(s, x, µε),

g(s, x, µε) = (σ∗∂xV )(s, x, µε), s ∈ [0, T ], x ∈ Rd.

Combining this with (3.13) and noting that all functions in these formulas are continuous,
by letting ε ↓ 0 we prove (2.3).

To prove Theorem 2.3, we will need the following lemma, which reduces to the main
result Theorem 6.2 in [2] when b(t, x, µ) and σ(t, x, µ) are independent of t. Since the proof
of [2, Theorem 6.2] also applies to the the present time inhomogeneous situation, we skip
the proof.

Lemma 3.2 ([2]). In the situation of Theorem 2.3, let Φ ∈ C
2,(1,1)
b (Rd ×P2(Rd)). Then

V (t, x, µ) := EΦ(Xx,µ
t,T , P

∗
t,Tµ) is the unique solution to the PDE

(3.14)

{
(∂t + Lσ,b)V (t, x, µ) = 0,

V (T, x, µ) = Φ(x, µ), (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

We will also need the following lemma for a probabilistic representation of a particular
solution to the first equation in (2.3).

Lemma 3.3. In the situation of Theorem 2.3, let

Vf (t, x, µ) = −E
∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr, (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

Then Vf is the unique solution to the PDE

(3.15)

{
(∂t + Lσ,b)Vf (t, x, µ) = f(t, x, µ),

Vf (T, x, µ) = 0, (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

Proof. (a) We first observe that Vf (t, x, µ) solves (3.15). Obviously,

Vf (T, x, µ) = 0.

It remains to prove

(3.16) (∂t + Lσ,b)Vf (t, x, µ) = f(t, x, µ).
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By the definition of Vf and our condition on f , we have

(Lσ,bVf )(t, x, µ) = −
∫ T

t

Lσ,b{Ef(r,Xx,µ
t,r , P

∗
t,rµ)}dr,

and

(∂tVf )(t, x, µ) = f(t, x, µ)−
∫ T

t

∂t{Ef(r,Xx,µ
t,r , P

∗
t,rµ)}dr.

So,

(∂t + Lσ,b)Vf (t, x, µ) = f(t, x, µ)−
∫ T

t

(∂t + Lσ,b){Ef(r,Xx,µ
t,r , P

∗
t,rµ)}dr.

On the other hand, applying Lemma 3.2 to T = r and Φ(x, µ) = f(r, x, µ), we obtain

(∂t + Lσ,b){Ef(r,Xx,µ
t,r , P

∗
t,rµ)} = 0, r ∈ (t, T ].

Therefore, (3.16) holds.
(b) We assume that U(t, x, µ) is another solution to (3.15) with U(T, x, µ) = 0. By

Lemma 3.1, for any 0 6 t 6 s 6 T ,

U(s,Xx,µ
t,s , P

∗
t,sµ)−

∫ s

t

f(u,Xx,µ
t,u , P

∗
t,uµ)du

and

Vf (s,X
x,µ
t,s , P

∗
t,sµ)−

∫ s

t

f(u,Xx,µ
t,u , P

∗
t,uµ)du

are martingales. Then
U(s,Xx,µ

t,s , P
∗
t,sµ)− Vf (s,Xx,µ

t,s , P
∗
t,sµ)

is a martingale. Combining this with U(T, x, µ) = Vf (T, x, µ) = 0, we arrive at

U(t, x, µ)− Vf (t, x, µ) = E
(
U(T,Xx,µ

t,T , P
∗
t,Tµ)− Vf (T,Xx,µ

t,T , P
∗
t,Tµ)|Ft

)
= 0.

Then the uniqueness is proved.

Proof of Theorem 2.3. By Theorem 2.2, it suffices to prove the first assertion. By Lemma
3.2, we deduce that

V1(t, x, µ) := EΦ(Xx,µ
t,T , P

∗
t,Tµ)

is the unique solution to the PDE (3.14). And, according to Lemma 3.3, we know that

Vf (t, x, µ) := −E
∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr

solves (3.15). So,

(3.17) V (t, x, µ) := V1(t, x, µ) + Vf (t, x, µ) = EΦ(Xx,µ
t,T , P

∗
t,Tµ)− E

∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr
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solves the first equation in (2.3).
On the other hand, let V (t, x, µ) solve the first equation in (2.3), and let

Φ(x, µ) = V (T, x, µ), (x, µ) ∈ Rd ×P2(Rd).

It suffices to prove

(3.18) V (t, x, µ) = E
(

Φ(Xx,µ
t,T , P

∗
t,Tµ)−

∫ T

t

f(r,Xx,µ
t,r , P

∗
t,rµ)dr

)
.

Indeed, by (2.3) and Lemma 3.3, we have

(∂t + Lσ,b)(V − Vf )(t, x, µ) = 0.

So, Lemma 3.2 and Vf (T, x, µ) = 0 imply

(V − Vf )(t, x, µ) = EΦ(Xx,µ
t,T , P

∗
t,Tµ)

with (V − Vf )(T, x, µ) = V (T, x, µ) = Φ(x, µ). This, together with the definition of Vf ,
implies (3.18). Then the proof is completed.

Proof of Corollary 2.4. Assertion (1) is direct consequence of Theorem 2.2 for f = 1
2β
|g|2. It

remains to prove assertion (2).
Under the condition of assertion (2), let Ṽ (t, x, µ) = EΦ(Xx,µ

t,T , P
∗
t,Tµ). By Lemma 3.2 we

have
(∂t + Lσ,b)Ṽ (t, x, µ) = 0.

Since for V in (2.10) we have V = −β log Ṽ , this implies

(∂t + Lσ,b)V (t, x, µ) = −β(∂t + Lσ,b)Ṽ

Ṽ
(t, x, µ) +

β|σ∗∂xṼ |2(t, x, µ)

2Ṽ 2(t, x, µ)

=
1

2β
|σ∗∂xV |2.

So, (2.9) holds, and the boundary condition V (T, x, µ) = −β log Φ(x, µ) follows from (2.10)
and the definition of Ṽ .

On the other hand, let V ∈ C1,2,(1,1)
b ([0, T ]× Rd ×P2(Rd)) solve (2.9). We take

(3.19) Ṽ (t, x, µ) = exp[−β−1V (t, x, µ)], (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

It is easy to see that (2.9) implies

(∂t + Lσ,b)Ṽ (t, x, µ) = 0, (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

Therefore, by Lemma 3.2 we have

Ṽ (t, x, µ) = EṼ (T,Xx,µ
t,T , P

∗
t,Tµ) =: EΦ(Xx,µ

t,T , P
∗
t,Tµ) (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd).

Combining this with (3.19), we obtain (2.10) and hence finish the proof.
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Proof of Corollary 2.5. By (2.2) and (2.11), the definitions of Lσ and Lσ,b, we have

(∂t + Lσ)V (t, x, µ)

= ∂tV (t, x, µ) +
1

2
tr
(
σσ∗∂2xV )(t, x, µ) +

〈
b, ∂xV

〉
(t, x, µ)

+

∫
Rd

[1

2
tr
{

(σσ∗)(t, y, µ)∂y∂µV (t, x, µ)(y)
}

+
〈
b(t, y, µ), ∂µV (t, x, µ)(y)

〉]
µ(dy)

+
1

2
|σ∗∂xV |2(t, x, µ)−

〈
b, ∂xV

〉
(t, y, µ)

+

∫
Rd

〈
(σσ∗∂yV )(t, y, µ), ∂µV (t, x, µ)(y)

〉
µ(dy)

−
∫
Rd

〈
b(t, y, µ), ∂µV (t, x, µ)(y)

〉
µ(dy)

= (∂t + Lσ,b)V (t, x, µ) +
1

2
|σ∗∂xV |2(t, x, µ)−

〈
b, ∂xV

〉
(t, x, µ)

+

∫
Rd

〈
(σσ∗∂yV − b)(t, y, µ), ∂µV (t, x, µ)(y)

〉
µ(dy).

Combining this with b(t, x, µ) = (σσ∗∂xV )(t, x, µ), we obtain

(3.20) (∂t + Lσ)V (t, x, µ) = (∂t + Lσ,b)V (t, x, µ)− 1

2
|σ∗∂xV |2(t, x, µ).

We are now ready to finish the proof by using Theorem 2.2 and Corollary 2.4.
If (2.12) holds, then (1.9) holds for b̃ = σ∗∂xV , and (3.20) implies (2.3) for f(t, x, µ) =

1
2
|b̃|2(t, x, µ) and g(t, x, µ) = b̃(t, x, µ). So, by Theorem 2.2(1), As,t is path independent. On

the other hand, if (1.9) holds for b̃ = σ∗∂xV and As,t is path independent in the sense of
(1.6) for some V ∈ C1,2,(1,1)([0, T ] × Rd ×P2(Rd)), then by Theorems 2.2(2) and (3.20),
(2.12) holds. So, assertion (1) is proved.

Finally, by (3.20), the first equation in (2.12) is equivalent to (2.9) for β = 1. Then the
second assertion (2) follows from Corollary 2.4(2) for β = 1.
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