
MIXING TIMES OF GLAUBER DYNAMICS VIA ENTROPY
METHODS

A. SINULIS

Abstract. In this work we prove sufficient conditions for the Glauber dynamics
corresponding to a sequence of (non-product) measures on finite product spaces
to be rapidly mixing, i.e. that the mixing time with respect to the total variation
distance satisfies tmix = O(N log N), where N is the system size. The proofs
do not rely on coupling arguments, but instead use functional inequalities. As a
byproduct, we obtain exponential decay of the relative entropy along the Glauber
semigroup.

These conditions can be checked in various examples, which include the ex-
ponential random graph models with sufficiently small parameters (which does
not require any monotonicity in the system and thus also applies to negative
parameters, as long the associated monotone system is in the high temperature
phase), the vertex-weighted exponential random graph models, as well as models
with hard constraints such as the random coloring and the hard-core model.

1. Introduction

Spin systems are ubiquitous in the modeling of various phenomenons, ranging
from toy models to explain ferromagnetism (the Ising and the Potts model, or more
generally the random cluster model), to voter models, various network models (such
as the Erdös-Renyi model or the exponential random graph models) and models with
hard constraints such as the random proper coloring model or the hard-core model.

Spin systems can be described as probability measures on finite product spaces,
and hard constraints translate into conditions on the support of the probability
measure. A popular approach to define a spin system is by specifying a Hamiltonian
function H defined on the space of configurations and set µ(x) = Z−1 exp(H(x)),
where x is a configuration. Informally, hard constraints can be incorporated by
setting H(y) = −∞ for a non-admissible configuration. More formally, we will
consider a finite set X (the spins), a finite set I (the sites) and the spin system is a
measure µ on Y := X I , and we are interested in the mixing time asymptotic of the
Glauber dynamics on a sequence of spin systems.

1.1. Mixing times and the Glauber dynamics. It is often important to sample
from the spin system under consideration. In most cases, however, the normalization
constant Z = ∑

σ∈Y µ(σ) cannot be computed efficiently, as the number of sites
increases. It is necessary to bypass this problem; one way is to construct a Markov
chain converging to the spin system, and evaluating the time to stationary becomes
crucial as the size of the system grows.
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One choice is to use the associated Glauber dynamics of the spin system, which
is a Y-valued ergodic Markov chain (Yt)t∈N0 with reversible (and thus stationary)
distribution µ. It is known that under mild assumptions the distribution of (Yt)t will
converge to the stationary distribution. At each step, the Glauber dynamics selects
a site i ∈ I uniformly at random and updates it with the conditional probability
given xi, i.e. its transition probability is given by

P (x, y) = |I|−1µ(yi | xi)1xj=yj ∀j 6=i.
Here 1A is the indicator function of the event A.

Now if (Yt)t∈N0 is a Markov chain on any finite space Y with a reversible measure
ν, this convergence can be quantified by using various metrics between probability
measures. One canonical way is to choose the total variation distance

dTV (µ1, µ2) := sup
A⊂Y
|µ1(A)− µ2(A)| = 1

2
∑
x∈Y
|µ1(x)− µ2(x)|(1.1)

to define the mixing time
tmix := inf{t ∈ N0 : sup

y∈Y
dTV (δy ∗ P t, ν) ≤ e−1},(1.2)

or for any Y-valued Markov process (Yt)t∈R+

tmix := inf{t ∈ R+ : sup
y∈Y

dTV (δy ∗ P t, ν) ≤ e−1}.(1.3)

Here, we denote by δy ∗ P t the distribution of Yt given that the Markov chain
starts at y. We shall mainly work with the continuous-time version of the Glauber
dynamics, and thus use (1.3). Another, maybe less canonical, way to quantify the
speed of convergence is to use the relative entropy between two measures µ, ν on any
measurable space defined as

H(µ || ν) =


∫ dµ
dν

log
(
dµ
dν

)
dν µ� ν

0 otherwise,

and we can define the mixing time tmix,ent as above, replacing dTV (δy ∗ P t, ν) by
H(δy ∗ P t || ν).

1.2. Functional inequalities and tensorization of entropy. In the context
of concentration of measure, functional inequalities have become prominent and
important in the nineties, since these yielded easier proofs of known (and previously
unknown) concentration results. For an introduction to the concentration of measure
phenomenon and functional inequalities we refer to [Led01] or more recently [BLM13].
P. Diaconis and L. Saloff-Coste used functional inequalities, especially logarithmic
Sobolev inequalities, to obtain mixing times of various Markov chains in [DS96].
Moreover, by works of M. Ledoux and S. G. Bobkov different notions of so-called
modified logarithmic Sobolev inequalities have been paid attention to, see [BL98;
GQ03] and the work by S. G. Bobkov and P. Tetali [BT06].

Let us give a slight exposition into functional inequalities in the framework of
Markov chains. Let Y be a finite set, P be the transition matrix of a Markov chain
on Y and −L = I − P be its generator. If P is reversible with respect to a measure
µ, we can define the entropy functional

Entµ(f) := Eµ f log f − Eµ f log(Eµ f) for f ≥ 0(1.4)
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and the Dirichlet form
E(f, g) := −Eµ(fLg).(1.5)

We say that the triple (Y , P, µ) (or in short P , if the space and the measure are clear
from the context) satisfies a logarithmic Sobolev inequality with constant ρ if for all
f : Y → R

Entµ(f 2) ≤ 2ρE(f, f),(1.6)
and that it satisfies a modified logarithmic Sobolev inequality with constant ρ0, if for
all f : Y → R+ we have

Entµ(f) ≤ ρ0

2 E(f, log f).(1.7)

The best constant in (1.6) ((1.7) respectively) is known as (modified) logarithmic
Sobolev constant, cf. [BT06, equations (1.5) and (1.7)], where our constants ρ, ρ0
correspond to their constants 1/ρ, 1/ρ0. The modified logarithmic Sobolev constant
is also called entropy constant, see e.g. the definition of β in [GQ03]. It is known
that the modified logarithmic Sobolev constant can be used to bound mixing time
for the total variation distance of (the distribution of) a Markov semigroup and its
trend to equilibrium, and sometimes gives sharper results than using the logarithmic
Sobolev constant (in the sense of Gross, [Gro75]).

To establish the connection between modified logarithmic Sobolev inequalities and
the mixing time of the continuous-time Markov process with generator L, let us state
a Theorem (and Corollary) by S. G. Bobkov and P. Tetali, see [BT06, Theorem 2.4,
Corollary 2.8]. Note that our logarithmic Sobolev constant ρ0 corresponds to 1/ρ0 in
[BT06].

Theorem 1.1 (Bobkov-Tetali). Let µ0 be any measure on a finite set Y and denote
by µt the distribution of the Markov process (Xt)t with initial distribution µ0 and
generator L and by ft its density with respect to the reversible measure π. Then for
any t ≥ 0

H(µt || π) = Entπ(ft) ≤ H(µ0 || π)e−
2
ρ0
t
,

and consequently

dTV (µt, π)2 ≤ 2H(µt || π) ≤ 2 log
( 1
π∗

)
e
− 2
ρ0
t
,

where π∗ := minx∈Y π(x)

Moreover, we shall require a powerful tool in the framework of product spaces,
namely the tensorization property of the (modified) logarithmic Sobolev inequality.
Since we are working with a non-product measure (and thus the individual spins are
not independent), we need the concept of weakly dependent random variables. Let
µ a spin system on Y = X I , and define an interdependence matrix (Jij)i,j∈I as any
matrix with Jii = 0 and such that for any x, y ∈ Y differing only in the j-th site we
have

dTV (µ(· | xi), µ(· | yi)) ≤ Jij.

By µ(· | xi) we always mean the conditional probability, interpreted as a measure on
X . Note that if µ is a product measure, then J ≡ 0 is an interdependence matrix,
and thus J (or any norms thereof) measures the strength of interaction between the
spins in the spin system µ.
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We will need the following approximate tensorization result of the entropy initially
proven by K. Marton [Mar15] (see also [GSS18, Theorem 4.1]), on which the proof
of Theorem 1.3 is based. For the reader’s convenience, we shall formulate it in our
setting.

Theorem 1.2 (Marton). Let µ be a measure on a product space Y := X I for some
finite sets X and I. If for some α1, α2 > 0

β̃(µ) := inf
S(I

inf
i/∈S

β̃i,S(µ) ≥ α1 > 0

where
β̃i,S(µ) := inf

xS∈XS
µ(xS)>0

inf
yS
c∈XSc

µ(ySc ,xS)>0

µS((ySc)i | xS)

holds and an interdependence matrix J satisfies ‖J‖2→2 ≤ 1 − α2, then for any
function f : Y → R+ vanishing outside of suppµ we have

Entµ(f) ≤ 1
α1α2

2

∑
i∈I

∫
Entµ(·|xi)(f(xi, ·))dµ(x).(1.8)

We will not give a proof here, but only note that the inductive approach given
in [Mar15] (or see [GSS18, Theorem 4.1]) also works in the case of µ not having
full support (i.e. the spin system having hard constraints) since α1 is a uniform
lower bound for any subset S ⊂ I, any x ∈ X S with µS(x) > 0 and any i /∈ S. In
the first infimum, the choice S = ∅ is considered as well, which has to be read as
β̃i,∅(µ) = infy∈Y:µ(y)>0 µ(yi). The interpretation of β̃i,S(µ) is straightforward: For any
admissible partial configuration xS ∈ X S all possible marginals are supported on
points with probability at least α1.

If there are no hard constraints, i.e. µ has full support, then β̃(µ) can be simplified
to

β̃(µ) = I(µ) := min
i∈I

min
y∈Y

µn(yi | yi),

which can be shown by conditioning for any S ⊂ I and any xS ∈ X S as follows

µ(yi | xS) = µ(xS)−1 ∑
z∈XI\(S∪i)

µ(yi | xS, z)µ(xS, z) ≥ I(µ),

and the reverse inequality follows by taking S = I\{j}.

1.3. Main result. We are now ready to state our main result on the mixing time
of Glauber dynamics associated to spin systems.

Theorem 1.3. Let X , I be finite sets, Y := X I and µ be a measure on Y. Assume
that for some constants α1, α2 > 0 we have the lower bound on the conditional
probabilities

β̃(µ) ≥ α1(1.9)

and an upper bound on the interdependence matrix J (also known as Dobrushin’s
uniqueness condition)

‖J‖2→2 ≤ 1− α2.(1.10)
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The Glauber dynamics associated to µ satisfies a modified logarithmic Sobolev in-
equality with constant 2|I|α−1

1 α−2
2 . As a consequence, given any initial distribution

µ0 = f0µ on Y, the distribution µt of (Xt)t satisfies

(1.11) H(µt || µ) ≤ H(µ0 || µ) exp
(
−α1α

2
2

2|I| t
)
.

Furthermore, if (µn)n is a sequence of spin systems with sites (In)n satisfying (1.9)
and (1.10) uniformly, then the sequence of Glauber dynamics is rapidly mixing, i.e.
tmix = O(|In| log|In|).

In the case of spin systems without hard constraints, we can rephrase the conditions.

Corollary 1.4. Let (µn)n be a sequence of Gibbs measures on configuration spaces
Yn, i.e. for some Hamiltonian Hn : Yn → R we have

µn(y) = Z−1
n exp(Hn(y)).(1.12)

If
I(µn) ≥ α1(1.13)

‖Jn‖2→2 ≤ 1− α2(1.14)
for some α1, α2, C > 0, then the (sequence of) Glauber dynamics associated to µn is
rapidly mixing.

1.4. Outline. In section 2 we will state possible applications of Theorem 1.3 to
various models with and without hard constraints. Along the way, we will give the
necessary definitions and notations to remain self-contained. Thereafter, in section
3 we give the proofs of the main result Theorem 1.3 as well as all applications, i.e.
Theorem 2.2, Corollary 2.3, Theorems 2.6 and 2.7.

2. Applications

Our applications include two models of random graphs, namely the exponential
random graph models and the vertex-weighted exponential random graph models, as
well as models with hard constraints such as the random coloring or the hard-core
model.

2.1. Exponential random graph models. In the last decades researchers have
developed various models to describe real-world networks. Starting from the famous
Erdös-Renyi model, which samples the presence or absence of edges independently,
more sophisticated models have been proposed to explain certain observations which
are not present in the Erdös-Renyi model, such as reciprocity in social networks, or
local clustering, and hence incorporating a certain dependence structure. Among
these are the exponential random graph models, which use ideas from statistical
mechanics, very similar in spirit to Ising models. For a more thorough historical
overview we refer to [BBS11] or the well-written survey [Cha16].

However, only recent works of S. Bhamidi, G. Bresler, A. Sly [BBS11] and S.
Chatterjee and P. Diaconis [CD13] made progress in analyzing the Glauber dynamics
associated to these models, as well as establishing large deviation principles. One of
the main results is that in certain regimes of the parameter space (called the high
temperature phase) the Glauber dynamics is rapidly mixing, whereas in the other
regime (the low temperature phase) the Glauber dynamic takes exponential time
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to reach equilibrium. However, the arguments in [BBS11] require the system to be
monotone, i.e. the parameters to be positive.

We complement this by proving a (modified) logarithmic Sobolev inequality for the
Glauber dynamics for a subset of the parameter space and as a consequence establish
rapid mixing of the (continuous-time) Glauber dynamics. The method suggests that
models with negative parameters should not behave differently from their monotone
counterparts (where the parameter vector β is exchanged by its absolute value |β|).

The exponential random graph models are spin systems, parametrized by specifying
certain graphs G1, . . . , Gs and a distribution on the space of all graphs on n vertices
(denoted by Gn) by using the number of injections of the Gi as sufficient statistics.
An easy example is given by taking G1 to be the complete graph on 2 vertices and
G2 to be the complete graph on 3 vertices, and to sample a graph X on n vertices
with probability Z−1 exp

(
β1E(X) + β2

n
T (X)

)
, where E(X) denotes the number of

edges and T (X) the number of triangles in the graph X.
More generally, for any two graphs G,H write IG(H) for the set of graph homo-

morphism from G to H, i.e. all maps ϕ : V (G) → V (H) such that vi ∼G vj ⇒
ϕ(vi) ∼H ϕ(vj), and let NG(H) = |IG(H)| be its cardinality; the normalized term
t(G,H) := NG(H)

|V (H)||V (G)| is called the homomorphism density, and can be interpreted as
the probability of a random mapping ϕ : V (G) → V (H) being a graph homomor-
phism. Let Gn be the set of all graphs on n vertices, which we also identify with
{0, 1}n(n−1)/2.

Definition 2.1. Let n ∈ N,β = (β1, . . . , βs) ∈ Rs and G1, . . . , Gs be arbitrary,
connected simple graphs with vertex set Vi and edge set Ei. The function

(2.1) Hβ(X) ≡ H(X) := n2
s∑
i=1

βi
NGi(X)
n|Vi|

= n2
s∑
i=1

βit(Gi, X),

is called Hamiltonian and the probability measure

(2.2) µβ({X}) = Z−1 exp(H(X)) where Z =
∑
X∈Gn

exp(H(X))

the exponential random graph model (ERGM) with parameters (β, G1, . . . , Gs),
abbreviated as ERGM(β, G1, . . . , Gs).

It is customary to take G1 = K2 to be the complete graph on 2 vertices. For positive
parameters βi, the exponential random graph models assigns higher probability to
graphs which contain Gi more often, whereas for negative βi it favors the absence of
Gi. For example, choosing the triangle as the only graph will result in graphs with
lots of triangles, or more bipartite graphs, see e.g. [CD13, Figure 4].

To ease notation, we will not write the dependence of µ on G1, . . . , Gs, since the
graphs will be fixed. Moreover, we write for any vector β = (β1, . . . , βs) its absolute
value |β| given by taking the absolute value of each component. Accordingly, µ|β| =
ERGM(|β|, G1, . . . , Gs) is the associated monotone system. To avoid technicalities,
we always assume that n ≥ mini=2,...,s|Vi|, since otherwise we have NGi(X) = 0 for
all X ∈ Gn and i = 2, . . . , s, in which case ERGM(β, G1, . . . , Gs) degenerates to an
Erdös-Renyi random graph with parameters n and e2β1

1+e2β1 .
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Lastly, as is usual in the context of ERGM, for any set of parameters (β, G1, . . . , Gs)
we define the functions Φβ, ϕβ : [0, 1]→ R

Φβ(x) =
s∑
i=1

βi|Ei|x|Ei|−1 = β1 +
s∑
i=2

β2|Ei|x|Ei|−1(2.3)

ϕβ(x) = exp(2Φβ(x))
1 + exp(2Φβ(x)) = 1

2(1 + tanh(Φβ(x))).(2.4)

We are now ready to prove the main theorem for exponential random graph models;
recall the definition of the Dirichlet form (1.5).

Theorem 2.2. Let µβ be an ERGM(β, G1, . . . , Gs) such that 1
2Φ′|β|(1) < 1. The

Glauber dynamics for µβ satisfies

(2.5) Entµβ
(ef ) ≤ 1

2C(β)n2E(ef , f).

and is rapidly mixing.

Let us remark on these results.
Firstly, we are sure that the condition 1

2Φ′|β|(1) < 1 is not optimal, since rapid
mixing was proven for all exponential random graph models with positive parameters
βi and only one solution a∗ to the equation ϕβ(a) = a satisfying ϕ′(a∗) < 1 (which the
authors called high temperature phase, see [BBS11, Theorem 5]). Clearly 1

2Φ′|β|(1) < 1
implies the uniqueness of a fixed point for ϕ|β| with ϕ′(a) < 1, so that the condition
is strictly stronger than in [BBS11], but the result implies exponential decrease
of the relative entropy and also applies to negative parameters. In [BBS11], the
authors used a so-called burn-in phase for the Glauber dynamics due to the failure
of path coupling in the case supp∈[0,1] ϕ

′(p) > 1, which we avoid by our requirements.
Furthermore, note that the assumption Φ′|β|(1) < 2 is also present in [CD13, Theorem
6.2], where the authors show convergence in the cut-metric in probability to a mixture
of Erdös-Renyi graphs in this region.

Secondly, with a slight modification of the proof one can show that under the
assumptions of Theorem 2.2, a logarithmic Sobolev inequality holds with a slightly
worse constant, which is however still of order n2. This is known to imply more
properties than just rapid mixing, such as concentration of measure in the exponential
random graph models. It remains an interesting open question whether a (modified)
logarithmic Sobolev inequality with a constant of order n2 holds in the full high
temperature phase.

As an easy corollary we obtain sufficient conditions for exponential random graph
models with two graphs G1 = K2, G2 to be rapidly mixing.

Corollary 2.3. Let G2 be any connected simple graph with e2 edges and assume
|β2| < 2

e2(e2−1) . The Glauber dynamics of µβ = ERGM(β1, β2, G1, G2) is rapidly
mixing.

Applying this to the star graph with k leaves Sk we obtain the sufficient condition
|β2| < 2

k(k−1) , and for the triangle graph with e2 = 3 this translates into |β2| < 1/3.
By a more careful estimate, we can also prove the following Proposition.
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Proposition 2.4. Let µβ = ERGM(β, G1, . . . , Gs), assume that a∗ ∈ [0, 1] satisfies
a∗ = ϕ|β|(a∗) and for A∗ = max(a∗, 1− a∗) we have

γ := 1
2
(
Φ′|β|(a∗) + A∗Φ′′|β|(1)

) (
tanh′(Φβ(a∗)) + C2A

∗Φ′|β|(1)
)
< 1.

Then the Glauber dynamics of µβ is rapidly mixing.

Remark. The condition resembles the condition in [RR17, Theorem 1.5], expect for
the fact that we have no o(1) term which stems from the second order approximation
of the tanh.

Corollary 2.5. Let µβ = ERGM(β, G1, . . . , Gs). If a∗ ∈ [0, 1] satisfies a∗ = ϕ|β|(a∗)
and

γ := 1
2
(
Φ′|β|(a∗) + Φ′′|β|(1)

) (
tanh′(Φβ(a∗)) + C2Φ(0,|β2|,...,|βs|)(1)

)
< 1,(2.6)

then the Glauber dynamics is rapidly mixing.

Remark. If we have the classical situation of a monotone system (see e.g. [BBS11;
CD13; RR17]) that β2, . . . , βs > 0, we obtain the characterization

‖A‖1→1 ≤ ϕ′(a∗) + 1
2
(
C2A

∗Φ′(a∗)Φ′(1) + A∗Φ′′(1)(tanh′(Φ(a∗)) + C2A
∗Φ′(1))

)
and thus it is necessary for the Dobrushin uniqueness condition to have ϕ′(a∗) < 1,
but with additional corrections due to the method.

2.2. Vertex-weighted exponential random graph models. Additionally, we
are able to treat special cases of the vertex-weighted exponential random graph
models as described in [DEY17]. The parameter-space is three-dimensional, i.e.
β = (β1, β2, p), and the model is given by the spin system on Y = {0, 1}n via the
Hamiltonian

H(σ) := log
(

p

1− p

)∑
i

σi + β1

n

∑
i 6=j

σiσj + β2

n2

∑
i 6=j 6=k

σiσjσk,

which resembles the Hamiltonian in the exponential random graph model. We define
the function

ϕβ(λ) := exp(hβ(λ))
1 + expβ(h(λ)) = exp (β1λ+ β2λ

2 + log(p/(1− p)))
1 + exp (β1λ+ β2λ2 + log(p/(1− p))) .

Theorem 2.6. If the parameter β := (β1, β2, p) satisfies
sup
λ∈(0,1)

|ϕ′β(λ)| < 1,(2.7)

then a modified logarithmic Sobolev inequality holds and the Glauber dynamics is
rapidly mixing.

2.3. Random coloring model. The graph models considered thus far are spin
systems µ with no hard constraints, i.e. any configuration is admissible (has positive
probability). Certain models, however, are supported on a strict subset Ω0 ⊂ X I .

To obtain mixing time estimates for models with hard constraints, we shall pursuit
a two-step strategy. Firstly, we change the probability space from Ω0 to Y = X I
by setting µ(x) = 0 for all x ∈ Y\Ω0 to apply Theorem 1.2, and estimate the right
hand side of equation (1.8) for the choice f = eg as in the proof of Theorem 1.3.
In the second step, we restrict again to functions f : Ω0 → R+ (since both sides
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on the inequality only depend on x ∈ suppµ) and identify the right hand side as
the Dirichlet form associated to the Glauber dynamics on Ω0, hence establishing
a modified logarithmic Sobolev inequality, from which we infer the mixing times
estimates.

To this end, we briefly introduce the random k-coloring model. Given a finite
graph G = (V,E) with maximum degree ∆ and a finite set of colors C = {1, . . . , k},
the configuration space in this model is the set of all proper colorings Ω0 ⊂ CV , i.e.
the set of all ϕ ∈ CV such that v ∼ w ⇒ ϕv 6= ϕw, and µ = µ(G,C) denotes the
uniform distribution on Ω0.

The Glauber dynamics for a sequence of bounded-degree graphs was shown to
be rapidly mixing by M. Jerrum [Jer95] for k ≥ 2∆ + 1 via a path coupling
approach. We recover these results using the entropy approach. Again, we consider
the (continuous-time) Glauber dynamics with respect to µ.

Theorem 2.7. Let Gn = (Vn, En) be a sequence of graphs with uniformly bounded
maximum degree ∆ and k ≥ 2∆+1 be fixed. The (continuous-time) Glauber dynamics
(Yt)t≥0 on Ω0 is rapidly mixing.

2.4. Hard-core model. Another model with hard constraints is the hard-core model
with fugacity λ. Given a graph G = (V,E) with maximum degree ∆, the hard-
core model is the spin system on Y = {0, 1}V which assigns probability Z−1λ|σ|

to any admissible configuration, i.e. any configuration such that σvσw = 0 for all
v ∼ w. The parameter λ is called fugacity. It was shown in [Vig01, Theorem 1]
that if Gn = (Vn, En) is a sequence of graphs with uniformly bounded degree ∆ and
λ < 2

∆−2 , then the Glauber dynamics is rapidly mixing. We can recover a partial
result.

Theorem 2.8. Let Gn = (Vn, En) be a sequence of graphs with bounded maximum
degree ∆ and let λ < 1

∆−1 . The Glauber dynamics corresponding to µGn,λ is rapidly
mixing.

Interestingly, with methods closer to the Bakry-Emery theory and a characterization
of Ricci curvature for Markov chains as developed by J. Maas [Maa11] and A. Mielke
[Mie13], M. Erbar, C. Henderson, G. Menz and P. Tetali [Erb+17] have shown for
the hard-core model a positive Ricci curvature under the assumption λ ≤ 1

∆ , which
also implies a modified logarithmic Sobolev inequality.

3. Proofs

In this section we will prove our main result, Theorem 1.3, and apply it to the
exponential random graph model to prove Theorem 2.2, the vertex-weighted ERGM
to prove Theorem 2.6, the random coloring model to prove Theorem 2.7 and lastly
the hard-core model to prove Theorem 2.8.

3.1. Proofs of main results.

Proof of Theorem 1.3. Let us define Ω0 := suppµ, where supp is the support of µ,
i.e. supp(µ) := {y ∈ Y : µ(y) > 0}. We can apply Theorem 1.2 to obtain for any
f : Y → R vanishing outside of Ω0

(3.1) Entµ(f) ≤ 2
α1α2

2

∑
i∈I

∫
Entµ(·|xi)(f(xi, ·))dµ(x).
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This is equivalent to the fact that on the probability space (Ω0, µ), any function
f : Ω0 → R+ satisfies the same inequality, which we shall work with from now on.
For any probability measure (Ω,F , ν) and any function f such that f, ef ∈ L2(ν),
we have by Jensen’s inequality and the symmetry in the covariance

(3.2) Entν(ef ) ≤ Covν(f, ef ) =
∫ (∫

(f(y)− f(x))dν(x)
)
ef(y)dν(y).

Apply the inequality (3.2) in the integral on the right hand side of equation (3.1) to
get

(3.3) Entµ(ef ) ≤ 2
α1α2

2

∑
i∈I

∫ (∫
(f(x)− f(xi, y))dµ(y | xi)

)
ef(x)dµ(x).

Finally, observe that for the transition matrix P and the generator −L = I − P of
the Glauber dynamics (on Ω0) we have

E(ef , f) = Eµ(ef (−Lf)) =
∫ ∑

y∈Ω0

(f(x)− f(y))P (x, y)ef(x)dµ(x)

= 1
|I|

∑
i∈I

∫∫
(f(x)− f(xi, y))dµ(y | xi)ef(x)dµ(x),

so that a normalization of inequality (3.3) by |I| leads to

(3.4) Entµ(ef ) ≤ 2 |I|
α1α2

2
E(ef , f),

and the modified logarithmic Sobolev inequality is established.
Now let (µn)n be a sequence of spin systems with sites (In)n, spins X , and define

Yn = supp(µn) ⊂ X In . To prove rapid mixing, note that

2
ρ0

= inf
{
E(ef , f)

Entµn(ef ) : f 6= const

}
≥ α1α

2
2

2|In|
.

If we denote µ∗n = miny∈Yn µn(y), by Theorem 1.1 this leads to

dTV (δy ∗ P t, µn)2 ≤ 2 log(1/µ∗n) exp(−2ρ−1
0 t) ≤ 2 log(1/µ∗n) exp(−α1α

2
2(2|In|)−1t).

Hence for t ≥ 2|In|
α1α2

2
· (log 2 + 2 + log log(1/µ∗n)) we have for any y ∈ Yn

dTV (δy ∗ P t, µn)2 ≤ e−2,

i.e. tmix(n) ≤ 2|In|
α1α2

2
· (log 2 + 2 + log log(1/µ∗n)). Consequently, to establish rapid

mixing it remains to show log log 1/µ∗n = O(log|In|), but this is easy using the
definition of α1, since by conditioning and iterating we obtain for any y ∈ Yn

1
µn(y) = 1

µn(yi | yi)
µn(yi)−1 ≤ α−1

1 µ(yi)−1 ≤ α
−|In|
1 .

�

Proof of Corollary 1.4. We have already shown that I(µn) = β̃(µn) for a measure
µn with full support. Hence this is simply a rephrasing of the conditions. �
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3.2. Proofs of the applications. It is convenient to introduce some notation for the
exponential random graph models. Let Gn denote the set of all graphs on n vertices
and for any X ∈ Gn and any edge e = (i, j) ∈ In := {(i, j) ∈ {1, . . . , n}2 : i < j}
let Xe+ be the graph with edge set E(Xe+) = E(X) ∪ e and Xe− with edge set
E(Xe−) = E(X)\e. For any function f : Gn → R we define the discrete derivative in
the e-th direction as

def(X) = f(Xe+)− f(Xe−).
More generally, given edges e1, . . . , ek we define de1···ek recursively, i.e. de1···ekf =
de1 (de2···ekf). It is easy to see that the definition does not depend on the order of
the edges and deef = 0. The partial derivatives of the Hamiltonian are given by

deH(X) = 2β1 + n2
s∑
i=2

βi
n|Vi|

(NGi(Xe+)−NGi(Xe−))

Now we use the fact if Gi injects into Xe−, then it also injects into Xe+, and hence
the sum is only nonzero if the edge e is essential for the injection, and write NGi(X, e)
to denote the number of injections of Gi into X which use the edge e ∈ E(X), so
that deH(X) = 2β1 + n2∑s

i=2
βi
n|Vi|

NGi(X, e). Especially it can be easily seen that
|deH(X)| = O(1).

Proof of Theorem 2.2. We want to apply Theorem 1.3 in the form of Corollary 1.4.
The spin system is given by Yn := {0, 1}In , and µn is the push-forward of the measure
associated to the exponential random graph model ERGM(β, G1, . . . , Gs) on Gn. The
condition of (1.13) is easy to check, since for any e ∈ In and any y ∈ Yn

µn(ye | ye) = 1
2(1 + tanh(deH(y)/2))

and deH(y) = O(1), where the constant depends on (|β|, G1, . . . , Gs) only. Hence it
remains to prove the condition (1.14). To this end, let again x = xf+, y = xf− be
two graphs which differ in one edge f only, and observe that for each other edge e

dTV (µn(· | xe), µn(· | ye)) = |µn(1 | xe)− µn(1 | ye)|

= 1
2 |tanh(deH(xf+)/2)− tanh(deH(xf−)/2)|

≤ 1
4 |dfeH(x)| ≤ n2

4

s∑
i=2
|βi|

NGi(x, f, e)
n|Vi|

≤ n2

4

s∑
i=2
|βi|

NGi(Kn, f, e)
n|Vi|

,

i.e. Jfe ≤ n2

4
∑s
i=2|βi|

NGi (Kn,f,e)
n|Vi|

. Thus after summation in f ∈ In we obtain by
[BBS11, Lemma 9(c)]∑
f 6=e

Jfe ≤
n2

4

s∑
i=2
|βi|

∑
f 6=e

NGi(Kn, f, e)
n|Vi|

= n2

4

s∑
i=2
|βi|

2|Ei|(|Ei| − 1)n|Vi|−2

n|Vi|
= 1

2Φ′|β|(1).

Since the right-hand side is independent of e ∈ In, this immediately yields

‖J‖1→1 ≤
1
2Φ′|β|(1) < 1.

Moreover, since J is a symmetric matrix, we have ‖J‖2→2 ≤ ‖J‖1→1, showing the
modified logarithmic Sobolev inequality and the rapid mixing. �
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Proof of Corollary 2.3. The proof is trivial, since 1
2Φ′|β|(1) = 1

2 |β2|e2(e2− 1) < 1, and
thus the Corollary follows from Theorem 2.2. �

Proof of Proposition 2.4. As in the proof of Theorem 2.2 it remains to check Do-
brushin’s uniqueness condition (1.10) for the measure µβ. The proof is a modification
of the proof of [RR17, Lemma 3.1], however we will only use a first order expansion
of the tanh function instead of a second-order expansion.

Fix two edges f = (m,n) and e = (k, l) and two graphs X, Y which differ only in
f . Using the Taylor approximation for some s ∈ (0, 1)

dTV (µβ(· | Xe), µβ(· | Ye)) = 1
2

∣∣∣∣tanh
(1

2deH(Xf+)
)
− tanh

(1
2deH(Xf−)

)∣∣∣∣
≤ 1

4 |dfeH(X)| tanh′
(
s

2deH(Xf+) + 1− s
2 deH(Xf−)

)
=: 1

4I1(f, e) · I2.

We will bound I1(f, e) and I2 separately. To bound I2, by adding and subtracting
tanh′(s(Φ(a∗) + (1− s)Φ(a∗))) and using

∣∣∣tanh′(a)− tanh′(b)
∣∣∣ ≤ C2|a− b| we get

I2 ≤ tanh′(Φ(a∗)) + sC2|deH(Xf+)/2− Φ(a∗)|+ (1− s)C2|deH(Xf−)/2− Φ(a∗)|,
and since

|deH(Xf±)/2− Φ(a∗)| ≤
s∑
i=2
|βi||Ei|(|Ei| − 1)A∗ = A∗Φ′|β|(1)(3.5)

we obtain
I2 ≤ tanh′(Φβ(a∗)) + C2A

∗Φ′|β|(1).(3.6)

As for I1, we make use of the last part of the proof of [RR17, Lemma 3.1] to get
1
2
∑
f 6=e

I1(e, f) ≤ Φ′|β|(a∗) + A∗Φ′′|β|(1).(3.7)

Thus, combining (3.6) and (3.7) leads to

‖A‖1→1 ≤
1
2(Φ′|β|(a∗) + A∗Φ′′|β|(1))(tanh′(Φβ(a∗)) + C2A

∗Φ′|β|(1)).(3.8)

Again, by symmetry this implies ‖A‖2→2 < 1, and so the result follows from Corollary
1.4. �

Remark. In the proof of Proposition 2.4 it will be clear that the estimate (3.5)
can be improved for certain ERGM(β,G1, . . . , Gs). Indeed, since deNGi(X) is the
number of injections of Gi into X using the edge e, it can be easily shown that
0 ≤ n2 deNGi (X)

2ein|Vi|
≤ 1 (and 0 ≤ (a∗)ei−1 ≤ 1), so∣∣∣∣∣deH(Xf+)

2 −
s∑
i=1

βiei(a∗)ei−1
∣∣∣∣∣ ≤

s∑
i=2
|βi|ei

∣∣∣∣∣ deNGi(X)
2ei(n)|Vi|−2

− (a∗)ei−1
∣∣∣∣∣ ≤

s∑
i=2
|βi|ei.(3.9)

Since A∗ ≥ 1
2 , for any ensemble of graphs of which H2 (the 2-star) is not a part, this

is superior as

A∗Φ′|β|(1) = A∗
s∑
i=2
|βi||Ei|(|Ei| − 1) ≥ 2A∗

s∑
i=2
|βi||Ei| ≥

s∑
i=2
|βi||Ei|.

12



For the best bound, one can use a combination thereof, bounding β2 (corresponding
to H2) via A∗ and the rest as above. However, since calculating A∗ requires solving
the equation tanh(P (a)) = 2a−1 for a polynomial P of degree maxi ei, this is usually
intractable, and thus one uses the inequality A∗ ≤ 1, and equation (3.9) is better.

Moreover the estimate (3.8) can sometimes also be improved by ignoring the
estimates for I2 in the proof and simply using tanh′(x) ≤ 1, leading to

‖A‖1→1 ≤
1
2
(
Φ′|β|(a∗) + A∗Φ′′|β|(1)

)
(3.10)

Next, let us prove the statement for vertex-weighted exponential random graph
models.

Proof of Theorem 2.6. First note that we have for fixed parameter β = (β1, β2, p)

µ(x) := µβ(x) := Z−1 exp
β1

n

∑
i 6=j

xixj + β2

n2

∑
i 6=j 6=k

xixjxk + log p

1− p

n∑
i=1

xi

 .
Let us define Hn(x) := β1

n

∑
i 6=j xixj + β2

n2
∑
i 6=j 6=k xixjxk + log p

1−p
∑n
i=1 xi. Moreover,

since xi ∈ {0, 1} implies xki = xi for all k ∈ N, we can rewrite this using S := ∑n
i=1 xi

as

µ(x) = Z−1 exp
(
β1

n
S(S − 1) + β2

n2S(S − 1)(S − 2) + log p

1− pS
)
.

Hence for X := {0, 1} and In := {1, . . . , n} we are in the situation of Theorem 1.3,
and it remains to check conditions (1.9) and (1.10). Observe that we have (with the
same notations as in the exponential random graph models)

µ(1 | xe) = exp(deHn(xe, 1))
1 + exp(deHn(xe, 1)) = 1

2 (1 + tanh (deHn(x)/2)) ,

where in this case |deHn(x)| = |2β1
n

∑
i 6=e xi + 3β2

n2
∑
i 6=j,i,j 6=e xixj + log(p/(1 − p))| is

bounded by a constant depending on β, so that a lower bound on the conditional
probabilities holds. The inequality (1.10) is already implicitly proven in the proof of
[DEY17, Lemma 6], which we modify. Fix a site e ∈ In and two configurations x, y
differing solely at f ∈ In, i.e. xf = 1, yf = 0, and let S := ∑n

i=1 yi. We have

dTV (µ(· | xe), µ(· | ye)) = 1
2 |tanh(deHn(xe, 1))− tanh(deHn(ye, 1))|

and since Hn (and as a consequence deHn) only depends on the sum S of a vector,
by defining hn(λ) := β1λ + β2λ

2 − β2
n
λ + log(p/(1 − p)) we can estimate for some

ξ ∈ (0, 1)

Jfe ≤
∣∣∣∣∣ exp(hn((S + 1)/n))
1 + exp(hn((S + 1)/n)) −

exp(hn(S/n))
1 + exp(hn(S/n))

∣∣∣∣∣ = 1
n

∣∣∣∣∣
(

exp ◦hn
1 + exp ◦hn

)′
(ξ)
∣∣∣∣∣.

(3.11)

Lastly, if we define h(λ) = β1λ+ β2λ
2 + log(p/(1− p)), using the Lipschitz property

of the function exp(x)/(1 + exp(x)) it can be shown that∣∣∣∣∣ exp ◦hn
1 + exp ◦hn

− exp ◦h
1 + exp ◦h

∣∣∣∣∣ = O(n−1)
13



and hn can be replaced by h in (3.11) with an error of O(n−2). By summing up over
f 6= e, we obtain for n large enough and all parameters such that

sup
λ∈(0,1)

∣∣∣∣∣ exp ◦h
1 + exp ◦h

′∣∣∣∣∣ < 1(3.12)

that the inequality (1.10) holds. �

Remark. Note that the condition (3.12) can be written in terms of the functions
defined for exponential random graphs. More specifically, we have for any x ∈ R

exp(x)
1 + exp(x) = 1

2(1 + tanh(x/2)),

and hence this functions corresponds to ϕβ for an ERGM(β,K1, K2, K3) with β1 =
log(p/(1− p)), β2 = α1

2 , β3 = α2
6 .

Proof of Theorem 2.7. This Theorem is again an application of Theorem 1.3. Let us
first show that

Jv,w := 1
∆ + 11v∼w

can be used as an interdependence matrix (regardless of n ∈ N). To see this, let
c1, c2 ∈ Ω0 be two colorings that differ only in one vertex v1, and v2 be another vertex.
In the case v1 ∼ v2 (in Gn) the measures µv2(· | civ2) are uniform on C\{civk : vk ∼ v1}
for i = 1, 2, and hence

dTV (µv2(· | c1
v2), µv2(· | c2

v2)) = 1
2

(
1

k − |{c1
v2 : v2 ∼ v1}|

+ 1
k − |{c2

v2 : v2 ∼ v1}|

)

≤ 1
k −∆ ≤

1
∆ + 1 .

On the other hand, if v2 6∼ v1, then µv2(· | civ2) are equal and thus Jv1,v2 = 0.
Since J is a symmetric matrix, we obtain

‖J‖2→2 ≤ ‖J‖1→1 ≤ max
vj∈Vn

∑
vi∈Vn

Jvi,vj ≤
∆

∆ + 1 < 1.

Moreover, we have to show that β̃(µn) ≥ α1 uniformly in n ∈ N. Let S ( Vn, S 6= ∅
be arbitrary, v1 /∈ S and cS ∈ CS be a proper coloring of G |S= (S,En ∩ S × S) and
cv1 ∈ C\{cv2 : v2 ∈ S, v2 ∼ v1}. Using the definition Ω0(G) for the set of all proper
colorings of an arbitrary graph G (with a fixed number of colors, here k), we have

µS(cv1 | cS) = µ(cv1 , cS)
µ(cS) = |Ω0(G |S)|

|Ω0(G |S∪v1)| .(3.13)

It is clear that |Ω0(G |S)| = 1
|C| |Ω0(G̃S)|, where G̃S is obtained by adding an isolated

vertex v1 to S. Hence we fix the vertex set S ∪ v1 and rewrite equation (3.13) as
follows. Let N(v1, S) = {v2 ∈ S : v2 ∼ v1} = {e1, . . . , el} be the neighbors of
v1 in S and for any e1, . . . , ek ∈ N(v1, S) let Ge1,...,ek be the graph with edge set
(En ∩ S × S) ∪ {e1, . . . , ek}, so that

µS(cv1 | cS) = 1
|C|

l∏
k=1

|Ω0(Ge1,...,ek−1)|
|Ω0(Ge1,...,ek)|

.
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By [Jer95, equation (2)], it follows that each of the ratios is bounded from below by
a constant depending on ∆, thus resulting in

µS(cv1 | cS) ≥ 1
|C|

c(∆),

with a possible choice c(∆) =
(

∆+1
∆+2

)∆
. The case S = ∅ is easier, since µi(ci) = 1

|C|
by the invariance of the random coloring model induced by a relabeling of the colors
C. �

Proof of Theorem 2.8. Since we are going to require hard-core models corresponding
to various graphs, we will write µG to emphasize the graph under consideration.
The fugacity λ will not change. Let us show that Jv1,v2 = λ

1+λ1v1∼v2 can be used
as an interdependence matrix. Let v1 ∈ V be a site, σ, σ2 ∈ Y be two admissible
configurations differing only at site v1 (without loss of generality σ1

v1 = 1, σ2
v1 = 0), and

v2 ∈ V be another site. If v2 ∼ v1, then µG(1 | σ1
v1) = 0, whereas µG(1 | σ1

v1) = λ
1+λ .

If v2 6∼ v1 we have µG(· | σ1
v1) = µG(· | σ2

v1). Hence by the symmetry of J

‖J‖2→2 ≤ ‖J‖1→1 ≤ ∆ λ

1 + λ
< 1

since λ < 1
∆−1 .

To see that there is a lower bound on the conditional probabilities, let us first
consider the case S = ∅. Let v ∈ V be arbitrary, write N(v) for the neighborhood of
v and A for the complement of v ∪N(v), and observe that

µG(σv = 1) = µ(σv = 1, σN(v) = 0) = Z−1∑
σ̃A

µ(σv = 1, σN(v) = 0, σA = σ̃A)

= λZ−1 ∑
σ̃A adm

λ|σ̃A| =: λZ−1ZA.

where σ̃A ranges over all admissible configurations. Note that due to σN(v) = 0 these
are actually all admissible configurations of the graph G |A= (A,E ∩ A× A). The
normalizing constant can be bounded from above and below by

Z =
∑

σ̃A adm.

λ|σ̃A|
∑
σ̃Ac

λ|σ̃Ac |1(σ̃A,σ̃Ac ) adm. ≤ 2∆+1ZA

and

Z ≥ (λ+ 1)ZA,

which follows by only considering the configurations σv = 1, σN(v) = 0 and σv∪N(v) = 0.
As a consequence, we have

λ

2∆+1 ≤ µ(σi = 1) ≤ λ

λ+ 1 .(3.14)

The case S 6= ∅ follows by a reduction argument. Let σ̃S be an admissible configura-
tion of G |S and let T := {w ∈ S : σw = 0} ⊂ S be the free sites in S. By explicitly
writing the conditional probability one can see that for any configuration σSc and
any v /∈ S we have

µG(σv = 1 | σS = σ̃S) = µG|V \T (σv = 1 | σS\T = (1, . . . , 1)).
15



Now the graph G |V \T can be divided into three parts: (T,N(T ), R), where N(T ) =
∪v∈TN(v) and

µG(σv = 1 | σS = σ̃S) = µG|R(σv = 1),
which has an upper and lower bound by inequality (3.14). Thus β̃(µG) ≥ c(∆, λ)
and the Theorem follows from Theorem 1.3. �
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