Local and Non-Local Dirichlet Forms on the Sierpinski Carpet

Alexander Grigor’yan and Meng Yang

Abstract

We give a purely analytic construction of a self-similar local regular Dirichlet form on
the Sierpinski carpet using approximation of stable-like non-local closed forms which gives
an answer to an open problem in analysis on fractals.

oonn

1 Introduction

Sierpiriski carpet (SC) is a typical example of non p.c.f. (post critically finite) self-similar
sets. It was first introduced by Wactaw Sierpinski in 1916 which is a generalization of Cantor
set in two dimensions, see Figure

Figure 1: Sierpinski Carpet

SC can be obtained as follows. Divide the unit square into nine congruent small squares,
each with sides of length 1/3, remove the central one. Divide each of the eight remaining
small squares into nine congruent squares, each with sides of length 1/9, remove the central
ones, see Figure Repeat above procedure infinitely many times, SC is the compact
connected set K that remains.

In recent decades, self-similar sets have been regarded as underlying spaces for analysis
and probability. Apart from classical Hausdorff measures, this approach requires the intro-
duction of Dirichlet forms. Local regular Dirichlet forms or associated diffusions (also called
Brownian motion (BM)) have been constructed in many fractals, see [11] 4] [35] [34], 29] [2] [30].
In p.c.f. self-similar sets including Sierpinski gasket, this construction is relatively transpar-
ent, while similar construction on SC is much more involved.
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Figure 2: The Construction of Sierpiniski Carpet

For the first time, BM on SC was constructed by Barlow and Bass [4] using extrinsic ap-
proximation domains in R? (see black domains in Figure |[2)) and time-changed reflected BMs
in those domains. Technically, [4] is based on the following two ingredients in approximation
domains:

(a) Certain resistance estimates.

(b) Uniform Harnack inequality for harmonic functions with Neumann boundary condi-
tion.

For the proof of the uniform Harnack inequality, Barlow and Bass used certain probabilistic
techniques based on Knight move argument (this argument was generalized later in [7] to
deal also with similar problems in higher dimensions).

Subsequently, Kusuoka and Zhou [34] gave an alternative construction of BM on SC
using intrinsic approximation graphs and Markov chains in those graphs. However, in order
to prove the convergence of Markov chains to a diffusion, they used the two aforementioned
ingredients of [4], reformulated in terms of approximation graphs.

However, the problem of a purely analytic construction of a local regular Dirichlet form
on SC (similar to that on p.c.f. self-similar sets) has been open until now and was explicitly
raised by Hu [26]. The main result of this paper is a direct purely analytic construction of
a local regular Dirichlet form on SC.

The most essential ingredient of our construction is a certain resistance estimate in ap-
proximation graphs which is similar to the ingredient @ We obtain the second ingredient—
the uniform Harnack inequality in approximation graphs as a consequence of @ A possibil-
ity of such an approach was mentioned in [I0]. In fact, in order to prove a uniform Harnack
inequality in approximation graphs, we extend resistance estimates from finite graphs to
the infinite graphical SC (see Figure [3) and then deduce from them a uniform Harnack
inequality-first on the infinite graph and then also on finite graphs. By this argument, we
avoid the most difficult part of the proof in [4].

The self-similar local regular Dirichlet form &, on SC has the following self-similarity
property. Let fg,..., fr be the contraction mappings generating SC. For all function v in
the domain Fio¢ of o and for all ¢ = 0,...,7, we have u o f; € Fioc and

7
Sloc(wu) = ngloc(u o fi?u o fl)

i=0
Here p > 1 is a parameter from the aforementioned resistance estimates, whose exact value
remains still unknown. Barlow, Bass and Sherwood [Bl, 9] gave two bounds as follows:
e p € [7/6,3/2] based on shorting and cutting technique.
e p € [1.25147,1.25149] based on numerical calculation.

McGillivray [36] generalized above estimates to higher dimensions.
The heat semigroup associated with &), has a heat kernel p;(z, y) satisfying the following
estimates: for all z,y € Kt € (0,1)

g*

c [z —yl\7 "
pe(z,y) < WQXP —C< /8" ) (1)




Figure 3: The Infinite Graphical Sierpinski Carpet

where o = log 8/ log 3 is the Hausdorff dimension of SC and

.. log(8p)
= log3 2)

The parameter 8* is called the walk dimension of BM and is frequently denoted also by
dy,. The estimates were obtained by Barlow and Bass [0l [7] and by Hambly, Kumagai,
Kusuoka and Zhou [24]. Equivalent conditions of sub-Gaussian heat kernel estimates for
local regular Dirichlet forms on metric measure spaces were explored by many authors,
see Andres and Barlow [1], Grigor’yan and Hu [15] [16], Grigor’yan, Hu and Lau [I8] 20],
Grigor’yan and Teles [23]. We give an alternative proof of the estimates based on the
approach developed by the first author and others.
Consider the following stable-like non-local quadratic form

@) w2
el = [ [ sy,

Fg={ue L*(K;v):Es(u,u) < +o0},

where a = dimy K as above, v is the normalized Hausdorff measure on K of dimension «,
and 3 > 0 is so far arbitrary. Then the walk dimension of SC is defined as

B. :=sup {B > 0: (£, Fp) is a regular Dirichlet form on L*(K; v)}. (3)

Using the estimates and subordination technique, it was proved in [38, [I7] that (g, F3)
is a regular Dirichlet form on L?(K;v) if 8 € (0,3*) and that Fz consists only of constant
functions if 8 > g%, which implies the identity

B* = ﬂ*

In this paper, we give another proof of this identity without using the estimates 7 but
using directly the definitions and of 5* and B..

Barlow raised in [3] a problem of obtaining bounds of the walk dimension g* of BM
without using directly &£,.. We partially answer this problem by showing that

log (8- %) log(8-2)
log3 ’ log3

B €

)



which gives then the same bound for 8*. However, the same bound for 8* follows also from
the estimate p € [7/6,3/2] mentioned above. We hope to be able to improve this approach
in order to get better estimates of 3, in the future.

Using the estimates and subordination technique, it was proved in [39] that

lim (8% — 8)Es(u, u) =< Eoc(u, u) < m(ﬁ* — B)Es(u, u) (4)
818~ BB

for all u € Fioe. This is similar to the following classical result

, (u(@) — u(y))* / 2
lim(2 — ————= dady = C(n Vu(x)|*dx,
im2—9) [ [ S sy = co) [ [Vu)
for all u € WH2(R"), where C(n) is some positive constant (see [14, Example 1.4.1]). We
reprove as a direct corollary of our construction without using the estimates .

The idea of our construction of & is as follows. In the first step, we construct another
quadratic form Fg equivalent to £g and use it to prove the identity

log(8p)

Be=p":= log3

(5)

It follows that £z is a regular Dirichlet form for all 8 € («,(*). Then, we use an-
other quadratic form &g, also equivalent to £, and define £ as a I'-limit of a sequence
{(8* — Bn)€s, } with 3, 1 5*. We prove that £ is a regular closed form, where the main
difficulty lies in the proof of the uniform density of the domain F of £ in C(K). However, £
is not necessarily Markovian, local or self-similar. In the last step, & is constructed from
€ by means of an argument from [34]. Then &), is a self-similar local regular Dirichlet form
with a Kigami’s like representation @ which is similar to the representations in Kigami’s
construction on p.c.f. self-similar sets, see [30]. We use the latter in order to obtain certain
resistance estimates for &,c, which imply the estimates by [19, 15].

Let us emphasize that the resistance estimates in approximation graphs and their conse-
quence—the uniform Harnack inequality, are mainly used in order to construct one good
function on K with certain energy property and separation property, which is then used to
prove the identity and to ensure the non-triviality of F.

An important fact about the local regular Dirichlet form &) is that this Dirichlet form
is a resistance form in the sense of Kigami whose existence gives many important corollaries,
see [30} 311 [32].

2 Statement of the Main Results

Consider the following points in R2:

1 1

Po = (O7O)ap1 = (§v0>7p2 = (170)ap3 = (la 5)7

1

1
Ps = (171)ap5 = (57 1)7p6 = (071)ap7 = (Oa 5)

Let fi(x) = (x +2p;)/3, z € R?, i =0,...,7. Then the Sierpifiski carpet (SC) is the unique
non-empty compact set K in R? satisfying K = UT_, fi(K).
Let v be the normalized Hausdorff measure on K. Let (3, F3) be given by

ot = [ [ = o)
Fs={ue L*(K;v): Es(u,u) < +oo},

where o = log 8/ log 3 is Hausdorff dimension of SC, § > 0 is so far arbitrary. Then (£3, F3)
is a quadratic form on L?(K;v) for all 8 € (0,+00). Note that (s, Fp) is not necessary
to be a regular Dirichlet form on L?(K;v) related to a stale-like jump process. The walk
dimension of SC is defined as

B.:=sup{B > 0: (s, Fp) is a regular Dirichlet form on L*(K; v)}.
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Let
Vb = {p07 LR ;P7} ) Vn+1 = UZ:Ofi(Vn) for all n Z 0.

Then {V,,} is an increasing sequence of finite sets and K is the closure of U2 V,,. Let
Wo = {@} and

Wp={w=wy...wp:w; =0,...,7,i=1,...,n} foralln > 1.

For all w") = wgl)...wg) € Wy, w? = wf)...wﬁf) € W,, denote wMw® as w =
Wy .. Wipn, € Wi, with w; = wgl) foralli =1,...,m and wy,+; = w§2) foralli=1,...n.
Foralli=0,...,7, denote i" as w =wy ... w, € W, with wy =i forall k=1,...,n.

For all w =wy ... w, € W,, let

fo="Ffw, o...0 fu,,
Vi = fu, 0.0 fu, (Vo),
Ky = fuw,0...0 fu, (K),
Py = fu, 0.0 fu,_, (Pw,);

where fy = id is the identity map.
Our semi-norm FEj is given as follows.

Boluu) = 33007 33 (u(p) - u(g))

weW, P,q€Vy
lp—q|=2"1.37"

o

o

Our first result is as follows.

Lemma 2.1. For all B € (o, +0),u € C(K), we have
Eg(u,u) < Ez(u,u).

The second author has established similar equivalence on Sierpiniski gasket (SG), see [40,
Theorem 1.1].
We use Lemma to give bound of walk dimension as follows.

Theorem 2.2.
log (8- %) log (8- %)
log3 ' log3

. (6)
This estimate follows also from the results of [5] and [9] where the same bound for 5* was

obtained by means of shorting and cutting techniques, while the identity 8, = 8* follows

from the sub-Gaussian heat kernel estimates by means of subordination technique. Here we

prove the estimate @ of B, directly, without using heat kernel or subordination technique.
We give a direct proof of the following result.

Theorem 2.3. log(8p)
_ px._ 08L5p
Be=p": log 3

where p is some parameter in resistance estimates.

bl

Hino and Kumagai [25] established other equivalent semi-norms as follows. For all n >
1,u € L*(K;v), let
=l
u(z)v(de),w € W,
v(Kw) Jk,

For all w, w® € W, denote w™ ~,, w? if dimy (K, N K@) = 1. Let

Pou(w) =

oo

€s(u,u) == Z 3(A=an Z (Pnu(w(l)) - Pnu(w(2))>2

n=1 W@ e (@)
Lemma 2.4. ([25, Lemma 3.1]) For all B € (0,+00),u € L*(K;v), we have

Es(u,u) < Eg(u, u).



We combine Eg and &g to construct a local regular Dirichlet form on K using I'-
convergence technique as follows.

Theorem 2.5. There exists a self-similar strongly local reqular Dirichlet form (Eioe, Floc)
on L?(K;v) satisfying

Eioe(u, u) = sup 387~ Z Z (u(p) — u(q))?, (7)

n=>1 weW, P,qE€EVay

Fioe = qu€ C(K) :sup3 = % 7% - (u(p) — u(g))® < +o0

>
nzl weW, P,q€Vy
lp—ql=2"1.37m

By uniqueness result in [§], we have above local regular Dirichlet form coincides with
that given by [4] and [34].

We have a direct corollary that non-local Dirichlet forms can approximate local Dirichlet
form as follows.

Corollary 2.6. There exists some positive constant C such that for all u € Fioc

Eloc(u u) < lim (B — B)Es(u,u) < hm (8" = B)Es(u,u) < Céioc(u, u).
¢ 515

Let us introduce the notion of Besov spaces. Let (M,d, ) be a metric measure space
and «a, f > 0 two parameters. Let

]2 23““*/ [ ) - u)Putaputas)

M d(z,y)<3—™

gy = sup3(H” / / u(y))u(dy) (),

n>1
M d(z,y)<3—n

and
BIH(M) = {“ € LA(M; )« [u] g2 5y < +oo},

Bi?(M) = {u € LA(M;p) : [U]Bi"?(M) < +oo}.

By the following Lemma and Lemma we have Fg = Bzé(K) for all 5 € (o, +00).
We characterize (Ejoc, Floc) on L2(K;v) as follows.

Theorem 2.7. Fioc = B2% (K) and Epe(u,u) < [u] 52, (1) for all u € Fioc.

We give a direct proof of this theorem using and thus avoiding heat kernel estimates,
while using some geometric properties of SC. Similar characterization of the domains of local
regular Dirichlet forms was obtained in [28] for SG, [37] for simple nested fractals and [27]
for p.c.f. self-similar sets. In [38] [I7),[33], the characterization of the domains of local regular
Dirichlet forms was obtained in the setting of metric measure spaces assuming heat kernel
estimates.

Finally, using of Theorem we give an alternative proof of sub-Gaussian heat
kernel estimates as follows.

Theorem 2.8. (Eoc, Fioc) on L?(K;v) has a heat kernel p(x,y) satisfying

_ ¢ [z —yl\ 7"~
pt(xvy) - W exp | —=¢ tl/ﬁ* )

forall x,y € K,t € (0,1).

This paper is organized as follows. In Section [3] we prove Lemma In Section [ we
prove Theorem [2:2] In Section[5] we give resistance estimates. In Section[6] we give uniform
Harnack inequality. In Section [/} we give two weak monotonicity results. In Section [8, we



construct one good function. In Section [} we prove Theorem In Section we prove
Theorem In Section [TI} we prove Theorem In Section [I2] we prove Theorem

NOTATION. The letters ¢, C will always refer to some positive constants and may change
at each occurrence. The sign < means that the ratio of the two sides is bounded from above
and below by positive constants. The sign < (2) means that the LHS is bounded by positive
constant times the RHS from above (below).

3 Proof of Lemma 2.1]

We need some preparation as follows.

Lemma 3.1. ([/0, Lemma 2.1]) For all u € L*(K;v), we have

// xy|a+5) v(dz)v(dy) < Zg(aw)n//B(wsn) — u(y))*v(dy)v(d).

Corollary 3.2. ([40, Corollary 2.2]) Fiz arbitrary integer N > 0 and real number ¢ > 0.
For allw € L*(K;v), we have

)2 x)v Voo (atB)n u(xr) —u 2y v(dx
// |x_ W vdapridy) = 3 3% /K/B(IW)< (2) = u(y))*v(dy)v(da).

The proofs of above results are essentially the same as those in [40] except that contrac-
tion ratio 1/2 is replaced by 1/3. We also need the fact that SC satisfies the chain condition,
see [I'7, Definition 3.4].

The following result states that a Besov space can be embedded in some Holder space.

Lemma 3.3. ([17, Theorem 4.11 (iii)]) Let u € L*(K;v) and

// JL“—yIO‘w)2 (da)v(dy),

lu(z) — u(y)|* < cE(u)|z — y|P~ for v-almost every x,y € K,

then

where ¢ is some positive constant.

= (K).

Note that the proof of above lemma does not rely on heat kernel.

We divide Lemma [2.1] into the following Theorem [3.5] and Theorem The idea of the
proofs of these theorems comes form [28]. But we do need to pay special attention to the
difficulty brought by non p.c.f. property.

Theorem 3.5. For all u € C(K), we have

SE Y S () - ul@) S / / T W) y(da)v(dy).

n=1 weWw,, P,q€ Ve
lp—q|=2"1.37"

Remark 3.4. If E(u)

Proof. First fixn > 1,w =w;...w, € W,, consider

> (ulp) —ulg)*.

P,a€Vw
lp—ql=2"1.37n

For all z € K,,, we have

(u(p) — u(@))* < 2(u(p) — u())* + 2(u(z) — u(q))*.

Integrating with respect to « € K, and dividing by v(K,,), we have

—u(z))?v(de 2 wl(z) — ulaN2u(da
V(Kw) /Kw(U(p) ( )) (d )+V(Kw) /Kw( ( ) (Q)) (d )a

7

(u(p) — u(q))* <



hence

1
S (ulp)-u@)P <222 V(Kw)/K (u(p) — u(z))?v(dz).

P,qeviu pve w
|p—q|=27"-37"

Consider (u(p) — u(z))?, p € Vi, * € K,. There exists w,41 € {0,...,7} such that
P = fu, ©...0 fu,(Pw,,.)- Let k,1 > 1 be integers to be determined, let

w(i) =W1... WpWp41 .- Wil
with ki terms of w41, 7=0,...,l. For all z® e K,w,1=0,...,l, we have
(u(p) ~ u(@®))? < 2(u(p) — u(@))? + 2(u(@?) — u(z))?
< 2(u(p) - u(@®))? + 2 2(u(z®) — u(@®))? + 2(u(z) - u(@))?]
2(u(p) — u(@®))? + 22(u(@?) — u(@™))? + 22 (u(@D) - u(z))?

-1
<< 2(ulp) — u(zV))? + 22 Z 2% (u(2?) — w(z+1)2.
i=0
Integrating with respect to () e Ko, .y W e K, and dividing by v(K ), ..,

v(K,w), we have
L
V(Kw(m)

_ 2 ulm) — wlzO)2p(da®
WKW»AQJ(” (20))20(da®)

-1 :
2
+2 ;V(K

L/ (u(p) — u(z®))20(dz®)
K (o
<

21

w® )V (K i41))

/ / (u(z@) — w(@ )2 (de®@ ) (dzFD).
K, YK, +1)

Now let us use v(K, ) = (1/8)"TF = 3=«n+k)  For the first term, by Lemma we
have

! / D)2y (dz®) < _EW) / D18 (dz®
Ve u(p) — u(x v(da') < ———— p— 2P (dz\V)
i f, ) et < s

< 2(8=0)/2, F ()3~ (Be) (nt D)

For the second term, for all z® e me,x(i“) € K, i+, we have

() — 2| < (/3. 3~ (nthi),

hence
-1 i
(u(x(i)) - u(x(”l)))QV(dx(i))V(dx(”l))
iz I/(Kw(i))V(Kw(i+1)) /me /Kw(Hl)
-1
< 9t . 3&k+2a(n+ki) / / (U(l‘(l)) _ u(I(iJrl)))ZV(dl‘(i))V(dl‘(i+1)),
=0 K (i) |ol+D) —z()|</2.3— (ki)
and

; U — wulz)2v(dx :# u — (2O 20 (dz©
s L () — (@) w&wuﬁ;@(@) (@ ©)20(da®)

<2. Q(ﬁ*a)/QCE(U)gf(ﬁ*Q)(nJrkl)
-1
+4) 2t gokralntk / / (u(z) — u(y))?v(dz)v(dy).

1=0 X
! K (i) |z—y| <23~ (ntk)

8



Hence

> > (ulp) — ulg)’

weWy, P,q€Vw
Ip—ql=2"1.37"

<8 2 Y e [ ) - ute)ran)

<8 Z Z (2.2(/3—a)/2CE(u)3—(B—a)(n+kl)
weW, peVy,

+4l_21 2t gokrzalneky / / (u(z) = u(y))*v(d)v(dy)
=0 K (i) |o—y|<v/2-3-(+k0)
For the first term, we have
Z Z g—(B=a)(n+kl) _ g . gn . g—(B—a)(ntkl) _ g . gan—(B—a)(ntkl)
WEW,, pEViy

For the second term, fix i = 0,...,!
K, , hence

S Y S aameso [ [ )~ u) Puldevlay)

=0 weW,, peV,,

— 1, different p € V,,, w € W,, correspond to different

Koy l[z—y|<v/2-3=(n+kD)
-1

SR / / (u() — u(y))2v(dz)p(dy)

=0 K |g—y|<y/2.3— (ntki)

-1
— gok 221 . 3= (B=a)(ntki) | glatB)(ntki) / / (u(:z:) _ u(y))zu(dx)l/(dy)

K |g—y|<v/2-3— (ntki)

For simplicity, denote

Bl =3 [ [ () )P

We have
> > (u(p) - ulg)?

Ip—q|=2"1.37"

(8)
-1
S 1928 - 2(ﬁ70¢)/26E(u)304n7(ﬁ*&)(ﬂ%’kl) +32. 304]6 Z 2Z . 37(57a)(n+ki)En+ki( )
=0
Hence
oo
> 3 N > (ulp) - ulg)?
n=1 weW, P,q€Vw
lp—gl=2"1.37"
co [—1
<128 - 208=9/2cp(y Z?ﬁ” TR 13239k NN "ol 3m Bk g, (w).
n=11i=0



Take [ = n, then

213“*“)" S Y (ulp) —ule)?

weWn, P,q€Vay
lp—q|=2—"1.37n

e8] oo n—1

< 1282007/ 2cp(u) Y " glPm(Fmed bt lin g 39 30k N "N "ot 3Bk g i (u)
n=1 n=1i=0
o) e} ) o0

=128 2007 2cp(y) Y " 317 Fme)kthin 4 gy gok N "oi . 3=kt N B ki(u)
n=1 =0 n=i+1

<128 - 20=/2cE(u) Z glB=(B—a)(k+1)n | 39 gak Z ==kl B(u),
n=1 =0

where C is some positive constant from Corollary Take k > 1 sufficiently large such
that 8 — (B —a)(k+1) <0and 1 — (8 — a)k < 0, then above two series converge, hence

fe'e) 2
S S S () - ulg) € / / o |a+ﬁ) v(dz)v(dy).

n=1 weW, P,a€Vw
lp—q|=271.37"

Theorem 3.6. For all u € C(K), we have

[ RV ED SELED SIS DR U BT

weW, P,qEVyw
lp—ql=2"1.37"

or equivalently for all ¢ € (0,1)

oo

D aletfn (u(z) — u(y))?v(dy)v(dz)
n=2 I[B(z,l")

. (10)
<Y o3BT NN (u(p) — u(g)

n=1 weW, P,gE€EVw

|p—q|=2—"1.3—7

Proof. Note V,, = Uyew, Vuw, it is obvious that its cardinal #V,, < 8" = 3*". Let v,, be the
measure on V,, which assigns 1/#V,, on each point of V,,, then v, converges weakly to v.
First, for n > 2, m > n, we estimate

g(a+B)n / / (u() = u(y))*Vm (dy)vm (dz).
K JB(z,c3—™)
Note that

[ @@ = 3 [ [ @) - )P,

K B(z,c3-") WEWn K, B(z,c3-7)

Fix w € W, there exist at most nine @ € W,, such that Kz N K, # (), see Figure

Let
Ky,= |J FKa

WEWn
K NKqy#0

For all z € K, y € B(x,¢3™™), we have y € K, hence

/ ) /B (wyﬁ_n)(U(w)—u(y))2vm(dy)vm(dx) < / ) / ;(U(m)—u(y))21/m(dy)ym(dx)

- @Zw:n /Kw/m(“(f”)U(y))zvm(dy)vm(dx).

K NKqyp#0

10



Figure 4: A Neighborhood of K,

Note {Py} = Ky NV, for all w € W,,. Fix w,w € W,, with Kg N Ky, # 0. If Py # P,
then |Py — Py,| =271 -3~ or there exists a unique z € V;,_; such that
|Py — 2| = |Py — 2| =271 .37 (071, (11)
Let z1 = Py, 23 = P, and
Py =P,, if Py =P,,

29 ={ Py, if |Pg — Py| =2"1-3" (1,
z, if Py # P, and z is given by Equation .

Then for all x € K,, y € K, we have
(u(x) = uly))”
< 4 [(uly) = u(21))® + (ulz1) = u(22))* + (u(z2) — u(23))? + (u(z3) — u(z))?] .

For ¢ = 1,2, we have

/Kw /Kw (w(2i) — w(2i1)) 2V (dy) v (dz) = (u(2s) — u(2i41))? <W>2

8m—n

8m

= (06~ uz0)? ) = 320 (1) — ulzin))

Hence

S Y [ ] - s @)

weEW,, WEWR

$370 Y [ () - u(Pu)Pom(de) + 3723 2, (ulp)—u(@)

weWw, weW,, _ P,qE€Vw
Ky T gl=a g (n—1)

<5 S S () - u(Py)?

weW, e K,,NVy,

+372n %" > (ulp) —ule)*.

weW,, _1 P,a€Vyw
lp—q|=2~1.37(n=1)

Let us estimate (u(x) — u(P,))? for x € K,, NV,,. We construct a finite sequence
P1s-- s Pa(m—ni1)s Pa(m—n+1)+1
such that p1 = Py, Pagm—n+1)+1 =« and for all K =0,...,m —n, we have
Pak+1, Pak+2, Pak+3; Pak+4, Pa(k+1)+1 € Vitks
and for all 1 = 1,2, 3,4, we have

|Paksi — Pakriv1] = 0 or 271 .37 (R,

11



m—n

(u(x) — > < A [(u(part1) — w(part2))? + (u(Parr2) — w(parts))?
k=0

+(u(par+3) — w(pan+a))® + (W(parta) — u(Parr1)+1))7] -

For all k =n,...,m, for all p,q € V; N K,, with [p—q| =271 37" the term (u(p) — u(q))?
occurs in the sum with times of the order 8™ % = 3*(m=k) hence

g—a(m+n) Z Z (u(z) — u(Py))?

wEWn r€EK NV

< gmalmtn) 24’6 P3N N (ulp) — u(g)?

weWy, P,q€Vy
lp—ql=2"1.37F

—24’“ megTettR N Y (ulp) — u(9)*

weWy, P,qE€Vay
lp—ql=2"1.3=F

/ / (u(x) — u(y))* v (dg) V()
B(a: c3—m)
<Z4’“ magmettR NN (ulp) — u(g)?

weWy P,q€Vw
lp—ql=2"1.37F

372 N > (u(p) — u(q))*.

weW,, —1 P,q€Vw
lp—q=2"1.37(n=1)

Hence

Letting m — 400, we have

/ / (u(z) — u(y))*v(dy)v(dz)
B(a: c3=m)
<Z4k ma3Tet Ny (ulp) — u(g)? (12)

weWy P,a€Vw
|p—ql=2"1.37F

4372 3 Yo (ulp) —ul@)*

weW, —1 P,q€EVw
lp—q=2"1.37(n=1)

Hence
o0

atp)n —u(y)) v v(dx
S [ f (9)v(dy)v(do)
5224’“*”-3“”’“ o> (ulp) —ulg)?

n=2k=n weWy P,9€Vy
lp—q|=2"1.37F

+y 30 Y S (ulp) — ulg))?
n=2

weW,, — P,qEV,
Y p—gi=a—15-(n=1)

oo k
SN abmmafrmek N N (u(p) — u(g))?

k=2n=2 weWp, p,q€EVyw
lp—ql=2"1.37F

£330 S ST (ulp) — ulg)?

n=1 weWw, P,a€Vaw
|p—q|=2"1.37"

SD3Emm NN (ulp) — u(g)®

weW, P,9€Vy
lp—ql=2"1.37"

12



4 Proof of Theorem 2.2

First, we consider lower bound. We need some preparation.

Proposition 4.1. Assume that € (a,+00). Let f : [0,1] — R be a strictly increas-
ing continuous function. Assume that the function U(x,y) = f(z), (x,y) € K satisfies
E3(U,U) < +o0. Then (E3,Fp) is a reqular Dirichlet form on L*(K;v).

Remark 4.2. Above proposition means that only one good enough function contained in
the domain can ensure that the domain is large enough.

Proof. We only need to show that Fg is uniformly dense in C'(K). Then Fp is dense in
L?(K;v). Using Fatou’s lemma, we have 3 is complete under (£3); metric. It is obvious
that 3 has Markovian property. Hence (£, F3) is a Dirichlet form on L?(K;v). Moreover,
FsNC(K) = Fp is trivially (£3)1 dense in F3 and uniformly dense in C'(K). Hence (€3, F3)
on L?(K;v) is regular.

Indeed, by assumption, U € Fg, Fg # 0. It is obvious that Fp is a sub-algebra of C(K),
that is, for all u,v € Fg, ¢ € R, we have u 4 v,cu,uv € Fg. We show that Fj3 separates
points. For all distinct (z(M),y™M), (2, y?)) € K, we have (1) # 2(2) or y(1) £ (2,

If (M) % 2() | then since f is strictly increasing, we have

U,y 0) = @) # f®) = U, y).
If y) £ 4@ then let V(z,y) = f(v), (z,y) € K, we have V € Fz and
Vi, y®) = f60) £ fu) = VE®, ).
By Stone-Weierstrass theorem, F3 is uniformly dense in C(K). O
Now, we give lower bound.

Proof of Lower Bound. The point is to construct an explicit function. We define f : [0,1] —
R as follows. Let f(0) = 0 and f(1) = 1. First, we determine the values of f at 1/3 and
2/3. We consider the minimum of the following function

@(x7y) = 3‘7‘.2 + 2(‘7’. - y)2 + 3(1 - y)gaxvy eR.

By elementary calculation, ¢ attains minimum 6/7 at (z,y) = (2/7,5/7). Assume that we

have defined f on i/3",i=0,1,...,3". Then, for n+1, for alli =0,1,...,3" — 1, we define

1+1
37l

3i+1 5,1
Fo) = 2

141 31+ 2 2
) F) = 24

1

3TL

2 5
)+ 21 )+ 25D,
By induction principle, we have the definition of f on all triadic points. It is obvious that
f is uniformly continuous on the set of all triadic points. We extend f to be continuous on
[0,1]. It is obvious that f is increasing. For all x,y € [0,1] with « < y, there exist triadic
points /3™, (i + 1)/3™ € (z,y), then f(x) < f(i/3") < f((i +1)/3™) < f(y), hence f is
strictly increasing.

Let U(z,y) = f(x), (z,y) € K. By induction, we have

Z Z (U(p) —U(q))?* = g Z Z (U(p) — U(q))? for all n. > 1.

weWn 11 P,9E€Vaw weWw, P,qEVw
lp—q|=2"1.3=(n+1) lp—ql=2"1.37"

Hence

> Y U -U@)?= (‘;)n for all n > 1. (13)

weW,, P,q€Vw
[p—ql=2"1.37"

For all 8 € (log8/log3,log(8-7/6)/log3), we have 35~ < 7/6. By Equation , we have

oo

Y 30 X Y (Ulp) - Ulg)® < +oo.

n=1 weW, P,q€Vy
lp—ql=2"1.37m
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By Lemma Es(U,U) < +00. By Proposition (€3, F3) is a regular Dirichlet form on
L3(K;v) for all B € (log8/log3,log(8-7/6)/log3). Hence
5, > 8B 5)
log 3
O

Remark 4.3. The construction of above function is similar to that given in the proof of [3,
Theorem 2.6]. Indeed, above function is constructed in a self-similar way. Let f, : [0,1] - R
be given by fo(x) =z, x € [0,1] and for alln >0

%fn(S) zf0<:13_3,
fari(@) =2 faBx—1)+ 2, if 5 <z <3,
2faBz—2)+2, if2<z<l

It is obvious that

fn(gin) = f(3in) foralli=0,...,3" n>0,
and ;
max |fn+1( ) fn( )| - maX ‘fn( ) fn—1($)| fOT all n > 1,
z€]0,1] 7 z€[0,

hence f, converges uniformly to f on [0,1]. Let g1, g2, g3 : R> — R? be given by

(e.0) = (5720 ) 2o = (574 3. 39+ 2 ) sslon) = (g2 + 2 29+ 2
91\%,Yy) = 3$, 7y y 92\ T, Y) = 3.’,E 72! 7 y 93 (T, Y) = 356 377y 7 .

Then {(z, f(x)) : x € [0,1]} is the unique non-empty compact set G in R? satisfying
G = g1(G) Ug2(G) U g5(G).

Second, we consider upper bound. We shrink SC to another fractal. Denote C as Cantor
ternary set in [0, 1]. Then [0, 1] x C is the unique non-empty compact set K in R? satisfying

K = Ui—o1.2456fi(K).

Let
Vo = {Po, 1, P2, P4, 05,06} V1 = Uizo.1.2.4.5.6fi(Vin) for all n > 0.

Then {f/,,} is an increasing sequence of finite sets and [0,1] x C is the closure of U%‘;Of/n.
Let Wy = {0} and

W, = {lw=wy...w, :w; =0,1,2,4,5,6,i =1,...,n} for all n > 1.
For all w =w; ... w, € Wn, let

‘N/w = fwl Oo... Ofwn(VO)-

Proof of Upper Bound. Assume that (€5, F3) is a regular Dirichlet form on L?(Kj;v), then
there exists u € Fg such that u|oyxjo,1) = 0 and u|1yxj0,1) = 1. By Lemma we have

+oo > Y 3 N Yo (ulp) —u(q)?
n=1

weW, P,q€Vw
lp—ql=2"1.37n

>y 30mm Y Y (ulp) - u(g)’

n=1 weEW, P,q€ Vi
lp—ql=2"1.37n

= 30em K- Yo ((uoyxe)®) = (uljoxe) (@)

n=1 weEW, g€V
lp—ql=2"1.37n

>3 g0 SN ST (a(p) — ag))”,

n=1 weEW, P,q€ Vi
lp—ql=2~ 137"
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where 4 is the function on [0,1] x C that is the minimizer of

D 3 3" > (ap) = lg)? s dloyxe = 0,iil1yxe = 1,4 € C([0,1] x C).
n=1 wEW,, P,q€Vay

|p—q|=2"1.3—n

By symmetry of [0,1] x C, 4(z,y) = z, (z,y) € [0,1] x C. By induction, we have

> > (i(p) — 1i(q))? = % 3 S (a(p) — (g))? for all n > 1,

wewn«l»l P,a€Vuw wEV‘i/n g€V
lp—ql=2—1.3=(n+1) |p—ql=2"1.377

hence

> > (alp) - alg)? = (§>n for all n > 1.

weW,, P,q€Vaw
lp—ql=27"1.37"

By Equation ([14]), we have
o0 2 n
3 ge-anm (3) < 40,
n=1

hence, 5 < log(8-3/2)/log3. Hence

5 <10g(8-%)
= log3

5 Resistance Estimates

In this section, we give resistance estimates using electrical network techniques.
We consider two sequences of finite graphs related to V,, and W,,, respectively.
For all n > 1. Let V,, be the graph with vertex set V,, and edge set given by

{(n,q) :p, g €Viylp— gl =271 -37"}.

For example, we have the figure of Vs, in Figure
Let W,, be the graph with vertex set W,, and edge set given by

{(w(l),w(Z)) cwM w® e W, dimy (Ko NKye) = 1} .

For example, we have the figure of W, in Figure [6}
On V,, the energy

> (ulp) —ulg)? uel(Vy),

P,qE€EVn
lp—gq|=2"1.377

is related to a weighted graph with the conductances of all edges equal to 1. While the

energy
> > (ulp) —ulg)? uel(Vy),
W

is related to a weighted graph with the conductances of some edges equal to 1 and the
conductances of other edges equal to 2, since the term (u(p) — u(q))? is added either once
or twice.

Since
Y w0 ) - u(g)?
Ip—q]\J:2€’V1n-3*” weWn Ip—qz\)gzeyf).s*"
<2 > (ulp) —ulg)?

[p—q|=2"1.37n
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we use
D,,L(U,U) = Z Z (u(p) - U(Q))Qau € l(‘/n)v
weW, I TIEV{H
p—q|=2""-37"

as the energy on V,,. Assume that A, B are two disjoint subsets of V,,. Let
Ry (A, B) = inf {D,,(u,u) : uls = 0,ulp = 1,uecl(V,)} ".

Denote
RY = R,(V,,n {0} x [0,1],V,, n {1} x [0,1]),

Rn(z,y) = Ro({z},{y}), 2,y € Vi,

It is obvious that R, is a metric on V,,, hence
Rn(z,y) < Rn(,2) + Ra(z,y) for all 2,y,z € V,,.

On W, the energy

Dn(ww) = > (uwW)—uw?))? uel(W,),

w) ~n w(2)

is related to a weighted graph with the conductances of all edges equal to 1. Assume that
A, B are two disjoint subsets of W,,. Let

R, (A, B) = inf {D, (u,u) s ulq = 0,ulp = 1,u € [(W,)} .

Denote
R (wV, w@) = Eﬁn({w(l)} 7 {w<2>})7w<1>,w(2) cw,.

It is obvious that R,, is a metric on W,,, hence
R, (w®, w?) <R, (WP, w®) + R, (WD, wW?) for all W, WP, W e W,.

The main result of this section is as follows.

16



Figure 6: Wy

Theorem 5.1. There exists some positive constant p € [7/6,3/2] such that for alln > 1

Rr‘{ = pn7
Rn(p07p1) ... = Rn(p6ap7) = Rn(p7ap0) = pn,
R (07,17) = ... = R (67, 7") = R (77, 07) = p.

Remark 5.2. By triangle inequality, for alli,j =0,...,7,n>1
Ry (pispj) S 0",
Rn (i, 5") < P
We have a direct corollary as follows.

Corollary 5.3. For alln > 1,p,q € Vy,,w™® w® e W,

R, (p,q) S 0",

< pn.

~

%,L(w(l), w(2))

Proof. We only need to show that R, (w,0") < p" for all w € W,,,n > 1. Then for all
w w® e W,

%n(w(l),w@)) < iﬁn(w(l)ﬁ”) + Q{n(w@), 0") < p™.

Similarly, we have the proof of R, (p,q) < p” for all p,q € V,,,n > 1.
Indeed, for alln > 1,w = wy ... w, € W,, we construct a finite sequence as follows.

w®

=Wp... Wp2Wp-1Wnp = W,
w(2) =w w w w
1..-Wn-2Wn-1%Wn-1,

3
w( ) =W1...Wp-2Wp—2Wn-—2,

W™

w™t) =0...000 = 0".

=wWi...wW1W1W1,

17



For alli =1,...,n — 1, by cutting technique
%n(w(l), U}(i+1)) = %n(wl oo Wp—iWp—441 -+ - Wp—4+1, W1 - . . Wp—Wp—4 - -« wn,i)
S Ri(Wn—if1 - Wi 1, Wn—ij o - W) = %i(wqizfi+17 wh_) <t

Since R, (w™, w+t)) = R, (wp,0") < p", we have

mn(w70n> =N, ( (1) (n+1) < Zm (z+1) 5 sz pn.
i=1

We need the following results for preparation.
First, we have resistance estimates for some symmetric cases.

Theorem 5.4. There exists some positive constant p € [7/6,3/2] such that for alln > 1
RY = pn
Rn(plap-S) n(p37p7) — p )
Ry (po,pa) = Rn(p2, ps) <

Proof. The proof is similar to [5, Theorem 5.1] and [36, Theorem 6.1] where flow technique
and potential technique are used. We need discrete version instead of continuous version.
Hence there exists some positive constant C such that

1
—TpTm < Tpym < Cxpxy, for all nym > 1,

C

where x is any of above resistances. Since above resistances share the same complexity,
there exists one positive constant p such that they are equivalent to p™ for all n > 1.
By shorting and cutting technique, we have p € [7/6,3/2], see [3, Equation (2.6)] or [7
Remarks 5.4]. O
Second, by symmetry and shorting technique, we have the following relations.

Proposition 5.5. For alln >1
Rn(p07p1) < ERn(onv 1n)7
Ry‘;,/ < Rn(plapf)) = Rn(p37p7) < S‘Rn(]-n;{)n) = 9C‘tn(?’na 7n)’
RY < Ry(po,pa) = Ru(p2,ps) < Rn(0",4") = R, (2",6™).

Third, we have the following relations.

Proposition 5.6. For alln > 1
mn(onv 1n) S Rn(p07p1)7

mn(1n75n) = E1{71(3 77 ) 5 Rn(p17p5) = Rn(p3ap7)a
R, (0",4") = R, (2",6") S Ru(po, pa) = Ru(p2, pe)-

Proof. The idea is to use electrical network transformations to increase resistances to trans-
form weighted graph W,, to weighted graph V,,_1.

First, we do the transformation in Figure [7] where the resistances of the resistors in the
new network only depend on the shape of the networks in Figure [7] such that we obtain the
weighted graph in Figure [§ where the resistances between any two points are larger than
those in the weighted graph W,,. For R,,(i", j), we have the equivalent weighted graph in
Figure [9]

Second, we do the transformations in Figure [10| where the resistances of the resistors in
the new networks only depend on the shape of the networks in Figure [L0|such that we obtain
a weighted graph with vertex set V,,_;1 and all conductances equivalent to 1. Moreover, the
resistances between any two points are larger than those in the weighted graph W, hence
we obtain the desired result. O

n n
n n
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Figure 7: First Transformation
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Figure 8: First Transformation

Now we estimate R, (po,p1) and R, (0™, 1™) as follows.

Proof of Theorem[5.1 The idea is that replacing one point by one network should increase
resistances by multiplying the resistance of an individual network.
By Proposition and Proposition we have for all n > 1

Rn(p07p1) = %n(0n7 1n)

By Theorem and Proposition we have for all n > 1
1
%n(on7 1n) Z Rn(p07p1) Z ZRn(phpS) = Pn
We only need to show that for all n > 1
R,(0",1") < p".

First, we estimate %n+1(0”+1,12”). Cutting certain edges in W,,;1, we obtain the
electrical network in Figure |11| which is equivalent to the electrical networks in Figure
Hence
(5R,(0™,4™) + 7) (R, (0™,4™) + 1)
(5R, (07, 47) + 7) + (R, (07, 47) + 1)

5 11
<R, (0",4") + 6z)%n(on, 4m) = g9%7,(0”,4”) < pntl

R (0" 127) < R, (0™, 4) +

Second, from 0"*! to 1"*!, we construct a finite sequence as follows. Fori =1,...,n + 2,

) 1#=1o7*+2=7 if § is an odd number,
w = .
1i-12n+2=i " if § is an even number.
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Figure 10: Second Transformation

By cutting technique, if ¢ is an odd number, then
Rypr (WD, w+D) = 9, (1 1gn+2-i igntl=i)
< Ry yo_ (07270 120170y < 2=t
If ¢ is an even number, then
%nﬂ(w(i), U/(”l)) = M,y (177120270 1ignti=i)
< Mo g (2727 107N = R o (0720, 121y < g2

Hence
£Rn-‘rl(on-i_17 1n+1) = ERn-&-l (’U)(l)7 w(n,+2))

n+1 ] ) n+1 ) n+1 )
< Zmn+1(w(z)7w(z+l)) S an+2—z _ sz g pn-‘rl.
i=1 i=1 =1

6 Uniform Harnack Inequality

In this section, we give uniform Harnack inequality as follows.

20



6Wn 5Wi, 4Wn

W, 3W,

)77 W, 2Wy

ot 127

Figure 11: An Equivalent Electrical Network
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Figure 12: Equivalent Electrical Networks

Theorem 6.1. There ezist some constants C € (0,400),d € (0,1) such that for all n >
1,z € K,r >0, for all nonnegative harmonic function u on V,, N B(x,r), we have

max «<C min wu.
V.NB(z,0r) V.NB(z,0r)

Remark 6.2. The point of above theorem is that the constant C is uniform in n.

The idea is as follows. First, we use resistance estimates in finite graphs V,, to obtain
resistance estimates in an infinite graph V. Second, we obtain Green function estimates
in V. Third, we obtain elliptic Harnack inequality in V. Finally, we transfer elliptic
Harnack inequality in V, to uniform Harnack inequality in V/,.

Let Vs be the graph with vertex set Voo = U323V, and edge set given by

{(P,a) :p.a€Vao,lp—gql =27"}.

We have the figure of V, in Figure
Locally, V., is like V,. Let the conductances of all edges be 1. Let d be the graph
distance, that is, d(p, ¢) is the minimum of the lengths of all paths connecting p and ¢. It is
obvious that
d(p, q) = |p - Q| for all p,q € VOO
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By shorting and cutting technique, we reduce V., to V, to obtain resistance estimates
as follows.
log d(z,y) logp
R(z,y) < p ©e3  =d(z,y)°s3 =d(z,y)” for all 2,y € Vi,
where v = log p/ log 3.
Let gp be the Green function in a ball B. We have Green function estimates as follows.

Theorem 6.3. ([19, Proposition 6.11]) There exist some constants C' € (0,+00),n € (0,1)
such that for all z € Vi, r > 0, we have

gB(z,r)(xa y) < Cr? fOT all T,y € B(Z,?"),

1
gB(z,T)(Zvy) > 6707 fOT‘ all Y€ B(Zvnr)
We obtain elliptic Harnack inequality in V, as follows.

Theorem 6.4. ([21, Lemma 10.2],[15, Theorem 3.12]) There exist some constants C' €
(0,+00), § € (0,1) such that for all z € Vo, r > 0, for all nonnegative harmonic function u
on Voo N B(z,r), we have

max u < C min u.

B(z,0r) B(z,0r)
Remark 6.5. We give an alternative approach as follows. It was proved in [10] that sub-
Gaussian heat kernel estimates are equivalent to resistance estimates for random walks on
fractal graph under strongly recurrent condition. Hence we obtain sub-Gaussian heat ker-
nel estimates, see [10, Example 4]. It was proved in [22, Theorem 3.1] that sub-Gaussian
heat kernel estimates imply elliptic Harnack inequality. Hence we obtain elliptic Harnack
inequality in V.

Now we obtain Theorem [6.1] directly.

7 Weak Monotonicity Results

In this section, we give two weak monotonicity results.
For all n > 1, let

an(u)=p" > Y (ulp) —u()* ucl(Vy).
weWn ‘p7q722€y$377l

We have one weak monotonicity result as follows.

Theorem 7.1. There exists some positive constant C such that for all nym > 1l,u €
I(Viutm), we have
an (1) < Cappm(u).

Proof. For all w € W,,,p,q € V,, with [p—¢q| = 271-37", by cutting technique and Corollary

(u(p) — w(@)* < R (f " (0), f (@) D > (u(x) - u(y))?
vEW, z,y€Vuwy
|Ify‘:2—1_3—(n+m)
<cpm Y > (u(z) — u(y))*.
veEW,, ‘z,y|;ég€12w;u(n,+m,)
Hence

an(u)=p" > Y (ulp) —u(g)’

weWy, P,q€Vw
lp—ql=2"1.37"

<"y Y cp™ N > (u(z) — u(y))>

weWn, |p_q7:2€yf”.3w vEW,, ‘x,m;’?ﬁﬁwﬂww
=Cprt Y > ()~ u@)’ = Canpm(u).
wWEWn4m P,q€EVy

lp—q|=2""1.3~(n+m)

22



For all n > 1, let

b (u) = p™ Z (Pyu(w®) — Pyu(w))?,u e L*(K;v).

w) w2

We have another weak monotonicity result as follows.

Theorem 7.2. There exists some positive constant C such that for all n,m > 1l,u €
L?*(K;v), we have
bn(u) < Cbygn(u).

Remark 7.3. This result was also obtained in [3]], Proposition 5.2]. Here we give a direct
proof using resistance estimates.

This result can be reduced as follows.
For all n > 1, let

By(u)=p" Y (ww®) - u@®))?uel(W,).

W)~y (@)

For all n,m > 1, let My, 1, : {(Wy ) — I(W,,) be a mean value operator given by

1
(M ) (w) = > u(wo),w € Wy, u € {Woim).
veEW,

Theorem 7.4. There exists some positive constant C such that for all nym > 1l,u €
I(Whim), we have
B (M, mu) < CByym ().

Proof of Theorem [7.9 using Theorem[7.4 For all u € L*(K;v), note that
Pou = Mn,m(Pn+mu)a
hence

b (u) = p" Z (Pyu(w®) — Pyu(w?))? = B, (P,u)

w) ~oy 1w (2)

=" 3 (Papmu(@®) = Poymu(w®))? = Chypn(u).

W~y w2

O

Proof of Theorem[7.]] Fix n > 1. Assume that W C W, is connected, that is, for all
w®, w® € W, there exists a finite sequence {v™M,....v®)} C W such that v =
w® p*) = w® and v® ~, v+ foralli=1,...,k—1. Let

Dwlu,u) = Y (uw)—uw®?))? uel(W).

w) W@ ew
w) vy w(2)

For all w™®, w® e W, let
-1

Ry (w, w?) = inf {@W(u,u) cu(w®) =0, u(w®) =1,u € l(W)}

o () —u(w®))?
_5up{ D (0,10 .@W(u,u)#o,uel(W)}.

It is obvious that

(u(w®) — u(w))? < Rw (WD, wP)Dyw (u, u) for all W, wW? e W,u € L(W),
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wOW,, w@W,,
wm w@ jm

Figure 13: w(l)Wm and w(Q)Wm

and Ry is a metric on W, hence
Ry (wD, w®) < Ry (WD, w®) + Ry (W, w?) for all WD, W, W e W.

Fix w® ~, w®, there exist i,j = 0,...,7 such that wMi™ ~, ., w® ;™ see Figure

3
Fixve W,

(u(w(l)v) - U(U)(2)U))2 < SRuJ(l)WmLJ11J(2>W,,,, (w(l)v7 w(2)U)©11J(1)WmUu)(2)Wm (u7 u)
By cutting technique and Corollary [5.3]

mw(l)W U11)(2)Wm(w(1)v w(?)v)
< Ruow,uw@w,, WD, WD) + R ow. Leew,, (Wi w®5m)

+mw(1)W U@ w,, (W @) jm w@)
<R (0,i") + 1+ R (v, ™) S p™.

Hence
(w(wMv) = u(w®v))* < P™D e w, vu@w,, (4, 1)
= pm (@w(l)wm (u, u) + @w(z)Wm (u, u)
+ Z (uw(wMoM) — u(w@p))?
v(1) (D) ew,,
w03 ,(2)
Hence

5 pm (Qw(UW,,L (uv u) + gw(Q)W,n (U, u)

+ Z (uw(wMvM) — u(w@v))?

(1) » () ew,,
w1 (1) o w(2)4(2)

~n+4+m

In the summation with respect to w® ~,, w®), the terms D,y (u, u), Doy, (u,u) are
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summed at most 8 times, hence

Bn(Mn’mu) - p” Z (Mn,mu(w(l)) - Mn,mU(w(2)))2

W)~y 1w (2)

SJ pn Z pm (@w(l)wm ('LL, U) —+ @w(g)wm (u’ u)

W)~y w(2)

+ Z (w(wMv®) — u(w@v?))?

v(1) () ew,,
w@) (1) (2),(2)

~n4+mW

< gpntm Z (u(w(l)) _ u(w(2)))2 = 8By (u).

W~y w2

8 One Good Function

In this section, we construct one good function with energy property and separation prop-
erty.
By standard argument, we have Holder continuity from Harnack inequality as follows.

Theorem 8.1. For all 0 < §; < g1 < €9 < 03 < 1, there exist some positive constants
0 = 0(01,02,€1,€2), C = C(01,02,€1,€2) such that for all n > 1, for all bounded harmonic
function u on Vi, N (61,82) x [0,1], we have

— < Clz —yl|’ ll e V,Nley, 0,1].
ute) — ) < Clo—yi? (,_max ) for all g € Van s (0.1

Proof. The proof is similar to [4, Theorem 3.9]. O

For all n > 1. Let u, € I(V},) satisty un|v,n{o1x[0,1] = 0, Un|v,n{1}x[0,1) = 1 and

Dulwmun) = Y 30 (unp) —uale))* = (R

weW, P,q€Vy
lp—q|=2"1.37"

Then u,, is harmonic on V,, N (0,1) x [0,1], up(z,y) =1 —un(1 — z,y) = un(x,1 —y) for all
(x,y) €V, and

1 1 1

Van{3}x[0,1] = §v“n\vm[o,%)x[0,1] < 27“n|vm(é71]x[0,1] ~ 5

Unp

By Arzela-Ascoli theorem, Theorem and diagonal argument, there exist some subse-
quence still denoted by {u, } and some function u on K with u|{o}x[0,1) = 0 and u|{1}x[0,1] =
1 such that u,, converges uniformly to u on KN[e1,e3]x[0,1] forall 0 < e < e3 < 1. Hence u
is continuous on K N(0,1) x [0,1], up(z) — u(x) for all z € K and u(z,y) = 1—u(l—x,y) =
u(z,1 —vy) for all (z,y) € K.

Proposition 8.2. The function u given above has the following properties.

(1) There exists some positive constant C' such that
an(u) < C for alln > 1.
(2) For all B € (a,log(8p)/log3), we have
Eg(u,u) < +o0.

Hence u € C’B%Q(K).
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(3) . X
u|Kﬂ{%}X[0,1} = §7U|Kn[0,%)x[0,1] < 55”|Kﬂ(%,1]><[0,1] > bR

Proof. (1) By Theorem and Theorem for all n > 1, we have

an(u): lim an(un+m)<c lim an—&-m(un—i-m)
m—>+00 m—»—+o00

=C lim pn+mDn+m(un+maun+m) =C lim anrm (R,‘L/_i_m)_l <C.

m——+oo m——+o0

(2) By (1), for all 8 € («,log(8p)/log3), we have

oo o0

2356“*1 23/3“*1 < +oo.

By Lemma and Lemma we have u € C72% (K).

(3) It is obvious that

w\'—'

1 1
u|Kn{%}><[0,1} = 5»“|Kn[0,§)x[0,1] U|Im(§ 1]x[0,1] >

By symmetry, we only need to show that

1
ulKﬂ(%,l]x[O,l} > 3

Suppose there exists (z,y) € K N (1/2,1) x [0,1] such that u(z,y) = 1/2. Since u, — 3 is

a nonnegative harmonic function on V,, N (3,1) x [0,1], by Theorem forall 1/2 <e; <
x < €9 < 1, there exists some positive constant C' = C(e1,e5) such that for all n > 1

1 ) 1
max u, — = | <C min Up — = | .
VaNle1,e2]%[0,1] ( 2) VoNle1,e2]%[0,1] ( 2)

Since u,, converges uniformly to u on K N [e1,e2] x [0, 1], we have

1 . 1
sup (u — > <(C inf (u — ) =0.
Kn[e1,e2]%[0,1] 2 Kn[e1,62]x[0,1] 2

Hence . 1
u—§:0onKﬂ[51,62]><[0,1] forall§<€1<x<€2<1.

Hence

1 1
uzionKﬂ(?l)x[O,l].

By continuity, we have

1 1
U:§OHKQ[§,1]X[O,1],

contradiction! O

9 Proof of Theorem 2.3

First, we consider upper bound. Assume that (g, F3) is a regular Dirichlet form on
L?(K;v), then there exists u € Fg such that ulgoyxj0,1] = 0 and u|{13x[0,1) = 1. Hence

+00 > Eg(u,u) = Z 3= D (u,u) > Z 3B=IMD, (U, un)
n=1

n=1

_ io: 3(,3704)77, (R i B—a 71
n=1 n=1
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Hence 3°~2p~1 < 1, that is, B < log (8p)/log3 = B*. Hence 3. < B*.

Second, we consider lower bound. Similar to the proof of Proposition to show that
(€s,Fp) is a regular Dirichlet form on L?(K;v) for all 8 € (o, 8*), we only need to show
that Fjg separates points.

Let u € C(K) be the function in Proposition By Proposition (2), we have
Eg(u,u) < 400, hence u € Fg.

For all distinct 23 = (21,¥1),22 = (22,y2) € K, without lose of generality, we may
assume that z; < z3. Replacing z; by f;l(zi) with some w € W,, and some n > 1, we only
have the following cases.

(1) 21 €[0,3), 22 € [5,1].
(2) z1 €[0,3], 22 € (5,1].
(3) @1,22 € [0, %), there exist distinct wy,ws € {0,1,5,6,7} such that

21 € le\Kw2 and z9 € sz\le.
(4) x1,22 € (%, 1], there exist distinet wy,ws € {1,2,3,4,5} such that
21 € Ky \Kuw, and 22 € Ky, \ Ky, -

For the first case, u(z1) < 1/2 < wu(z2). For the second case, u(z1) < 1/2 < u(z2).

K¢ | K5 | K4
K7 K3
Ky | K1 | Ko

Figure 14: The Location of z1, 2o

For the third case. If wy,ws do not belong to the same one of the following sets

{0,1},{7},{5,6},

then we construct a function w as follows. Let v(z,y) = u(y,x) for all (z,y) € K, then

U|[0,1]><{0} = O,U|[0,1]><{1} =1,
v(z,y) =v(l —x,y) =1—v(x,1 —y) for all (z,y) € K,
Ey(v,v) = Egluyu) < +oc.
Let
vofi'—1, on K,;,i=0,1,2,
w=<wvo f on K;,i=3,7,
vofz.*1 +1, on K;,i=4,5,6,
then w € C(K) is well-defined and Eg(w,w) < +oo, hence w € Fgz. Moreover, w(z1) #
w(z2), wlox{o} = —Lwlpyxpy = 2w(@,y) = wl —z,y) =1 - w(z,1—y) for all

(z,y) € K.
If wy,wo do belong to the same one of the following sets

{0,13,{7},{5,6},

then it can only happen that wy,ws € {0,1} or wy,ws € {5,6}, without lose of generality,
we may assume that w; = 0 and wy = 1, then z; € Ko\K; and z3 € K1\ Kj.
Let

wo fit—1, on K;,i=0,6,7,
w=<uo fi ! on K;,i=1,5,

wo fit+1, on K;,i=23,4,
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then w € C(K) is well-defined and Eg(w,w) < 400, hence w € Fz. Moreover w(z) #
w(z2), wlioyx,1] = —Lwlfyxo, = 2, w(z,y) = (:E 1—y) =1—w(l-xy) for all
(x,y) € K.

For the forth case, by reflection about {3} x [0,1], we reduce to the third case.

Hence Fj separates points, hence (€5, F3) is a regular Dirichlet form on L?(K;v) for all
B € (o, B%), hence B, > p*.

In conclusion, 8, = 8*.

10 Proof of Theorem [2.5]

In this section, we use I'-convergence technique to construct a local regular Dirichlet form
on L?(K;v) which corresponds to the BM. The idea of this construction is from [33].

The construction of local Dirichlet forms on p.c.f. self-similar sets relies heavily on some
monotonicity result which is ensured by some compatibility condition, see [29, B0]. Our key
observation is that even with some weak monotonicity results, we still apply I'-convergence
technique to obtain some limit.

We need some preparation about I'-convergence.

In what follows, K is a locally compact separable metric space and v is a Radon measure
on K with full support. We say that (£, F) is a closed form on L*(K;v) in the wide sense
if F is complete under the inner product & but F is not necessary to be dense in L?(K;v).
If (€, F) is a closed form on L?(K;v) in the wide sense, we extend € to be +oo outside F,
hence the information of F is encoded in €.

Definition 10.1. Let £", & be closed forms on L?(K;v) in the wide sense. We say that E"
is I'-convergent to &€ if the following conditions are satisfied.

(1) For all {u,} C L*(K;v) that converges strongly to u € L?(K;v), we have

lim 8n(un7un) > g(uau)

n—-+o0o

(2) For all u € L?(K;v), there exists a sequence {u,} C L*(K;v) converging strongly to
u in L?(K;v) such that o
i " < .
ngrfoo E™(un, up) < E(u,u)

We have the following result about I'-convergence.

Proposition 10.2. ([13, Proposition 6.8, Theorem 8.5, Theorem 11.10, Proposition 12.16])
Let {(E™, F™)} be a sequence of closed forms on L*(K;v) in the wide sense, then there exist
some subsequence {(E™, F™ )} and some closed form (€, F) on L*(K;v) in the wide sense
such that E™ is I'-convergent to £.

In what follows, K is SC and v is Hausdorff measure.
We need an elementary result as follows.

Proposition 10.3. Let {x,} be a sequence of nonnegative real numbers.

(1)

lim z, <lim(l — Z)\"acn < hm 1— Z)\"an < lim =z, <supz,.
n—-+00 )\Tl =1 n—+00 n>1
(2) If there exists some positive constant C' such that
Tp < CTpgm for alln,m > 1,
then
supz, < C lim z,.
n>1 n—-+o00
Proof. The proof is elementary using e-N argument. O
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Take {8,} C (o, 8*) with 3, 1 5*. By Proposition there exist some subsequence
still denoted by {8,} and some closed form (€, F) on L?(K;v) in the wide sense such that
(B* — Bn)€g, is I'-convergent to £. Without lose of generality, we may assume that

0<p*—pB, < for all n > 1.

n+1
We have the characterization of (€, F) on L?(K;v) as follows.
Theorem 10.4.

E(u,u) < sup3Tmm X" N (u(p) —ulg)),

nzl weW, P,9€Vw
lp—gql=2"1.377

F=queC(K):sup 38" —a)n Z Z (u(p) — u(q))® < +o0

= weWy, P,q€Vw
lp—ql=2"1.37"

Moreover, (€, F) is a regular closed form on L*(K;v).
Proof. Recall that p = 3%~ then

Bauw) = 3307 30 3 (ulp) —ul@)? = 330 anw)

weW, P,q€Vy
|p—q|=2—"1.3—7

oo 9 oo .
Es(u,u) = Z 3(B—a)n Z (Pnu(w(l)) _ Pnu(w@))) — Z 3(B8-8 )"bn(u)
n=1 w) v w(2) n=1

We use weak monotonicity results Theorem Theorem and elementary result
Proposition [10-3}

For all u € L?(K;v), there exists {u,} C L?(K;v) converging strongly to u in L?(K;v)
such that

> Tm (gt — R el (BB
E(u,u) > Tim (B = Bn)€g, (un,un) = Tm (8" — By) ;;3 b (tn)
> n@w(ﬂ* . Bn) kz 1 3(Bn—ﬁ*)kbk(un) > Cﬂ@w(ﬁ* _ Bn) kz 1 S(Bn—ﬁ*)kbn(un)
=n-+ =n-+

n—-+o0o

- 3(Bn—B)(n+1)
—C Tm {bnwn) [(6*—ﬁn>1_3w]}

Since 0 < £* — B, < 1/(n + 1), we have 3(3»=F)(n+1) > 1/3. Since

lim B —bn = L
notoo 1 —38n=8" " log3’

there exists some positive constant C such that

3(Bu—B")(n+1)

(ﬁ _ﬂn)w ZCfOl" allnz 1.

Hence L
E(u,u) > C lim by (uy).

n—-4oo

Since u,, — u in L?(K;v), for all k > 1, we have

b(u) = lim bg(un) = lim  br(u,) < C lim by (uy).

n—400 k<n—+oco n—+00
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For all m > 1, we have

(5 — ) 380 by () < O(B* — ) S 86= 5% lim b (u)
k=1

k=1 n—+4o0o
N 3571176* .
= C(ﬂ - Bm)m ng%m bn(un).

Hence &(u,u) < +oo implies €4, (u,u) < +00, by Lemma [3.3] we have 7 C C(K). Hence

lim (8% = Bn) Y 3PP kb (u) < C lim by (un).
m——+oo k—1 n—-+oo
Hence for all uw € F C C(K), we have
E(u,u) > C Tm_ bp(up) > C lm by(up) > C lm (8% = ) Y 30 =F0kp, (u)
n—+00 n—+00 m——+00 =1
oo
>C lim (8" Bn) Y 30y (u) > Csup an(u).
m——+o00 h—1 n>1
On the other hand, for all w € F C C(K), we have
E(u,u) < lim (8" — Bn)€s, (u,u)
n—-+oo
<C lim (8" = Bn)Ep, (u,u) =C lim (8* = B,) > 30 kay(u)
n—-+oo n—-+oo k=1
=C lim M (1—3P=h Z3<Bn (u) < C'sup an (u).
n—s+o00 1-— 36" n>1

Therefore, for all u € F C C(K), we have

& (u, u) < sup a, (u) = sup 307~ Y > (ulp) - u(@)?

nz1 nx1 weW, P,q€Vay
lp—ql=2"1.37"

and

F=_ueCK):sup3h - Z Z (u(p) — u(q))® < +o0

nz1 weW, g€V
lp—q|=2"1.37"

It is obvious that the function v € C(K) in Proposition[8.2]is in F. Similar to the proof
of Theorem we have F is uniformly dense in C'(K). Hence (£, F) is a regular closed
form on L?(K;v). O

Now we prove Theorem [2.5 as follows.
Proof of Theorem[2.5. For all n > 1,u € I(V,41), we have

7 7
pz (wo f;) = Z Z Z (wo fi(p) —wo fi(g))?
i=0 i=0  wEW.

P,q€Vy
lp—ql=2"1.37n

=p" > S (up) —u(@)? = ansa(u).

WEWn 41 P,q€V,
nt Ip—al=2— 1.4 (nt1)

Hence for all n,m > 1,u € [(Vj,4,), we have

P Z an (U0 fu) = Anym(u).

weWp,
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For all u € F,n > 1,w € W,, we have

supag(wo fo,) <sup Y ap(uo fu)=p- Supan+k( ) < p " supag(u) < +00,
E>1 K21 S E>1

hence u o f,, € F.

Let
" (wu)=p" 3 E(uo fu,uo fu)u € Fin>1.
weWy,
Then
g(n)(u,u) > Cp" Z hm ap(uo f,) > Cp™ lim ag(uo fu)
“+oo k—+oo
U)EWn weWy,
=C lm_apy(u) > Csupag(u).
k—4o00 E>1
Similarly
£V wu) <Cp" Y lm ap(uofu) SCp" lm Y an(uo fu)
wew,, k=+o0 k=to0 yew,
=C lm apk(u) < Csupag(u).
k—too k>1
Hence

?(n)(u,u) = supag(u) for all u € F,n > 1.
k>1

Moreover, for all w € F, n > 1, we have

7
g(n-i-l)(u,u) _ p”+1 Z Euo fu,uo fu) = pn+1z Z E(uo fio fy,uo fiofu)

weWn 41 =0 weW,,
7 7
:pz< Z uofz) fwa(uofz fw>: Z uofi,uofl-),
1=0 eW, i=0
Let

1 n
*Z u),u € F,n>1
n :

It is obvious that

EM (u,u) < sup ag(u) for all u € F,n > 1.
k>1

Since (€,F) is a regular closed form on L?(K;v), by [12, Definition 1.3.8, Remark 1.3.9,
Definition 1.3.10, Remark 1.3.11], we have (F,&1) is a separable Hilbert space. Let {u;},~,

be a dense subset of (F,&;). For all i > 1, {5(") (uz,uz)} N is a bounded sequence.
n>1

By diagonal argument, there exists a subsequence {nj},~, such that {g’("’“)(ui,ui)}k>
2 >1

converges for all 4 > 1. Since

EM (u,u) =< sup ag(u) < E(u,u) for all u € F,n > 1,
k>1

we have {g(”k)(u, u)}k> converges for all u € F. Let
>1

Eloc(u,u) = lim é("k)(wu) for all u € Fige := F.
k—-+o0
Then
Eroc(u,u) < sup ag(u) < E(u,u) for all u € Fioc = F.
E>1
Hence (Eloe, Floc) is a regular closed form on L2?(K;v). It is obvious that 1 € Fj. and
Eloc(1,1) = 0, by [14, Lemma 1.6.5, Theorem 1.6.3], we have (Eoc, Floc) on L2(K;v) is
conservative.
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For all u € Fioc = F, we have uo f; € F = Fioc for all i =0,...,7 and

7 7
. ) = im E(w) . ,
P2 Eocluo fisuo fi) p;kgglms (wo fiuo fi)

=0
7 1 Nk 0 1 N 7 —0
ZP;Okglfwn*k;g (Uofi,uofi)zkgglw;k; P;ff (uo fi,uo f;)
1 Nk —(l+1) 1 nk+1—(l)
= 1. _— = 1. —_—
k—&r-lr-loo ng lz:; £ (u, u> k—grl—loo ng ; £ (u’ U)
. 1 520 1 —(np+1) 1 =1
=1 o & ’ —& ) - —£ )
kaufoo Nk ; (u u) + ng (u u) Nk (u u)
= lim £ (u,u) = Epelu, u).
k—+o00

Hence (Eloc; Floe) on L?(K;v) is self-similar.

For all u,v € Fo. satisfying supp(u),supp(v) are compact and v is constant in an open
neighborhood U of supp(u), we have K\U is compact and supp(u) N (K\U) = (), hence
§ = dist(supp(u), K\U) > 0. Taking sufficiently large n > 1 such that 3!=" < §, by
self-similarity, we have

Eroc(u,v) = p" Z Eroc(u o fu,v0 fu).
weW,
For all w € W,,, we have uo f,, = 0 or v o f, is constant, hence Eoc(u o fi,v 0 fi,) = 0,
hence Eoc(u,v) = 0, that is, (Elc, Floe) on L2(K;v) is strongly local.
For all u € Floc, it is obvious that ut,u™,1 —u, 7 = (0Vu) A1l € Floc and
Eloc (U, 1) = Elpe(l — u, 1 — u).
Since uTu~™ = 0 and (o, Floc) on L2(K;v) is strongly local, we have Eoc(u®,u™) = 0.
Hence
Eloc (U, 1) = Epe(ut —u™,ut —u™) = Epe(u™, u™) + Elpe(u™,u™) — 2810 (u™,u™)

= gloc(qu,UJr) + Sloc(uivui) Z gloc(qu; U+) = gloc(l - qu’ 1-— u+)

> Eoc((1—u)T, (1 —uD)T) = Eoc(1— (1 —u™)T, 1 - (1 —uh)h) = Eoe(u, ),
that is, (Eloc, Floc) on L2(K;v) is Markovian. Hence (Ejoc, Floc) is a self-similar strongly
local regular Dirichlet form on L?(K;v). O

Remark 10.5. The idea of the construction Off(")7(§(n) is from [3]], Section 6]. The proof
of Markovain property is from the proof of [8, Theorem 2.1].

11 Proof of Theorem 2.7

Theorem is a special case of the following result.

Proposition 11.1. For all § € (o, +0),u € C(K), we have

sup 3(A—n Z Z (u(p) —u(q))? = [U]Bivf(x)-
nzl weWn, €V '

|[p—q|=2"1.37"
Similar to non-local case, we need the following preparation.

Lemma 11.2. ([17, Theorem 4.11 (iii)]) Let u € L*(K;v) and

P =3 [ [ (u(e) - u(y)Prldyido),
n>1 K JB(2,3-7)

then
lu(z) — u(y)|* < cF(u)|lz -y~ for v-almost every x,y € K,

where ¢ is some positive constant.
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Remark 11.3. If F(u) < 400, then u € Cﬁ%a(K),

Proof of Proposition|11.1 The proof is very similar to that of Lemma We only point
out the differences. To show that LHS<SRHS, by the proof of Theorem we still have
Equation (8) where E(u) is replaced by F(u). Then

gz N Y (ulp) —u(9)?

weW, P,a€Vw
lp—gql=2"1.37"

-1
<128 - 2007/ 2ep (u)3Pn—(Bmednthl) 4 39 3ok N "oi 3= (Bmedbip, i (u).
=0

Take [ = n, then

gl N Y (ulp) —u(9)?

weW, P,q€Vy
lp—ql=2"1.37"

n—1
<128 - 207/ 2cp (u)3l = (Bme) (bt Din 3o gk N "9t g=(0=edki g 4 yi(u)

=0
< 128 . 26-0)/2¢ () 38— (B-a) kDl | 39 3ak23[1 (B—a)kli <SupE (u )>
i—0 n>1

Take k > 1 sufficiently large such that 5 — (8 —a)(k+1) <0 and 1 — (8 — o)k < 0, then

sup37r N YT (ulp) - ul(g))’

nzl weW, P,q€Vw
|p—q|=2"1.3—7

Soupat?n [ () — ) vy

n>1

To show that LHS>RHS, by the proof of Theorem [3.6] we still have Equation (12). Then

sups o [ f o ) ) )

n>2
< sup Z gh—n . ghn—ak Z Z (u(p) — u(q))?
n>2 weWy, P,q€Vw

lp—q|=2"1.37F

+sup3men Y- > (u(p) — u(q))?

nz2 weW,, — P,qE€EVy
Y p—gl=2 =13~ (=)

Soup 34300 [aup3 Ok Y S () —u(g)?

n>2k: n k21 weWy, P,q€Vaw
Ip—q|=2"1.37F

+ sup 3F—a)n Z Z (u(p) —u(q))?

n21 weW,, P,qE€EVw
lp—ql=2"1.3"n

Ssup3n 3 ST (u(p) — ulg))

>
nzl weW, P,q€Vw
lp—ql=2"1.37n

We have the following properties of Besov spaces for large exponents.

Corollary 11.4. B> 5*([() {constant functions}, B> 5 (K) is uniformly dense in C(K).
Bi%([() = Bi?( ) = {constant functions} for all B € (8%, +00).
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Proof. By Theorem and Theorem we have B>% o p- (i) is uniformly dense in C(K).
Assume that v € C(K) is non—constant en there ex1sts N > 1 such that ay(u) > 0. By
Theorem for all g € [8*,+00), we have

i?)(ﬁ B, Z (86" f: (8= 4 5 (1) = oo,
n=1 n=N+1 n=

for all g € (5*,+00), we have

sup3B=FInq () > sup 3PP (u) > C sup 3PN (u) = 400
n>1 n>N+1 n>N+1

By Lemma and Proposition we have Bi% (K) = {constant functions} for all
€ |8*,+00) and B*(K) = {constant functions} for all B € (6%, +). O
ﬂ [/3 ) a7ﬁ 9

12 Proof of Theorem 2.8

We use effective resistance as follows.
Let (M, d, i) be a metric measure space and (&, F) a regular Dirichlet form on L2(M; p).
Assume that A, B are two disjoint subsets of M. Define effective resistance as

R(A,B) = inf {E(u,u) : u|a = 0,ulp =1, ue FNCo(M)} .

Denote
R(va) = R({x}7B)7R($7y) = R({CL‘} ) {y})w,y € M.
It is obvious that if A1 C Ay, By C B», then

R(A1,B1) > R(As, Bs).
Proof of Theorem[2.8, First, we show that
R(z,y) = |z —y|® = for all 2,y € K.
By Lemma |11.2] we have
(u(x) = u(®))? < cEoelu, u)|z — y|P" = for all 7,y € K, u € Fioe,

hence
R(z,y) S|l —yl? ~* forall 2,y € K.

On the other hand, we claim
R(z, B(z,r)") < = for all # € K,r > 0 with B(x,r)¢ # 0.

Indeed, fix C' > 0. If u € Fio satisfies u(x) = 1, u|p(z,r)e = 0, then @ : y — u(x 4 C(y — x))
satisfies @ € Fioc, U(x) = 1, U|p(z,crye = 0. By Theorem [2.5] it is obvious that
gloc (av ﬂ) = C’_(ﬁ*_a)gloc (U, U),

hence i
R(x, B(z,Cr)¢) < CP ~*R(z, B(x,7)°).

Hence
R(z, B(z,7)°) < PP

For all z,y € K, we have
R(z,y) > R(z, B(w,|x —y|)°) = |z —y|”

Then, we follow a standard analytic approach as follows. First, we obtain Green function
estimates as in [I9, Proposition 6.11]. Then, we obtain heat kernel estimates as in [15]
Theorem 3.14]. Note that we are dealing with compact set, the final estimates only hold for
some finite time ¢ € (0, 1). O
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