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Abstract. We show sharpened forms of the concentration of measure phenom-
enon typically centered at stochastic expansions of order d − 1 for any d ∈ N.
Here we focus on differentiable functions on the Euclidean space in presence of a
Poincaré-type inequality. The bounds are based on d-th order derivatives.

1. Introduction

In this note, we study higher order versions of the concentration of measure phe-
nomenon. Instead of the classical problem of deviations of f around the mean Ef ,
we study potentially smaller fluctuations of f̃d := f − Ef − f1 − . . . − fd, where
f1, . . . , fd are “lower order terms” of f with respect to a suitable decomposition,
such as a Taylor-type decomposition of f . In order to study the concentration of f̃d
around 0, which we call higher order concentration of measure, we use derivatives
up to order d.

Previous work includes Adamczak andWolff [A-W], who exploited certain Sobolev-
type inequalities or subgaussian tail conditions to derive exponential tail inequali-
ties for functions with bounded higher-order derivatives (evaluated in terms of some
tensor-product matrix norms). While in [A-W], concentration around the mean is
studied, the idea of sharpening concentration inequalities for Gaussian and related
measures by requiring orthogonality to linear functions also appears in Wolff [W] as
well as in Cordero-Erausquin, Fradelizi and Maurey [CE-F-M].

Our research started with second order results for functions on the n-sphere or-
thogonal to linear functions [B-C-G], with an approach which has been extended in
[G-S] for measures satisfying logarithmic Sobolev inequalities. This includes discrete
models as well as differentiable functions on open subsets of Rn. These results were
extended to arbitrary higher orders in [B-G-S].

While in [B-G-S], measures satisfying a logarithmic Sobolev inequality were con-
sidered, the aim of this note is to prove similar results for measures satisfying a
Poincaré-type inequality, i. e. a weaker assumption. To this end, let us recall that a
Borel probability measure µ on an open set G ⊂ Rn is said to satisfy a Poincaré-type
inequality with constant σ2 > 0 if for any bounded smooth function f on G with
gradient ∇f ,

Varµ(f) ≤ σ2

∫
|∇f |2 dµ.(1.1)
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Here, Varµ(f) =
∫
f 2 dµ − (

∫
f dµ)2 denotes the variance. When considering σ

instead of σ2 itself, we will always assume it to be positive.
Given a function f ∈ Cd(G), we define f (d) to be the (hyper-) matrix whose entries

(1.2) f
(d)
i1...id

(x) = ∂i1...idf(x), d = 1, 2, . . .

represent the d-fold (continuous) partial derivatives of f at x ∈ G. By considering
f (d)(x) as a symmetric multilinear d-form, we define operator-type norms by

(1.3) |f (d)(x)|Op = sup
{
f (d)(x)[v1, . . . , vd] : |v1| = . . . |vd| = 1

}
.

For instance, |f (1)(x)|Op is the Euclidean norm of the gradient∇f(x), and |f (2)(x)|Op

is the operator norm of the Hessian f ′′(x). Furthermore, we will use the short-hand
notation

(1.4) ‖f (d)‖Op,p =

(∫
G

|f (d)|pOp dµ

)1/p

, p ∈ (0,∞].

We now have the following:

Theorem 1.1. Let µ be a probability measure on G satisfying a Poincaré-type in-
equality with constant σ2 > 0, and let f : G → R be a Cd-smooth function with∫
G
f dµ = 0. Assuming the conditions

‖f (k)‖Op,2 ≤ σd−k ∀k = 1, . . . , d− 1,(1.5)

‖f (d)‖Op,∞ ≤ 1,(1.6)

there exists some universal constant c > 0 such that∫
G

exp
( c
σ
|f |1/d

)
dµ ≤ 2.

Here, a possible choice is c = 1/(12e). Comparing Theorem 1.1 to its analogue in
presence of a logarithmic Sobolev inequality, i. e. Theorem 1.6 in [B-G-S], we see that
under the same assumptions (1.5) and (1.6), logarithmic Sobolev inequalities yield
exponential moment bounds for |f |2/d, whereas Poincaré-type inequalities provide
exponential moments for |f |1/d only. This corresponds to the well-known behaviour
in case of d = 1.

If f has centered partial derivatives of order up to d− 1, it is possible to replace
(1.5) by a somewhat simpler condition. To this end, we need to involve Hilbert–
Schmidt-type norms |f (d)(x)|HS defined as the Euclidean norm of f (d)(x) ∈ Rnd .
Similarly to (1.4), ‖f (d)‖HS,2 then denotes the L2-norm of |f (d)|HS. In detail:

Theorem 1.2. Let µ be a probability measure on G satisfying a Poincaré-type in-
equality with constant σ2, and let f : G→ R be a Cd-smooth function such that∫

G

f dµ = 0 and
∫
G

∂i1...ikf dµ = 0

for all k = 1, . . . , d− 1 and 1 ≤ i1, . . . , ik ≤ n. Assuming that

‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1,

there exists some universal constant c > 0 such that∫
G

exp
( c
σ
|f |1/d

)
dµ ≤ 2.
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Here again, a possible choice is c = 1/(12e).
By Chebyshev’s inequality, Theorem 1.1 immediately yields

µ(|f | ≥ t) ≤ 2e−ct
1/d/σ

for any t ≥ 0. For small values of t, it is possible to obtain refined tail estimates
in the spirit of R. Adamczak [A], Theorem 7, or R. Adamczak and P. Wolff [A-W],
Theorem 3.3, by analyzing the proof of Theorem 1.1:

Corollary 1.3. Let µ be a probability measure on G satisfying a Poincaré-type
inequality with constant σ2 > 0, and let f : G → R be a Cd-smooth function with∫
G
f dµ = 0. For any t ≥ 0, set

ηf (t) := min
( √

2t1/d

σ‖f (d)‖1/dOp,∞

, min
k=1,...,d−1

√
2t1/k

σ‖f (k)‖1/kOp,2

)
.

Then,
µ(|f | ≥ t) ≤ e 2 exp(−ηf (t)/(de)).

As a generalization of these bounds, we may consider measures satisfying weighted
Poincaré-type inequalities. Indeed, a Borel probability measure µ on an open set
G ⊂ Rn is said to satisfy a weighted Poincaré-type inequality if for any bounded
smooth function f on G with gradient ∇f ,

Varµ(f) ≤
∫
|∇f |2w2 dµ,(1.7)

where w : G→ [0,∞) is some measurable function. Examples include Cauchy mea-
sures and Beta distributions. For a detailed discussion see S.G. Bobkov and M.
Ledoux [B-L2].

In these cases we cannot expect exponential integrability as in Theorem 1.1 any
more, since distributions satisfying (1.7) may have a slow, say, polynomial, decay at
infinity. Nevertheless, it is still possible to obtain higher order concentration results
by controlling the Lp-norms of f and its derivatives. In detail:

Proposition 1.4. Let µ be a probability measure on G satisfying a weighted Poincaré-
type inequality (1.7), and let f : G → R be a Cd-smooth function with

∫
G
fdµ = 0.

Then,

‖f‖p ≤
d−1∑
k=1

(2
k−2
2 p‖w‖2kp)k ‖f (k)‖Op,2 + (2

d−2
2 p)d‖w‖d−1

2d−1p
‖w|f (d)|Op‖2d−1p

≤
d−1∑
k=1

(2
k−2
2 p‖w‖2kp)k ‖f (k)‖Op,2 + (2

d−2
2 p‖w‖2dp)d ‖f (d)‖Op,2dp.

Proposition 1.4 should be compared to (2.8) from the proof of Theorem 1.1 in
Section 2. In particular, if the weight function w is bounded by some real number
σ > 0, µ clearly satisfies a Poincaré-type inequality (1.1) with constant σ2. In this
case, Proposition 1.4 implies a slightly weaker version of (2.8), and it is possible to
derive Theorem 1.1 again though with a somewhat weaker constant c = cd > 0.

Suitable conditions on the weight function w may still yield exponential-type
tails at least in certain intervals. For instance, the following higher order analogue
of Corollary 4.2 in [B-L2] holds:
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Corollary 1.5. Let µ be a probability measure on G satisfying a weighted Poincaré-
type inequality (1.7), and let f : G → R be a Cd-smooth function with

∫
G
fdµ = 0

and such that (1.5) and (1.6) from Theorem 1.1 hold. Assume ‖w‖2dp ≤ C for some
p ≥ 2 and some C ≥ 2−(d−1)/2. Then, for any 0 ≤ t ≤ (2

d+5
2 Cep)d,

µ(|f | ≥ t) ≤ e d/e exp(−dt1/d/(2
d+5
2 Ce)).

Hence, we obtain exponential-type tail bounds on an interval of length propor-
tional to pd. The assumption C ≥ 2−(d−1)/2 is needed for technical reasons. If
0 < C < 2−(d−1)/2, an inspection of the proof of Corollary 1.5 yields similar bounds
e. g. by replacing C by C1/d. Under stronger moment conditions on the weight func-
tion w, e. g.

∫
ew

2/αdµ ≤ 2 for some α > 0, it is possible to obtain exponential-type
tail bounds even on the whole positive half-line, cf. Corollary 4.3 in [B-L2].

Outline. In Section 2, we give the proofs of the results stated above. In Section
3, we provide some applications, including homogeneous multilinear polynomials of
order d and linear eigenvalue statistics in random matrix theory.

2. Proofs

Given a continuous function on an open subset G ⊂ Rn, the equality

(2.1) |∇f(x)| = lim sup
x→y

|f(x)− f(y)|
|x− y|

, x ∈ G,

may be used as definition of the generalized modulus of the gradient of f . The
function |∇f | is Borel measurable, and if f is differentiable at x, the generalized
modulus of the gradient agrees with the Euclidean norm of the usual gradient. This
operator preserves many identities from calculus in form of inequalities, such as a
“chain rule inequality”
(2.2) |∇T (f)| ≤ |T ′(f)||∇f |,
where |T ′| is understood according to (2.1) again.

As shown in [B-G-S], Lemma 4.1, using the generalized modulus of the gradient,
the derivatives of consecutive orders are related as follows:

Lemma 2.1. Given a Cd-smooth function f : G→ R, d ∈ N, at all points x ∈ G,

|∇|f (d−1)(x)|Op| ≤ |f (d)(x)|Op.

Proof. Indeed, for any h ∈ Rn, by the triangle inequality,∣∣ |f (d−1)(x+ h)|Op − |f (d−1)(x)|Op

∣∣ ≤ |f (d−1)(x+ h)− f (d−1)(x)|Op

= sup{(f (d−1)(x+ h)− f (d−1)(x))[v1, . . . , vd−1] : v1, . . . , vd−1 ∈ Sn−1},
while, by the Taylor expansion,

(f (d−1)(x+ h)− f (d−1)(x))[v1, . . . , vd−1] = f (d)(x)[v1, . . . , vd−1, h] + o(|h|)
as h → 0. Here, the o-term can be bounded by a quantity which is independent of
v1, . . . , vd−1 ∈ Sn−1. As a consequence,

lim sup
h→0

| |f (d−1)(x+ h)|Op − |f (d−1)(x)|Op|
|h|

≤ sup{f (d)(x)[v1, . . . , vd−1, vd] : v1, . . . , vd ∈ Sn−1} = |f (d)(x)|Op.

�
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Following the scheme of proof developed in [B-G-S], we moreover need to establish
a recursion for the Lp-norms of the derivatives of f of consecutive orders. To this
end, we recall a classical result on the moments of Lipschitz functions in the presence
of Poincaré-type inequalities. In detail:

Lemma 2.2. Let µ be a probability measure on G satisfying a Poincaré-type inequal-
ity with constant σ2 > 0, and let g : G → R be locally Lipschitz with

∫
G
gdµ = 0.

Then, for any p ≥ 2,

(2.3)
∫
G

|g|pdµ ≤
( σp√

2

)p ∫
G

|∇g|pdµ.

In particular, for any g : G→ R locally Lipschitz,

(2.4) ‖g‖p ≤ ‖g‖2 +
σp√

2
‖∇g‖p.

Note that in (2.4), g is not required to have mean 0. For the reader’s convenience,
let us briefly recall the proof.

Proof. By standard arguments, we may assume g to be C1-smooth. Moreover, by
the subadditivity property of the variance functional, the Poincaré-type inequality
for the probability measure µ on G is extended to the same relation on G×G, i. e.

(2.5) Varµ2(u) ≤ σ2

∫∫
|∇u(x, y)|2dµ(x)dµ(y)

for the product measure µ2 = µ⊗ µ. Here, for any C1-smooth function u = u(x, y),
the modulus of the gradient is given by

|∇u(x, y)|2 = |∇xu(x, y)|2 + |∇yu(x, y)|2.
Now consider the function

u(x, y) = |g(x)− g(y)|
p
2 sign(g(x)− g(y)),

which is C1-smooth for p > 2 with modulus of gradient

|∇u(x, y)| = p

2
|g(x)− g(y)|

p
2
−1
√
|∇g(x)|2 + |∇g(y)|2.

Since u has a symmetric distribution under µ2, applying (2.5) together with Hölder’s
inequality yields

1

σ2

∫∫
|g(x)− g(y)|pdµ2(x, y)

≤ p2

4

∫∫
|g(x)− g(y)|p−2

(
|∇g(x)|2 + |∇g(y)|2

)
dµ2(x, y)

≤ p2

4

(∫∫
|g(x)− g(y)|pdµ2(x, y)

) p−2
p
(∫∫ (

|∇g(x)|2 + |∇g(y)|2
) p

2dµ2(x, y)
) 2

p
.

By Jensen’s inequality, the last integral may be bounded by

2
p
2
−1
∫∫

(|∇g(x)|p + |∇g(y)|p)dµ2(x, y) = 2
p
2

∫
|∇g|pdµ.

Consequently, (∫∫
|g(x)− g(y)|pdµ2(x, y)

) 2
p ≤ σ2p2

2

(∫
|∇g|pdµ

) 2
p
,
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or, equivalently, ∫∫
|g(x)− g(y)|pdµ2(x, y) ≤

( σp√
2

)p ∫
|∇g|pdµ.

If the right integral is finite, then so is the left one, which implies g is integrable.
Moreover, if

∫
gdµ = 0, it follows from Jensen’s inequality that the left integral can

be bounded below by
∫
|g|pdµ, which proves (2.3). To see (2.4), it remains to note

that by the triangle inequality,∥∥∥g − ∫ gdµ
∥∥∥
p
≥ ‖g‖p −

∣∣∣ ∫ gdµ
∣∣∣ ≥ ‖g‖p − ‖g‖2.

�

Combining Lemma 2.1 and (2.4), we are able to prove Theorem 1.1. Recall that
if a relation of the form

(2.6) ‖f‖k ≤ γk (k ∈ N)

holds true with some constant γ > 0, then f has sub-exponential tails, i. e.
∫

e c|f |dµ
≤ 2 for some constant c = c(γ) > 0, e. g. c = 1

2γe
. Indeed, using k! ≥ (k

e
)k, we have∫

exp(c|f |)dµ = 1 +
∞∑
k=1

ck
∫
|f |kdµ
k!

≤ 1 +
∞∑
k=1

(cγ)k
kk

k!
≤ 1 +

∞∑
k=1

(cγe)k = 2.

Proof of Theorem 1.1. Using (2.4) with f replaced by |f (k−1)|Op, 2 ≤ k ≤ d, we get

‖f (k−1)‖Op,p ≤ ‖f (k−1)‖Op,2 +
σp√

2
‖∇|f (k−1)|Op‖p

≤ ‖f (k−1)‖Op,2 +
σp√

2
‖f (k)‖Op,p,

(2.7)

where Lemma 2.1 was applied on the last step. Consequently, using (2.3) and then
(2.7) iteratively,

(2.8) ‖f‖p ≤
d−1∑
k=1

( σp√
2

)k
‖f (k)‖Op,2 +

( σp√
2

)d
‖f (d)‖Op,p.

Since ‖f (k)‖Op,2 ≤ σd−k for all k = 1, . . . , d − 1 and ‖f (d)‖Op,∞ ≤ 1 by assumption,
we obtain

(2.9) ‖f‖p ≤ σd
d∑

k=1

(p/
√

2)k ≤ 1

1− (p/
√

2)−1
(σp/
√

2)d ≤ 4 (σp/
√

2)d

and therefore ‖f‖p ≤ (3σp)d for all p ≥ 2. Moreover, ‖f‖p ≤ ‖f‖2 ≤ (6σ)d for
p < 2. It follows that

‖|f |1/d‖k = ‖f‖1/dk/d ≤ γk

for all k ∈ N, i. e. (2.6) with γ = 6σ. �

Proof of Theorem 1.2. Starting as in the proof of Theorem 1.1, we arrive at

‖f‖p ≤
d−1∑
k=1

(σp/
√

2)k ‖f (k)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p,(2.10)
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where we used that operator norms are dominated by Hilbert–Schmidt norms. More-
over, since

∫
G
∂i1...ikf dµ = 0, by the Poincaré-type inequality,∫

G

(∂i1...ikf)2 dµ ≤ σ2

n∑
j=1

∫
G

(∂i1...ikjf)2 dµ

whenever 1 ≤ i1, . . . , ik ≤ n, k ≤ d− 1. Summing over all 1 ≤ i1, . . . , ik ≤ n, we get

(2.11) ‖f (k)‖2HS,2 =

∫
G

|f (k)|2HS dµ ≤ σ2

∫
G

|f (k+1)|2HS dµ = σ2 ‖f (k+1)‖2HS,2.

Using (2.11) in (2.10) and iterating, we thus obtain

‖f‖p ≤
d−1∑
k=1

σd(p/
√

2)k ‖f (d)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p.

Noting that ‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1, we arrive at (2.9), from where we
may proceed as in the proof of Theorem 1.1. �

Proof of Corollary 1.3. First note that by Chebychev’s inequality, for any p ≥ 1

(2.12) µ(|f | ≥ e‖f‖p) ≤ e−p.

Moreover, if p ≥ 2, it follows from (2.8) that

e‖f‖p ≤ e
( d−1∑
k=1

(σp/
√

2)k ‖f (k)‖Op,2 + (σp/
√

2)d ‖f (d)‖Op,∞

)
.

Assuming ηf (t) ≥ 2, we therefore arrive at

e‖f‖ηf (t) ≤ e
( d−1∑
k=1

t+ t
)

= (de)t.

Hence, applying (2.12) to p = ηf (t) (if p ≥ 2) yields

µ(|f | ≥ (de)t) ≤ µ(|f | ≥ e‖f‖ηf (t)) ≤ exp(−ηf (t)).
Using a trivial estimate provided that p < 2, we obtain

µ(|f | ≥ (de)t) ≤ e 2 exp(−ηf (t)).
The proof now easily follows by rescaling f by de and using that ηdef (t) ≥ ηf (t)/(de).

�

In order to prove Proposition 1.4, we have to adapt the first steps of the proof of
Theorem 1.1. First, we have the following generalization of Lemma 2.2 (in fact, this
is a version of Theorem 4.1 in [B-L2]):

Lemma 2.3. Let µ be a probability measure on G satisfying a weighted Poincaré-
type inequality (1.7), and let g : G→ R be locally Lipschitz with

∫
G
gdµ = 0. Then,

for any p ≥ 2,

(2.13)
∫
G

|g|pdµ ≤
( p√

2

)p ∫
G

|∇g|pwp dµ.

In particular, for any g : G→ R locally Lipschitz,

(2.14) ‖g‖p ≤ ‖g‖2 +
p√
2
‖w|∇g|‖p.



8 FRIEDRICH GÖTZE AND HOLGER SAMBALE

The proof of Lemma 2.3 uses similar arguments as the proof of Lemma 2.2, and
we therefore omit it. In particular, by Hölder’s inequality, (2.14) implies

(2.15) ‖g‖p ≤ ‖g‖2 +
p√
2
‖w‖2p‖∇g‖2p.

Starting with (2.13)–(2.15) and iterating as in (2.7) and (2.8), we obtain

‖f‖p ≤
d−1∑
k=1

2(k
2)
(p‖w‖2kp√

2

)k
‖f (k)‖Op,2 + 2(d

2)
(p‖w‖2d−1p√

2

)d
‖w|f (d)|Op‖2d−1p,

hence we easily arrive at the conclusions of Proposition 1.4. Again, we omit the
details.

Finally, the proof of Corollary 1.5 is similar to the proof of Corollary 4.2 in [B-L2].

Proof of Corollary 1.5. First let 2 ≤ q ≤ p. Using the assumptions and Proposition
1.4, we arrive at

‖f‖q ≤
d−1∑
k=1

(2
k−2
2 qC)k + (2

d−2
2 qC)d

and hence
‖f‖q ≤ 4 (2

d−1
2 Cq)d ≤ (2

d+3
2 Cq)d

(this follows as in (2.9), substituting σ by 2
d−1
2 C ≥ 1). Moreover, if 0 < q ≤ 2, we

have
‖f‖q ≤ ‖f‖2 ≤ (2

d+5
2 C)d.

Since the function q 7→ e d/eqdq, q > 0, is minimized at q = 1/e with minimum value
1, it follows that E|f |q ≤ e d/e (2

d+5
2 Cq)dq for all 0 < q ≤ p. Therefore, for any t > 0

and any 0 < q ≤ p,

µ(|f | ≥ t) ≤ E|f |q

tq
≤ e d/e

(
(2

d+5
2 Cq)d

t

)q
.

Now set s = t1/d/(2
d+5
2 C) and write µ(|f | ≥ t) ≤ e d/ee−ϕ(q) with ϕ(q) = dq(log(s)−

log(q)). It is easy to check that ϕ is a convex function on (0,∞) which attains its
maximum at q0 = s/e with ϕ(q0) = ds/e = dt1/d/(2

d+5
2 Ce). Noting that q0 ≤ p is

equivalent with t ≤ (2
d+5
2 Cep)d completes the proof. �

3. Applications

Let X1, . . . , Xn be independent random variables with distributions satisfying a
Poincaré-type inequality (1.1) with common constant σ2 > 0. For real numbers
ai1...id , i1 < . . . < id, consider the function

(3.1) f(X1, . . . , Xn) :=
∑

i1<...<id

ai1...idXi1 · · ·Xid ,

which is a homogeneous multilinear polynomial of order d. For any i1 < . . . < id and
any permutation σ ∈ Sd, set aσ(i1)...σ(id) ≡ ai1...id . Moreover, set ai1...id = 0 whenever
the indexes i1, . . . , id are not pairwise different. This gives rise to a hypermatrix
A = (ai1...id) ∈ Rnd , whose Euclidean norm we denote by ‖A‖HS. Moreover, set
‖A‖∞ := maxi1<...<id |ai1...id|.

As a first example, we may apply our results to functions of type (3.1). Here it is
convenient to assume for the random variables Xi to have mean zero:
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Proposition 3.1. Let X1, . . . , Xn be independent random variables with distribu-
tions satisfying a Poincaré-type inequality (1.1) with common constant σ2 > 0. As-
sume EXi = 0 for all i = 1, . . . , n. Let d ∈ N, and consider a function f of type
(3.1). Then,

E exp
( c

σ‖A‖1/dHS

|f |1/d
)
≤ 2.

Here, E denotes the expectation with respect to the random variables X1, . . . , Xn,
and c is the absolute constant appearing in Theorem 1.2. In particular,

E exp
( c

σn1/2‖A‖1/d∞
|f |1/d

)
≤ 2.

Moreover, if EX2
i = 1 for all i = 1, . . . , n,

P(|f − Ef | ≥ t) ≤ e 2 exp
(
−
√

2

σde
min

( t

‖A‖HS

,
t1/d

‖A‖1/dHS

))
≤ e 2 exp

(
−
√

2

σde
min

( t

nd/2‖A‖∞
,

t1/d

n1/2‖A‖1/d∞

))
.

Proposition 3.1 follows immediately from Theorem 1.2 and Corollary 1.3. Note
that for non-centered random variables X1, . . . , Xn, applying Proposition 3.1 to the
random variables Xi − EXi means removing certain “lower order” terms in (3.1),
which is in accordance with the ideas sketched in the introduction.

We may furthermore apply our results in the context of random matrix theory.
Here we extend an example on second order concentration bounds for linear eigen-
value statistics in presence of a logarithmic Sobolev inequality [G-S], Proposition
1.10, to the situation where only a Poincaré-type inequality is available.

Indeed, let {ξjk, 1 ≤ j ≤ k ≤ N} be a family of independent random variables
on some probability space. Assume that the distributions of the ξjk’s all satisfy
a (one-dimensional) Poincaré-type inequality (1.1) with common constant σ2. Put
ξjk = ξkj for 1 ≤ k < j ≤ N and consider a symmetric N ×N random matrix Ξ =

(ξjk/
√
N)1≤j,k≤N and denote by µ(N) the joint distribution of its ordered eigenvalues

λ1 ≤ . . . ≤ λN on RN (in fact, λ1 < . . . < λN a.s.). Recall that by a simple argument
using the Hoffman–Wielandt theorem, µ(N) satisfies a Poincaré-type inequality with
constant

(3.2) σ2
N =

2σ2

N

(see for instance S.G. Bobkov and F. Götze [B-G3]). Note that similar observations
also hold for Hermitean random matrices.

Considering the probability space (RN ,BN , µ(N)), if f : R → R is a C1-smooth
function, it is well-known that asymptotic normality

(3.3) SN =
N∑
j=1

(f(λj)− Ef(λj))⇒ N (0, σ2
f )

holds for the self-normalized linear eigenvalue statistics SN . Here, “⇒” denotes
weak convergence, Emeans taking the expectation with respect to µ(N) andN (0, σ2

f )

denotes a normal distribution with mean zero and variance σ2
f depending on f . This

result was established K. Johansson [J] for the case of β-ensembles and, for general
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Wigner matrices, A.M. Khorunzhy, B.A. Khoruzhenko and L.A. Pastur [K-K-P] as
well as Ya. Sinai and A. Soshnikov [S-S]. Concentration of measure results have been
studied by A. Guionnet and O. Zeitouni [G-Z], in particular proving fluctuations of
order OP(1). Our results yield a second order concentration bound:

Proposition 3.2. Let µ(N) be the joint distribution of the ordered eigenvalues of Ξ.
Let f : R → R be a C2-smooth function with f ′(λj) ∈ L1(µ(N)) and bounded second
derivatives, and let

S̃N := SN −
N∑
j=1

(λj − E(λj))Ef ′(λj)

with SN as in (3.3). Then, we have

E exp
( cN1/4

√
2σ‖f ′′‖1/2∞

|S̃N |1/2
)
≤ 2,

where c > 0 is the absolute constant from Theorem 1.2.

Since S̃N is “centered” in the sense of Theorem 1.2, Proposition 3.2 immedi-
ately follows from elementary calculus, using (3.2). Note that in view of the self-
normalizing property of SN , the fluctuation result for S̃N is of the next order, al-
though the scaling is of order

√
N only. Comparing Proposition 3.2 to [G-S], Propo-

sition 1.10, we see that we essentially arrive at the same result though for |S̃N |1/2
instead of |S̃N | due to the assumption of a Poincaré-type inequality.

Using Corollary 1.3, we can in fact slightly sharpen the results on the tail behavior
of SN . Indeed, an easy calculation yields

µN(|SN | ≥ t) ≤ e 2 exp
(
− 1

σde
min

( tN1/2

(
∫ ∑

i(f
′(λi))2dµN)1/2

,
t1/2N1/4

‖f ′′‖1/2∞

))
for any t ≥ 0. Similar results may be obtained for higher orders d ≥ 3.
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