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Abstract. We extend recent higher order concentration results in the discrete
setting to include functions of possibly dependent variables whose distribution (on
the product space) satisfies a logarithmic Sobolev inequality with respect to a dif-
ference operator that arises from Gibbs sampler type dynamics. Examples of such
random variables include the Ising model on a graph with n sites with general, but
weak interactions, i.e. in the Dobrushin uniqueness regime, for which we prove con-
centration results of homogeneous polynomials, as well as random permutations,
and slices of the hypercube with dynamics given by either the Bernoulli-Laplace
or the symmetric simple exclusion processes.

1. Introduction

In this article, we study higher order versions of the concentration of measure
phenomenon for functions of random variables X1, . . . , Xn defined on some proba-
bility space (Ω,A,P) with values in some Polish space Xi : Ω → Si which are not
necessarily independent. The term higher order shall emphasize that we prove tail
estimates for functions with possibly non-bounded first order differences, or func-
tions for which the L∞ norm of its differences increases with the size of the system,
even after a proper normalization, such as quadratic forms in weakly dependent
variables.

To formalize this intuition we consider certain difference operators. By a difference
operator we mean an operator Γ on the space L∞(µ) for some probability measure
µ satisfying Γ(af+b) = |a|Γ(f) for b ∈ R and either a > 0 or a ∈ R. The restriction
f ∈ L∞(µ) is merely a minimal requirement, since f ∈ L2(µ) will sometimes be
sufficient to define certain operators, and in the cases that we will consider in the
applications (i.e. finite probability spaces) L∞(µ) is the space of all functions. Hence
we shall stick to this simplifying assumption. In our cases, µ is the distribution of
X := (X1, . . . , Xn) on S := ×ni=1Si.

The difference operators d, h will be Euclidean norms corresponding to vectors
h = (hI)I∈I or d = (dI)I∈I arising from the disintegration theorem on Polish spaces
and can be thought of as L2 and L∞ norms respectively conditioned on certain
variables I ⊂ P({1, . . . , n}). We postpone the exact definition to Definition 2.2 in
section 2.

Using h, it is possible to define higher order difference operators hI1...Id
for any

d ∈ N by iteration, i.e. by setting
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hI1...Id
f = hI1(hI2...Id

f),(1.1)

and tensors of d-th order differences h(d)f(x) with coordinates hI1...Id
f(x). The tensor

may be regarded as a vector indexed by Id and we define the norm |h(d)f(x)| as its
Euclidean norm. For instance, in certain cases |h(1)f(x)| is just the Euclidean norm
of the “gradient” hf(x), and |h(2)f(x)| is the Hilbert–Schmidt norm of the “Hessian”
h(2)f(x). Additionally, we will use the notation ‖f‖p for the p-norm of a function f
(with respect to a measure µ which is clear from the context) and write

(1.2) ‖h(d)f‖p = ‖|h(d)f |‖p ≡
(
Eµ|h(d)f |p

)1/p

for any p ∈ (0,∞], where for p =∞ this is the essential supremum with respect to
µ.

Next let us recall the notion of Poincaré and logarithmic Sobolev inequalities in the
framework of difference operators. We say that the measure µ satisfies a Poincaré
inequality with constant σ2 > 0 with respect to some difference operator Γ (in short:
PIΓ(σ2)) if for all f ∈ L∞(µ)

(1.3) Varµ(f) ≤ σ2 Eµ |Γf |2,

where Varµ(f) = Eµf 2 − (Eµf)2 is the variance functional with respect to µ.
Moreover, µ satisfies a logarithmic Sobolev inequality with constant σ2 > 0 with

respect to some difference operator Γ (in short: LSIΓ(σ2)) if for all f ∈ L∞(µ)

(1.4) Entµ(f 2) ≤ 2σ2 Eµ |Γf |2,

where for any function f ≥ 0 we denote by Entµ(f) := Ent(f) := Eµf log f −
Eµf logEµf ∈ [0,∞] the entropy functional with respect to µ.

It is well known that logarithmic Sobolev inequalities are stronger than Poincaré
inequalities, i.e. if µ satisfies a logarithmic Sobolev inequality with constant σ2,
it also satisfies a Poincaré inequality with the same constant σ2, see for example
[AS94] in the context of Markov semigroups, [DS96, Lemma 3.1] in the framework of
Markov chains, or [BT06, Proposition 3.6], where also modified logarithmic Sobolev
inequalities have been considered. We shall tacitly use this implication.

We formulate a general result in section 1.2 which may be applied to functions of
the spins in Ising models, of random permutations and on slices of the hypercube.
We start with an application to the Ising model with general interactions.

1.1. Ising model. In the special case of the Ising model qn on n sites the difference
operator under consideration can be written as

|df |2(σ) = 1
2

n∑
i=1

(f(σ)− f(Tiσ))2qn(−σi | σ1, . . . , σi−1, σi+1, . . . , σn),

where Tiσ = (σ1, . . . , σi−1,−σi, σi+1, . . . , σn) is the switch operator of the i-th spin
and qn(· | σ1, . . . , σi−1, σi+1, . . . , σn) is the conditional measure. We call this the
difference operator of the Gibbs sampler (or Glauber dynamics). Additionally, we
have

|hf |2(σ) = 1
2

n∑
i=1

(f(σ)− f(Tiσ))2.
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Proposition 1.1. Let qn be the probability measure on {−1,+1}n defined by nor-
malizing π(σ) = exp

(
1
2
∑
i,j Jijσiσj +∑n

i=1 hiσi
)
, where ‖h‖∞ ≤ α̃ and J = (Jij)i,j

satisfies Jii = 0 and

(1.5) ‖J‖1→1 = max
i=1,...,n

n∑
j=1
|Jij| ≤ 1− α.

There is a constant C = C(α, α̃) depending only on α and α̃ such that for the
difference operator of the Gibbs sampler given above we have
(1.6) Entqn(f 2) ≤ 2C Eqn|df |2.
Moreover, for any f : {−1,+1}n → R we have
(1.7) ‖f‖2

p − ‖f‖2
2 ≤ 2C(p− 2)‖hf‖2

p.

Remark. This can be seen as a generalization of the logarithmic Sobolev inequality
on {−1,+1}n equipped with the uniform measure, which corresponds to the Ising
model without any interactions and without an external field, i.e. J = 0 and h = 0.
In general the case J = 0 yields n independent random variables σ1, . . . , σn with
P(σi = 1) = 1

2(1 + tanh(hi)). Thus a uniform bound on ‖h‖∞ is necessary in order
for the logarithmic Sobolev constant to be stable, see e.g. [DS96, Theorem A.1].

Condition (1.5) appears in various contexts, we shall call it Dobrushin unique-
ness condition, see for example [Kül03], equations (2.1) and (2.2). The Dobrushin
uniqueness condition implies that the coupling matrix A of the Ising model satisfies
‖A‖2→2 ≤ 1 − α, which is a requirement to apply an approximate tensorization
result.

In a series of papers [Zeg92; SZ92b; SZ92a] B. Zegarlinski and D. W. Stroock
have established the equivalence of the logarithmic Sobolev inequality and the so-
called Dobrushin-Shlosman mixing condition on {−1,+1}Zd . Here we prove one
implication using an approximate tensorization result by K. Marton [Mar15] for the
easier case {−1,+1}n.

From an iteration procedure we obtain the following Theorem establishing tail
estimates for functions of spins in the Ising model with bounded differences of higher
order.

Theorem 1.2. Let d ∈ N, qn as in Proposition 1.1 and f be any function. Assuming
the conditions
(1.8) ‖h(k)f‖2 ≤ 1 for all k = 1, . . . , d− 1
and
(1.9) ‖h(d)f‖∞ ≤ 1,
there exists some constant C = C(α, α̃, d) > 0 such that

Eqn exp
(
C|f − Eqn f |2/d

)
≤ 2.

Especially we have
qn(|f − Eqn f | ≥ t) ≤ 2 exp

(
−Ct2/d

)
.

As an application, one can show concentration results for homogeneous polynomi-
als of spins in the Ising model with bounded coefficients as follows. To begin with,
let us consider the case of an Ising model without external field.
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Theorem 1.3. Let d ∈ N, qn be an Ising model as in Proposition 1.1 with h = 0.
There is a constant c = c(d, α) > 0 such that for any d-tensor a = (aI)|I|=d the
d-homogeneous polynomial f = ∑

|I|=d aI
∏
i∈I σi =: ∑|I|=d aIσI satisfies for all t > 0

(1.10) qn(|f − Eqn f | ≥ t) ≤ 2 exp
(
− t2/d

cn‖a‖2/d
∞

)
.

Note that by homogeneity we could impose without loss of generality the condition
sup|I|=d|aI | ≤ 1 and remove ‖a‖2/d

∞ in the exponentiation, since a simple rescaling
yields for any function f = ∑

|I|=d aIσI

(1.11) qn(|f − Eqn f | ≥ t) ≤ 2 exp
(
− t2/d

cn‖a‖2/d
∞

)
.

This result improves upon [GLP17, Theorem 1] as well as on [DDK17, Theorem
5] by removing all logarithmic dependencies in the window of concentration and in
the concentration parameter in the exponential. This bound is optimal in terms of
the dependence on t and n, since the uniform measure µ = ⊗ni=1

1
2(δ−1 + δ+1) can

also be interpreted as an Ising model and via hypercontractivity arguments and the
Fourier-Walsh decomposition one can see that

µ(|f − Eµ f | ≥ t) ≤ 2 exp
(
− t2/d

C(d)n

)

for a d-homogeneous polynomial f , see for example [BGL14, Chapter 5.3] or [DDK17,
Chapter 3.8].

For d ∈ {1, 2, 3, 4} we also provide more accurate estimates for f = ∑
|I|=d aIσI

using the Hilbert-Schmidt norms of the tensor a = (aI)|I|=d by approximating f by
a lower-order polynomial, i.e. we will see that for some constants C1 = C1(d, α) >
0, C2 = C2(d, α) > 0

qn(|f − Eqn f | ≥ t) ≤ C1 exp
(
− t2/d

C2‖a‖2/d
HS

)
.

However it will become clear that this approach is cumbersome, since one needs to
consider an approximation by a (d − 1)-th order polynomial and keep track of all
the coefficients involved.

Moreover we can establish similar results for Ising models with external fields
h 6= 0. Note that the major difference to the Ising model without external field
is the loss of spin symmetry, i.e. the map σ 7→ −σ does not preserve the mea-
sure qn (more precisely, the push-forward is an Ising model with external field −h),
and hence in general all homogeneous polynomials of odd degree are not centered
random variables anymore. To overcome this obstruction we can recover concentra-
tion results for polynomial functions in X̃i := Xi − Eqn Xi. To this end, define the
(generalized) diagonal as

∆d := {(i1, . . . , id) ∈ {1, . . . , n}d : |{i1, . . . , id}| < d}.

and call a tensor A = (Ai1,...,id)i1,...,id=1,...,n symmetric if Ai1,...,id = Aπ(i1),...,π(id) for
any permutation π ∈ Sd. For notational convenience, let us write for any subset I =
{i1, . . . , id} ⊂ {1, . . . , n} the product XI := ∏

i∈I Xi. We shall stick to the following
4



four cases. Let d ∈ {1, . . . , 4} and define for any d-tensor A = (ai1,...,id)i1,...,id=1,...,n
with vanishing diagonal the functions

f1,A(X) =
n∑
i=1

aiX̃i,

f2,A(X) =
n∑

i,j=1
aij(X̃ij − E X̃ij),

f3,A(X) =
n∑

i,j,k=1
aijk

(
X̃ijk − E X̃ijk − 3X̃i E(X̃jk)

)
,

f4,A(X) =
n∑

i,j,k,l=1
aijkl

(
X̃ijkl − E X̃ijkl − 4X̃i E X̃jkl − 6X̃ij E X̃kl + 6E X̃ij E X̃kl

)
.

Theorem 1.4. Let qn be an Ising model as in Proposition 1.1, with an external
field h. Let d ∈ {1, 2, 3, 4} be fixed, A = (Ai1,...,id)i1,...,id=1,...,n a symmetric tensor
with vanishing diagonal and fd,A as above. For some constant C = C(α, β, d) > 0
we have

(1.12) qn (|fd,A − Eqn fd,A| > t) ≤ 2 exp
(
− t2/d

C‖A‖2/d
HS

)
≤ 2 exp

(
− t2/d

Cn‖A‖2/d
∞

)
.

Remark. Note that Theorem 1.4 can be extended to arbitrary d ∈ N, i.e. there
exists a sequence of polynomials (gd)d≥1, gd : Rd → R (with g1 = g2 = 0) of order
d− 2 with the property that

hj(
∑
|I|=d

aI(X̃I − gd(X̃I))) = d

∣∣∣∣∣∣
∑
|I|=d−1

a
(j)
I ((X̃I − E(X̃I))− (gd−1(X̃I)− E gd−1(X̃I)))

∣∣∣∣∣∣.
From this, the recursion in the proof can be extended to arbitrary d ∈ N and
the concentration result as well. But even for d = 5 this will be cumbersome to
formulate, since one has to keep track of all the expectations involved to ensure that
all the “partial derivatives” are centered for any degree up to d− 1.

1.2. General results. The results for the Ising model are an application of our
main results. Let us write |df | = (∑I∈I(dif)2)1/2 (associated to some set I). For
measures µ satisfying LSI(d,I)(σ2) we derive moment inequalities which relate the
Lp(µ)-norms of functions f with Lp(µ) norms of their differences |df |. This leads to
a concentration of measure of higher order for functions with bounded differences of
higher order.

Theorem 1.5. Let d ∈ N, assume that µ satisfies LSI(d,I)(σ2) with constant σ2 > 0
and let f ∈ L∞(µ). Assuming the conditions

(1.13) ‖h(k)f‖2 ≤ min(1, σd−k) for all k = 1, . . . , d− 1
and
(1.14) ‖h(d)f‖∞ ≤ 1,
there exists some universal constant c > 0 such that

Eµ exp
(
c|f − Eµ f |2/d

)
≤ 2.

A possible choice is c = 1/(12σ2e).
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Since we are interested in the asymptotics for large n, the logarithmic Sobolev
constant σ2 might depend on n and thus the constant c in Theorem 1.5 might also
depend on n. However, if the logarithmic Sobolev constant is independent of n, one
may rewrite condition (1.13) as

(1.15) ‖h(k)f‖2 ≤ 1 for all k = 1, . . . , d− 1

Moreover, note that here one needs to control the first d−1 differences, but since we
need bounds for L2(µ) norms, various tools like variance decomposition or Poincaré
inequality are available to achieve this.

1.3. Outline. In section 2 we motivate and define the difference operators and
prove the main result Theorem 1.5 by estimating the growth of moments under a
logarithmic Sobolev inequality. Section 3 contains examples of measures satisfying
a logarithmic Sobolev inequality with respect to the Gibbs sampler type Dirichlet
form. In section 3.1 we prove Theorems 1.2 and 1.3 as well as Proposition 1.1 and
show by way of example that a third-order polynomial in the Ising model is concen-
trated around a first order polynomial, and prove Theorem 1.4. Sections 3.2 and
3.3 serve to demonstrate how to interpret the logarithmic Sobolev inequality with
respect to difference operators corresponding to (d, I) in the cases of random walks
generated by switchings on either the symmetric group and the Bernoulli-Laplace
and symmetric simple exclusion process, to indicate possible further applications.
Finally, in section 4 we give a proof of an approximate tensorization result given by
K. Marton.

2. Higher order difference operators for dependent arguments

To facilitate notations, we will write for any vector (x1, . . . , xn) and any subset
I ⊂ {1, . . . , n}, xI := (xi)i∈I and xI := (xi)iinIc , xi := x{i}, and given any vector

x = (xk)k∈I and y = (yk)k∈Ic , (x, y) for the vector with (x, y)k =

xk k ∈ I
yk k ∈ Ic

.

Consistently, we shall use the notation SI = ⊗i∈ISi and SI := ⊗i∈IcSi and denote
by πI : S → SI , x 7→ xI the (projection) map and by µI := µπI

the push-forward
measure.

In order to define the difference operators we recall the disintegration theorem in
a special form for product spaces (although not endowed with product probability
measures) required in our context. For the existence we refer to [DM78, Chapter
III] and for a modern formulation to [AGS08, Theorem 5.3.1].

Proposition 2.1 (Disintegration theorem for product spaces). Let S1, . . . , Sn be
Polish spaces, S := ⊗ni=1Si endowed with the Borel σ-algebra and a Borel probability
measure µ. There exists a Markov kernel (mxI

)xI∈SI
such that

µ(A) =
∫
mxI

(A)dµπI
(xI) for A ∈ B(S).

Moreover, the Markov kernel can be seen as a family of probability measures on SI
and for any f ∈ L1(µ) we have∫

fdµ =
∫
SI

∫
SI

f(xI , yI)dmxI
(yI)dµI(xI).
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This decomposition of a measure into a part which depends on the coordinates
in some subset I ⊂ {1, . . . , n} and a conditional probability given the variables XI

will serve as a starting point for the definition of our difference operators as follows.

Definition 2.2. Let S1, . . . , Sn be Polish spaces and µ a measure on S = ⊗ni=1Si.
For each subset I ⊂ {1, . . . , n} let mxI

be the Markov kernel from Proposition 2.1.
Let I ⊂ P({1, . . . , n}) be a set of subsets.

(i) For any f ∈ L2(µ) and any I ∈ I, let

dIf(x) :=
(1

2

∫
(f(x)− f(xI , yI))2dmxI

(yI)
)1/2

and introduce df = (dIf)I∈I .
(ii) For any f ∈ L∞(µ) and any I ∈ I, define

hIf(x) := 1√
2
‖f(xI , yI)− f(xI , zI)‖L∞(mxI

⊗mxI
(yI ,zI)),

and hf := (hIf)I∈I .

For either d or h we can define a difference operator by setting Γ(f) = |df | or
Γ(f) = |hf | for the Euclidean norm |·| and call it the associated operator to (d, I)
or (h, I) respectively. It is clear that Γ satisfies Γ(af + b) = |a|Γ(f).

As already mentioned in the introduction, on the basis of h, we define for any
d ∈ N and any I1, . . . , Id ∈ I

hI1...Id
f = hI1(hI2...Id

f),(2.1)

and tensors of d-th order differences h(d)f(x) with coordinates hI1...Id
f(x), and anal-

ogously for d.

Remark. The quantity
∫
|df |2dµ has the interpretation of a Dirichlet form. Indeed,

defining the Markov kernelmx(dy) = 1
|I|
∑
I∈ImxI

(dy), it can be shown by expanding
1
2
∫∫

(f(x)− f(y))2dmx(y)dµ(x) that
1

2|I|

∫
|df |2dµ = 1

2|I|
∑
I∈I

∫∫
(f(x)− f(y))2mxI

(dy)µ(dx) = 〈f,−Lf〉µ,

where Lf(x) =
∫
f(y) − f(x)dmx(y) is the Laplacian. Hence there is an intimate

connection to a Markov chain viewpoint, i.e. there is a natural dynamics for which∫
|df |2dµ is its Dirichlet form.
The special case given by I = I1 := {{i}, i = 1, . . . , n} translates into the dis-

integration with respect to n − 1 variables and is well known, since the dynamics
corresponds to the Glauber dynamics. Here, df and hf are vectors in Rn. In prob-
abilistic terms the definition of hif(x) can be interpreted as an upper bound on
the difference of f if one updates the coordinate i, conditional on xi being fixed.
Moreover h already appeared in the works of C. McDiarmid on concentration in-
equalities for functions with bounded differences, see e.g. [McD89]. Here hif(x) can
still fluctuate and does not need to be bounded, resulting in possibly non-Gaussian
concentration.

In some cases, hIf is a function which depends on the coordinates xI only, e.g.
if all the measures mxI

have full support. However, we would like to stress that
in general the supports do not agree for different xI and thus the supremum might
depend on xI , especially in situations which incorporate some kind of exclusion. A
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typical example is the disintegration of the measure on {1, . . . , n}n given by the
push-forward of the uniform random permutation under σ 7→ (σ(i))i∈{1,...,n}, for
which any disintegration is a Dirac measure on one point, see also section 3.2, and
more generally for any I ⊂ {1, . . . , n} the Markov kernel mxI

is concentrated on
{1, . . . , n}\{xI}.

In the independent case, it is unnecessary to use the disintegration theorem for
Polish spaces. Instead, one can simply define mxI

= ⊗i∈Iµi independent of xI ,
see the previous results by S.G. Bobkov, F. Götze and H. Sambale [BGS17]. The
definitions then coincide.

To prove Theorem 1.5 we shall need two ingredients: a pointwise estimate on con-
secutive differences as well as control on the growth of moments under a logarithmic
Sobolev inequality.

Lemma 2.3. For any f ∈ L∞(µ) and any d ≥ 1 we have the pointwise estimate

(2.2) |h|h(d)f || ≤ |h(d+1)f |.

Proof. Let I ∈ I and x ∈ S be fixed and write ‖·‖I,x for L∞(mxI
⊗mxI

). Using the
reverse triangle inequality for |·| and the triangle inequality for ‖·‖I,x we obtain

(hI |h(d)f |)2 = 1
2
∥∥∥∣∣∣h(d)f

∣∣∣(xI , y)−
∣∣∣h(d)f

∣∣∣(xI , z)∥∥∥2

I,x

≤ 1
2

∥∥∥∥∣∣∣h(d)f(xI , y)− h(d)f(xI , z)
∣∣∣2∥∥∥∥

I,x

= 1
2d+1

∥∥∥∥∥∥
∑

I1,...,Id

(hI1...Id
f(xI , y)− hI1...Id

f(xI , z))2

∥∥∥∥∥∥
I,x

≤ 1
2d+1

∑
I1,...,Id

(hIhI1...Id
f)2 .

Summing over I ∈ I and taking the square root yields the result. �

By an adaption of the case of functions on finite graphs considered by S.G. Bobkov
[Bob10, Theorem 2.1], which in turn is based on arguments going back to L. Gross
[Gro75] as well as S. Aida and D. Stroock [AS94], we have the following result.

Proposition 2.4. Let µ be a measure on a product space of Polish spaces satisfying
LSI(d,I)(σ2) with constant σ2 > 0. Then, for any f ∈ L∞(µ) and any p ≥ 2, we
have
(2.3) ‖f‖2

p − ‖f‖2
2 ≤ 2σ2(p− 2)‖df‖2

p

as well as
(2.4) ‖f‖2

p − ‖f‖2
2 ≤ 2σ2(p− 2)‖hf‖2

p.

Remark. Actually, up to a constant, LSI(d,I)(σ2) is equivalent to (2.3), which has
also been remarked by S. G. Bobkov in [Bob10].

Proof. Let p > 0, and let f be any measurable function on an arbitrary probability
space such that 0 < ‖f‖p+ε <∞ for some ε > 0. Then, we have the general formula

(2.5) d

dp
‖f‖p = 1

p2‖f‖
1−p
p Ent(|f |p).

8



In particular, it follows that

(2.6) d

dp
‖f‖2

p = 2
p2‖f‖

2−p
p Ent(|f |p).

Moreover, note that for any I ∈ I

Eµ(dIf)2 = 1
2

∫∫
(f(x)− f(xI , yI))2dmxI

(yI)dµ(x) =
∫

VarmxI
(f(xI , ·))dµI(xI)

=
∫∫∫

(f(xI , yI)− f(xI , zI))2
+dmxI

(zI)dmxI
(yI)dµI(xI)

=
∫∫

(f(x)− f(xI , zI))2
+dmxI

(z)dµ(x).

Therefore, it follows that

(2.7) Eµ|df |2 =
∑
I∈I

∫∫
(f(x)− f(xI , zI))2

+ dmxI
(zI)dµ(x)

Now let p > 2 and f be non-constant. (The assumption ‖f‖p+ε <∞ is always true
since f ∈ L∞(µ).) Applying the logarithmic Sobolev inequality (1.4) to the function
|f |p/2 and rewriting this in terms of (2.7) yields

Ent(|f |p) ≤ 2σ2 ∑
I∈I

∫ (∫ (
|f |p/2(x)− |f |p/2(xI , yI)

)2

+
dmxI

(yI)
)
dµ(x)

(2.8)

= 2σ2 ∑
I∈I

∫∫∫
(|f |p/2(xI , xI)− |f |p/2(xI , yI))2

+dmxI
(xI)dmxI

(yI)dµI(xI).(2.9)

Using the inequality (ap/2− bp/2)2
+ ≤ p2

4 a
p−2(a− b)2 for all a, b ≥ 0 and all p ≥ 2, we

obtain

(|f |p/2 − |f |p/2(xI , yI))2
+ ≤

p2

4 (|f | − |f |(xI , yI))2
+|f |p−2 ≤ p2

4 (f − f(xI , yI))2|f |p−2,

from which it follows in combination with (2.8) that

Ent(|f |p) ≤ p2σ2
∫
|f |p−2 ∑

I∈I
(dIf)2dµ = p2σ2 Eµ|f |p−2|df |2

and in combination with (2.9) that
Ent(|f |p) ≤ p2σ2Eµ|f |p−2|hf |2.

Hölder’s inequality with exponents p
2 and p

p−2 applied to the last integral yields

Ent(|f |p) ≤ p2σ2‖df‖2
p‖f‖p−2

p

or
Ent(|f |p) ≤ p2σ2‖hf‖2

p‖f‖p−2
p

respectively. Combining this with (2.6), we arrive at the differential inequality
d
dp
‖f‖2

p ≤ 2σ2‖df‖2
p or d

dp
‖f‖2

p ≤ 2σ2‖hf‖2
p respectively, which after integration

gives (2.3) and (2.4). �

We shall prove Theorem 1.5 by estimating the growth of moments under the
conditions in the following way. Recall that if a real-valued function f on some
probability space (Ω,A,P) satisfies
(2.10) ‖f‖k ≤ γk

9



for any k ∈ N and some constant γ > 0, it has sub-exponential tails, i. e.

(2.11) Eec|f | ≤ 2 for some constant c = c(γ) > 0.

Here, one may take c = 1
2γe . Indeed, for any c > 0, we have

E exp(c|f |) = 1 +
∞∑
k=1

ck
E|f |k

k! ≤ 1 +
∞∑
k=1

(cγ)k k
k

k! ≤ 1 +
∞∑
k=1

(cγe)k,

where the last inequality follows from the fact that k! ≥ (k
e
)k for all k ∈ N. Inserting

c = 1
2γe we arrive at (2.11).

Proof of Theorem 1.5. First let p ≥ 2. Using (2.4) with f replaced by |h(k−1)f | for
k = 1, . . . , d and Lemma 2.3 in the second step gives

‖h(k−1)f‖2
p ≤ ‖h(k−1)f‖2

2 + 2σ2(p− 2)‖h|h(k−1)f |‖2
p

≤ ‖h(k−1)f‖2
2 + 2σ2(p− 2)‖h(k)f‖2

p.

Consequently, by iteration and applying the Poincaré inequality for h we arrive at

‖f‖2
p ≤ ‖f‖2

2 +
d−1∑
k=1

(2σ2(p− 2))k‖h(k)f‖2
2 + (2σ2(p− 2))d‖h(d)f‖2

p

≤ σ2‖hf‖2
2 +

d−1∑
k=1

(2σ2(p− 2))k‖h(k)f‖2
2 + (2σ2(p− 2))d‖h(d)f‖2

p

≤
d−1∑
k=1

(2σ2p)k‖h(k)f‖2
2 + (2σ2p)d‖h(d)f‖2

p.

Now, since ‖h(k)f‖2 ≤ min(1, σd−k) for all k = 1, . . . , d − 1 and ‖h(d)f‖∞ ≤ 1 by
assumption, we obtain

‖f‖2
p ≤ σ2d

d∑
k=1

(2p)k ≤ 1
1− (2p)−1 (2σ2p)d ≤ (3σ2p)d

and therefore
‖f‖p ≤ (3σ2p)d/2

Moreover, for all p < 2, by Hölder’s and Jensen’s inequality we have

‖f‖p ≤ ‖f‖2 ≤ (6σ2)d/2.

Considering p = 2k/d, k = 1, 2, . . . yields

‖|f |2/d‖k ≤ 6σ2 1
d
k, k ≥ d,

and
‖|f |2/d‖k ≤ 6σ2 = 6σ2 1

k
k, k ≤ d− 1.

It follows that
‖|f |2/d‖k ≤ γk

for all k ∈ N, where γ = 6σ2 max(1, 1/2, . . . , 1/(d−1), 1/d) = 6σ2. In view of (2.10),
this completes the proof. �
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3. Applications

3.1. Ising model. Let Sn = {−1,+1}n be the configuration space of the Ising
model on n sites, J = (Jij) a symmetric matrix with vanishing diagonal, h ∈ Rn

and define π : Sn → R via

(3.1) π(σ) = exp
(1

2〈σ, Jσ〉+ 〈h, σ〉
)

= exp
1

2
∑
i,j

Jijσiσj +
n∑
i=1

hiσi

 .
Equip Sn with the Gibbs measure qn(σ) = Z−1π(σ), with Z being the normalization
constant. For each i ∈ {1, . . . , n} denote by Ti : Sn → Sn the operator which
switches the sign of the i-th coordinate.

Remark. The factor 1
2 corresponds to the fact that we made the matrix symmetric,

i.e. J = J̃ + J̃T , where J̃ is the upper triangular matrix. This is consistent with the
Curie-Weiss model in [CD10, Example 2.1] or [BN17], but not with [GLP17].

We would like to use an approximate tensorization of entropy result proven by
K. Marton in [Mar15] and the results from the last section to obtain concentration
inequalities for polynomials in weakly dependent random variables, more specifically
for Ising models which are sufficiently close to being product measures, i.e. which
satisfy the condition of Proposition 1.1. The local specifications of the Ising model
(i.e. the conditional probabilities) qi(· | σi) for σi ∈ Si are given by

(3.2) qi(· | σi) = π(σi, ·)
π(σi, 1) + π(σi,−1) ,

which can be written as

(3.3) qi(1 | σi) = 1
2

1 + tanh(σi
∑
j

Jijσj + hiσi)
 .

More generally, given any I ⊂ {1, . . . , n}, we can define qI(· | σI) as the probability
measure on {−1,+1}I given by normalizing qn(·, σI). For I = {1, . . . , n}\{j} we
also write qj.

In [Mar15], the author proves an approximate tensorization property of the rela-
tive entropy with respect to a fixed measure qn (which in our case will be the Gibbs
measure given above) in the sense that

Entqn(f) ≤ 2C
β

n∑
i=1

∫
Entqi(·|yi)(f(yi, ·))dqi(yi)(3.4)

holds under certain conditions. Here β is the minimal conditional probability and
C is a constant which depends on the interdependence matrix. However in the
proof of [Mar15, Theorem 1] there is a small oversight, hence (and for the sake of
completeness) we include a full exposition of the proof in section 4, see Theorem 4.2.
Moreover, [Mar15, Theorem 2] replaces one of the conditions of [Mar15, Theorem 1]
by another condition, which is easier to check, see Theorem 4.2 (iii). Indeed, this
condition holds via bounds on the operator norm of a coupling matrix A = (Aik)i 6=k
defined as any matrix such that

sup
x,z∈Sn
xk=zk

dTV (qi(· | xi), qi(· | zi)) ≤ Aik.

11



Thus, provided that ‖A‖2→2 < 1, an approximate tensorization property holds with
C = (1− ‖A‖2→2)−2.

Lemma 3.1. Let qn be an Ising model with an interaction matrix J satisfying Jii = 0
and ‖J‖1→1 ≤ 1− α. Then J can be used as a coupling matrix and thus

‖J‖2→2 ≤ ‖J‖1→1 ≤ 1− α.
Moreover, if |h| ≤ α̃ for some α̃ independent of n, then

qi(· | σi) ∈
(
cα,α̃, 1− cα,α̃

)
for some cα,α̃ depending only on α and α̃, uniformly in i, n and σi.

Proof. Let i 6= k be fixed and z, y ∈ Sn be such that y and z differ in the k-th
coordinate only, i.e. y = Tkz. Define σ := (zi, 1) and h̃i(σ) := σi

∑
j Jijσj +hiσi. We

have by equation (3.3) and the 1-Lipschitz property of tanh

dTV (qi(· | zi), qi(· | yi)) = |qi(1 | zi)− qi(1 | yi)| =
1
2 |tanh(hi(σ))− tanh(hi(Tkσ))|

≤ 1
2 |h̃i(σ)− h̃i(Tkσ)| = |Jki|.

The inequality is a simple consequence of

‖A‖2→2 ≤
√
‖A‖1→1‖AT‖1→1 ≤

√
‖J‖1→1‖JT‖1→1 ≤ 1− α

which follows from the general estimate |λi(JJT )| ≤ ‖JJT‖ ≤ ‖J‖‖JT‖ for any
operator norm and J = JT .

The second statement follows easily by using equation (3.3) and the estimates
maxi‖h̃i‖∞ ≤ ‖J‖1→1 + ‖h‖∞. �

To be able to prove Proposition 1.1, we will require analogue of Proposition 2.4
for Markov kernels. This will be used on the “local level” after the tensorization
procedure, enabling us to derive both inequalities (1.6) and (1.7).

Lemma 3.2. Let K be a Markov kernel on a finite set X , reversible w.r.t. π and
assume that π satisfies a logarithmic Sobolev inequality with a constant σ2 with
respect to the gradient operator |df |(x) =

(∑
y∈X (f(x)− f(y))2K(x, y)

)1/2
, i.e.

Entπ(f 2) ≤ 2σ2
∫
|df |2dπ.

For p ≥ 2 we obtain

Entπ(|f |p) ≤ σ2p2
∫
|f |p−2|df |2dπ(3.5)

Entπ(|f |p) ≤ σ2p2‖f‖p−2
p ‖df‖2

p.(3.6)

Proof. Using that (K, π) satisfies a logarithmic Sobolev inequality with constant σ2,
we obtain

Entπ(|f |p) ≤ 2σ2
∫ ∑

y∈X

(
|f |p/2(x)− |f |p/2(y)

)2
K(x, y)dπ(x)

≤ 4σ2
∫ ∑

y∈X

(
|f |p/2(x)− |f |p/2(y)

)2

+
K(x, y)dπ(x)

12



where we have used (a−b)2 = (a−b)2
+ +(b−a)2

+ and the fact that on {f(y) > f(x)},
reversibility gives π(x)K(x, y) = π(y)K(y, x) and we can exchange the roles of x
and y. For a, b ≥ 0 the inequality (ap/2 − bp/2)2

+ ≤ p2

4 a
p−2(a− b)2 gives

Entπ(|f |p) ≤ p2σ2
∫
|f |p−2(x)

∑
y∈X

(f(x)−f(y))2K(x, y)dπ(x) = p2σ2
∫
|f |p−2|df |2dπ.

An application of Hölder’s inequality yields the second inequality. �

We are now ready to prove Proposition 1.1, i.e. the logarithmic Sobolev inequality
(1.6) and the moment inequality (1.7).

Proof of Proposition 1.1. We can apply Lemma 3.1 to see that by Theorem 4.2(iii)
we have for some β = β(α, α̃)

(3.7) Entqn(f 2) ≤ 1
α2β

n∑
i=1

∫
Entqi(·|yi)(f 2(yi, ·))dqi(yi),

so that it remains to find a uniform bound for the entropy given yi. To this end, fix
i ∈ {1, . . . , n}, yi ∈ {−1,+1}n−1 and to lighten notation write q(·) := qi(· | yi). q is a
measure on {−1,+1} and the Markov chain given by K(x0, x1) = q(x1) is reversible
w.r.t. q. By [DS96, Theorem A.1] (see also [BT06, Example 3.8]) (K, q) satisfies a
logarithmic Sobolev inequality with a constant depending on q∗ = minx∈{−1,+1} q(x).
However, this constant is bounded from below by Lemma 3.1 uniformly in yi ∈ Sn−1
and n ∈ N. Thus, we have

Entq(f 2) ≤ C
∫∫

(f(x)− f(y))2dq(x)dq(y).(3.8)

Inserting (3.8) into (3.7) yields for some constant C = C(α, α̃)

Entqn(f 2) ≤ C
n∑
i=1

∫∫∫
(f(yi, x)− f(yi, y))2dq(x)dq(y)dqi(yi) = 2C Eqn|df |2,

which proves a logarithmic Sobolev inequality for qn.
To prove equation (1.7), we shall make use of Lemma 3.2 to first establish

(3.9) Entqn(|f |p) ≤ C
p2

2 ‖f‖
p−2
p ‖df‖2

p ≤ C
p2

2 ‖f‖
p−2
p ‖hf‖2

p.

Apply equation (3.7) to |f |p/2 to get

Entqn(|f |p) ≤ C(α)
n∑
i=1

Eqi
Entqi(·|yi)(|f |p(yi, ·)).

Again by [DS96, Theorem A.1] we obtain that the entropy with respect to the
conditional measure has a uniformly bounded logarithmic Sobolev constant σ2(α, α̃),
and hence by Lemma 3.2

Entq(·|yi)(|f |p) ≤ 2σ2p2
∫
|f |p−2(x, yi)|df(x, yi)|2dqi(x | yi).

Thus we can write

Entqn(|f |p) ≤ C
p2

2

n∑
i=1

∫∫
|df(yi, ·)|2|f(yi, ·)|p−2dqi(x | yi)dqi(yi)

= C
p2

2

∫
|f(y)|p−2

(
n∑
i=1

∫
(f(y)− f(yi, yi))2dqi(y | yi)

)
dqn(y)
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= Cp2 Eqn|f |p−2|df |2,
and an application of Hölders inequality yields equation (3.9).

Lastly, the proof of (1.7) is an easy adaption of the proof of Proposition 2.4, since
the main argument was the inequality (3.9). �

Proof of Theorem 1.2. Theorem 1.2 is an application of Theorem 1.5, since qn sat-
isfies a logarithmic Sobolev inequality with respect to I = {1, . . . , n}. �

One can calculate using the reverse triangle inequality and the monotonicity of
the square function as in the proof of Lemma 2.3 that for any i1 6= i2 6= . . . 6= id

(3.10) (hi1...idf)2 ≤ 1
2d

∣∣∣∣∣∣
d∏
j=1

(Id− Tij )f

∣∣∣∣∣∣
2

holds, which also implies

(3.11) |h(d)f | ≤

2−d
∑
|I|=d

((∏
i∈I

(Id− Ti)
)
f

)2
1/2

,

where with slight abuse of notation we write for any function f : Sn → R Tif for
the function defined via Tif = f ◦ Ti and where Ti1...id is defined via iteration. Note
that on the right-hand side we deliberately chose summing over |I| = d instead of
i1, . . . , id, since hi1...idf = 0 if ij = ik for some j 6= k.

For the operator appearing on the right-hand side of equation (3.11), it was al-
ready shown by H. Sambale [Sam16] and S. G. Bobkov, F. Götze and H. Sambale
[BGS17, Lemma 2.2] that the chain of pointwise inequalities from Lemma 2.3 holds.

Using this, one can infer the asymptotic behavior of d-th order polynomials in the
spin variables of the Ising model with no external field.

Proof of Theorem 1.3. Let f = ∑
|I|=d aIσI = ∑

|I|=d aI
∏
i∈I σi be a d-th order ho-

mogeneous polynomial and without loss of generality assume ‖A‖∞ = 1. Consider
the equation (1.7) from Proposition 1.1. A straightforward iteration in combination
with the pointwise inequality between the d-th order differences from Lemma 2.3
yields

(3.12) ‖f − Eqn f‖2
p ≤

d−1∑
k=1

pk(2C(α))k‖h(k)f‖2
2 + pd(2C(α))d‖h(d)f‖2

p.

Now for any k ∈ {1, . . . , d− 1} by equation (3.10) we have

(hi1,...,ikf)2 ≤ 2k
( ∑
|I|=d−k
i1,...,ik /∈I

aI∪i1,...,ikσI

)2
,

and from [GLP17, Lemma 3.1] it follows that ‖h(k)f‖2
2 = ∑

i1,...,ik‖hi1,...,ikf‖
2
2 ≤ ckn

d,
since for each fixed i1, . . . , ik the integrand is a polynomial of degree at most 2(d−k)
with coefficients bounded by 1. Hence ultimately we obtain for any p ≥ 2

‖f − Eqn f‖2
p ≤ nd(2C(α))d max(1, c1, . . . , cd−1)

d∑
k=1

pk,

which can be rewritten as
‖n−d/2(f − Eqn f)‖p ≤ C(α, d)pd/2
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with C(α, d) = (2C(α))d/2 max(1, c1, . . . , cd−1)1/2d1/2, which is equivalent to the ex-
ponential integrability of |n−d/2(f − Eqn f)|2/d, i.e. for some constant c > 0 we
have

Eqn exp
(
c|n−d/2(f − Eqn f)|2/d

)
≤ 2,

which by using Chebyshev’s inequality results in

qn
(
n−d/2|f − Eqn f | > t

)
≤ 2 exp

(
− t2/d

C̃(α)

)
for all t > 0, which is equivalent to the claim. �

Remark. Actually the equation (3.12) admits a more accurate estimate of the tail
properties of f − Eqn f , which has already been used in [Ada06, Theorem 7] and
[AW15, Theorem 3.3]. It is based on the idea that by Chebyshev’s inequality for
any p ≥ 1 we obtain
(3.13) qn(|f − Eqn f | ≥ e‖f − Eqn f‖p) ≤ exp(−p).
First, observe that by taking the square root and using its subadditivity property
in equation (3.12) we obtain

e‖f − Eqn f‖p ≤ e

(
d−1∑
k=1

(2C(α)p‖h(k)f‖2/k
2 )k/2 + (2C(α)p‖A‖2/d

2 )d/2
)
.

Now consider the function

ηf (t) := min
(

t2/d

2C(α)‖A‖2/d
2
, min
k=1,...,d−1

t2/k

2C(α)‖h(k)f‖2/k
2

)
and assume that ηf (t) ≥ 2, so that we can estimate

‖f − Eqn f‖ηf (t) ≤
d−1∑
k=1

t+ t = (de)t.

Applying equation (3.13) to p = ηf (t) (if p ≥ 2)
qn(|f − Eqn f | ≥ (de)t) ≤ qn(|f − Eqn f | ≥ d−1‖f − Eqn f‖ηf (t)) ≤ exp (−ηf (t))

and combining it with the obvious estimate (in the case p ≤ 2) gives
qn(|f − Eqn f | ≥ (de)t) ≤ e2 exp(−ηf (t)).

To remove the de factor, it is easiest to rescale the function by de and use the
estimate η(de)f (t) ≥ ηf (t)

(de)2 .

Finally, let us give two examples on how to use the previous results in order
to obtain more precise results on the concentration of a d-th order polynomial by
approximating it with a lower-order polynomial.
Example. Let A = (aij)i,j be a strictly upper triangular matrix and consider the func-
tion f̃(σ) = 〈σ,Aσ〉 = ∑

i<j aijσiσj and f = f̃ −Eqn f̃ . Defining ãij = amin(i,j),max(i,j)
we have

‖hf‖2
2 ≤ 2

n∑
i=1

∫  n∑
j=1

ãijσj

2

dqn = 2
n∑
i=1

Varqn gi ≤ 2C
∑
i,j

ã2
ij = 2C‖A‖2

and
hklf(σ) ≤ 1

2 |f(σ)− f(Tkσ)− f(Tlσ) + f(TkTlσ)| = 2|akl|.
15



Thus we have
‖h(1)f‖2 ≤ 2C‖A‖
‖h(2)f‖∞ ≤ 2C‖A‖,

so that after a renormalization by 1
2C‖A‖ the assumptions of Theorem 1.2 are satisfied

and for any t > 0 we have

qn(|f − Eqn f | > t) ≤ 2 exp
(
− t

2C‖A‖

)
.

Example. Similarly, with some modifications, one can show fluctuations of a third-
order polynomial around a first-order polynomial in the following way. For any
3-tensor A = (aijk)ijk with the property that aijk = 0 unless i < j < k, define

the matrix ã(l)
ij =

aπ(i),π(j),π(l) i < j

0 otherwise
, where π is the unique permutation such

that the three indices are ordered, and the vector ã(l,m)
k similarly. Now let f̃ =∑

i,j,k aijkσiσjσk and f = f̃−∑n
l=1 E

(∑
i,j aijlσiσj

)
σl. We claim that 1

8‖A‖C f satisfies
the assumptions of Theorem 1.2 for d = 3. To this end, let us calculate the differences
of all orders. First, using the Poincaré inequality gives

‖hf‖2
2 =

n∑
l=1

Eqn (hlf)2 = 2
n∑
l=1

Eqn

∑
i,j

ã
(l)
ij (σiσj − Eqn σiσj)

2

≤ 2C
∑
l,k

Eqn (gl − gl ◦ Tk)2 ≤ 4C
∑
l,k

Eqn

(∑
i

ã
(l,k)
i σi

)2

≤ 8C2∑
i,j,l

(ã(j,l)
i )2 = 8C2‖A‖2

as well as
‖h(2)f‖2

2 = 4
∑
i,j

∫
(
∑
k

ã
(i,j)
k σk)2dqn(σ) ≤ 8C

∑
i,j,k

(ã(i,j)
k )2 = 8C‖A‖2.

Additionally, we have |h(3)f |2(σ) = 8∑i,k,l a
2
ikl = 8‖A‖2. Thus a normalization given

by 1
8C‖A‖ is sufficient to apply Theorem 1.2, which implies

qn (|f | > t) ≤ 2 exp
(
− t2/3

C‖A‖2/3

)
.

Remark. The second example has an interesting interpretation since it shows that
a polynomial of order three is not concentrated around its mean (which in this case
would be zero), but around a first-order correction. For the case

aijk =


1

n3/2 i 6= j 6= k

0 otherwise

we obtain f = n−1/2∑n
i=1 σi

(
n−1∑

j 6=i,k 6=i(σjσk − Eqn σjσk)
)

= n−1/2∑n
i=1 σici(σi).

For ci independent of σ, first-order results of K. Marton [Mar03] or the method of
exchangeable pairs by S. Chatterjee [Cha07] would imply that f is subgaussian with
variance ‖c‖2. In this case, the variance fluctuates as well, and has exponential tails,
and the normalization n−1 ensures that this is the correct scaling order.
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The concentration result of the second example leads to a special case of Theorem
1.3, since the first-order correction can be controlled, as it concentrates on a different
scale. However, since the coefficients in the first-order correction are growing, one
needs to restrict the range for which one can expect to have stretched-exponential
tails. By way of example, for d = 3 we obtain the easy corollary.

Corollary 3.3. There exist constants C1, C2 depending on α such that for all third
order polynomials f = ∑

i,j,k aijkσiσjσk with ‖A‖∞ ≤ 1 and aijk = 0 if |{i, j, k}| 6= 3
and for any t > 2C1n

3/2 we have

qn(|f | > t) ≤ 4 exp
(
− t2/3

2C2n

)
.

Proof. Write f1 := ∑
i σici, where ci = ∑

j,k aijk Eqn σjσk, for the first-order correction
to f . Observe that we have ‖A‖2/3 ≤ n and from [GLP17, Lemma 3.1] we see that
‖c‖2 = ∑

i

(
Eqn

∑
j,k aijkσjσk

)2
≤ Cn3, so that

qn(|f | > t) ≤ qn
(
|f − f1| >

t

2

)
+ qn

(
|f1| >

t

2

)
≤ 2 exp

(
− t2/3

22/3C(α)‖A‖

)
+ 2 exp

(
− t2

4C(α)‖c‖2

)

≤ 2 exp
(
− t2/3

22/3C(α)n

)
+ 2 exp

(
− t2

4C(α)Cn3

)
,

and since t > 2Cn3/2 implies −22/3t4/3

4Cn2 ≤ −1 we obtain

qn(|f | > t) ≤ 4 exp
(
− t2/3

22/3C(α)n

)
.

�

Lastly, let us extend this line of thought to prove concentration of measure of
polynomials of the Ising model in the presence of an external field.

Proof of Theorem 1.4. Let us prove by induction that for p ≥ 2 we have for f = fd,A

(3.14) ‖f − Eqn f‖2
p ≤ cdp

d‖A‖2
2.

First, for d = 1 this is clear since f := f1,A(X) = ∑
i aiX̃i and by equation (1.7) we

have for p ≥ 2
‖f − Eqn f‖2

p ≤ 2Cp‖hf‖2
p = 2Cp‖A‖2

2.

Now for any k use (1.7) again to get

‖fd,A − Eqn fd,A‖2
p ≤ 2Cp‖hf‖2

p = 2Cp‖
n∑
i=1

(hif)2‖p/2 ≤ 2Cp
n∑
i=1
‖hif‖2

p

≤ 2Cp
n∑
i=1

cd−1p
d−1‖A(i)‖2

2 = 2Cdpd
n∑
i=1
‖A(i)‖2

2 = 2Cdpd‖A‖2
2.

Here we have used the fact for any fd,A we have hif = cd|fd−1,A(i)−E fd−1,A(i)|, where
(A(i))i1,...,id−1 = Ai1,...,id−1,i is a symmetric (d− 1)-tensor with vanishing diagonal.
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From equation (3.14) the first inequality easily follows as already shown in the
proof of Theorem 1.5. The second inequality is a consequence of

‖A‖2/d
2 =

 ∑
i1,...,id

a2
i1,...,id

1/d

≤ n‖A‖2/d
∞ .

�

Note that for the case d = 3 and for Ising models without an external field,
this translates into the previous Example, since by spin-flip symmetry we have
E X̃ijk = EXijk = 0. Additionally, for d = 4 we have concentration of the polynomial

f4,A(X) =
∑
ijkl

aijkl(Xijkl − EXijkl − 6Xij EXkl + 6EXij EXkl)

in absence of an external field. Here, the 6 =
(

4
2

)
is merely a combinatorial factor,

we could also write f4,A in a symmetric form.

3.2. Random permutations. Next we consider random permutations which we
shall describe as a probability measure on {1, . . . , n}n, more precisely as the uniform
measure σn on Sn := {(x1, . . . , xn) : xi 6= xj for all i 6= j}. With this definition it
fits into our framework.

Since conditioning on n− 1 variables is useless (as the disintegrated measure will
be a Dirac measure on the remaining element xi and thus a LSI cannot hold for
either difference operator), we shall work with I2 := {I ⊂ {1, . . . , n}, |I| = 2}.
In this case, it is easy to see that for any I = {i, j} ∈ I2 the Markov kernel is
given by mxI

= 1
2(δ(xi,xj) + δ(xj ,xi)), where {xi, xj} = {1, . . . , n}\xI . So denoting

by τI := τij : Sn → Sn the function which switches the i-th and j-th entry, we can
rewrite the difference operator as

dIf(x1, . . . , xn)2 = 1
2

∫
(f(x)− f(xI , yI))2dmxI

(yI) = 1
4(f(x)− f(τIx))2,

and
hIf(x)2 = 1

2 |f(x)− f(τIx)|2.
We can rephrase [LY98, Theorem 1] in the following way.

Lemma 3.4. Consider (Sn, σn) and I = I2. Then there exists a constant c > 0
independent of n such that

Entσn(f 2) ≤ 2c log n
n

∫
|df |2dσn,

i.e. (Sn, σn) satisfies LSId( c logn
n

).

Proof. The proof is rewriting the statement of [LY98, Theorem 1] in our notation,
using the fact that the conditional measures are two-point Dirac measures, as follows

Entσn(f 2) ≤ c log n 1
2n Eσn

∑
i 6=j

(f(τijx)− f(x))2

= 2c log n
n

∑
i 6=j

∫ ∫∫
(f(xij, xij)− f(xij, yij))2dmxij

(xij)dmxij
(yij)dπij(xij)

= 2c log n
n

∫
|df |2dσn.

18
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The fact that the logarithmic Sobolev constant tends to zero with n → ∞ is a
matter of normalization. An interpretation in the context of Markov chains requires
a different normalization of the difference operator, i.e. by |I|−1 (see also the Remark
in section 2), resulting in a logarithmic Sobolev constant given by (n − 1) log n.
Moreover, this definition of a gradient has an interesting property, since for any
I = {i, j} ∈ I2 we obtain

hI(hIf) = |hIf(x)− hIf(τijx)| = ||f(x)− f(τijx)| − |f(τijx)− f(x)|| = 0.

3.3. Bernoulli-Laplace and symmetric simple exclusion process. There are
two other Markov chains, whose Dirichlet form can be described in terms of a subset
I and first-order difference operators dI , which are the Bernoulli-Laplace model and
the symmetric simple exclusion process.

More specifically, define on Sn := {0, 1}n the subset known as a slice of the
hypercube Cn,r = {x ∈ {0, 1}n : ∑i xi = r}, the uniform measure µn,r on Cn,r and
the two generators acting on functions on Cn,r as

Kn,rf(η) =
∑
i,j

ηi(1− ηj)(f(τijη)− f(η)),

which is the generator of the so-called Bernoulli-Laplace model, and

Ln,rf(η) =
n∑
i=1

(f(τi,i+1η)− f(η)),

called the symmetric simple exclusion process, where τij : Sn → Sn is the switching
between the i-th and the j-th coordinate and we let τn,n+1 := τn,1. In [LY98, The-
orem 4, Theorem 5] sharp logarithmic Sobolev constants are derived with respect
to the Dirichlet form DK

n,r(f) = −Eµn,r fLn,rf and DL
n,r(f) = −Eµn,r fKn,rf (al-

though with different normalizations), and these correspond to logarithmic Sobolev
inequalities with respect to d in the following way.

Lemma 3.5. For I = I2,< = {(i, j) : i < j} we have
∫
|df |2dµn,r = DK

n,r(f) and for
I = I1 = {(i, i+ 1) : i ∈ {1, . . . , n}} we obtain

∫
|df |2dµn,r = DL

n,r(f).
As a consequence, µn,r satisfies a logarithmic Sobolev inequality with respect to

(d, I2,<) with constant c log n2
r(n−r)
n

and a logarithmic Sobolev inequality with constant
cn2 with respect to (d, I1), where c is a constant independent of n and r.

Proof. Let us fix n, r and drop all subscripts n, r, i.e. write DL for DL
n,r, DK for

DK
n,r and µ for µn,r. For I = I2,< let (i, j) be given and consider the projection

πij(x) = xij. We have

mxij
=


δ(1,1)

∑
k(xij)k = r − 2

1
2(δ(0,1) + δ(1,0))

∑
k(xij)k = r − 1

δ(0,0)
∑
k(xij)k = r.

and thus∫
|df |2dµ =

∑
(i,j)∈I2,<

∫
(dijf)2dµ = 1

2
∑
(i,j)

∫
(f(η)− f(τijη))2ηi(1− ηj)dµ = DK(f).
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In the second case note that πi,i+1(x) = xi,i+1 (with the convention (n, n+1) = (n, 1))
is just a special case of the (i, j) above, and again we obtain∫

|df |2dµ =
n∑
i=1

∫
(dif)2dµ = 1

2

n∑
i=1

∫
(f(η)− f(τi,i+1η))2dµ = DL(f).

Note that we omit ηi(1− ηi+1) since otherwise we obtain τi,i+1η = η.
The logarithmic Sobolev inequality then follows from [LY98, Theorem 4, Theorem

5], taking into account the missing renormalization. �

4. Approximate tensorization of the relative entropy in finite
product spaces

In this section we shall reformulate and provide a complete proof of a result by
K. Marton [Mar15] and moreover rewrite it in the terms of entropy (of functions)
instead of relative entropy of measures. To this end, let X be a finite set, X n its
n-fold product and fix a probability measure qn on X n, which does not necessarily
need to be a product measure. Denote by dTV the total variation between two
measures defined as

dTV (µ, ν) := sup
A⊂Xn

|µ(A)− ν(A)| = 1
2
∑
x∈Xn

|µ({x})− ν({x})|,

and by W2 the Wasserstein-2-type distance

W2(µ, ν) := inf
π∈C(µ,ν)

(
n∑
i=1

π(xi 6= yi)2
)1/2

,

where C(µ, ν) is the set of all couplings of µ and ν, i.e. probability measures π on
X n ×X n with marginals µ and ν.

Note that the infimum in the definition is always attained, since C(µ, ν) is a
compact subset of P(X n × X n) equipped with the weak topology and the map
π 7→ (∑n

i=1 π(xi 6= yi)2)1/2 is lower semicontinuous. This fact and the gluing lemma
for measures with a common marginal can be used to prove that W2 is a distance
function on P(X n), see for example [Vil09, Chapter 6] for a similar line of reasoning
and [AG13, Theorem 2.1] for the gluing lemma. Denote by µi, νi the pushforward
measure under the projection onto the i-th coordinate of µ and ν respectively. By
the subadditivity of the square root (for the upper bound for W2) as well as the
fact that every π = ⊗ni=1πi on X n × X n of µ, ν induces (by the projection onto the
coordinates xi, yi) a coupling πi of µi, νi, we obtain

(4.1)
(

n∑
i=1

d2
TV (µi, νi)

)1/2

≤ W2(µ, ν) ≤
√
ndTV (µ, ν).

Moreover, by H(µ || ν) we denote the relative entropy of µ with respect to ν given
by H(µ || ν) =

∫ dµ
dν

log dµ
dν
dν (whenever this exists). We will need the following

lemma, which is also found in [Mar15, Lemma 2] with a slightly worse constant.

Lemma 4.1. Let q be a measure on a finite space X and let βq := infx∈X+ q(x),
where X+ := {x ∈ X : q(x) > 0}. For any measure p� q we have

H(p || q) ≤ 2β−1
q d2

TV (p, q).
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Proof. The shifted logarithm f(x) := log(1 + x) is a concave function on (−1,∞),
so that for any x ≥ 0 we have f(x) ≤ f ′(0)x = x. Rewrite p

q
= 1 + p−q

q
to obtain

H(p || q) =
∑
X+

q(x)
(

1 + p(x)− q(x)
q(x)

)
f

(
p(x)− q(x)

q(x)

)

≤
∑
X+

q(x)
(

1 + p(x)− q(x)
q(x)

)
p(x)− q(x)

q(x) =
∑
X+

(p(x)− q(x))2

q(x)

≤ β−1
q

∑
X+

(p(x)− q(x))2 ≤ β−1
q dTV (p, q)

∑
X
|p(x)− q(x)| = 2β−1

q d2
TV (p, q).

�

Remark. Unfortunately, the factor 2β−1
q cannot be removed. To see this, consider

X = {0, 1} and let α1 = q(0) = 1 − q(1) with α1 ∈ (0, 1/2) (so that β = α1)
and consider the family of measures pε(0) = α1 + ε; an easy calculation yields
dTV (pε, q)2 = ε2 and H(pε || q) ∼ 2β−1ε2 and thus the constant is optimal.

As a consequence, for any measure q on a finite space X we have

d2
TV (p, q) ≤ 1

2H(p || q) ≤ β−1
q d2

TV (p, q).

We are now ready to prove the following result. We use the same notations as
in the previous section, i.e. for any measure p on X n we denote by pI(· | yI) the
conditional probability measure on X I given by conditioning on yI .

Theorem 4.2. Let qn be a measure with full support on X n.
(i) Let β := mini=1,...,n minx∈Xn qi(xi | xi), pn a probability measure and assume

that for all subsets I ⊂ {1, . . . , n} and all yI ∈ X I we have

(4.2) W 2
2 (pI(· | yI), qI(·, yI)) ≤ C

∑
i∈I

EpI(·|yI) d
2
TV (pi(· | yi), qi(· | yi)),

then

(4.3) H(pn || qn) ≤ C

β

n∑
i=1

Epi
H(pi(· | yi) || qi(· | yi))

(ii) If f denotes the density of pn with respect to qn, then this can be rewritten
as

(4.4) Entqn(f) ≤ C

β

n∑
i=1

∫
Entqi(·|yi)(f(yi, ·))dqi(yi).

(iii) Assume that the coupling matrix A = (aij)i 6=j (see section 3.1) of qn satisfies
the condition ‖A‖2→2 < 1. Then (4.2) holds with C = (1 − ‖A‖2→2)−2, so
that also (4.3) and (4.4) hold with the same constant.

Proof. First note that β > 0 due to the assumption of qn having full support.
(i): We will prove the theorem by induction. In the case n = 1 there is nothing

to prove if one interprets q1(· | y1) = q. Using the disintegration theorem for the
relative entropy (see for example [DZ10, Theorem D.13] for the formula) gives

(4.5) Entqn(f) = 1
n

n∑
i=1

Entqi

(
dpi
dqi

)
+
∫

Entqi(·|yi)

(
dpi(· | yi)
dqi(· | yi)

)
dpi(yi),
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which can be restated as

(4.6) H(pn || qn) = 1
n

n∑
i=1

H(pi || qi) + 1
n

n∑
i=1

∫
H(pi(· | yi) || qi(· | yi))dpi(yi).

We will treat the two terms separately. For the first term, using the estimate H(pi ||
qi) ≤ 2β−1d2

TV (pi, qi) from Lemma 4.1, (4.1), (4.2) and Pinsker’s inequality gives
1
n

n∑
i=1

H(pi || qi) ≤
2
βn

n∑
i=1

d2
TV (pi, qi) ≤

2
βn

W 2
2 (pn, qn)

≤ 2C
βn

n∑
i=1

Epn d2
TV (pi(· | yi), qi(· | yi))

≤ C

βn

n∑
i=1

Epn H(pi(· | yi) || qi(· | yi)).

For the second term we use the induction hypothesis. For each fixed i ∈ {1, . . . , n}
and yi ∈ X we interpret qi(· | yi) as a measure on Xi, for which

β(qi(· | yi)) = min
j 6=i

min
x∈Xi

qi(x | yi)
qi(z ∈ Xi : prj(z) = xj | yi)

= min
j 6=i

min
x∈Xi

qn(x, yi)
qn(z ∈ X n : prj(z) = xj, pri(z) = yi)

≥ min
j=1,...,n

min
z∈Xn

qn(zj, zj)
qj(zj)

= β(qn)

and (4.2) hold with the same constant C. To use (4.3) let us write y ∈ Xi for a
generic vector. We need to find the conditional probability of the measure qi(· | yi)
with respect to the projection prj : Xi → Xij for some j 6= i. A short calculation
shows that this is given by pj(yj | yj, yi), which is the conditional probability of pn
given prj = (yj, yi). Thus we obtain∫

H(pi(· | yi) || qi(· | yi))dpi(yi)

≤ C

β

∑
yi∈X

pi(yi)
∑
j 6=i

∑
yj

pn(pri(z) = yi, prj(z) = yj)
pi(yi)

H(pj(· | yj, yi) || qj(· | yj, yi))

= C

β

∑
j 6=i

Epn H(pj(· | yj) || qj(· | yj)).

Summation over i gives
1
n

n∑
i=1

∫
H(pi(· | yi) || qi(· | yi))dpi(yi) ≤

C

β
(1− 1/n)

n∑
i=1

Epn H(pi(· | yi) || qi(· | yi)),

which combined with the first term yields the claim.
(ii): (4.4) is a simple rewriting of (4.3), noting that as a consequence of the

disintegration theorem (or in this case Bayes’ theorem) we have
dpi(· | yi)
dqi(· | yi)

(yi) = f(yi, yi)∫
f(yi, xi)dqi(xi | yi)

and dpi

dqi
(xi) =

∫
f(xi, xi)dqi(xi | xi).
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(iii): See [Mar15, Theorem 2]. �

Remark 4.3. As mentioned, in [Mar15, Theorem 1] it is stated that using the quantity
β := inf

i=1,...,n
inf

x∈Xn:qn(x)>0
qi(xi | xi)

one can deduce qn(pri(x) = xi) ≥ β for all xi such that the LHS is nonzero. This is
possible only if qn has full support. A counterexample is given by the push-forward
of a random uniform permutation under the map σ 7→ (σ1, . . . , σn), which satisfies
β = 1.

Another possibility would have been to modify the quantity as
β̃(qn) := inf

i=1,...,n
inf

x∈Xn:qn(x)>0
qn(pri(x) = xi),

but this definition does not behave well under conditional probabilities. Indeed, it
is not true that in general that for a fixed yi ∈ X we also have β̃(qi(· | xi)) ≥ β̃(qn),
which can be seen in examples.

As a consequence it is easy to prove a modified logarithmic Sobolev inequality
under the conditions of Theorem 4.2.

Corollary 4.4. Let qn be a measure on X n with full support and assume that either
(4.2) holds or the coupling matrix A satisfies ‖A‖2→2 < 1 as in Theorem 4.2(iii).
Then we have

Entqn(ef ) ≤ c

β

∫
|df |2efdqn.

Proof. First let us note that for any probability measure µ we have

Entµ(ef ) ≤ Covµ(f, ef ) ≤ 1
2

∫∫
(f(x)− f(y))2ef(x)dµ(y)dµ(x),(4.7)

where Covµ denotes the covariance under µ. Indeed, this is easily seen by using
Jensen’s inequality to obtain Entµ(ef ) ≤ Covµ(f, ef ) in combination with the ele-
mentary inequality (a − b)(ea − eb) ≤ 1

2(a − b)2(ea + eb) and the symmetry in the
covariance.

Now apply Theorem 4.2 to the function ef for any f : X n → R, so that

Entqn(ef ) ≤ c

β

n∑
i=1

∫
Entqi(·|yi)(ef(yi),·)dqi(yi),(4.8)

and (4.7) to µ = qi(· | yi) to get

Entqn(ef ) ≤ c

2β

n∑
i=1

∫∫
(f(y)− f(yi, ỹi))2dqi(ỹi | yi)ef(y)dqn(y) = c

β

∫
|df |2efdqn.

�

In the notation of [BG99] (see also [GS16]) it means that the difference operator
|df | satisfies a modified logarithmic Sobolev inequality with constant 2c

β
. Thus,

by [BG99, Theorem 2.1] (or more specifically, the remark thereafter) this yields
Gaussian tail behavior with variance 2c

β
for any (probabilistic) “Lipschitz function”

f , i.e. for any function f such that |df | ≤ 1.
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