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Abstract. In this work we continue the investigation of [GSS18] on concentration
of measure of higher order for various finite spin systems. We show that under
the presence of a logarithmic Sobolev inequality it is possible to estimate the
growth of the Lp-norms of any function, which leads to concentration inequalities.
Applications to several statistics in the exponential random graph models, the
random coloring models, the hard-core model and the Erdös-Renyi model are given.
We show the effect of better concentration results by centering not around the mean
of the statistic (a zero order approximation), but around a stochastic term (a first
order approximation) in the exponential random graph model. In the Erdös-Renyi
model we prove a central limit theorem for various subgraph counts.

1. Introduction

The concentration of measure phenomenon is by now well understood. Informally,
as stated by M. Talagrand in [Tal96], it can be described as the phenomenon that
a function of n i.i.d. random variables X1, . . . , Xn tends to be very close to its
expected value, where the function is usually assumed to be Lipschitz continuous in
some sense, depending on a suitably adapted notion of a gradient. In other words,
the distribution of any Lipschitz function under product measures shows strong
concentration properties.

Here we study a situation in which we usually have weak dependence, and we
impose boundedness conditions on the higher order differences of some function f .
Moreover, it certain cases it is useful to center f around a certain stochastic expansion
to further improve the concentration properties. The spaces under consideration will
be finite, though typically large, products of finite spaces, endowed with a measure
µ, which we call spin system. Examples of spin systems include the Ising model, the
exponential random graph model, the random coloring model, the hard-core model
and also models with independent entries such as the Erdös-Renyi model.

1.1. Logarithmic Sobolev inequalities. In the context of concentration of mea-
sure, functional inequalities have become prominent and important in the nineties,
since these yielded easier proofs of known (and previously unknown) concentration
results. For an introduction to the concentration of measure phenomenon and
functional inequalities we refer to [Led01] or more recently [BLM13].
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We will consider logarithmic Sobolev inequalities on spin systems. Let X and I
be finite sets, and let Y = X I be the set of all configurations and equip Y with a
probability measure µ (called a spin system). Define the entropy functional

(1.1) Entµ(f) := µ(f log f)− µ(f) log(µ(f)) for f ≥ 0

and the Dirichlet form

Eµ(f, g) := 1
2
∑
i∈I

∫
Y

∫
X

(f(yi, yi)− f(yi, ỹ))(g(yi, yi)− g(yi, ỹ))dµ(ỹ | yi)dµ(y)(1.2)

=
∑
i∈I

∫
Covµ(·|yi)(f(yi, ·), g(yi, ·))dµi(yi).

Here we use the abbreviation µ(f) =
∫
fdµ. Moreover, yi = (yj)j∈I\{i} is a generic

vector, by µ(· | yi) we always mean the conditional probability interpreted as a
measure on X , and µi is the marginal measure on X I\{i}. More generally, for any
S ⊂ I we write yS, µ(· | yS), µS for the obvious analogues. If yi is such that µi(yi) = 0
we interpret the integrand as 0.

We say that (Y , µ) satisfies a logarithmic Sobolev inequality with constant σ2 (in
short LSI(σ2)) if for all f : Y → R

(1.3) Entµ(f 2) ≤ 2σ2Eµ(f, f).

The best constant in (1.3) is known as the logarithmic Sobolev constant. L. Gross
[Gro75] was the first to prove the logarithmic Sobolev inequality for the Gaussian
measure with another Dirichlet form.

1.2. Difference operators and concentration of measure. For any spin system
µ satisfying LSI(σ2) we may obtain concentration of measure results by applying the
main result of [GSS18, Theorem 1.5]. To this end, observe that the (diagonal of the)
Dirichlet form (1.2) can be rewritten as

Eµ(f, f) =
∫
|df |2dµ =

∑
i∈I

∫
(dif)2dµ,(1.4)

where |·| will always be the Euclidean norm of a vector and

dif(x) =
(1

2

∫
(f(x)− f(xi, y))2 dµ(y | xi)

)1/2
(1.5)

is the “local variance”. This is exactly the difference operator under consideration in
[GSS18, Definition 2.2]. A more general definition of a logarithmic Sobolev inequality
is with respect to a certain difference operator, i.e. an operator Γ : L∞(µ)→ L∞(µ)
with the property that |Γ(af + b)| = a|Γ(f)| for all a > 0, b ∈ R. We say that µ
satisfies a logarithmic Sobolev inequality with respect to Γ, if for all f ∈ L∞(µ) we
have

Entµ(f 2) ≤ 2σ2
∫

Γ(f)2dµ.(1.6)

Note that the definition above agrees if we define the difference operator |df | =
(∑i∈I(dif)2)1/2. A second type of difference operator is given by |hf | = (∑i∈I(hif)2)1/2

for

hif(x) = ‖f(xi, yi)− f(xi, ỹi)‖L∞(µ(xi,·)⊗µ(xi,·)).(1.7)
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It is easy to see that if µ satisfies LSI(σ2) with respect to d, then it also satisfies
LSI(σ2/2) with respect to h, i.e.

Entµ(f 2) ≤ σ2
∫
|hf |2dµ.(1.8)

As usual, this in particular implies a Poincaré inequality

Varµ(f) ≤ σ2

2

∫
|hf |2dµ.

We moreover need to introduce higher order differences hi1...id for any d ∈ N by
setting

hi1...idf = hi1(hi2...idf).
In particular, we obtain tensors of d-th order differences h(d)f with coordinates hi1...idf .
Regarding h(d)f as a vector indexed by Id, we may define |h(d)f | as its Euclidean
norm. We will write ‖f‖p for the Lp(µ) norm of f and ‖h(d)f‖p := ‖|h(d)f |‖p.

A version of [GSS18, Theorem 1.5] adapted to our purposes now reads as follows:

Theorem 1.1. Let µ be a spin system on Y = X I satisfying LSI(σ2) with respect to
d, and let f ∈ L∞(µ). Then for all p ≥ 2

‖f − µ(f)‖p ≤
d−1∑
k=1

(σ2p)k/2‖h(k)f‖2 + (σ2p)d/2‖h(d)f‖p(1.9)

In particular, if ‖h(d)f‖∞ ≤ C(d, f) for some d ∈ N, then

µ(|f − µ(f)| ≥ t) ≤ e2 exp
(
− 1
σ2(de)2 min

(
t2/d

C(d, f)2/d , min
k=1,...,d−1

t2/k

‖h(k)f‖2/k
2

))
.

(1.10)

Typically, we will apply Theorem 1.1 in the context of subgraph counting. To
this end, we will consider functions which resemble multilinear polynomials. For any
d ∈ N we define the diagonal of the index set Id as

∆d := {(i1, . . . , id) ∈ Id : |{i1, . . . , id}| < d}.

Let f : X → R be a function which depends on a single spin only, d ∈ N and A a
d-tensor with vanishing diagonal. We can associate to f the functions fi, f̃i : Y → R
defined via fi(y) = f(yi), f̃i(y) = f(yi)− µi, where we use the short-hand notation

µi1...id :=
∫ d∏

j=1
fijdµ(1.11)

and

µ̃i1...id :=
∫ d∏

j=1
(fij − µij)dµ(1.12)

for any i1, . . . , id. From (f, d, A) we may now construct polynomials as follows: let
J be any set and consider

P(J ) =
{
S ⊆ 2J : S is a partition of J

}
.
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Let N : P(J )→ N0 be the number of singletons in a partition P , i.e. the number of
sets {ij}, ij ∈ J , and M : P(J ) → N0 the number of subsets with more than one
element. To any partition P ∈ P(J ) we associate a polynomial gP given by

gP = (−1)M(P ) ∏
J∈P
|J |=1

f̃J
∏
J∈P
|J |>1

µ̃J .

Finally, we set
fd,A =

∑
I=(i1,...,id)

AI
∑

P∈P(I)
gP =

∑
I=(i1,...,id)

AI
∑

P∈P(I)
(−1)M(P ) ∏

J∈P
|J |=1

f̃J
∏
J∈P
|J |>1

µ̃J .(1.13)

The main result of this section is the following concentration inequality for the
functions fd,A.

Theorem 1.2. Let µ be a spin system on Y = X I satisfying LSI(σ2) with respect to
d, d ∈ N, A a d-tensor with vanishing diagonal and f : X → R with |f(x)− f(y)| ≤ c
for all x, y ∈ X . Then, fd,A as in (1.13) is a centered random variable, for all p ≥ 2
we have

‖fd,A‖p ≤
(
σ2c2‖A‖2/d

2 p
)d/2

(1.14)

and

µ (|fd,A| ≥ t) ≤ e2 exp
(
− t2/d

e2/dσ2c2‖A‖2/d
2

)
.(1.15)

Remark. Additionally one can show that also the bound

µ (|fd,A| ≥ t) ≤ 2 exp
(
− t2/d

4eσ2c2‖A‖2/d
2

)

holds. This can be done by estimating the exponential moments of |fd,A|, see e.g.
[BGS17].

If we assume that the spins are independent, then any P ∈ P(I) except for
P = {{i1}, . . . , {id}} leads to gP = 0. Thus the following Corollary easily follows.

Corollary 1.3. Assume that µ = ⊗ni=1µi is a spin system satisfying LSI(σ2) with
respect to d. For any d ∈ N, any d-tensor with vanishing diagonal and any function
f : X → R with |f(x)− f(y)| ≤ c we have

µ

∣∣∣∣∣∣
∑

i1,...,id

Ai1...id f̃i1 · · · f̃id

∣∣∣∣∣∣ ≥ t

 ≤ e2 exp
(
− t2/d

e2/dσ2c2‖A‖2/d
2

)

Actually, in the case of independent random variables, the logarithmic Sobolev
condition can be significantly weakened or even removed. By the results of S. G.
Bobkov, F. Götze and H. Sambale, this can be shown for any set of independent
random variables, see [BGS17, Theorem 1.1].

1.3. Logarithmic Sobolev inequalities for spin systems. Our results build
upon the concept of weakly dependent random variables which enables us to mimic
some procedures known from the case of independent random variables. In particular,
this includes the tensorization property of the logarithmic Sobolev inequality. The
latter was initially proven by K. Marton [Mar15] (see also [GSS18, Theorem 4.1]).
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Let µ a spin system on Y = X I . Define an interdependence matrix (Jij)i,j∈I as
any matrix with Jii = 0 and such that for any x, y ∈ Y with xj = yj we have
(1.16) dTV (µ(· | xi), µ(· | yi)) ≤ Jij.

Here, dTV denotes the total variation distance of two measures µ1, µ2 on some discrete
space X

dTV (µ1, µ2) := sup
A⊂X
|µ1(A)− µ2(A)| = 1

2
∑
x∈X
|µ1(x)− µ2(x)|.

The matrix J (or any norm thereof) may be interpreted as measuring the strength
of the interactions between the spins in the spin system µ. In particular, note that if
µ is a product measure, then J ≡ 0 is an interdependence matrix.

Moreover, we need to control the minimal probabilities of the marginal distributions
of the spin system µ. To this end, let for any subset S ( I

β̃i,S(µ) := inf
xS∈XS
µS(xS)>0

inf
ySc∈XS

c

µ(ySc ,xS)>0

µ((ySc)i | xS).

If S = ∅, this reads β̃i,∅(µ) = infy∈Y:µ(y)>0 µ(yi). The interpretation of β̃i,S(µ) is
straightforward: For any admissible partial configuration xS ∈ X S all possible
marginals are supported on points with probability at least β̃i,S(µ).

Now let
(1.17) β̃(µ) := inf

S(I
inf
i/∈S

β̃i,S(µ)

be the infimum of all β̃i,S(µ). Note that if there are no hard constraints, i.e. µ has
full support, β̃(µ) can be simplified to

β̃(µ) = I(µ) := min
i∈I

min
y∈Y

µ(yi | yi).

The next theorem establishes a logarithmic Sobolev inequality with a constant
depending on β̃ and J for all finite spin systems.

Theorem 1.4. Let µ be a spin system on Y = X I. Assume that for some α1, α2 > 0
β̃(µ) ≥ α1 and ‖J‖2→2 ≤ 1− α2,

where J is a suitable interdependence matrix. Then, a logarithmic Sobolev inequality
with constant σ2 := log(α−1

1 )(log(2)α1α
2
2)−1 holds, i.e. we have for any f : Y → R

vanishing outside of supp(µ)

(1.18) Entµ(f 2) ≤ 2σ2∑
i∈I

1
2

∫
Y

∫
X

(f(y)− f(yi, z))2dµ(z | yi)dµ(y).

Various examples of spin systems satisfying the conditions of Theorem 1.4 will be
given in Section 2.

1.4. Related work. Tail estimates of the order t2/d for Gaussian chaoses of order
d have been proven by R. Latała in [Lat06]. P. Wolff extended this for d = 2 to
functions of Gaussian random variables with bounded Hessian in [Wol13]. The idea
of using higher order derivatives to bound the growth of Lp norms of a function f
appears in [Ada06] (for U -statistics) and in [AW15] in the presence of Sobolev-type
inequalities. In [GS16] the authors study concentration of second order for general
independent random variables, and in [BGS17] the applicability is extended to all

5



possible orders, again under independence assumption. In [GSS18], independence has
been replaced by the assumption that the measure µ satisfies a logarithmic Sobolev
inequality with respect to a probabilistically defined difference operator.

1.5. Outline. In Section 2 we show how to use Theorems 1.1 and 1.2 to obtain
concentration inequalities for functions of weakly dependent random variables for
various models, including the exponential random graph model, the random coloring
model, the hard-core model and the Erdös-Renyi model. Section 3 contains the
proofs of all results.

2. Applications

We will use Theorem 1.2 to prove several results in finite spin systems. The most
important cases of the general result will be d = 1, 2, 3. It is easy to check that we
have

f1,A :=
∑
i∈I

Aif̃i,

f2,A :=
∑
i,j∈I

Aij f̃if̃j,

f3,A :=
∑

i,j,k∈I
Aijk

(
f̃if̃j f̃k − f̃iµ̃jk − f̃jµ̃ik − f̃kµ̃ij

)
.

2.1. Exponential random graph models. As a first example of a discrete model
satisfying a logarithmic Sobolev inequality and thus concentration properties for
suitable functionals, we consider the exponential random graph model. To define the
model, for any two graphs G1 = (V1, E1) and G2 = (V2, E2) denote by NG1(G2) the
number of graph homomorphisms ϕ : G1 → G2 (i.e. injections ϕ : V1 → V2 which
preserve edges). Moreover Gn shall be the set of all simple graphs on n vertices.

Definition 2.1. Let n ∈ N,β = (β1, . . . , βs) ∈ Rs and G1, . . . , Gs be arbitrary,
connected simple graphs with vertex sets Vi and edge sets Ei. The function

(2.1) Hβ : Gn → R, Hβ(x) := n2
s∑
i=1

βi
NGi(x)
n|Vi|

is called Hamiltonian and the probability measure
(2.2) µβ({x}) = Z−1 exp(Hβ(x)) where Z =

∑
y∈Gn

exp(Hβ(y))

the exponential random graph model (ERGM) with parameters (β, G1, . . . , Gs),
abbreviated as ERGM(β, G1, . . . , Gs).

We will always assume G1 to be the complete graph on two vertices K2. For any
set of parameters (β, G1, . . . , Gs) we define the functions Φβ, ϕβ : [0, 1]→ R

Φβ(x) =
s∑
i=1

βi|Ei|x|Ei|−1 = β1 +
s∑
i=2

β2|Ei|x|Ei|−1(2.3)

ϕβ(x) = exp(2Φβ(x))
1 + exp(2Φβ(x)) = 1

2(1 + tanh(Φβ(x))).(2.4)

For any parameter β = (β1, . . . , βs) we set |β| := (|β1|, . . . , |βs|). It is known that
the function ϕβ determines whether the Glauber dynamics associated to µβ is rapidly
mixing or not (see [BBS11], under the assumption of βi ≥ 0 for all i = 1, . . . , s).
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Additionally, under the condition 1
2Φ′|β|(1) < 1, which also appeared in [CD13,

Theorem 6.2], it was shown in [Sin18, Theorem 2.2] that the Glauber dynamics is still
rapidly mixing, allowing for possibly negative values of βi. Especially the conditions
of Theorem 1.4 were proven, and thus the following Proposition readily follows.

Proposition 2.2. Let β be such that 1
2Φ′|β|(1) < 1. Then, µβ satisfies a logarithmic

Sobolev inequality with a constant σ2 = σ2
β depending on β, i.e.

(2.5) Entµβ
(f 2) ≤ 2σ2

∫
|df |2dµβ.

We can use the general result on the concentration of the polynomials fd,A from
(1.13) with the spin function f(x) = x, x ∈ X = {0, 1}.

f1,A =
∑
i∈In

Aix̃i,

f2,A =
∑
i,j∈In

Aij(x̃ij − µ̃ij),

f3,A =
∑

i,j,k∈In
Aijk (x̃ijk − µ̃ijk − 3x̃iµ̃jk) .

In particular, |f(x)− f(y)| ≤ 1, and so the next Corollary immediately follows from
Theorem 1.1 and Proposition 2.2.

Corollary 2.3. Let µβ be an ERGM with 1
2Φ′|β|(1) < 1, d ∈ N fixed, A a d-tensor

with vanishing diagonal and fd,A as above. We have
(2.6)

µβ (|fd,A| ≥ t) ≤ e2 exp
(
− t2/d

e2/dσ2‖A‖2/d
2

)
≤ e2 exp

(
− t2/d

e2/dσ2n(n− 1)‖A‖2/d
∞

)
.

As can be seen from the proof, the condition 1
2Φ′|β|(1) < 1 is only needed to make

sure that µβ satisfies a logarithmic Sobolev inequality with some constant σ2 which
can be chosen uniformly in n ∈ N. As a consequence, the results from this section are
all valid under the more general assumption of µβ satisfying a logarithmic Sobolev
inequality. In particular, proving a logarithmic Sobolev inequality for the full high
temperature phase as defined in [BBS11] for |β| would extend our results to a region
beyond 1

2Φ′|β|(1) < 1.

2.1.1. Counting edges. Our first application is counting the number of edges T1 :=∑
e∈In xe in models µβ = ERGM(β,G1, . . . , Gs) satisfying a logarithmic Sobolev

inequality. Note that T1 − µβ(T1) = f1,A for A = (1, . . . , 1). Thus by Corollary 2.3
we obtain

µβ(|T1 − µβ(T1)| ≥ t) ≤ e2 exp
(
− t2

e2σ2|In|

)
= e2 exp

(
− 2t2
e2σ2n(n− 1)

)
.(2.7)

By the intrinsic symmetry (i.e. a relabeling of the vertices {1, . . . , n} and an appro-
priate relabeling of the edges will result in the same probability law), it is easy to
see that µβ(xe) =: η does not depend on e ∈ In. Thus µβ(T1) = |In|η.

In particular, (2.7) implies a law of large numbers for the edge count. Indeed,
it follows immediately that T1/|In| converges to η in probability, and the rate of
convergence is of order exp(−Ω(n2)), which in turn implies convergence almost surely.
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2.1.2. Counting edges between two subsets of vertices. Let S1, S2 ⊂ {1, . . . , n} be two
disjoint subsets (not necessarily a partition of {1, . . . , n}). Define

C(S1, S2) := {e = (i, j) ∈ In : {i, j} ∩ S1 6= ∅, {i, j} ∩ S2 6= ∅}
and Ae := 1C(S1,S2)(e). Clearly we have |C(S1, S2)| = |S1||S2| and thus ‖A‖2

2 =∑
e∈In A

2
e = |S1||S2|. Once again the statistic TS1,S2 := ∑

e∈In Aexe is concentrated as

µβ(|TS1,S2 − µβ(TS1,S2)| ≥ t) ≤ e2 exp
(
− t2

e2σ2|S1||S2|

)
.(2.8)

2.1.3. Counting triangles. Let us define for any n ∈ N the set of all triangles

Tn :=
{
{e, f, g} ∈

(
In
3

)
: e, f, g form a triangle

}
.

Here,
(
In
3

)
denotes the set of all three distinct edges. The number of triangles is

given by
T3(x) :=

∑
{e1,e2,e3}∈Tn

xe1e2e3 .(2.9)

To obtain concentration results, we shall express the number of triangles as a linear
combination of polynomials of the type fd,A. To state our Proposition, we shall also
require the function

f1 :=
∑
e∈In

x̃e.(2.10)

Proposition 2.4. Let µβ be an exponential random graph model with parameters
satisfying 1

2Φ′|β|(1) < 1. Then, we have

‖T3 − µβ(T3)‖p ≤ (σ2np)3/2 + (σ2µ1n
3/2p) + (σ2µ4

1/2n4p)1/2(2.11)
and

‖T3 − µβ(T3)− (n− 2)µ2
1f1‖p ≤ (σ2np)3/2 + (σ2µ1n

3/2p).(2.12)
In particular, this yields the multilevel concentration bounds

µβ(|T3 − µβ(T3)| ≥ t) ≤ e2 exp
(
− 1

9e2σ2 min
(
t2/3

n
,

t

µ1n3/2 ,
2t2
µ4

1n
4

))
(2.13)

and

µβ

(
|T3 − µβ(T3)− (n− 2)µ2

1f1| ≥ t
)
≤ e2 exp

(
− 1

2eσ2 min
(
t2/3

n
,

t

µ1n3/2

))
.

(2.14)

Remark. It is interesting to note the effect of subtracting the random variable
(n − 2)µ2

1f1. The variance of T3 is of order n4, and thus a normalization of n−2

is necessary to obtain a stable variance, and inequality (2.13) gives suitable tail
estimates. However, the random variable T3 − (n− 2)µ2

1f1 concentrates on a much
narrower range, since the variance is of order n3, and equation (2.14) yields stretched-
exponential tails in this case. In particular, the term c(n− 2)f1 serves to remove the
n4 variance term which stems from the covariances.

It is easiest to see this in the case s = 1, i. e. β = β1 and G1 = K2. Here we
obtain a collection of i.i.d. {0, 1}-random variables (Xe)e∈In with P(Xe = 1) = p
(depending on β1), the Erdös-Renyi ensemble. Indeed, a simple calculation gives
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Var
(
T3 − (n− 2)µ2

1f1
)

= p3(1− p3)
(
n

3

)
.

Moreover, inspecting (2.13), we see that the normalization n−2 corresponds to the
factor n−4 in the Gaussian part, whereas the exponential and stretched-exponential
part require a normalization of n−3/2 only. This provides another explanation why
after subtraction of the “linear term” µ2

1(n−2)f1 a normalization by n−3/2 is sufficient.
See Figure 1 for a visualization of these observations.
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Figure 1. A comparison of T3−µβ(T3) and T3−µβ(T3)− (n−2)p2f1
for n = 100, β1 = −0.1, β2 = 0.05 and G1 = K2, G2 = K3 using the
Glauber dynamics and roughly 2 million simulations.

Proof. We claim that we can decompose T3 as follows
T3 − µ(T3) = f3 + µ1f2 + (n− 2)µ2

1f1,(2.15)
where we define the auxiliary functions

T̃3 :=
∑

{e1,e2,e3}∈Tn

(x̃e1e2e3 − µ̃e1e2e3)

f3 :=
∑

{e1,e2,e3}∈Tn

(x̃e1e2e3 − µ̃e1e2e3 − 3x̃e1µ̃e2e3)

f2 :=
∑

{e1,e2}:e1∩e2 6=∅
(x̃e1e2 − µ̃e1e2) .

To see this, it is easy to see by algebraic manipulations that
T3 − µ(T3) = T̃3 + r2 − r1(2.16)

with
r2 = 3

∑
{e1,e2,e3}∈Tn

(xe1e2 − µe1e2)µg = µ1
∑

{e1,e2}:e1∩e2 6=∅
xe1e2 − µe1e2

r1 = 3
∑

{e1,e2,e3}∈Tn

(xe1 − µe1)µe2e3 = 3(n− 2)µ2f1

and it is also immediate to see that
f3 = T̃3 − 3(n− 2)µ̃2f1.(2.17)
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Here we have set µ1 := µe for some e ∈ In, µ2 := µef and µ̃2 := µ(x̃ef) for some
e, f ∈ In such that e ∩ f 6= ∅. (Note that these definitions do not depend on the
choice of the edges e, f .) Combining equations (2.16) and (2.17) yields

T3 − µ(T3) = f3 + 3(n− 2)(µ̃2 − µ2)f1 + µ1
∑

{e1,e2}:e1∩e2 6=∅
xe1e2 − µe1e2 .(2.18)

Moreover we have

f2 =
∑

{e1,e2}:e1∩e2 6=∅
(xe1e2 − µe1e2)− 4µ1(n− 2)f1,(2.19)

and thus we can ultimately write

T3 − µ(T3) = f3 + 3(n− 2)(µ̃2 − µ2)f1 + µ1 (f2 + 4(n− 2)µ1f1)(2.20)

= f3 + µ1f2 + (n− 2)
(
3µ̃2 − 3µ2 + 4µ2

1

)
f1

= f3 + µ1f2 + (n− 2)µ2
1f1

as claimed.
Hence, after symmetrization of the summands, the triangle count is the sum

of three terms fd,A for different tensors, i.e. f3 = f3,A3 , f2 = f2,A2 , f1 = f1,A1 for
(A3)efg = 1/6 · 1{e,f,g}∈Tn , (A2)ef = 3

2µ11e∩f 6=∅ and (A1)e = (n− 2)µ2
1. The Hilbert-

Schmidt norms are

‖A3‖2
2 =

∑
(e,f,g)∈Tn

1
36 = n(n− 1)(n− 2)

36 ∼ n3/36

‖A2‖2
2 =

∑
(e,f):e∩f 6=∅

µ2
1

4 = µ2
1
n(n− 1)(n− 2)

4 ∼ µ2
1n

3/4

‖A1‖2
2 =

∑
e∈In

(n− 2)2µ4
1 = (n− 2)2µ4

1n(n− 1)/2 ∼ µ4
1n

4/2.

Now it remains to apply Theorem 1.2. �

Remark. In the case of the Erdös-Renyi ensemble, equation (2.15) reduces to the
Hoeffding decomposition, with (n− 2)µ2

1f1 as the first order and µ1f2 as the second
order Hoeffding term, which also coincides with the decomposition of the function T3 in
L2(µn,p) in terms of the orthonormal basis (fS)S⊂In , fS = (p(1−p))−|S|/2∏s∈S(Xs−p).

Using the concentration results, we can mimic the method of Hájek projection
to show a central limit theorem for the triangle count under the assumption that
the number of edges satisfies a central limit theorem. For the special case of the
Erdös-Renyi ensemble, we will develop these ideas more in detail in Section 2.4.

Corollary 2.5. Let µβ be an exponential random graph model with 1
2Φ′|β|(1) < 1. If

1√(
n
2

) ∑
e∈In

(Xe − µe)⇒ N (0, σ2)

holds, then we have
T3 − µn(T3)

(n− 2)µ2
1

√(
n
2

) ⇒ N (0, σ2).
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Heuristically, the variance σ2 should be p∗(1− p∗), where p∗ is the unique solution
of p = ϕβ(p), p ∈ [0, 1], since in the high temperature phase (with positive βi) we
have EXe → p∗, see [BBS11, Theorem 7].
Proof. Using the decomposition (2.15) and the concentration of measure results from
Proposition 2.4 it can be shown that

µβ


∣∣∣∣∣∣∣∣
T3 − µ(T3)− (n− 2)µ2

1f1

(n− 2)µ2
1

√(
n
2

)
∣∣∣∣∣∣∣∣ ≥ t

→ 0 for n→∞,(2.21)

and thus
T3 − µβ(T3)

(n− 2)µ2
1

√(
n
2

) = T3 − µβ(T3)− (n− 2)µ2
1f1

(n− 2)µ2
1

√(
n
2

) + 1√(
n
2

)f1 ⇒ N (0, σ2)

by [Bil68, Theorem 3.1] and the assumption. �

Remark. Actually equation (2.21) can be quantified; by (2.14), the convergence to 0 is
of the order exp(−Ω(n1/3)), and hence ((n−2)µ2

1

(
n
2

)1/2
)−1 (T3 − µ(T3)− (n− 2)µ2

1f1)
→ 0 almost surely.

2.2. Random coloring model. Next, let us consider the random coloring model.
Given a graph G = (V,E) and a number of colors k ≥ 2∆ + 1, where ∆ is the
maximum degree of G, the random coloring model µG is the measure on {1, . . . , k}V
that assigns equal probability to all proper colorings. The conditions of Theorem 1.4
have been checked in [Sin18, Theorem 2.7] and hence a logarithmic Sobolev inequality
(1.3) holds. This especially applies to a sequence of graphs with uniformly bounded
degree.

Proposition 2.6. Let Gn = (Vn, En) be a sequence of graphs with uniformly bounded
maximum degree ∆ and k ≥ 2∆ + 1. Then a logarithmic Sobolev inequality holds for
µGn with a constant σ2 = σ2(∆).

More precisely, given any function f : {1, . . . , k}V → R vanishing outside of
Ω0 := suppµ = {(cv)v∈V ∈ {1, . . . , k}V : cv 6= cw ∀v ∼ w} we have

Entµ(f 2) ≤ 2σ2 ∑
c∈Ω0

µ(c)
∑
v∈V

∫
(f(cv, cv)− f(cv, c̃v))2dµ(c̃v | cv).

Similarly, this implies concentration properties for certain functionals. By way of
example, we consider the cases of finding vertices, edges and triangles with prescribed
colors. We will write the results in terms of a single graph G, but the interesting case
will be to consider graphs Gn with |Vn| → ∞ (but with bounded maximal degree ∆n).

Example (First order statistic). Let S ⊂ {1, . . . , k}. The statistic
T1(c) =

∑
v∈V

1S(cv),

i.e. the number of vertices having a color from S, has the form of f1,A for the function
f(x) = 1S(x) and A = (1, . . . , 1). Hence by Proposition 1.2 we have

µG(|T1 − µG(T1)| ≥ t) ≤ e2 exp
(
− t2

e2σ2|V |

)
.(2.22)
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Note that µG(T1) = |V | |S|
k

by the invariance of the measure µG under a relabeling of
the colors.

Example (Second order statistic). Again, let S ⊂ {1, . . . , k} and

T2(c) = 1
2
∑
v,w
v∼w

1S(cv)1S(cw)− µG(cv ∈ S, cw ∈ S)

be the number of edges with both endpoints colored with colors from S. If we again
choose f(x) = 1S(x) and the 2-tensor as Avw = 1/2 · 1v∼w, we obtain

f2,A(c) = 1
2
∑
v,w
v∼w

f̃vf̃w − µ̃vw.

It is clear that

(2.23) f2,A = T2 −
|A|
k

∑
w∈V

deg(w)f̃w =: T2 − f1,A(1) .

From this decomposition, we obtain a two-level bound for the statistic T2 as
‖T2‖p ≤ ‖f2,A(2)‖p + ‖f1,A(1)‖p ≤ σ2p‖A(2)‖2 + (σ2p‖A(1)‖2

2)1/2

= (σ2p|E|1/2/2) +
(
σ2p
|S|2

k2

∑
v∈V

deg(v)2
)1/2

.

Using (1.10), we arrive at

µG(|T2| ≥ t) ≤ e2 exp
(
− 1

4σ2e2 min
(

2t
|E|1/2

,
k2t2

|S|2∑v∈V deg(v)2

))
.

Example. Lastly, let us consider the case of finding triangles with vertices having
prescribed colors. To this end, let η := |S|

k
= µG(cv ∈ S), Tn be the set of all triangles

in Gn and define
T3(c) =

∑
{u,v,w}∈T3

1S(cu)1S(cv)1S(cw).(2.24)

Again, the centered version can be rewritten
T3 − µG(T3) = f3,A(2) − 3η2f2,A(2) − 3ηf1,A(1) ,(2.25)

where
f3,A(3) =

∑
{u,v,w}∈T

f̃uf̃vf̃w − µG(f̃uf̃vf̃w)− 3f̃vµG(f̃vf̃w)

f2,A(2) =
∑

{u,v}:u∼v
f̃uf̃v∆(u, v)

f1,A(1) =
∑
u

f̃u∆(u).

Here ∆(u, v) = |S1(u) ∩ S1(v)| is the number of triangles with vertices u and v and
∆(u) = |{v, w} : {u, v, w} ∈ Tn| is the number of triangles with vertex u. This
decomposition yields

µG (|T3 − µ(T3)| ≥ t) ≤ e2 exp
(
− 1

9e2 min
(

t2

4∑u ∆(u)2 ,
t

c|Tn|1/2
,
t2/3

|Tn|1/3

))
.

(2.26)
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Clearly ∑u ∆(u)2 ≤ 3∆|Tn|, and so

µG
(
|T3 − µ(T3)| ≥ |Tn|1/2t

)
≤ e2 exp

(
− 1

9e2 min
(

t2

12∆ ,
t

c
, t2/3

))
.(2.27)

2.3. Hard-core model. Another model of a spin system for which a logarithmic
Sobolev inequality can be established is the hard-core model with fugacity λ > 0.
Given a graph G = (V,E), it is the probability measure on {0, 1}V such that
for all admissible configurations σ we have µλ(σ) = Z−1λ

∑
v∈V σv . An admissible

configuration σ satisfies σvσw = 0 for all v ∼ w.
In [Sin18] it was shown that the hard-core model satisfies the conditions of Theorem

1.4 for λ < 1
∆−1 with a constant depending on ∆ only.

Proposition 2.7. Let G = (V,E) be any graph with maximum degree ∆. Then,
there exists a constant σ2 = σ2(∆) such that LSI(σ2) holds.

Example. Consider the sequence of cycles Cn (which have uniformly bounded maxi-
mum degree ∆ = 2), let λ ∈ (0, 1) be fixed and denote by µn the hard-core model
with fugacity λ on Cn. There exists a constant σ2 so that for all n ≥ 2 the measure
µn satisfies LSI(σ2). If we write the vertices of Cn as x ∈ Z /nZ, we can consider
the function

T2(σ) = n−1/2 ∑
k∈Z /nZ

σkσk+2,

which counts the number of particles with a distance of 2. A short calculation yields
heT2 ≤ n−1/2, and from Theorem 1.1 (with d = 1) we obtain

µn (|T2 − µn(T2)| ≥ t) ≤ e2 exp
(
− t2

e2σ2

)
.

It is possible to generalize this example to sequences of graphs G = Gn with
uniformly bounded maximum degree ∆. As above, we count the number of particles
with a distance of 2. Here we may proceed as above though with additional factors
depending on ∆. Indeed, we always have heT2 ≤ ∆(∆− 1)n−1/2, where equality can
only be reached for graphs having a tree as a subgraph.

2.4. A central limit theorem for Erdös-Renyi graphs. For any n ∈ N and
p = p(n) denote by µn,p the Erdös-Renyi model on n vertices, i.e. µn,p is the product
measure of Bernoulli(p) distributions on the n(n− 1)/2 possible edges. Write

σ2(p) = 1− 2p
log(1− p)− log(p) .

Since µn,p is a product measure on {0, 1}n(n−1)/2, by the tensorization property and
[DS96, Theorem A.2] we have

Entµn,p(f 2) ≤ σ2(p)
∫ ∑

i 6=j
Varµij(f)dµn = σ2(p)

∫
|df |2dµn,p.(2.28)

Thus µn,p satisfies LSI(σ2(p)). Note that as p→ 0 we have σ2(p) ∼ (log(1/p))−1, i.e.
the logarithmic Sobolev constant tends to infinity, however at a logarithmic scale
(in p). It is also possible to relate the logarithmic Sobolev constant σ2(p) with a
logarithmic Sobolev inequality with respect to the difference operator h, since

dif(y)2 = 1
2

∫∫
(f(yi, y′)− f(yi, y′′))2dµ2(y′, y′′) = p(1− p)(f(yi, 1)− f(yi, 0))2
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= p(1− p)hif(y)2.

Now it is easily seen that equation (2.28) implies

Entµn,p(f 2) ≤ σ2(p)p(1− p)
∫
|hf |2dµn,p.(2.29)

Using this logarithmic Sobolev inequality, it is possible to prove a central limit
theorem for subgraph counts under decay conditions on the sequence pn. We will
first consider the case of finding a triangle to convey the idea, and prove the general
theorem thereafter. Recall the definition (2.9) of the triangle count T3.

Proposition 2.8. Let (µn,p)n be a sequence of Erdös-Renyi models with p = p(n)
satisfying

np2

log3(1/p)
→∞ and p ≤ 1− ε for some ε > 0.

Then
T3 − µn,p(T3)

(n− 2)p2
√
p(1− p)n(n− 1)/2

⇒ N (0, 1).

Remark. The condition is fulfilled if p(n) = n−α and α ∈ (0, 1/2) (or clearly if
p > ε uniformly in n for some ε > 0). For the triangle count we are off by a p
factor (ignoring the logarithmic dependence on p), since in [Ruc88] it has been
shown that the convergence holds for any graph G if and only if npm →∞, where
m = max{e(H)/|H| : H ⊂ G}, which in the case of the k-cycles is 1. However, the
case of triangles is the worst case in the set of all cycles as will be apparent from the
next proposition.

Proof. Firstly, define hn := (n− 2)p2
√
p(1− p)n(n− 1)/2 and T̃3 := T3 − µn,p(T3)−

(n − 2)p2f1. Now, applying Proposition 2.4 (or rather Theorem 1.2 and the same
calculation as done for Proposition 2.4), we obtain

µn,p
(∣∣∣T̃3

∣∣∣ ≥ hnt
)
≤ e2 exp

− 1
2eσ2(p) min

( thn
(p(1− p))3/2n3/2

)2/3

,
thn

pn3/2p(1− p)


≤ e2 exp

(
− 1

2eσ2(p)(1− p) min
(
c1t

2/3(np2)1/3, c2t(np)1/2
))

.

By assumption, np2/(σ2(p))3 → ∞, and we obtain h−1
n T̃3 → 0 in probability (or

almost surely, if the divergence of is fast enough).
Secondly, note that

(n− 2)p2

hn

∑
e∈In

(xe − p) = 1√
|In|

∑
e∈In

xe − p√
p(1− p))

⇒ N (0, 1)

by the central limit theorem for i.i.d. random variables. The Proposition now follows
from [Bil68, Theorem 3.1]. �

To prove the general theorem, denote by TG the number of subgraph counts,
i.e. graph homomorphisms from G to the Erdös-Renyi random graph. A possible
representation is
(2.30) TG(X) =

∑
f :V→[n] injective

∏
e∈E

Xf(e)
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with the definition f(e) = {f(e1), f(e2)} for e = {e1, e2}. For notational convenience,
we will (unlike as in the triangle case) not divide by the number of automorphisms
of G, resulting in |Aut(G)| in the denominator in the next theorem.

Lastly, define the maximal degree of a graph as d(G) := maxH⊂G |E(H)|
|V (H)| , and the

modified form d̃(G) := maxH⊂G,|E(H)|≥2
|E(H)|−1
|V (H)|−2 .

Theorem 2.9. Let G = (V,E) be any simple, connected graph and let p = p(n)
satisfy npd̃(G)/ log|E|(1/p)→∞ and p ≤ 1− ε for some ε > 0. Then, we have

TG − µn,p(TG)

2|Aut(G)||E|n|V |−2p|E|−1
√(

n
2

)
p(1− p)

⇒ N (0, 1).

In particular, if G = Cm is a cycle, we have d̃(Cm) = (m − 1)/(m − 2), which
gives back Proposition 2.8 if m = 3, while d̃(Cm) approaches the optimal value 1 for
large m.

Proof. We will consider the L2(µn,p) (or Hoeffding) decomposition of TG with respect
to the orthonormal basis (fS)S⊂In , fS = (p(1− p))−|S|/2∏s∈S(Xs − p), i.e.

TG =
∑
S⊂In
〈TG, fS〉fS =

|E|∑
k=0

∑
S⊂In:|S|=k

〈TG, fS〉fS =:
|E|∑
k=0

Tk.

It is clear that T0 = µn,p(TG) and an easy calculation yields

T1 =
∑
e

〈TG, f{e}〉f{e} = 2|E|p|E|−1n|V |−2∑
{e}

X̃e.

For arbitrary k ∈ {1, . . . , |E|}, this can be seen by considering the representation
(2.30): for any distinct edges f1, . . . , fk we obtain

Tk = (p(1− p))−k
∑

{f1,...,fk}

∑
f :V→[n] inj

〈
∏
e∈E

Xf(e), X̃f1···fk〉X̃f1···fk ,

and for fixed f1, . . . , fk the scalar product is zero unless the injection uses all edges
f1, . . . , fk, which yields

Tk = (p(1− p))−k
∑

{f1,...,fk}
X̃f1···fk

∑
f :V→[n] inj. uses edges f1···fk

p|E|−k(p(1− p))k

= p|E|−k
∑

{f1...fk}
X̃f1···fkNG(f1, . . . , fk),

where NG(f1, . . . , fk) := |f : V → [n] inj. uses edges f1 · · · fk|. We now claim that∑|E|
k=2 fk

2|E|n|V |−2p|E|−1
√(

n
2

)
p(1− p)

→ 0 in probability,

from which the result immediately follows, since the normalized first order Hoeffding
term converges weakly to a standard normal distribution by the standard central
limit theorem for i.i.d. random variables.

Let us split the k-th Hoeffding term further. Consider the number α(f1, . . . , fk) of
vertices that are used in the graph with edge set {f1, . . . , fk} and let αk denote the
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minimal number of vertices in a subgraph of G with k edges. Clearly, α(f1, . . . , fk) ∈
{αk, . . . , 2k ∧ |V |}. This gives the decomposition

Tk =
min(|V |,2k)∑
α=αk

Tk,α,

and

T̃G := TG − µn,p(TG)− f1 =
|E|∑
k=2

min(|V |,2k)∑
α=αk

Tk,α.(2.31)

Using the Lq(µn,p) estimates from Proposition 1.2 gives for all q ≥ 2

‖T̃G‖q ≤
|E|∑
k=2

min(|V |,2k)∑
α=αk

‖Tk,α‖q ≤
|E|∑
k=2

min(|V |,2k)∑
α=αk

(
σ2(p)‖A(k,α)‖k/22 q

)2/k
.

Let c(n, p) := (2|E|n|V |−2p|E|−1
√(

n
2

)
p(1− p)). The Lq estimate given above can be

used to show the multilevel concentration inequality (as in the proof of Theorem 1.1)

µn,p
(
c(n, p)−1|T̃G| ≥ t

)
≤ e2 exp

(
− 1
Cσ2(p) min

k=2,...,|E|
min

α=αk,...,min(2k,|V |)
t2/kh

2/k
n,k,α

)
,

(2.32)

with hn,k,α :=
(

c(n,p)
(p(1−p))k/2p|E|−k‖A(k,α)‖2

)
, and it remains to prove that

min
k=2,...,|E|

min
α=αk,...,2k∧|V |

c(n, p)/(p(1− p)p|E|−k‖A(k,α)‖2)→∞.

We can estimate ‖A(k,α)‖2 from above as follows. If there are α vertices used by the
edges f1, . . . , fk, there are at most n|V |−α ways to have an injection of V into [n]
using the edges f1, . . . , fk, and there are at most nα such combinations of f1, . . . , fk,
and thus

‖A(k,α)‖2 ≤ n|V |−αnα/2 = n|V |−α/2,

and for k ≥ 2 this gives
c(n, p)

(p(1− p))k/2p|E|−k‖A‖(k,α)
2

≥ c(G) n|V |−1p|E|−1/2

(p(1− p))k/2n|V |−α/2p|E|−k ≥ c(G)nα/2−1pk/2−1/2

= c(G)
(
nα−2pk−1

)1/2
,

which is equivalent to mink=2,...,|E|minα∈{αk,...,2k∧|V |} np(k−1)/(α−2) →∞, i.e.

npmaxk=2,...,|E|maxH⊂G:|E(H)|=k
|E(H)|−1
|V (H)|−2 = npd̃(G) →∞.(2.33)

�

We may replace the condition on d̃(G) in Theorem 2.9 by a condition on the
maximal degree d(G), though with an additional factor 2 which may lead to weaker
results in general.

Corollary 2.10. Let G = (V,E) be any simple, connected graph. If p = p(n) satisfies
np2d(G)/ log(1/p)→∞, then

TG − µn,p(TG)

2|E|n|V |−2p|E|−1
√(

n
2

)
p(1− p)

⇒ N (0, 1).
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Proof. This follows immediately from Theorem 2.9. Indeed, since (x− 1)/(y − 2) ≤
2x/y for all integers x, y with x = 2, y = 3, x = 3, y = 4 and y ≥ x ≥ 3, we obtain
d̃(G) ≤ 2d(G) (for any graph apart from K2), and thus npd̃(G) ≥ np2d(G) →∞. �

Remark. Similar calculations (and a proof of a central limit theorem for subgraph
counts under non-optimal conditions) have been done in [NW88], interpreting sub-
graph counts as incomplete U -statistics and using the Hoeffding decomposition
to prove the CLT. However, [NW88, Theorem 3.1] does not seem to be quite
correct, since for triangles it requires a normalization of the subgraph count by
(n − 2)

√
p(1− p)n(n− 1)/2, which does not converge to a normal distribution in

general. As can be seen from the decomposition, the correct normalization is
(n−2)p2

√
p(1− p)n(n− 1)/2 (see also Figure 2 below). In our approach, we addition-

ally provide a quantification, i.e. we show that T3−µ(T3)−p2(n− 2)f1 = Oµn,p(n3/2)
with exponentially decaying tails.
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Figure 2. Histogram of T3−µn,p(T3)
(n−2)p2

√
p(1−p)n(n−1)/2

in an Erdös-Renyi
graph with n = 1000 and p = 0.1.

3. Proofs

In this section, we give the proofs of the results presented in Section 1. We start
with Theorem 1.4. As indicated in Section 1, a key step is the application of an
approximate tensorization result which goes back to K. Marton [Mar15] (see also
[GSS18, Theorem 4.1]). For the reader’s convenience, we state a version of it adapted
to the situation considered in this article.

Theorem 3.1 (Marton). Let µ be a spin system on Y = X I. If for some α1, α2 > 0

β̃(µ) ≥ α1 and ‖J‖2→2 ≤ 1− α2,
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where J is a suitable interdependence matrix, then for any function f : Y → R+
vanishing outside of suppµ we have

(3.1) Entµ(f) ≤ 1
α1α2

2

∑
i∈I

∫
Entµ(·|xi)(f(xi, ·))dµ(x).

We will not give a proof here, but only note that the inductive approach given in
[Mar15] (or see [GSS18, Theorem 4.1]) also works in the case of µ not having full
support (i.e. the spin system having hard constraints) since α1 is a uniform lower
bound for any subset S ⊂ I, any x ∈ X S with µS(x) > 0 and any i /∈ S.

We are now ready to prove our first result.

Proof of Theorem 1.4. Since µ satisfies the conditions of Theorem 3.1, we obtain
that for any f : Y → R vanishing outside of Ω0 := suppµ

(3.2) Entµ(f 2) ≤ 1
α1α2

2

∑
i∈I

∫
Entµ(·|yi)(f

2(yi, ·))dµ(y).

We can interpret this as a result on the probability space (Ω0, µ), i.e. for any
f : Ω0 → R the inequality holds.

For any i ∈ I, any y ∈ Y with µ(y) > 0 the measure µn(· | yi) is a measure on X
with 1

minx∈X µ(x|yi)
≤ 1

α1
, and thus by [BT06, Remark 6.6] we have

Entµ(·|yi)(g
2) ≤ 2 log(α−1

1 )
log(2) Varµ(·|yi)(g),

which plugged into equation 3.2 leads to

Entµ(f 2) ≤ 2 log(α−1
1 )

log(2)α1α2
2

∑
i∈I

∫
Varµ(·|yi)(f(yi, ·))dµ(y)

= 2σ2Eµ(f, f).

�

Proof of Theorem 1.1. First, note that since µ satisfies LSI(σ2) with respect to d, by
[GSS18, Proposition 2.4] we obtain for any p ≥ 2

‖f − µ(f)‖2
p ≤ σ2p‖hf‖2

p.(3.3)

Next we iterate (3.3) using |h|h(d−1)f || ≤ |h(d)f | (cf. [GSS18, Lemma 2.3]). This
leads to

‖f − µ(f)‖2
p ≤

d−1∑
k=1

(σ2p)k‖h(k)f‖2
2 + (σ2p)d‖h(d)f‖2

p,

i. e. (1.9).
To prove the multilevel concentration bounds (1.10), we use methods outlined in

[Ada06, Theorem 7], [AW15, Theorem 3.3] or [GSS18, Remark after Theorem 1.3].
To sketch the method in a slightly more general situation, assume that for any p ≥ 2,
we have for some constants C1, . . . , Cd ≥ 0

‖f − µ(f)‖p ≤
d∑

k=1
(Ckp)k/2
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(which follows from (1.9) after taking roots). Write N := |{n : Cn > 0}| and
r := min{k ∈ {1, . . . , d} : Ck > 0}. By Chebyshev’s inequality for any p ≥ 1 we
obtain
(3.4) µ(|f − µ(f)| ≥ e‖f − µ(f)‖p) ≤ exp(−p).
Now consider the function

ηf (t) := min
{
t2/k

Ck
: k = 1, . . . , d

}
,

with x
0 being understood as ∞, and assume that ηf (t) ≥ 2, so that we can estimate

e‖f − µ(f)‖ηf (t) ≤ e
d∑

k=1
1Ck 6=0t = Net.

Applying equation (3.4) to p = ηf (t) (if p ≥ 2)
µ(|f − µ(f)| ≥ (Ne)t) ≤ µ(|f − µ(f)| ≥ e‖f − µ(f)‖ηf (t)) ≤ exp (−ηf (t))

and combining it with the obvious estimate (in the case p ≤ 2) gives
µ(|f − µ(f)| ≥ (Ne)t) ≤ e2 exp(−ηf (t)).

To remove the Ne factor, it is easiest to rescale the function by Ne and use the
estimate η(Ne)f (t) ≥ ηf (t)

(Ne)2/r . Thus, we have

µ(|f − µ(f)| ≥ t) ≤ e2 exp
(
− 1

(Ne)2/r ηf (t)
)
.

�

To prove Theorem 1.2, let us introduce another notation. For any l1, . . . , ls ∈ I
and s distinct indices k1, . . . , ks ∈ {1, . . . , d} let Ak1=l1,...,ks=ls be the (d− s)-tensor
with fixed entries ki = li for all i = 1, . . . , s. For example, if A = (Aijkl) is a
4-tensor, A2=j,3=i is the 2-tensor given by A2=j,3=i

kl = Akjil. Clearly, if A is symmetric,
then Ak1=l1,...,ks=ls is symmetric; and if A has a vanishing diagonal, then so has
Ak1=l1,...,ks=ls .
Proof of Theorem 1.2. To see that µ(fd,A) = 0 fix i1, . . . , id and let P ∈ P({i1, . . . , id})
be arbitrary. If N(P ) = 1, then gP has mean zero. On the other hand, if
N(P ) ≥ 2, then P = {{i1}, . . . , {iN(P )}, I1, . . . , Il} (l ≥ 0), but the set P̃ =
{{i1, . . . , iN(P )}, I1, . . . , Il} is also a valid partition and g

P̃
= µ(gP ). As a conse-

quence, µ(fd,A) = 0.
For any l ∈ J write Tl for the formal operator that replaces xl by x̂l. We shall

make use of the following inequality.

hl(fd,A) = sup
xl,x̂l

∣∣∣∣∣∣
∑

I=(i1,...,id)
AI

∑
P∈P(I)

(−1)M(P ) (gP (xI))− gP (Tl(xI)))

∣∣∣∣∣∣
= sup

xl,x̂l

∣∣∣∣∣∣∣∣∣
d∑

k=1

∑
I=(i1,...,id−1)

Ak=l
I

∑
P∈P(I∪{l})
{l}∈P

(−1)M(P ) (gP (xI , xl)− gP (xI , x̂l))

∣∣∣∣∣∣∣∣∣
= sup

xl,x̂l

∣∣∣∣∣∣(f(xl)− f(x̂l))
d∑

k=1

∑
I=(i1,...,id−1)

Ak=l
I

∑
P∈P(I)

(−1)M(P )gp(xI)

∣∣∣∣∣∣
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≤ c

∣∣∣∣∣∣
d∑

k=1

∑
I=(i1,...,id−1)

Ak=l
I

∑
P∈P(I)

(−1)M(P )gP (xI)

∣∣∣∣∣∣
= c

∣∣∣∣∣
d∑

k=1
fd−1,Ak=l

∣∣∣∣∣.
Here, the second equality follows from the fact that Tl(xi1 , . . . , xid) = (xi1 , . . . , xid)
unless ij = l for some j, the third equality can be easily seen from the definition of
gP and the fourth line is a consequence of the assumptions.

We can assume c = 1, since the general case follows by rescaling f by fc−1. First,
by the LSI(σ2) property we have

‖fd,A‖2
p ≤ ‖fd,A‖2

2 + σ2(p− 2)‖h(fd,A)‖2
p.

Using the Poincaré inequality with respect to h gives
‖fd,A‖2

2 ≤ σ2∑
l1

µ
(
(hl1fd,A)2

)
≤ σ2∑

l1

µ
(
(h̃l1fd,A)2

)
= σ2‖h̃fd,A‖2

2 ≤ σ2‖h̃fd,A‖2
p,

where h̃l replaces supxl,x̂l |f(xl)− f(x̂l)| by 1. Clearly, since hlfd,A ≤ h̃lfd,A pointwise,
the Lp-norms can be estimated as well, resulting in

‖fd,A‖2
p ≤ σ2(p− 1)‖h̃fd,A‖2

p.

We have

h̃lfd,A =

∣∣∣∣∣∣
d∑

k1=1

∑
I=(i1,...,id−1)

Ak1=l1
I

∑
P∈P(I)

(−1)M(P )gP

∣∣∣∣∣∣,
which itself is the absolute value of a sum of centered random variables, so that the
process can be iterated; in each step, the Poincaré inequality can be used and

h̃l1 · · · h̃lsfd,A =
d∑

k1=1
· · ·

d−s∑
ks=1

∑
I=(i1,...,id−s)

Ak1=l1,...,ks=ls
I

∑
P∈P(I)

(−1)M(P )gP .

Thus, in the d-th step we have
‖fd,A‖2

p ≤ (σ2p)d‖A‖2
2.

Taking the square root proves the claim. The multilevel concentration follows as in
the proof of Theorem 1.1. �

References

[Ada06] Radosław Adamczak. “Moment inequalities for U -statistics”. In: Ann.
Probab. 34.6 (2006), pp. 2288–2314. doi: 10.1214/009117906000000476.

[AW15] Radosław Adamczak and Paweł Wolff. “Concentration inequalities for non-
Lipschitz functions with bounded derivatives of higher order”. In: Probab.
Theory Related Fields 162.3-4 (2015), pp. 531–586. doi: 10.1007/s00440-
014-0579-3.

[BBS11] Shankar Bhamidi, Guy Bresler, and Allan Sly. “Mixing time of exponential
random graphs”. In: Ann. Appl. Probab. 21.6 (2011), pp. 2146–2170. doi:
10.1214/10-AAP740.

[Bil68] Patrick Billingsley. Convergence of probability measures. John Wiley &
Sons, Inc., New York-London-Sydney, 1968, pp. xii+253. isbn: 978-0-471-
19745-4.

20

http://dx.doi.org/10.1214/009117906000000476
http://dx.doi.org/10.1007/s00440-014-0579-3
http://dx.doi.org/10.1007/s00440-014-0579-3
http://dx.doi.org/10.1214/10-AAP740


[BGS17] Sergey G. Bobkov, Friedrich Götze, and Holger Sambale. “Higher Order
Concentration of Measure”. In: arXiv preprint (2017). arXiv: 1709.
06838.

[BT06] Sergey G. Bobkov and Prasad Tetali. “Modified logarithmic Sobolev
inequalities in discrete settings”. In: J. Theoret. Probab. 19.2 (2006),
pp. 289–336. doi: 10.1007/s10959-006-0016-3.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
inequalities. A nonasymptotic theory of independence, With a foreword
by Michel Ledoux. Oxford University Press, Oxford, 2013, pp. x+481.
isbn: 978-0-19-953525-5.

[CD13] Sourav Chatterjee and Persi Diaconis. “Estimating and understanding ex-
ponential random graph models”. In: Ann. Statist. 41.5 (2013), pp. 2428–
2461. doi: 10.1214/13-AOS1155.

[DS96] Persi Diaconis and Laurent Saloff-Coste. “Logarithmic Sobolev inequalities
for finite Markov chains”. In: Ann. Appl. Probab. 6.3 (1996), pp. 695–750.
doi: 10.1214/aoap/1034968224.

[GS16] Friedrich Götze and Holger Sambale. “Second Order Concentration via
Logarithmic Sobolev Inequalities”. In: arXiv preprint (2016). arXiv:
1605.08635.

[GSS18] Friedrich Götze, Holger Sambale, and Arthur Sinulis. “Higher order
concentration for functions of weakly dependent random variables”. In:
arXiv preprint (2018). arXiv: 1801.06348.

[Gro75] Leonard Gross. “Logarithmic Sobolev inequalities”. In: Amer. J. Math.
97.4 (1975), pp. 1061–1083. doi: 10.2307/2373688.

[Lat06] Rafał Latała. “Estimates of moments and tails of Gaussian chaoses”. In:
Ann. Probab. 34.6 (2006), pp. 2315–2331. doi: 10.1214/009117906000000421.

[Led01] Michel Ledoux. The concentration of measure phenomenon. Vol. 89.
Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2001, pp. x+181. isbn: 0-8218-2864-9.

[Mar15] Katalin Marton. “Logarithmic Sobolev inequalities in discrete product
spaces: a proof by a transportation cost distance”. In: arXiv preprint
(2015). arXiv: 1507.02803.

[NW88] Krzysztof Nowicki and John C Wierman. “Subgraph counts in random
graphs using incomplete U-statistics methods”. In: Annals of Discrete
Mathematics. Vol. 38. Elsevier, 1988, pp. 299–310. doi: 10.1016/0012-
365X(88)90220-8.

[Ruc88] Andrzej Ruciński. “When are small subgraphs of a random graph normally
distributed?” In: Probab. Theory Related Fields 78.1 (1988), pp. 1–10.
doi: 10.1007/BF00718031.

[Sin18] Arthur Sinulis. “Mixing times of Glauber dynamics via entropy methods”.
In: arXiv preprint (2018). arXiv: 1804.04424.

[Tal96] Michel Talagrand. “A new look at independence”. In: Ann. Probab. 24.1
(1996), pp. 1–34. doi: 10.1214/aop/1042644705.

[Wol13] Paweł Wolff. “On some Gaussian concentration inequality for non-
Lipschitz functions”. In: High dimensional probability VI. Vol. 66. Progr.
Probab. Birkhäuser/Springer, Basel, 2013, pp. 103–110.

21

http://arxiv.org/abs/1709.06838
http://arxiv.org/abs/1709.06838
http://dx.doi.org/10.1007/s10959-006-0016-3
http://dx.doi.org/10.1214/13-AOS1155
http://dx.doi.org/10.1214/aoap/1034968224
http://arxiv.org/abs/1605.08635
http://arxiv.org/abs/1801.06348
http://dx.doi.org/10.2307/2373688
http://dx.doi.org/10.1214/009117906000000421
http://arxiv.org/abs/1507.02803
http://dx.doi.org/10.1016/0012-365X(88)90220-8
http://dx.doi.org/10.1016/0012-365X(88)90220-8
http://dx.doi.org/10.1007/BF00718031
http://arxiv.org/abs/1804.04424
http://dx.doi.org/10.1214/aop/1042644705


Holger Sambale, Faculty of Mathematics, Bielefeld University, Bielefeld, Ger-
many

E-mail address: hsambale@math.uni-bielefeld.de

Arthur Sinulis, Faculty of Mathematics, Bielefeld University, Bielefeld, Germany
E-mail address: asinulis@math.uni-bielefeld.de

22


	1. Introduction
	1.1. Logarithmic Sobolev inequalities
	1.2. Difference operators and concentration of measure
	1.3. Logarithmic Sobolev inequalities for spin systems
	1.4. Related work
	1.5. Outline

	2. Applications
	2.1. Exponential random graph models
	2.2. Random coloring model
	2.3. Hard-core model
	2.4. A central limit theorem for Erdös-Renyi graphs

	3. Proofs
	References

