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Abstract

Under integrability conditions on distribution dependent coefficients, existence
and uniqueness are proved for distribution dependent SDEs with non-degenerate
noise. When the coefficients are Dini continuous in the space variable, gradient esti-
mates and Harnack type inequalities are derived. These generalize the corresponding
results derived for classical SDEs, and are new in the distribution dependent setting.
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1 Introduction

In order to characterize nonlinear Fokker-Planck equations using SDEs, distribution de-
pendent SDEs (DDSDEs for short) have been intensively investigated, see [9, 11] and
references within for McKean-Vlasov type SDEs, and [1, 4, 5] and references within for
Landau type equations. To ensure the existence and uniqueness of these type SDEs,
growth /regularity conditions are used.
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Next, since the second named author introduced the dimension-free Harnack inequal-
ity in [12] to derive the log-Sobolev inequality on Riemannian manifolds, this new type
Harnack inequality has been intensively investigated and applied for SDEs and SPDEs.
Under a very general framework, the dimension-free Harnack inequality implies the strong
Feller property, Gradient estimates, contractivity properties and heat kernel estimates for
the associated Markov semigroups. As a dual inequality, the shift-Harnack inequality has
been developed and applied in [14]. We may refer to the monograph [15] for a general
theory on dimension-free (shift-)Harack inequalities and applications.

Recently, in [17] the second named author established the (shift-)Harnack inequalities
and gradient estimates for DDSDEs with regular coefficients, see also [7] for the study on
path-distribution dependent SDEs. On the other hand, by means of Krylov’s estimate
and Zvonkin’s transform [21], the well-posedness of classical SDEs has been derived in
[8, 20] under integrability conditions allowing the drift unbounded on compact sets, while
the new type Harnack inequality and gradient estimates have been established in [16]
when the drift is merely Dinni continuous. The purpose of this paper is to extend results
in [8, 16, 20] for singular SDEs to singular distribution dependent SDEs.

Let & be the set of all probability measures on R?. Consider the following DDSDE
on R

(11) dXt = bt(Xt,gXt)dt+O't(Xt7$Xt)th7

where W, is the d-dimensional Brownian motion on a complete filtration probability space
(Q,{F }1>0,P), Zx, is the law of X;, and

bR, xRIx 2 R 0:Ry xR x Z - R@R?

are measurable. When a different probability measure P is concerned, we use ,%g—@’ to
denote the law of a random variable ¢ under the probability P.

By using a priori Krylov’s estimate, a weak solution can be constructed for (1.1) by
using an approximation argument as in the classical setting, see [6] and references within.
To prove the existence of strong solution, we use a fixed distribution u; to replace the
law of solution .Z,, so that the distribution SDE (1.1) reduces to the classical one.
We prove that when the reduced SDE has strong uniqueness, the weak solution of (1.1)
also provides a strong solution. We will then use Zvonkin’s transform to investigate the
uniqueness, for which we first identify the distributions of given two solutions, so that these
solutions solve the common reduced SDE, and thus, the path-wise uniqueness follows from
existing argument developed for the classical SDEs. However, there is essential difficulty
to identify the distributions of two solutions of (1.1). Once we have constructed the
desired Zvonkin’s transform for (1.1) with singular coefficients, gradient estimates and
Harnack type inequalities can be proved as in the regular situation considered in [17].

The remainder of the paper is organized as follows. In Section 2 we summarize the
main results of the paper. To prove these results, some preparations are addressed in Sec-
tion 3, including a new Krylov’s estimate, two lemmas on weak convergence of stochastic



processes, and a result on the existence of strong solutions for distribution dependent
SDEs. Finally, the main results are proved in Sections 4 and 5.

2 Main Results

We first recall Krylov’s estimate in the study of SDEs. We will fix a constant 7" > 0, and

only consider solutions of (1.1) up to time 7. For a measurable function f defined on
0, T] x RY, let

1
t % q
1 gy = (/ (/ !fr(:c)\pdx> dr) , p,q>1,0<s<t<T.
S R

When s = 0, we simply denote || f|zs04) = | fllz@)- A key step in the study of singular
SDE:s is to establish Krylov type estimate (see for instance [8]). For later use we introduce
the following notion of K-estimate. We consider the following class of number pairs (p, q):

H = {(p,q) € (1,00) % (1,00) : g+§ <2}.

Definition 2.1 (Krylov’s Estimate). An Z#;-adapted process { X }o<s<r is said to satisfy
K -estimate, if for any (p,q) € S, there exist constants 6 € (0,1) and C > 0 such that
for any nonnegative measurable function f on [0,T] x R¢,

(2.1) E(/t fT(XT)dr‘%) <C(t— 8)6HfHLg(T)’ 0<s<t<T.

We note that (2.1) implies the following Khasminskii type estimate, see for instance
[19, Lemma 3.5] and its proof: there exists a constant ¢ > 0 such that

t n
(2.2) E((/ fr(XT)dr) ’9) <enl(t — )| f |y 0<s<t<T,
and for any A > 0 there exists a constant A = A(\, d,¢) > 0 such that

(2.3) E(eMo 0| ) < A Ign) e 0,7,
Let 6 € [1,00), we will consider the SDE (1.1) with initial distributions in the class
Py={pe 2 u(-") <oo}.

It is well known that 7y is a Polish space under the Warsserstein distance

0
We(p,v) ;== inf </ \x—y\gﬂ(dx,dy)) . v € Py,
Rd xR

WS AORY)
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where € (i, v) is the set of all couplings of ;1 and v. Moreover, the topology induced by
Wy on &y coincides with the weak topology.

In the following three subsections, we state our main results on the existence, unique-
ness and Harnack type inequalities respectively for the DDSDE (1.1).

2.1 Existence and Uniqueness
Let

Py = {,u € Py . i is absolutely continuous with respect to the Lebesgue measure }

To construct a weak solution of (1.1) by using approximation argument as in [6, 9],
we need the following assumptions for some 6 > 1.

(HY) There exists a sequence (b",0"),>1, where
V' [0,T] x R x Py — RY, 6™ :[0,T] x R x &5 — R @ R
are measurable, such that the following conditions hold:
(1) For p € &§ and p™* — pin Py,

Tim {0} (2, ") = by, )| + o (2, 1) = oul, )|} =0, ae. (t,2) €[0,T] x R™.

(2) There exist K > 1, (p,q) € # and nonnegative G € LZ(T) such that for any n > 1,
b} (2, w)* < G(t,2) + K, K1 < (0}(0})")(w, 1) < KI
for all (¢,z, ) € [0,T] x RY x 2.
(3) For each n > 1, there exists a constant K,, > 0 such that ||0"||. < K,, and

|b?([[‘,,u) - b?(y7 V)| + ||0'll(l',/l) - O-Zl(ya V)H
S Kn{|$_y| _I—We(luay)}v (t,x,y) € [OvT] X ]Rd X Rda JNS 329-

Recall that a continuous function f on R? is called weakly differentiable, if there exists
(hence unique) ¢ € L} (RY) such that

loc

/Rd(ng)(l’)dx = — /Rd<§,Vg>(aj)d;p’ ge CgO(Rd)‘

In this case, we write £ = V f and call it the weak gradient of f.
The main result in this part is the following.
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Theorem 2.1. Assume (H?) for some constant > 1. Let Xy be an Fy-measurable
random variable on RY with pg := Lx, € Py. Then the following assertions hold.

(1) The SDE (1.1) has a weak solution with initial distribution po satisfying Lx. €
C([0,T]; Py) and the K -estimate.

(2) If o is uniformly continuous in x € RY uniformly with respect to (t, ) € [0,T] x Py,
and for any p. € C([0,T]; Py), bi'(x) = by(x, ) and of (x) = oy(x, ) satisfy
4[> + [|[Va||* € LUT) for some (p,q) € &, where V is the weak gradient in
the space variable x € R?, then the SDE (1.1) has a strong solution satisfying
Zx € C([0,T); Pp) and the K -estimate.

(3) If, in addition to the condition in (2), there exists a constant L > 0 such that
(2.5) low(z, ) = ou(x, v)|| + [be(, ) = be(x, v)| < LWo(p,v)
holds for all p,v € Py and (t,z) € [0,T] x R?, then the strong solution is unique.

When b and ¢ do not depend on the distribution, Theorem 2.1 reduces back to the
corresponding results derived for classical SDEs with singular coefficients, see for instance
[20] and references within.

To compare Theorem 2.1 with recent results on the existence and uniqueness of DDS-
DEs derived in [2, 9], we consider a specific class of coefficients where the dependence on
distributions is of integral type. For u € &2 and a (possibly multidimensional valued) real

function f e L'(u), let u(f) = [ga fdp. Let
(2.6) be(x, p) = Bz, p(thu(t, @,-)), ou(w, p) = Tz, p(ths (8, 2, -))
for (t,z, 1) € [0,T] x R? x &, where for some k € N,
Uy, ¥y 1 [0,T] x RY x RY — R*

are measurable and bounded such that for some constant § > 0,
(2.7) (s 2, y) = oty 2,y )| + [Pt 2,y) = Yot 2, 9)] < Oly — o]
holds for all (t,x) € [0,T] x R? and y,y’ € R?, and

B:[0,T] xR xRF 5 RY ¥:[0,7] x R x R — R? @ R?

are measurable and continuous in the third variable in R¥. We make the following as-
sumption.



(A) Let (b,0) in (2.6) for (B, X) such that (2.7) holds, B(x, ) and ¥;(x, -) are continuous
for any (¢,z) € [0,T] x R%. Moreover, there exist constant K > 1, (p,q) € # and
nonnegative F' € L(T) such that

(2.8) by(z, )P < F(t,x) + K, K ' <oz, w)oz,p)* < KI
for all (¢,z,u) € [0,T] x R? x 2.
Corollary 2.2. Assume (A). Then the following assertions hold.
(1) Assertion (1) in Theorem 2.1 holds.

(2) If moreover, o is uniformly continuous in x € R uniformly with respect to (t, ) €
[0, T] x Py, and for any u. € C([0,T); Py), by (x) := by(x, ) and o} (x) = oy(x, )
satisfy [)* + || Vo*||* € LI(T) for some (p,q) € A, where V is the weak gradient
in the space variable x € RY, then assertion (2) in Theorem 2.1 hold.

(3) Besides the conditions in (2), if there exists a constant ¢ > 0 such that
|Bt($ay)_Bt(%y,)“*’HEt(l‘ay>_2t($ay/)” S C|y_y/|7 (t7x) € [OaT] XRdaymy/ S IRk7

then for any Fo-measurable random variable Xy on R with py = Lx, € Py for
some 0 > 1, the SDE (1.1) has a unique strong solution with £Lx. continuous in Py.

In the next corollary on the existence of weak solution we do not assume (2.6). This result
will be used in Section 5.

Corollary 2.3. Assume that (2.5), (2.8) hold. Then the SDE (1.1) has a weak solution
with initial distribution uo satisfying £Lx. € C([0,T]; Py) and the K -estimate.

We now explain that results in Corollary 2.2 and Corollary 2.3 are new comparing
with existing results on McKean-Vlasov SDEs. We first consider the model in [2] where
iy and 1, are R-valued functions such that

1Bl + sup |0, Bi(,7)| < oo,
(t,z,r)€[0,T] xR xR

1y is Holder continuous, 1, is Lipschitz continuous, and for some constants C' > 1,
g € (0, 1],

CTlI<¥yr <1,
12 (2, 1) = Sy (2, )| < Clx — 2| 4 |r — 7)),
0.2 (z,7) — 0, 2¢(2, )| < Clx — x/|9.

Then [2, Theorem 1] says that when Ly, € %, the SDE (1.1) has a unique strong
solution. Obviously, the above conditions imply ||b]|s + ||Vl < o0, but this is not
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necessary in Corollary 2.2 and Corollary 2.3, since the integrability conditions used in
these two results allow b and Vo unbounded on compact sets.
Next, [9] considers (1.1) with

b, 1) = /Rd bi(w, y)u(dy), ou(w,p) = /Rd Gi(x, y)u(dy)
for measurable functions
b:[0,T] x REx R - RY, 5:[0,7] x R x RY —» R? @ R
satisfying .
15: (2, )| + be(z, 9)| < C(L+ |2]), 66° > C7H

for some constant C' > 1. Then [9, Theorem 1] says that when Zx, € Z4, (1.1) has
a weak solution. If moreover o does not depend on the distribution and ||Vo|. < oo,
then [9, Theorem 2] shows that when Ee”*/* < oo for some 7 > 0, the SDE (1.1) has a
unique strong solution. Obviously, to apply these results it is necessary that b and Vo are
(locally) bounded, which is however not necessary for the condition in Corollary 2.2 and
Corollary 2.3, since as mentioned above that the integrability conditions used in these
two results allow b and Vo unbounded on compact sets.

2.2 Harnack Inequality

In this subsection, we investigate the dimension-free log-Harnack inequality introduced
in [10] for (1.1), see [15] and references within for general results on these type Harnack
inequalities and applications. We establish Harnack inequalities for P; f using coupling by
change of measures (see for instance [15, §1.1]). To this end, we need to assume that the
noise part is distribution-free; that is, we consider the following special version of (1.1):

(2.9) dX; = b( Xy, Lx,)dt + oy(Xy)dWy, ¢ € [0,T7.
As in [17], we define P, f(uo) and P} uq as follows:
(P)) = [ FAPr0) = EF(Xilpa). £ € BBt € 0.T], i € 2o
R

where X;(pp) solves (2.9) with £y, = po. Let
" o(s)
9 = {gzﬁ : [0,00) — [0, 00) is increasing, ¢? is Concave,/ —ds < oo}.
0 S

Remark 2.4. The condition fol @ds < o0 18 known as the Dini condition. Obviously,
2 contains ¢(s) = s* for any o € (0,%). Moreover, it also contains ¢(s) := m
for constants § > 0 and large enough ¢ > 0 such that ¢* is concave.
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We will need the following assumption.

(H) ||b]|«« < oo and there exist a constant K > 1 and ¢ € 2 such that for any ¢ €
0,7], z,y € RY, and p,v € Py,

(2.10) K1 < (0007)(x) < K1, low(x) = ov(y) s < Kz =y,

(2.11) be(, 1) = buly,v)] < Bl — yl) + KWa(u,v).

Theorem 2.5. Assume (H).
(1) There exists a constant C' > 0 such that
C
(2.12) (Frlog f)(v0) < log(Pef) (ko) + 1~ = Waluo, vp)”

for any t € (0,T),po,v0 € P, f € B (RY) with f > 1. Consequently, for any
different po, vy € Py, and any f € By(RY),

(P ) = (PP _ 20 N
W2(NO’ VO)Q = tAl VEB(NOSWUVI:(MO,VO)) {(Ptf >(V) (Ptf) ( )}

(2.13)

(2) There exist constants pg > 1 and ¢y, ¢y > 0, such that for any p > po, t € (0,T], f €
‘%;(Rd> and Ho, Vo € @27

2.14) (PP ) < (Pif) o) exp | 5 Wa(juo, 0)?) (E[eﬂ)?c?f])p

holds for Fy-measurable random variables Xo, Yy satisfying Lx, = to, Ly, = Vo -

2.3 Shift Harnack Inequality

In this section, we establish the shift Harnack inequality for P, introduced in [14]. To this
end, we assume that o4(x, ;1) does not depend on z. So SDE (1.1) becomes

(2.15) dX, = bi(X,, Ly, )dt + 0,(Lx)dW,, t € [0,T).

Theorem 2.6. Let o : [0,T]x Py — RIQR? and b : [0,00) xR x Py — R? be measurable
such that o is invertible with ||o¢||e + |07 ' ||oo is bounded in t € [0,T], and b satisfies the
corresponding conditions in (H).

(1) For anyp > 1,t € [0,T], io € Po,v € R? and f € B, (RY),
(Pf)P (o) <(PrfP(v ++)) (o)

p fy los 12 Aol /t + o(slu] /) ds
2(p—1) '

xexp{

Moreover, for any f € B, (RY) with f > 1,
t
(Pilog f) (o) < log(Pif (v +-)) (o) + %/0 o 12 ol /t + é(slol /1) } ds.

8



3 Preparations

We first present a new result on Krylov’s estimate, then recall two lemmas from [6] for
the construction of weak solution, and finally introduce two lemmas on the existence and
uniqueness of strong solutions.

3.1 Krylov’s Estimate
Consider the following SDE on R¢:
(3.1) AX; = b(X,)dt + 0y(X)dWs, t € [0, 7).

Lemma 3.1. Let T > 0, and let p,q € (1,00) with % —l—% < 1. Assume that o(z)

is uniformly continuous in x € R uniformly with respect to t € [0,T], and that for a
constant K > 1 and some nonnegative function ' € LL(T) such that

(3.2) K <o/z)o(x)" < KI, (t,z)€[0,T] x RY,

(3.3) b,(z)| < K + F(t,x), (t,x)€[0,T] x R%

Then for any (o, B) € A, there exist constants C = C(6, K, a, B, || F[pyr)) > 0 and
§ = 0(a, B) > 0, such that for any so € [0,T) and any solution (X ¢)eepso,r) of (3.1) from
time Sg,

s B[ [ A1 X )

Proof. When b is bounded, the assertion is due to [20, Theorem 2.1]. If |b| < K + F for
some constant K > 0 and 0 < F € LY(T), then we have a decomposition b = b + b
with [0 ]| < K and [b?| < F, for instance, bl) = W Let u : [0,T] x R? — R?
solve the PDE

| < =Wy o< s <e<T S € LD

0 1
(3.5) % + §Tr(atafv2ut) + vb§2)ut + bEQ) =0, up=0,
and let 0,(z) = x + w(z). As in [20, Lemma 4.3|, where (0;, b§2>) is denoted by (®y,b;),
we see that Yy, ; = 0,(X, 1) for t > s solves

(3.6) dY; = b(Y,)dt + 7,(Y,)dW,, t € [s0,T],

where b is bounded, and & is uniformly continuous in x € R? uniformly with respect to
t € [0,T]. Moreover, there exists a constant K > 1 depending on K and || F'[| 2.7y such
that

(3.7) KT < a,(x)a,(x)* < KI, (t,z) €[0,T] x R?,
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and B B
1600 + V][0 + VO oo < K.

Again by [20, Theorem 2.1], there exists a constant C = C(§, K,a,3) > 0 and § =
d(a, B) > 0 such that

t
38 B[ [ 1ln Y| 2] < 0= Pl <5 <0< Tof € D)

This together with | V0|, < K implies that

| [ 116 Xanr] 7] -] / £ler Yso,mdr\z]
<Clt—s) (/OT( (167 ad:z: dr)
_ - sy (/ ([ st wriaece )’ dr>

SC(t—S) ||f||L§(T)a SO<S<t<T77f€L (T

Then the proof is finished. O

3.2 Convergence of Stochastic Processes

To prove Theorem 2.1(1), we will use the following two lemmas due to [6, Lemma 5.1,
5.2].

Lemma 3.2. Let {¢"},>1 be a sequence of d-dimensional processes defined on some
probability space. Assume that

(3.9) lim sup sup P(|¢}| > R) =0,

R—00 pn>1 te[0,7]

and for any € > 0,

(3.10) lim sup sup  {P(j¢; =97 >¢)} =0.

0=0 n>1 5,t€(0,T7],|t—s|<0

Then there exist a sequence {ny}x>1, a probability space (Q,Z,P) and stochastic processes
{Xy, X[ e (k > 1), such that for every t € [0,T], fw:k P = $X5|]P’, and XF converges
to X, in probability P as k — co.
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Lemma 3.3. Let {n"},>1 and n be uniformly bounded R?@RF-valued stochastic processes,
and let W' and Wy fort € [0, T] be Wiener processes such that the stochastic Ito integrals

t t
I ::/ grAw™, I, ::/ ndWs, t€0,T]
0 0

are well-defined. Assume that n} — n, and W}* — W, in probability for every t € [0,T].
Then

limIP’<sup |It”—lt|25>:0, e > 0.

=00 te[0,7)

3.3 Existence and Uniqueness on Strong Solutions

We first present a result on the existence of strong solutions deduced from weak solu-
tions, then introduce a result on the existence and uniqueness of strong solutions under
a Lipschitz type condition.

Lemma 3.4. Let (Q, %, Wi, P) and X, be a weak solution to (1.1) with y, = Lx,|P. If
the SDE

(311) dXt = bt(Xt“Uqg) dt+0t(Xt,/,Lt) th, 0 S t S T

has a unique strong solution X; up to life time with £x, = po, then (1.1) has a strong
solution.

Proof. Since y, = Z%,|P, X, is a weak solution to (3.11). By Yamada-Watanabe principle,
the strong uniqueness of (3.11) implies the weak uniqueness, so that X; is nonexplosive
with ZLx, = p,t > 0. Therefore, X is a strong solution to (1.1). O

Lemma 3.5. Let 0 > 1 and &y be the Dirac measure at point 0. If b,(0, o) is bounded in
t € [0,T], and there exists a constant L > 0 such that

low(z, p) — oe(y, v)|| + [bs(, 1) — be(y, V)|

3.12
(312) < Lflz —y|+ Wo(u,v)}, z,y € R pv e Pyt €10,7),

then for any Xo with E|Xo|” < oo, (1.1) has a unique strong solution (X;)ie(o,1-

Proof. When 6 > 2 the assertion follows from [17, Theorem 2.1]. So we only consider
0 < 2. As explained in [17, Proof of Theorem 2.1 (1)], it suffices to find a constant
to € (0,T) independent of X such that (1.1) has a unique strong solution up to time ¢,
and sup;c(o 4, E|X;|? < oo,

Let X\” = X, and p{”) = po for t € [0,T]. For any n > 1, consider the SDE
dX" = by(X™, "Nt + oy (X AWy, X$Y = X,

11



where Mﬁ"‘l) =L 1,0 <t <T. By [17, Lemma 2.3(1)], for any n > 1 this SDE has a

unique solution and

(3.13) sup E|X™|? <00, n>1.
s€[0,T

Moreover, letting

6= X XI AP = (), ) — (X, ),

Y

[17, (2.11)] implies
d (n))2 <9 A(n)dW (n) K (n)|2 W (n) | (n—=1)y2 dt >1.¢ 0.7
|§t ‘ = < t t>§t >+ O{Kt ’ + 9(:“15 y it ) } o =1, E[ ) ]

for some constant K, > 0. Since fon) = 0, it follows that

t
Ele™)? < / Koe oUW (ulm, pr=)2ds
0

s

2
< tKoe®T sup (B[ V%7, te[0,T],n> 1.
s€[0,t]

Since 6 < 2, by Jensen’s inequality we may find out a constant K; > 0 such that

sup E|¢™|? < K t7 sup E|¢™ D) n>1,t€0,T].
s€[0,t] s€[0,t]

_2
So, taking tg € (0,7 A K, ?), we may find a constant € € (0, 1) such that

sup ElEM)? < e sup EIXY — X’ <00, n>1.
s€[0,to] s€[0,to]

Therefore, for any ¢t € [0,%o] there exists an .%#-measurable random variable X; on R¢
such that
lim sup Wo(ut™, )’ < lim sup E[X" - X,|° =0,

=00 te(0,t0] 00 £2(0,to]

where p; := Zx,. Combining this with (3.12) and letting n — oo in the equation
t t
50 = [ 00e0 s+ [0, (X0 e, nz e on)
0 0
we derive for every t € [0, to],

t t
Xt = / bs(X87 ,us)ds + / Us(X57 Ms)dWs
0 0

Thus, (Xs)sejo,] has a continuous version which is a strong solution of (1.1) up to time
to. The uniqueness is trivial by using condition (3.12) and the It6 formula. O]
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4 Proofs of Theorem 2.1 and Corollary 2.2

4.1 Proof of Theorem 2.1(1)-(2)

According to [20, Theorem 1.1], the condition in Theorem 2.1(2) implies that the SDE
(3.11) has a unique strong solution. So, by Lemma 3.4, Theorem 2.1(2) follows from

Theorem 2.1(1). Below we only prove the existence of weak solution.
By Lemma 3.5, condition (3) in (H?) implies that the SDE

(4.1) AXT = b (X], L)t + o7 (X7, Lxp)dW,, X7 = X,

has a unique strong solution (X7")iep,r]- So, Lemma 3.1, (2.4) and condition (2) in (H?)
imply that for any (p,q) € 2,

(42) E / Fr, X)dr < Ot — 8| fllugery, 0< f € Li(T),n > 1

holds for some constants C' > 0 and ¢ € (0, 1).

We first show that Lemma 3.2 applies to (X™, W) replacing 1, for which it suffices
to verify conditions (3.9) and (3.10) with 1, := X™. By condition (2) in (H?) and (2.2)
implied by (3.4), there exist constants ¢;, ¢y > 0 such that

0
dt>
T g
+E(/ oy (X7, Lxp) th) }
0

< ¢ (E]Xo|9 + T+ |Gl + T%> <oo, n>1,te[0,T].

T
E|X"? < cl{E|X0|9 +]E(/ b2 (X], Lxn)
0

(4.3)

Thus, by the Markov inequality, (3.9) holds for ¢, = X
Next, by the same reason, there exists a constant c3 > 0 such that for any 0 < s <
t<T,

1
t t 3
Bixy - 21 < B [ 2ol B ([ o (e 2l o)
< st =5+ (t =9 1G]y + (¢ = 5)?),

Hence, again by the Markov inequality, (3.10) holds for ¢, = X™ . According to Lemma
3.2, there exists a subsequence of (X", W),>;, denoted again by (X", W)n>1, stochas-
tic processes (X", W"),>; and (X,W) on a complete probability space (Q,.% ]P’) such
that ZLixnw)|P = L 5n iy P for any n > 1, and for any ¢ € [0, 7], lim, 0 (X, W) =
(X;, W,) in the probability P. As in [6], let .%* be the completion of the o-algebra gener-
ated by the {X7, W : s <t}. Then as shown in [6], X7 is .#"-adapted and continuous
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(since X™ is continuous and Lxn [P = ZLen|P), W" is a d-dimensional Brownian motion
on (0, {# }cjo.r), P), and (X7, Wi )se(o,r) solves the SDE

(44)  AX] = B L [B) dt + of (] Ly, [B) AW}, Ly [P = 2 [P.

Simply denote fxtn\]f” = Z%p and L5 |P = Zg,. Then (X, Wy)sepo.r) is a weak solution
to (1.1) provided for any € > 0,

(4.5) lim P ( sup / bR (X), Lin) — bi(Xy, Lx,)| dt > 5) =0,
n—00 s€f0,71 Jo ¢
and
(4.6) lim P ( sup / o (X, Lin) AW —/ Gt(Xt,gXt)th > 5) = 0.
n—=oo \ sefo,1] | Jo ! 0

In the following we prove these two limits respectively.

Proof of (4.5). For any n > m > 1, we have
/Os B, L) — (K )| dt < F1(5) + To(s) + Ty(5),
where
nGs)i= [ 25 R 2
B(s) = [P 2) (2l dr
B(s) = [ (R 25) - (K 2] dr

Below we estimate these I;(s) respectively.
Firstly, by Chebyshev’s inequality, (H%)(2) and (4.2), we arrive at

T
E/O o< my 07 (XE i) — O] (X7 ) P dt

T
E/O oo my 108 (X7 1) — 07 (X7, )| dt

9C T ) q/p 7
<L (L e - pprac) - ar
< 0 \Jlel<Rr
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36K [T
T2
E

N 360
P(X¢| > R)dt + —- |G ryllgco)-
0

Since X' converges to X, in probability, (4.3) implies
lim W(zi;', p1e) = 0,
n—oo
and o o
lim P(|X}'| > R) < P(|X:| > R).
n—oo
Then it follows from (H?) (1) and (3) that

lim b} (, i) — b(x, fi,)| = 0, a.e. t€[0,T],z € R

n—oo

So, by condition (2) in (H?), we may apply the dominated convergence theorem to derive

)

limsupP( sup I;(s) >

n—00 s€[0,T1]

9C T ) o a/p .
(@) <X ([ me =t popar) o
€ 0 |z|<R

36K [T~ o 36C
+5 [BOR > R+ G o g,

Wl M

Since b™ is bounded and continuous, it follows that

T
limsuplp’< sup I(s) > g) < limsup §E/ﬂ |b;”(Xf,.§th) — b;”(f(t,f)gtﬂ dt = 0.

n—>00 s€[0,T7] n—oo &

Finally, since X' — X, in probability, estimate (4.2) also holds for X replacing X".
Therefore, inequality (4.7) holds for I3 replacing I;. In conclusion, we arrive at

timsupB( sup / (X7, L) — (X0, 25, i > <)

n—00 s€[0,7]J0

< hmsupZI@’( sup I;(s) > g)

18C T ~ . a/p g
<BE ([ (o -t poeas) o
€ 0 lz|<R

2K (1 72C

= P(|X,| > R)dt + — G my g
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for any m > 0 and R > 0. Then letting first m — oo and then R — oo, due to (1) and
(2) in (HY), we obtain from the dominated convergence theorem that

limsupf?’( sup / |b?()~(f,‘$)~ql) — bt(f(t,f;(tﬂ dt > E) =0.
0

n—00 s€[0,T7

Proof of (4.6). For any n > m > 1 we have

| o zamy - [ o2 i,
0 0

<

/0 oP (X7, L ) AW — / o7 (X7, L) AT

_|_

| orgagaiy - [ op 2 i,
0 0

+

/ o7 ( Xy, L) AW, — / oi( Xy, Ly,) AW,
0 0
=: Ji(s) + Ja(s) + J5(s).

By Chebyshev’s inequality, BDG inequality and (4.2), we have

» € 9 T n(yn m(yn
P( sup Ji(s) > g) < ?E/o 1{\X{‘|§R}”Ut (X7 agfqb) — 0" (X, agf(gﬂﬂﬁis dt

s€[0,T]

9 r n(wyn m(wn
+ 6_2E/ 1{|)Z’;L|>R}||Ut (X} aff(;l) — o' (X, 7$)~(tm)||%15 dt
0

9C g n ~n m ~m\ ||2p % !
<= oy (z, 17') — o7 (z, ") || 7dz | dt
€ 0 |z|<R
184K [T
+ —2/ P(|X}'| > R)dt.
€ 0
By condition (1) in (H?), and g — fi; in &% as observed above, we have

lim o7 (x, fif) = o, fu)| = 0,

and o o
lim P(|X]'| > R) < P(|X;| > R).
n—oo
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So, the dominated convergence theorem gives

hmsupﬁ”( sup Ji(s) > g)

n—00 s€[0,T]

oc ( [T ) . v
(43) §—2< / ( / Hat(m,ut)—omx,ut>|r?§sdx) dt)
€ 0 |z|<R

18dK [T . .
-+ 7/ P(|Xt| > R)dt
0

Q=

Similarly,

IF(gzgg] J3(s) > )

9C g ~ m ~m) || 2P z !
<= lov(, fu) — o) (z, 1i")|[Fedz | di
€ 0 |z|<R
18dK [T~ -
+—— [ P(|X,| > R)dt.
ez Jy

To deal with J5(s), applying Lemma 3.3 to

Wl ™

a(t) = o (X7 ), nt) = op" (X, i),

we conclude that when n — oo,
/ o (X, L) AW - / o7 (X, L) AW,
0 0
in probability P, uniformly in s € [0,7]. Hence,

| o gy - [ o2 a
0 0

1

18C [ [T i . AN
<EE ([ ([ vt = oo e
< 0 \Jlzl<R

36dK [T . -
0

lim P ( sup

n—00 s€[0,T]

> o)

Letting first m — oo and then R — oo, we prove that when n — oo,
/ o (X', Lyp)AW]" — / o( Xy, Lz,) AW,
0 0
in probability P, uniformly in s € [0, T7].
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4.2 Proof of Theorem 2.1(3)

We will use the following result for the maximal operator:

1
4. h(z) == sup ————— h(y)dy, he L} (R? R4
(1.9) An(w) = sup sy [ hay, he (R 0 < R

r>0
where B(z,r) :={y: |z —y| < r}, see [3, Appendix A].

Lemma 4.1. There exists a constant C' > 0 such that for any continuous and weak
differentiable function f,

(4.10) f(z) = f()| < Cla —yl(A|V fl(a) + AV f|(y), ae z.yeR
Moreover, for any p > 1, there exists a constant C, > 0 such that
(4.11) 2 fllr < Coll fllzw, € LP(RY).

Let X and Y be two solutions to (1.1) with Xy = Yy, and let py = %x,, vy = %, t €
[0, T]. Then py = vy. Let

b?(l’) = bt<x7ﬂt>7 O'#(l‘) = O't<x7ﬂt)7 (t,l’) € [OaT] X Rd?
and define 07, oy in the same way using v; replacing p;. Then

dXt = b?(Xt) dt + U#(Xt) th,

4.12
(4.12) dY; = b(Y))dt + o (Y;)dW,.
For any A > 0, consider the following PDE for u : [0, 7] x R? — R%:

0 1
(413) % —+ §Tr(af(af)*v2ut) + Vbitut + bf = )\'LLt, ur = 0.

By [20, Theorem 5.1], when A is large enough, (4.13) has a unique solution u™* satisfying

1
(4.14) [VuM|| o < =
and
(4.15) HVQUA’“Hng(T) < 0.

Let 0, (x) = = + u(z). By (4.12), (4.13), and using the It6 formula and an approxi-
mation technique (see [20, Lemma 4.3] for more details), we derive

(4.16) 6" (Xy) = A (Xp)dt + (VO ol) (X,) AW,
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and
401 (Y;) = Ml (Yt + (VO o) (¥0) AW, + [V (5 — W] (Vi)

+ S0} (0})" — ot(ot)) Vi),

(4.17)

Let & = 0,°"(X,) — 0;"*(Y;). By (4.16), (4.17) and It6 formula, we obtain
dlgf? =27 (g, wH (X0) = w}(v7) )
+2(&, [(VO"o!) (X)) - (VO)*o ><Yt>1dwt>
+||(verrat)x) - (V8 e ()
—2(&, VO (by — )]() ) dt
— (& (0} (07)" = ot (af)) 2| (¥y) ) at

dt
HS

So, for any m > 1,

g =2mA& 2D (&, uM (X)) = wt(¥;) ) e
+2mlg Y (&, (VO o1) (X)) - (V0o )(Ytﬂth>
(VO o) (Xe) — (Va7 ) (V)

+ ml|& 2V ) dt

HS

(V81)(X,) — (V8 o) (Y| i
= 2mlg Y (&, [VOH (b — )](¥7) ) dt
=l (&, (0} (07)" = ot' (1)) VR (¥7) ) .

(4.18)
+ 2m(m — 1)|&|*m=2

By (4.14), we may find out a constant ¢y > 0 such that

(4.19) &P - [ (X) — (V)] < colé P

According to (2.5), (4.14), the boundedness of o due to (H%)(1)-(2), Lemma 4.1, and
noting that the distributions of X; and Y; are absolutely continuous with respect to the
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Lebesgue measure, for large enough constant ¢; > 0 we have

2

&P (VO ot ) (Xe) — (VO a7 ) (V)] &

2

< JaP 0 ||(aar) (X) - (V8 ap)(Y))

HS
(a20) < laPeo{ciala (19204 + Vot ]) (X))
2
+ Cléal-at (V20" | + V0t ) (Y2) + Wo(ue,vi) §

< crl& Pt (|20 + IVol ) (Xo) + 4 (| V20| + Vol ]) (Ye) }
+ 01|§t|2m + c1 W (g, Vt)2m7

P16 - LV (0] — b H(YL)|

(4.21) B
< L) VO |00 &) 2™V Wo (1, 1) < 1 (J&™ + W (e, 10)™™),
and
2(m—1) ATel(e? (v — O_u O_M * VQUA,/L Y,
o) 6Dl [Tl (07)" = ot (o)) Vo))

_2m m
< eGP VP77 (V) + e W (e, )™

Substituting (4.19)-(4.22) into (4.18), and noting that ;27— < 2, we arrive at

(423) d|£t|2m S CQ’gt’deAt + CQWQ(Mt, Vt)zmdt + th

for some constant ¢y > 0, a local martingale M;, and
t
A= [ {1 P 4 (19202 + Vo) (X.)
0

£ (|20 + [Vl ) (v2))* Jds.

By the stochastic Gronwall lemma due to [19, Lemma 3.8], when 2m > 6 this implies

2m

ot
(4.24)  Wo(pe, )™ < e5(Bl&|)F < C4(E6%At) s / Wo (s, vs)*"ds, t€[0,T]
0

for some constants cs, ¢y > 0. Since by Lemma 3.1, (4.11), (4.15) and the Khasminskii

type estimate, see for instance [19, Lemma 3.5], we have

cof
Eer—047 < oo,

so that by the Gronwall lemma we prove Wy(pu, 14) = 0 for all ¢ € [0,T]. Then by (4.12)
both X; and Y; solve the same SDE with coefficients b}’ and o', and due to [20, Theorem
1.3], the condition 1p(|b}'|* + |Voi'|*) € LL(T) for compact D C R implies the pathwise

uniqueness of this SDE, so we conclude that X; =Y; for all ¢ € [0, T].
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Remark 4.2. As an essential difference between the present argument and that in [20],
the PDE (4.13) we considered depends on the distribution p. In [20, Theorem 5.1] the
PDE

0 1
(425) % + TI'(O'tO';:VQU,t) + Vbtut + bt = O, ur = 0

is used for small enough T ensuring sup,c(o 1) zerd [|Vue(z)|| < 1. This is equivalent to
taking large enough A > 0 ensuring (4.14) in the present situation.

4.3 Proof of Corollary 2.2 and Corollary 2.3

Proof of Corollary 2.2. We set ay(x, ) := (00*)(z, p) for t € [0,T], and by(z, ) := 0,
ai(x, p) = I for t € R\[0,T]. Let 0 < p € C°(R x R?) with support contained in {(r, z) :
|(r,z)| < 1} such that [, . p(r,z)drde = 1. For any n > 1, let p,(r,2) = n®*'p(nr, nz)
and define

ay'(z, 1) = 050, (2, p)pa(t — 5,2 — 2)dsda’,
(4.26) /RXW

by (z, 1) = / b (2, ) pu(t — 8,2 — 2')dsda’, (t, 2, 1) € R x R x 2.
RxR4

Let 67 = /a} and 6; = /a;. Consider the following SDE:

(427) dXt - bt(Xt,cht)dt + OA't(Xt,gXt)th.

We first show that (b, &) satisfies assumption (H?). Firstly, (2.6)-(2.7) and the continuity
in the third variable of B and Y imply that b and o are continuous in the third variable
€ Py. Thus, (1) in (H?) holds. As to (HY) (2), since by [20], it holds that

Tim ([ = F 5 pallgery = 0,
there exists a subsequence ny such that
|F = F % pu || oy < 27

Letting

G=> |F=Fxp,|+F
k=1
then |G|l gy < 1+ [[Fll13¢r) and noting [b™ > < K + F * p,,, we have [0™[* < K 4 G.
So, using the subsequence b™ replacing b", we verify condition (2) in (H?). Finally, by
(2.6), for any n > 1 there exists a constant ¢, > 0 such that

b} (2, 1) = (2", )| + (167 (2, 1) — 63 (2", )| < en(t = s| + |2 — 2] + Wi(p, v))
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holds for all s,t € R,z,2’ € R? and u,v € £2,. So, for any § > 1, condition (3) in (H?)
holds. By Theorem 2.1 (1), SDE (4.27) has a weak solution. Noting that co* = 66*, the

SDE (1.1) also has a weak solution. Finally, the strong existence and uniqueness follow
from Theorem 2.1 (2) and (3). O

Proof of Corollary 2.3. Let b} and aj be in (4.26), and let 6" = \/a} and 6, = y/a;. Then
(2.5) and (4.26) imply (b, &) satisfy H?. Then we may complete the proof as in the proof
of Corollary 2.2 (1). O

5 Proofs of Theorems 2.5-2.6

5.1 Proof of Theorem 2.5

By [18, Theorem 1.2 (2)] with d; = 0, we know that (3.11) has a unique strong solution
X; up to life time. Combining this with Corollary 2.3, Lemma 3.4 and (H), we see that
the SDE (1.1) has strong existence and uniqueness. For any p € &5 we let uy = Pfu be
the distribution of X, which solves (2.9) with Zx, = u.

We first figure out the outline of proof using coupling by change of measure as in
[13, 15]. From now on, we fix to € (0,7] and ug, vy € P, and take Fy-measurable
variables X and Yy in R such that Zx, = po, L, = vo and

(5.1) E|Xo — Yo|* = Wa(po, v0)*.
Let X; with Zx, = o solve (2.9), we have
(52) dXt = bt(Xt, ,ut)dt + O't(Xt>th.

To establish the log-Harnack inequality, We construct a process Y; such that for a weighted
probability measure Q := RP

(5.3) Xy =Y, Qas., and %, Q= Piv =1,

0*

Then
(Ptof)(yo) = E@[f(yto)] = ]E[Rtof(Xto)]7 IS '%b(Rd)'

So, by Young’s inequality we obtain the log-Harnack inequality

(Pi log f)(vo) < E[Ry, log Ry,] + log E[f(X4,)]

5.4
(5:4) =log(Py f)(110) + E[Ry, log Ryy], f € B (RY), f > 1.

Moreover, by the Holder inequality, for any p > 1 we have

(Pro f)P (o) = {E[ Ry f (Xio)1}P

(5.5) p_
< (P f?)(no) x {E[R; I, f € B (RY).
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To construct the desired Y;, we follow the line of [18] using Zvonkin’s transform. As shown
in [18, Theorem 3.10] for d; = 0 that Assumption (H) implies that for large enough A > 0,
the PDE (4.13) has a unique solution u™* satisfying

1
(56) [0l + VM + V20 <

By combining ||V?u**||,, < oo with the Lipschitzian continuity of o and (4.9), we see
that the increasing process A; in (4.23) satisfies

dAt S cdt

for some constant ¢ > 0. Moreover, E|&|? > ¢/ Wy (s, v4)? holds for some constant ¢ > 0.
So, with m = 1,0 = 2, Xx, = uo and %y, = 1, the inequality (4.23) gives

(5.7) Wo (e, i) < kWa(po,10), t€[0,T]

for some constant k > 0.
As in [13, §2], let v = ZK + 24 + 122 and take

12

(55) =5

(1 — e%(t_to)), t - [O, to],

and let Y; solve the modified SDE
1

(5.9  dvi= {bt(Yt, )+ (VX)) ™ (X - Yt)}dt + o (Y)AW,, t€[0,t).
t

Since sup;cppy V(| - |?) < 00, this SDE has a unique solution (Y;)efo,). Let
Tn = to ANnf{t € [0,t) : | X¢| + |Yi| > n}, n>1,

where inf () := oo by convention. We have 7, 1 tg as n T co. To see that the process Y
meets the above requirement, we first prove that

(Y - X))?
¢

for s € [0,tp) is a uniformly integrable martingale, and hence extends also to time .

dt

(5.10) R, :=exp [/Osé<at(Xt)‘1(Y; _X,), AT — %/O |00 (X4)~

Lemma 5.1. Assume (H) and let Xo, Yy be two Fo-measurable random variables such
that Lx, = po, Ly, = vy, and

(511) E’XO —%’2 :WQ(ILL(),V())2.
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Then there ezists a constant ¢ > 0 uniformly in ty € (0,T) such that

(5.12) sup E[R;log Ry] < WQ(,uO,VO) :

tG[O to)
Consequently, R, extends to t = ty, Q := Ry, P is a probability measure under which (5.9)
has a unique solution (Y;)ico,] satisfying

(5.13) QX = Yi,) = L.

Proof. By (H), for any n > 1 and t € (0,ty), the process (Rsnr,)sco,q is a uniformly
integrable continuous martingale. So, for the first assertion it suffices to find out a constant
¢ > 0 uniformly in ¢y € (0,7") such that

(5.14) sup E[Rinr, 10g Rinr, | < Wg(,uo,l/[)) , t€0,t).

n>1
To this end, for fixed ¢ € (0,7) and n > 1, we consider the weighted probability Q;,, :=
Ripr,P. By Girsanov’s theorem (W;)scpo,tar, is @ d-dimensional Brownian motion under
Q¢ . Reformulating (5.2) and (5.9) as

Y. .
SC “ds + 04 ( X, )dWs,

AY, = by(Y,, v) + 0,(Y.)dW,, s e [0,t AT,

dXs - bs<XS7:us) -

where

W, = W+/—ar 7YX, = ) AW

Let u™* solve (4.13) and take 0)#(z) = z + u}*(z). By the Ito formula, we have
Xs - Y;

s

(5.15) dOM(X,) = Mt (X,)ds + (VOM o) (X,) AW, — VOM(X,)

ds,

and
(5.16) dOM(YL) = Ml (Y,)ds + (VO a,)(Ys) AW, + [VOM (B, — b)) (Y, )ds.
Next, using the It6 formula under the probability Q; ,, we obtain

A (V) — ) (X.)

= 2(007(X,) — 021 (Ye), A’ (X) — A (Yy))ds

+ 2<0§\7M(X8) - Q;\’M(YS)v (VQ?MUS)(XS)dWS - (V@?’“US)(YS)dWS>
(BAT) [ VOMa,)(X,) = VO 0,) (Vo) [rsds

— 2(00(X,) — 021(Ys), [VO# (b — b)) (Ys)ds)

s

X, — Y.
_2<9§’“(X8)—QQ’M(YS),V@’“(XS) = Sds>, s €[0,¢ AT
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Moreover, (5.6) implies

() — (), T () K2

s

Xs }/:g Xs - YS
- —<XS Y, uM(X) — (Y, +VuM(X) >

Cs

’ Gs
o XS - YS A\, A XS — YS
= <Xs Y, T> <us (XS) u, (Y;)’ T>
X —Y. X —Y.
— (X = Ve V(X)) = () - (), T () S )
Gs Gs
< WX -V €0,t AT
- s Tn)-

— 25 gs Y Y

Substituting into (5.17) leads to
Al (Ys) — 034 (X[
72 41X, - Y2

(5.18) < {”Y|Xs —Yi|* + %@(T”Xs — Y |Wa (s, vs) — 5|<—|}ds

+dM, s€[0,t AT

for the Q;,,-martingale
M, =2 / (OM(X) = O (Y,), (VO 0, ) (X, ) AW, — (VO 0, ) (V) AW,
0

On the other hand, (5.8) implies

4 16, 8

Combining this with (5.18) and using the It6 formula, we may find out a constant ¢y > 0
such that

o2+ (V) — 02 (X))

d

Cs
dM. X, — Y,[? (4 6, 1
, < M 29, 1Ns — XT3 O, 1
(5.19) < + coWo (s, vs)“ds z {5 vCs + 25CS 25}ds
dM, X, - Y2
< + oWy (s, vs)?ds — u, s €[0,t ATyl

Cs 25¢2
Combining this with (5.7) and (5.1), we arrive at

tATh Xs _ Y's 2 c
(520) Eth/ |C—2|d8 < t—1W2<M0, I/0>2, t e [O,to)
0 s 0
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for some constant ¢; > 0. Therefore, there exists a constant C' > 0 such that

1 tAT O Xs -1 Y; _ Xs 2
E[Rt/\Tn log Rt/\Tn] = iE@t,n/ | ( ) éQ )| ds
0 s

C
S t_WQ(M()) VO)Qa le (OatO)
0

Thus, (5.12) holds.

By (5.12) and the martingale convergence theorem, (R;)cjo) is a uniformly inte-
grable martingale, so Q := R, P is a probability measure. By Girsanov theorem, we can
reformulate (5.9) as

(5.21) AY; = by(Yy, v)dt + o (Y;)dW,,

which has a unique solution (Y}):cj04,)- By (5.12),

| X, — Y2
%/lt Pt < o0,
0

¢
Since X; — Y} is continuous and fgo Citdt = 00, this implies Q(X,, =Y;,) = 1. O
Proof of Theorem 2.5. Consider the DDSDE
dXt = bt(Xt,gf(tmb)dt + O't(Xt)th, XO = }/0

By the weak uniqueness we have .i”xtﬂﬁ’ = Py =1y for t € [0,tp]. Combining this with
(5.21) and the strong uniqueness, we conclude that X; = Y; for t € [0,T]. Therefore, (5.4)
and Lemma 5.1 lead to

(P log £)(0) < log(Prf) (10) + %szo, W), o€ (0,7],

which implies (2.13) due to [17, Theorem 4.1 (4.11)].
Finally, by repeating the proof of [15, Lemma 3.4.3] and [15, Proof of Theorem
3.4.1(2)], we may find out constants py > 1 and ¢y, ca > 0 such that

pl’o_l 1’(277*1 C 9 C|XU — }/0’2
(5.22) (ER;*™") » <exp {to /\ 1W2(,u0, ) } -E {exp {m :
This together with (5.5) and Jense’s inequality proves (2.14). O
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5.2 Proof of Theorem 2.6
Proof. Fix ty > 0. Denote p; = Py = Zx,,t € [0,to]. Then (2.15) becomes

(523) dXt = bt(Xt7 ,ut)dt + O-t(ut)tha gXU = Ho-
Let Y, = X; + %}’ t € [0,tp]. Then

dYt = bt(n7ﬂt>dt + Ut(,ut)dVT/ta P%Yo = MOat € [07t0]7
where

t
Wy =W, +/ nsds,
0

()

o)
tQ?H't .

Let Ry, = exp|[— [1°(n:, dW;) — 3 [3° |n,|?ds]. By the Girsanov theorem we obtain

_ v
’I]t = O't 1{% + bt(Xta /th) — bt <Xt ‘l‘

p—1
p

(Poa)(tt0) = ElRiy (Vi) = E[Ryy f(Xiy +0)] < (P fP(0 + )7 (o) (ER, )7

and by Young’s inequality, we obtain

(Pto log f) (Ho) = E[Rto log f<Y;o)]
= E[Ry, log f (X, +v)] < log Py f(v + ) (o) + ERy, log Ry,

Then we have

_p_ P to 2
ER}™ < supe2(-1? Jo® Ims[ds
s S
Q

P Jy llos 2 o]/t + @ltv] /to) } it
<o 20— 17 |

and

1 o
ERy, log Ry, = Eglog Ry, < §EQ/ |n5|2d8
0

1 [t
<5 [ o eflolto + otebol /o)

]
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