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AssTrACT. In this paper we consider the following SDE with distributional drift b:

dX, = o(X,)dB, + b(X,)dt, Xy = x € RY,
where o is a bounded continuous and uniformly non-degenerate d X d-matrix-valued function
and B is a d-dimensional standard Brownian motion. Let a € (0, %], pE (]%a, o) and g € [a, 1],
ge (%, 00). Assume [|[(I-A)"/2b||, +[I(~AY/?>c||, < co. We show the existence and uniqueness of
martingale solutions to the above SDE, and obtain sharp two-sided and gradient estimates of the

heat kernel associated to the above SDE. Moreover, we study the ergodicity and global regularity
of the invariant measures of the associated semigroup under some dissipative assumptions.
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1. INTRODUCTION

Let 2 be the space of all smooth functions on R? with compact supports, and let 2’ be the
dual space of &, which is also called distributional function space. Consider the following
stochastic differential equation (abbreviated as SDE) in R¢ with distributional drift b € 2":

dX, = o(X,)dB, + b(X,)dt, X, = x € R, (1.1

where B is a d-dimensional standard Brownian motion on some complete filtered probability
space (Q,.Z,(F)0.P), and o : RY — R? ® R? is a bounded continuous and non-degenerate
d x d-matrix-valued function. Since b may be not a real function, the drift term b(X,)d¢ in (I.1)
does not make any sense in general. A quite natural definition of the solution to SDE (L.1) is
that X is a continuous .%;-adapted process and satisfies

t !
X, =x+ f o(X,)dB, + A” with A? := lim | b,(X,)ds, (1.2)

0 e Jo
where (b,),en 1S any mollifying approximation sequence of b, and the limit is taken in the sense
of u.c.p (uniformly on compact subsets of time variable in probability). Suppose now that
b € H*? for some @ > 0 and p > 1, where H™*” is the usual Bessel potential space (see
Definition below). To show the existence of the above limit, one possible way is to prove

the following Krylov’s type estimate for X;: forany f e C* N H *” and T > 0,

f | f(Xy)ds
0
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where the constant C is independent of f. In fact, if the above estimate is proven, then applying
it to b, — b,,, one sees that ( fo b,(X,)ds),en is a Cauchy sequence in L'(Q; C([0, T])), and so
there is a continuous adapted process denoted by A such that

t
f by(X,)ds — A? ) =0.
0

In order to show the above estimate, we need to have a better understanding for the following
associated PDE

lim E( sup

n—00 t€[0,T]

ZLuU—Au+b-Vu = f, (1.4)

where 1 > 0, @V := o™*0/*/2 and L*u := a"”d;0;u. Here and below, we use the usual Ein-
stein’s convention for summation: The same index appearing in a product will be summed
automatically. In the sequel, in order to emphasize the dependence on o, we sometimes write
L7 := 2 Notice that the term b - Vu in (1.4)) should be understood in the distributional sense.

Since the limiting process ¢ +— A? is usually not absolutely continuous (even not of finite
variation) with respect to the Lebesgue measure, if there is no additional information of A?, it
is in general hard to show the uniqueness, even in weak sense. In one dimensional case, when
b is the derivative of a y-order Holder continuous function with y € (%, 1), and o is %-order
Holder continuous and bounded below by a positive constant, by using the scaling function
s(x) = fox exp ( ny 2b(z)/ O'Z(Z)dz) dy to remove the drift as well as Yamada-Watanabe’s pathwise
uniqueness result about one-dimensional SDE, Bass and Chen [2] showed the existence and
uniqueness of strong solutions to SDE (I.1)) in a special class of Dirichlet processes. We also
refer to 7,110, 11}, 22} 114, [15] for more results about one dimensional SDEs driven by Brownian
motion with distributional drifts.

However, in the multi-dimensional case, solving SDE (I.T)) with singular drift » becomes
quite involved. When b € LP(RY) for some p > d and o = Iy, by Girsanov’s transformation
and LP-theory of parabolic equations, Krylov and Rockner in [21] showed that there is a unique
strong solution to SDE (I.1). We also mention that the strong well-posedness of SDE (1.1)
driven by multiplicative Brownian noise was studied in [26} 28], 29]. Recently, when o = I,
and b € H*" with @ € (0,3) and p € (%, %), Flandoli, Issoglio and Russo [9] showed the
existence and uniqueness of “virtual” solutions (a class of special weak solutions) to SDE (L.1).
Let us make a brief introduction to their work. Denote ®(x) := x + u(x), where u : RY — R?
solves PDE (I.4) with f = —b and £ = %A. For A being large enough, one can show that @
is a C'-diffeomorphism of R?. Using It6’s formula formally, it is easy to see that ¥, = ®(X,)
solves the following new SDE:

! !
Y, = O(x) + f Auo @ 1(Y,)ds + f VO o & '(Y,)dB,.
0 0

Since this new SDE has continuous and non-degenerate diffusion coeflicients, it is well known
that the above SDE admits a unique weak solution, and X, := ®~!(Y,) is in turn defined as the
solution of SDE (I.1) in [9] (called “virtual” solution therein). The above ® is usually called
Zvonkin’s transformation in literature (cf. [30]). It is noticed that the time-dependent drift b is
considered in [9] so that they need to solve a parabolic equation rather than an elliptic equation
with distributional drift 5. However, it is not answered whether the above constructed X really

solves SDE (1) in the sense described in (1.2)).
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The first purpose of this paper is to give an affirmative answer to the above question. Now
we outline the main points. As mentioned above, in our work the crucial point is to prove the
Krylov estimate (I.3]). Such an estimate together with the above transformation ® will also lead
to the weak uniqueness or the uniqueness of martingale solutions. To achieve this aim, we need
to tackle the following interesting problem: Find minimal conditions on ® such that for some
C =C((®D,a,p,d) > 0and all distribution f € H %7,

If o Dll-a.p < Cllfll-ap-

Obviously this is a purely analytic problem, which has independent interest. In particular, the
above estimate implies that T¢(f) := fo® is a bounded linear operator from H~*? to H “”. We
shall show it in Lemma below by using a duality argument. It should be emphasized that
our well-posedness result about SDE (I.1)) (see Theorem [5.1]below) allows the drift b being in
the critical space H~'/>P. Notice that this case is not covered in [2]] and [9], and which requires
a more delicate analysis for PDE (T.4). Roughly to say, due to b € H~'/%?, in order to make
sense for b - Vu, we need to at least assume u € H>*P. Thus .%#“u and b - Vu has the same order
at scaling level. This is the source of the difficulty. Let us also mention that Bass and Chen in
[3] studied the weak well-posedness of SDE (I.1)) when b belongs to some generalized Kato’s
class, in particular, some measure-valued b is allowed. Of course, our result is not comparable
with [3]].

The second aim of this paper is to show the existence and two-sided estimate of the heat
kernel and the ergodicity associated with SDE (I.1). In fact, Zvonkin’s transformation provides
a satsifactory answer. In other words, if the transformed SDE admits a density and two-sided
heat kernel estimates, then the original SDE also admits a density and two-sided heat kernel
estimates. Thus, one can construct the heat kernel of operator .2 + b - V with distributional
drift b. Notice that when b belongs to certain Kato’s class, the heat kernel of .£* + b - V was
constructed in [27, 5] by a perturbation argument. If it is not impossible, it seems hard to use
the same perturbation method to study the heat kernel of . Z** + b - V when b is a distribution.
Moreover, we also study the ergodicity of SDE (T.1) with b = bV + b®, where bV is the
dissipative part and b® € H™*” is a distribution. This is a continuation of work [26]. Therein,
when b € L? for some p > d, the ergodicity is obtained by Zvonkin’s transformation. It
should be noticed that for the existence of invariant measures of SDE (L.I]) with distributional
drift b, a direct Lyapunov criterion (It6’s formula) is not applicable.

This paper is organized as follows: In Section 2, we prepare some analytic results. In par-
ticular, product of two distributions in general Sobolev spaces is studied. In Section 3, we give
the conceptions of martingale solutions and weak solutions, and prove their equivalence. In
Section 4, we solve PDE (1.4) with distributional drifts and variable coeflicients by using Levi’s
freezing coefficient argument. In Section 5, we state our main results and then prove them.

We close this section by mentioning some conventions used throughout this paper: We use
:= as a way of definition. For a,b € R, a vV b := max{a, b} and a A b := min{a, b}, and on
RV := (%, cee, %) and A = Zle %. The letter C with or without subscripts stands for an
unimportant constant, whose value may change in difference places. We use A < B to denote
that A and B are comparable up to a constant, and use A < B to denote A < CB for some

constant C.
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2. PRELIMINARY

In this section we present some analytic results that will be used later, and we believe that
some of them have independent interest.
Let p be a nonnegative smooth function in R¢ with compact support in the unit ball and
f p = 1. Define a family of mollifiers
Pn(x) = ndp(nx), n €N,

For a distribution f € &, if there is no further declaration, we always use f, to denote the
mollifying approximation of f, that is,

Ja(X) 1= [ pa(x),

where * denotes the convolution in the distributional sense. Let y be a nonnegative smooth
function with y(x) = 0 for |x| > 2 and y(x) = 1 for |x| < 1. For R > 0, we shall also use the
following cutoff function

Xr(X) = x(x/R). (2.1)
Definition 2.1. For @ € R and p € [1, ), the Bessel potential space H*? is defined by
H™P := (I - A) (L")
with norm
1 llap = 1= A2 £l

where ||-||, is the usual LP-norm. We also denote by H;” the space of all the distribution f € 9’
with fxr € H*? for any R > 0, which is the local Bessel potential space.

For a € (0,2) and p € (1, o), by Mihlin’s multiplier theorem, we have
I llap = 1= A FNl, < A1l + A2 £, (2.2)

where A2 := —(-=A)¥? is the usual fractional Laplacian, which has the following alternative
expression up to a multiplying constant,

fx+y) = @)

A2 f(x) = P.V.
U Re [y|d+e

B

where P.V. stands for Cauchy’s principle value. Clearly, if we write

Lo(f, 8)(x) := fR d(f (x+y) = f)(gx+y) - g(x))%,
then
AT (fg) = AP f g+ f-ATg +Tolf. 8). (2.3)
Notice that the following Sobolev’s embedding holds:

o { Ngelp.apia-po LY, if pa <d,

2.4
C P N (NgspLl), if pa > d, (&4)

where C*~4/P is the usual Holder space. Moreover, for any @ € (0, 1] and p € (1, o), there is a
constant C = C(a, p,d) > 0 such that for all f € H*” (see [1, Theorem 2.36]),

IFC+¥) = fOll, < CYIIAY £, (2.5)
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and if pa > d, then for all f € H*? and x,y € R?,

F(x+3) = FQ < Cly* P IA2 11, (2.6)

and the following Gagliardo-Nirenberg’s inequality holds: for p > 1 and 0 < @ < 5 < 1, and all
f € HP? N L™ (see [1, Theorem 2.44]),

1A fllpsje < CIFIGS PN F117P. (2.7)
The following simple lemma plays a basic role in this paper.
Lemma 2.2. Let p € (1,00) and a € (0, 1] be fixed.

(i) For any py, p, € [p, o) with i < -+ pLz < % + &, there is a constant C > 0 such that for
all f € H*P' and g € H*P?,

1
P1

f&llep < Cllfllapy lIglla.p, - (2.8)
In particular, if p > d/a, then H“p is an algebra under pointwise product.
(ii) For any p, € [p, ) and p, € [ -, 00) wzth —1 + piz < 11—7 + 4, there is a constant C > 0
such that for all f € H- P! ana’ g e H"P,
If&ll-p < Cllfll-api lIglla.p,- (2.9)
Proof. (i) Below we fix py, p» € [p, ) so that % < [7_1 + p—z < % + 4. By (2.3)), one sees that
- A“”)(fg) =(I=A"")f-g-f-A"g-Tu(f.9).
Letp) =t i=1,2and ¢ := p— -£ + « > 0. By Holder’s inequality, (2.4) and (2.5)), we have
1

dy
1F8llep < 1Tl gllpr + 17115l + f P49 = FOlllgC +3) = 8Ol
R

dy
D S Ny 118, -

S W llapillgllaps + I 1lapy lIglls p; f (1A 1™
R4 ly

Thus we get (2.§).

(ii) Let p’ := p%l and p| := [%. By the assumption, one sees that

< L

1 1
= < — -
= P2 Py

’

1
Py P

By duality and (2.8)), we have

+ + %’ p,’ D2 € [pll,oo)

Ifgll-a, = sup f f8- =Nk <||fll-ap, sup lIgd—A)""hllap
Il <1 IJRA llall,y <1
S ”f”—a,pl”g”a,pz SuP ”(I[ - A)_a/zh”a,p’ = ”f”—a,pl”g”a,pz-
lIAll,» <1
Thus we get (2.9). o

Remark 2.3. (i) By the above lemma, one sees that if f € H, "' and g € H,"” with p, pi, p»
being as in the lemma, then fg € H O‘C’p Moreover, from the proof of the lemma and by (2.7),
we also have

18ll-ap < Cllfll-ap(llglleo + 1A*2gll,,), p2 > 25 v <. (2.10)

(i1) Let @ € R. For Holder-Besov space C¢, it is well known that for ,B > a > 0 (for example,
see [1]] and [I13]),
I/ gllc-+ < Clifllc-<lIgllcs-
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Compared with (2.9), the duality argument can not be used to show the above inequality for
[ = a since the dual space of C™* does not equal C“.

Let DY be the set of all C!-diffeomorphisms on R%:
D) ={0 R 5 R, (®llgp, = [Vl + VOl < o}

Clearly, D° is closed under the inverse operation, that is, ® € D% implies ®! € D%. The
following lemma is easy by interpolation.

Lemma 2.4. Let ® € D be a C'-diffeomorphism. For any a € [0,1] and p > 1, there is a
constant C = C(a, d, p,||®||p ) > 0 such that for all f € H*?,

If o @llop < Cliflla.p- (2.11)
Proof. By the change of variable, it is clear that
I1f o @I, < | det (VOIS (2.12)

On the other hand, noticing that
V(fo®)=(Vf)od VD,

we have
IV(f o ®)|, < I(VF) o D, - VDl < || det(VO |7 VDI [V £l -

Hence, (2.11)) holds for @ = 1. Noticing that Tg : f +— f o @ is linear, by the interpolation
theorem, we get (2.11) for @ € [0, 1]. o

To perform Zvonkin’s transformation, we need to show that (2.11)) holds for negative . To
this aim, we introduce a subclass of D, as follows: For 8 € (0, 1] and g € (d/B, o),

D = {® € DY, : 1Dlls = [Py, + L= VDllg, < oo},
The following proposition shows that Z)g is closed under the inverse operation.

Proposition 2.5. Let 8 € (0,1] and q € (d/B, ). For any ® € Z)f;, we have ®~! € Z)g and
| det(V®) — 1|lg,, | det(VD ™) — 1]|g, < 0.
Proof. (i) Let U(x) := VO(x) — 1. By the definition of the determinant of a matrix, one sees that
det(V®) =detl+ U) =1 + P(U), (2.13)

where P is a polynomial of (U;;) without zero order term. Due to ¢ > d/f, by (2.8) with
p1 = p2 = q, we have

Ue H* = U™ e H* forany m € N = P(U) € H?4. (2.14)

Hence,
|| det(VD) — 1|z, < oo.

(ii) To prove ®~! € Dﬁ, by definition it suffices to show ||l — V®!||5, < oo. First of all, since
VO ! = (VD) o @, by (Z.11) we have

= VO 'llgg < L= (VO) gy = (VD) (VD = Dlgy = (VD) Ullgy.

Clearly,
(VD) Ully < I(VO) Il Ul < co.
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Noticing that
(VO)™'(x +2) = (VO) ™' (x) = (V)" (x) (U(x) = U(x +2)) (VO) ' (x + 2),
by definition (2.3]), we can write

dz
|Z|d+'3

NPR(VD) ' U)(x) = f [(V@) ! (x +2) = (VO) ' ()| U(x + 2)
R4

dz

|Z|d+,8

+((VO) ' AU )(x)

= f (VO) ™ (1) (U(x) = Ux + 2)) (VO) ' U)(x + )= + (VO) ' AU ) ().
R4

Let K(x,z) := (V@)™ 'U)(x + 7). Since by (2.4) and (2.14),
IVOllgs-ira S |IVDllgg < IUllgq + 1 < 00,
it is easy to see that
IKC, O)lleo < 00, [K(x,2) = K(x,0)] S (1 A Je~%.
Therefore, by (2.3),

d
&2 vy v, < H fR (VO (W) = UG+ ) (K2 = K 0)

d+
|21+ 1],

+ (Vo) @POKC, )|+ [[(vo) AU,

d
< VD) e f UC) = UG+ D (1 A Jaly-dla—=
R4

|Z|d+ﬂ
+ (VD) I 1A UK, 0l + (VD) 1A U,

dz

28-d

SWUlgy | A AP Y—= +||Ullg, < 0.
Rd |Z|d+ﬁ

The proof is complete. O

Now we can show an analogous version of (2.11)) for @ < 0, which is crucial for applying
Zovnkin’s transformation.

Lemma 2.6. Let @ € Dgfor some 3 € (0,1) and q € (d/B, 00). For any « € [0,5] and p > ﬁ,
there is a constant C = C(«, B, d, p, ||®|,p) > O such that for all f € H™*?,

If © Dll-a,p < Cllfll-ap- (2.15)

Proof. By a density argument, we may assume f € . Letting p’ := p/(p — 1), we have

If 0 @llap = sup || fo®(x)-([I-A)"g(x)dx

llgll,y <1 IJRA

= sup | | f(0-(I=A)"god™(x)- |det(V™" (x))| dx
ligll <1 1JRe

<flleap sup [[T-A)"go@™ det(VCI)_l)”a’p, .

gl <1
Write G, := (I - A)™/?g o ®'. Since p > -~ and ¢ > ‘é, we can choose p, > p’ so that

_ﬁ__(’g

7 <

<L,
p

Q=
-3 |~
QUIR



Thus, by (2.8) with p; = p’ and the above p,,
1f © @ll-p S Ifll-ap sup ([|Ge - (detVO™) = D|,  +1Gallay)

llgll, <1

< Ifllap SUP Gallay (Il det(VD™) = Dllyps + 1)

ligll, <1
CI.ecH _
< llap(Ildet(VO™) = Dlg, + 1),
which gives (2.13) since || det(V®™") — 1|l is finite by Proposition [2.5] m

Remark 2.7. By estimate (2.13), for any ® € O and f € H,"" with B, q and @, p being as in
the above lemma, we can define a distribution f o @ by

(fo®,g)=(frgo® " |de(VD)), g€ 2.
In particular, it makes sense that (f o @) o ® = f for any f € H, *”

loc *
3. MARTINGALE PROBLEMS AND WEAK SOLUTIONS

Let C be the space of all continuous functions from R, to R?, which is endowed with the
usual Borel o--field B(C). All the probability measures over (C, B(C)) is denoted by Z?(C). Let
w; be the coordinate process over C, that is,

wiw) = w;, weC.

For t > 0, let 8,(C) be the natural filtration generated by {w, : s < t}. For given R > 0, we shall
use the following truncated B,(C)-stopping time

Tg ;= Inf{t > 0 : |w;| > R}. (3.1)
Notice that for each w € C, it automatically holds that

Igim Tr(w) = o0, 3.2)

For a probability measure P € Z2(C), the expectation with respect to P will be denoted by EF or
simply by E if there is no confusion.
Now we introduce the following important notion for later use.

Definition 3.1. (Local Krylov’s estimate) Let « € [0,1] and p > 1. We call a probability
measure P € P (C) satisfy local Krylov’s estimate with indices «, p if forany T > 0 and R > 1,
there are positive constants Crg and y such that forall f € C*,0< 1ty <t; <T and T < 1p,

fAT 2

fwyds

IONT

E < Craty = 1) fxrllP,,,- (3.3)

If Cr.g does not depend on R, then the above estimate will be called global Krylov’s estimate.
All the probability measure P with property (3.3) is denoted by %, (C).

About this definition we have the following useful consequence.

Proposition 3.2. Leta € [0, 1], p > 1 and P € %,*(C). Forany f € H,.", there is a continuous
B,(C)-adapted process A{ such that for any mollifying approximation f, = f*p, and any T > 0,

f fu(wy)ds — AY
0

8

lim E( sup
n=0 \ref0,7]

A 1) = 0. (3.4)



Moreover, for each R > 1, the mapping H*? > f A,fMR € L*(C,P;C([0,TY))) is a bounded
linear operator, where Ty is defined in (3.1), and for all0 <ty < t; < T,

E|A] < Crr(ty = 10) N fxrlP g e (3.5)

where the constants Cr g and y are the same as in (3.3).

v

IOATR

HATR

Proof. Let R > 1. For any f € C* and T > 0, by (3.3) and Kolmogorov’s continuity criterion

(see [23]]), we have
IATR 2
E[ sup f fwy)ds ) < CT,R”fXR”%Q,p-
ref0.71|Jo

In particular, applying this to smooth function f, — f,,, we get

IATR

lim E| sup (fu = f)(wy)ds

mm—00 [te[O,T]

2
]<Q%gwm—mmmﬁ

: @ .,
= Crr lim {I(fx2r)n = (Fx2Rmxelle, < Crg Tim I(fxar)a = ( Fxardulle, =0,

which means that ( fO.ATR fa(w)ds),ey is a Cauchy sequence in L?(C,P; C([0, T])). So, for each
R > 1, there is a continuous B,(C)-adapted process A{ R such that for all T > 0,

"

In particular, there is a P-null set N such that for all w ¢ N and R,R’ € N with R < R’,
AR w) = AR (w), Yt < TR(w).

IATR
lim E( sup Ju(wy)ds — A‘,f’R

n—o0 t€[0,T]

Since limg_,, Tr(w) = oo (see (3.2), we may define a continuos adapted process A{ on R, by
Al(w) == AR (W), t < 1R(w), w ¢ N.

Now for any € > 0, by Chebyshev’s inequality we have
( sup f Ju(ws)ds — Af > s) IP( sup
1€[0,7] 1€[0,T]
< ]E[ sup
1€[0,T1
which converges to zero by first letting n — co and then R — oo and (3.2). Thus, we get (3.4).
As for (3.5)), it follows by (3.3). o

Remark 3.3. (i) Estimate (3.5)) implies that ¢ — A{ is a locally zero energy process, that is,
forany R > 1,

IANTR

fu(wy)ds — A7

> 8) +P(rr<T)

IATR

fu(wy)ds — A7

2
)/82 +P(rr < T),

lim sup Z E|Ar+1mR i A7R| =

00 (17,:mesh(IT,)<6}
where 11, := {to,1;,--- ,t,} denotes a partltlon of [0, ¢].
(i) If f € L7 (RY) with ¢ > pd/(d + pa), then t > A{ is absolutely continuous and

= f fwy)ds.
0

Indeed, it follows by Sobolev’s embedding L] . c H, ..
9
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Definition 3.4. (Martingale Problem) Let a € [0, 1] and p > 1. We call a probability measure
P € J(C) a martingale solution of SDE (1.1)) with starting point x € RY if for any f € C*,

Mf:fww—furiﬁc%wxwmh—ATf (3.6)

is a continuous local B,(C)-martingale with M(]; = O under P, provided that b-Vf € H, """, where
L7 f = a*o*8;0,f 2. All the martingale solution P € ,(C) of SDE (L1)) with coefficients
o, b and starting point x is denoted by M, (x).

Remark 3.5. (i) In the above definition, in order to make APV well defined, we need to at
least assume b € H, """ by Proposition and Lemma The localization sequence of
stopping times for M,f ' being a martingale can be taken as 7, (see (3.1)). Moreover, for
P € 7 (x), due to M) = 0, we have P(wy = x) = 1.

(ii) Trivially .#Z ;’f (x) is the usual notion of martingale solutions (see [25]]).

As a direct consequence of martingale solutions, we have

Lemma 3.6 (Generalized Itd’s formula). Ler @ € (0,1], p > £ and B € [a,1], q € (%,oo).

l-a

Suppose o € Hfog and b € H,". For any f € leo_ca’p and P € A} (x),
M/ = fow) = f(0) = AFT
is a continuous local B,(C)-martingale under P.

Proof. Let f, := f * p, be the mollifying approximation of f. Fix R > 0. By Definition [3.4] the

process t Mﬁm is a continuous martingale. Since P(limz_,., 7z = o0) = 1, it suffices to show

-M

TATR

-Mm

sup |M/: tATR =0, R>0,

INTR

lim E (
n—=00  \re[0,T]

where the first inequality is due to Doob’s maximal inequality. By (3.5]), we only need to show
lim |27 + b - V)(fu = /) - Xgll-ap = 0.

1
Since f € HIZO_C””’ , for any R > 1, we have V?(fyz) € H*”. Noticing o € H'ZZ by ([2.9) with
pir=pand p, =qgd/(d—-q(B—a)) >d/a > p/(p— 1), one sees that

W7o = POXRI-ap = N7 = Px2RIXRI-0p
S L7 ((fo = P 2r)l-ap S IV = PX 2R pll (X 2R) (X 2R) e

(o))
< IV = Marleap S N = SN2kl ap = O a2 — 0.
Similarly, for p; = p and p, = pd/(d — p(1 — 2a)) > d/a, we have

16 V(fu = 1) XRll-ap = IbXR - V(o = Px2R)|-0p @ 16X Rll-ap IV ((fa = P28 e

€3
S 1bxRll-apll(fu = FX2gIN14ap, S BXRI-a pll(fu = X 2RII2-0,p = O.
The proof is complete. O

| < 4 lim E\M/"

T ATR

Proposition 3.7. (Zvonkin’s transformation) Let a € (0, %], p> ﬁ and B € [a, 1], g € (4, ).
Suppose that o € HYY, b € H,*" and ® € D, Define

G:=(VO-0)od !, b:=(LDP+b-VD)od . (3.7)
10



Then we have
(i) be H,"" and 5 € H. for B := BA (1 - a) and

L év(%_l—z—ﬁ>, Bela,1-al, 49)
T Lv(i-22), e -all,
and also q' > d/f'.
(ii) For any x € R? it holds that
Pe A, (x) ©Pod € A 7(®x). (3.9)

Here P o ®~! means that for A € B(C), Po ®1(A) = P ({w : D(w.(w)) € A)).
Proof. (i) It follows by Remark [2.3] (i), Lemmas [2.4] and [2.6]

(i) Since B’ € [@, 1) and ¢' > d/B’, by symmetry, we only show =. To show that P o o!
is a martingale solution of SDE (I.T)) with coefficients & and b, one only needs to check that
Po®' € .%,(C) and for any f € C*,

! -
M = fw) = f(wo) = f L7 fow)ds — A7V
0
is a continuous local B,(C)-martingale under P o ®@~!. First of all, since ® is a homeomorphism,
there is an R > R large enough so that for any 7 < 7,
ToD <T1R0D < Tp,
and 7 o @ is also a B,(C)-stopping time. Thus, forany 7 < 7gand 0 < 7y < ; < T, we have

AT 2 2

fwy)ds

IOAT

(EK)) E3.E15
< Crr(ti —t0)"N(fxr) o @ xrlle, <  Crurlti—1t0)" 7N xrll,,-

Next we show that Mf is a continuous local B,(C)-martingale under P’ o ®~!. By definition,
it suffices to prove that M,f o @ is a continuous local B,(C)-martingale under P. Noticing that

V(fo®)=(Vf)oD VO,

» t ATo®
E™*? =E f (fxr) © D(w,)ds
I

0ATOD

and in the distributional sense,

03(f 0 ®) = (Bif) 0 @ - ;0" + (0, f) 0 @ - 00" - 9,07,

we have

(L) od =L (fod)— LD -Vfob, (3.10)
and by Remark 2.7}

b-Vf)od=L"D-Vfod+b-V(fod). (3.11)
Hence,

M o ® = fod(w,) - f o D(wo) — f (L7 f) 0 D(w,)ds — ATV
0

= fo®(w,) — fodwy — A;f"(fo@) _ Ai)-V(fo(I)).
11



Moreover, since by (2.8)) and (2.11),
IV(f o @) - xrlli—ap = I(Vf) o @ - VO - xglli—a,p
SNV o @) - xr - (VO = Dlli—g,p + I(VS) 0 D xklli-a,p
< ”(Vf) o®d 'XR”l—a,p : ”V(D - H”l—a,p + ||Vf : (/\/R o (D_l)”l—a,p < 0o,

we have fo ® € H, “". By Lemma M! o ® = M/*® is a continuous local martingale with

loc

respect to P. m|

Remark 3.8. The importance of (3.9) lies in the fact that if there is one and only one element
in //[;’g’((l)(x)), then there is automatically one and only one element in ,///(‘;If (x). Moreover, the

heat kernel estimates and ergodicity can also be derived by @39).

Next we introduce the notion of weak solutions and discuss the relationship between martin-
gale solutions and weak solutions.

Definition 3.9 (Weak solutions). Let o be locally bounded and b € H, " for some « € [0, 1] and
p > 1. Let (X, B) be two R¥-valued continuous adapted processes on some filtered probability
space (Q, F,(F)0,P). We call (Q, F,(F)0,P; X, B) a weak solution of SDE (L.I) with
starting point x € R? if B is an .%,-Brownian motion and

t
X, =x+ f o(X,)dB, + A?, Vt >0, P-a.s., (3.12)
0
where AY := lim,_, fol b,(X,)ds in the sense of u.c.p., and b, € C*(R?) is any approximation
sequence of b so that for each R > 0,
lim [[(5, = b)¥xll-ap = 0.
Here A does not depend on the choice of approximation sequence b, € C*(RY) of b.

Remark 3.10. If P o X~' € Z,*(C), then the above limit A} = lim,_, fot b,(X,)ds does exist.
Indeed, as in Proposition for any f € H,.”, there is a unique continuous .%;-adapted
process A{ such that for any 7,R > 0,

AR 2
E[ sup fi(X)ds — A J < Crall(fy = PxalPe s
r[0.71]Jo
where f,, := f*p, and ng := inf{t > 0 : |X;| > R}. Moreover, we also have forall 0 <7, <t; <7,
2
E |A‘£/\;7R - Ai;mm| < Crr(t - 10)1+7||fXR||%Q,p- (3.13)

To show the equivalence between weak solutions and martingale solutions, we need the fol-
lowing It6’s formula established by Follmer in [12] and a stochastic version of Young’s integral.

Lemma 3.11. Let X, = X + M, + A, be a Dirichlet process, where M, is a continuous local
martingale, and A, is a locally zero energy process (see Remark (i)). For any f € C?, we
have

f ‘ f 1 f . ‘
FX) = F(Xo) = fo Bf(X)AM: + fo /(XA + 3 fo 31y f(X)AIME, M1,

where fot 0,f(X,)dA' is defined as the limit in probability of the usual Riemmanian sum.
12



Let p > 1 and 8 > 0. For a stochastic process A, and T > 0, we write
1A — Alliro)
Hy(A) = Aol +  sup
s#1,5,1€[0,T] |t — s
The following lemma is a slight extension of [2, Lemma 2.2], which can be considered as an
analogue of usual Young’s integral.

Lemma 3.12. Let A, K be two stochastic processes and p,q,r € [1, 00) with } = }U + é Suppose
that for any T > 0, there are v, € (0, 1] with y + 8 > 1 such that
HEP(A) < o0, HIUK) < oo,

Forn e Nand s > 0, deﬁne s, = [2"s]27", where [a] denotes the integer part of real number
a. Then for any T > 0, fo K, dA; converges in C([0,T]; L"(2)) and the limit is denoted by

fo. K dA. Moreover, there is a constant C > 0 depending only on B,y and T such that for all

te[0,T],
! !
f K, dA, - f K,dA, C HUK) HEP(A) 27 E+=D, (3.14)
0 0 L(Q)
andforall0 <t <t<T,
!
‘ f K,dA, < CHIUK)YHE (A (1 - 7). (3.15)
v L)
Proof. For simplicity of notation, we write 67 := k27". Noticing that
¢ [21]-1
f KgndA K5’l (A6’l:+l - A(S") + K[Z"l‘]z n(At A[Z”Z]Z_”),
k=0
we have
2[2"1]
f (Ko = Ko )AA = > (K = Kyp Ay = Agt) + R,
k even
where
Rn = 1{2’1[_[2)1t]>1/2 (K[2n+lt]2—n—l - K[zn,]z—n)(A[ - A[2n+1t]2—n—l).
Suppose 27" < t — ' < 2!7" for some m € N. Then for n > m, we have

2[2"1]

f( st — K5, )dA = Z (K(sgj} - K(s;”)(A(sg;; - Aa;;}) +R/ - Ry,
k even,k>2[2"t']
and by Holder’s inequality,
t 2[2"1]
(KSVHI - KS,;)dAS < ||K5n+1 - K5n+l ||L‘7(Q)”A6”+1 - A5n+] ”LP(Q)
’ k+1 k k+2 k+1
! L'(Q)  k evenk>2[2"]

|LP(Q)
||Aﬂ - A[Z’”lt’]Z’"’l

+ |K[2n+]t]2—n—l - K[Z”t]Z”’ Lq(Q)”At - A[2"+lt]2_n_l

+ ||K[2n+ll/12—n—l - K[Qn[/]Q—n L’I(Q)

|LP(Q)
2[2™1]
S?‘{;’q([{) 7_{,?[7 (A) Z 2-nB+y) 4 2—"(ﬁ+7)
k even,k>2[2"t']
13



<HY/(K) Hy(A)3 - 270D - 1),

Moreover, since 27" <t —t < 2™ itis easy to see that

!
f K, dA,
t/

Combining the above two inequalities, we get the desired result. O

<2 sup [IKllayHE (AT — ).

L'(Q) s€[0,T]

Now we can show the following equivalence.
Proposition 3.13. Let P € Z2(C) satisfy that for any T,R > 0 and s,t € [0,T],
ElWinry = Wineel” < Crglt = s|. (3.16)

Let « € [0,1] and p > 1. Assume that b € H,." and o, o~ are locally bounded. Then
P e %g‘if(x) if and only if there is a weak solution (Q,.%,(Z.)0, P; X, B) in the sense of
Definition[3.9s0 that P o X™' = P € #,*(C).

Proof. (i) Let (Q, .7, (%,)=0, P; X, B) be a weak solution of SDE (I.1) satisfying
Po X' e 2 (C). (3.17)
By (3.13)), X is a Drichlet process. For any f € C*, by Lemma we have
! t t
1) = 10+ [ Vi) ot + [ 2 raass [ vie0-an
0 0 0

where the last term in the right hand side is defined as the limit in probability of Riemannian
sum (see Lemma . To show P o X~! € . (x), by definition it suffices to prove that for
any t > 0,

t
f VX, -dAb = APV P —as, (3.18)
0
where the right hand side is defined as in Remark [3.10] By (3.17) and Remark [3.10 we have
73 t
APV = lim f VF(X,) - dA” = lim f (b, - V)(X,)ds in probability, (3.19)

where b, := b * p,, and forany T,R > 0 and s, € [0, T],

by by 2 2 1 2 1
ElA}% e = Asnel™ < CrrllbaxrllZ, plt = s < Crrllbyrll, It = sI77,
where ng := inf{r > 0 : |X;| > R}, and also
b b2 2 1
E|A}. = Asanel” < C'T,R”bXR”_a,pV — s/ (3.20)

By (3.12)) and (3.20), it is easy to see that for any 7,R > 0 and s,¢ € [0, T],
EIVfXinge) = VI Konn)l? < IV FIZLENX pge = Xongel® < Crlt = sl.
Hence, by (3.14) with p = g = 2,

tATIR IATIR
iim sup E| [ Vi) aa - [ vr0c,) - aal
0 0

m—eo neNU{oo}

I+y
< C lim sup (WT%’Z(Vf Xoan)) H> ’Z(Ab" )zfmy/z) =0,

“ATIR
Mm=00 peNU{co}
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where b, := b and s, := [2"5]27". Since P(limg_,, g = o) = 1, we further have

lim sup P(

M= peNU{oo}

f Vf(X,) - dA> — f Vf(X,,) - dA

0 0

> 3) =0, Ye > 0. (3.21)

On the other hand, since A® — A? in the sense of u.c.p., for fixed m € N, by writing the integral
as a discretization sum, we have

! !
f Vi(X,,) - dA =5 f V£(X,,) - dA® in probability,
0 0
which, together with (3.21)) and (3.19), implies (3.18).

(ii) Suppose that P € . (x) satisfies (3.16). By choosing f(x) = x; in (3.6)), one sees that
M :=wi—x' — Afi is a continuous local martingale under P. By Lemma again, we get

wiw! — x'x/ = f (widM' + w'dM7) + f (wIdA® + widAYy + [M', M7],.
0 0
On the other hand, for any i, j = 1,--- , d, if we choose f(x) = x;x; in (3.6), then
wiw! — x'x/ — AFY — ATV f a’(wy)ds
0

is also a continuous local martingale. As in showing (3.18)), by (3.16) and (3.5)), we have

AR = ftwidAfj, ij=1,-.d.
0
Hence,
(M, M], = f taij(ws)ds.
Now we define 0
B, = j; tU‘l(wX)dMs, t>0.

Since 0! is locally bounded, B is a continuous B,(C)-local martingale under P and by defini-
tion,
[Bi’Bj]l = 6ijt’ ivj = 17”' 7d-

By Lévy’s characterization, B is a B,(C)-Brownian motion under P. Moreover,
!
w,=x+ Af + f o(wy)dB,, P—a.s.
0

Thus (C, B(C), (B,(C))0, P; w, B) is a weak solution in the sense of Definition O

4. CAucHY PROBLEM FOR PDES WITH DISTRIBUTIONAL DRIFTS
In this section we solve the following Cauchy problem of PDEs with distributional drifts:
ou=2Lu—Au+b-Vu+ f, u0)=q¢. 4.1)

First of all we prepare two freezing lemmas in Bessel potential spaces for later use.
15



Lemma 4.1. Let ¢ be a nonnegative and nonzero smooth function with compact support. Define
¢.(x) := ¢(x — 7). For any @ € R and p € (1, ), there exists a constant C > 1 depending only
on a, p, ¢ such that for all f € H*?,

C M fllp < ( f 16,1112 dz) < Cllfllo- 4.2)

Proof. Define
T’f(z, %) := () f(x), x,z€R™
Suppose that we have proved that for all 1 < p < co and @ € R, there is a C > 0 such that
T fllepeastery < Cllfllaps (4.3)

that is, the right hand side estimate in (4.2)) was proved, then the left hand side estimate follows
by a duality argument. In fact, letting p’ := ﬁ, we have
1flla = sup / f ¢’
R4

lgll-. f f f(x) - g(x)p2(x)dzdx
14 a,,\

< sup (f ||¢Zf||a p”(ng”—ap dZ) sup |T¢f||LP(Rd;H"v1’)||T¢g”LP'(Rl/;H—“vI")

”g” —a,p’ <1 ”g” a,p’ <1

< |IT? Hr@apery  sup Igll-ap = IT¢ Slera gy,

llgll-o,pr <1

J(x) - g(x)dx| =

R4

sup
”g” a.p’ <1

To show (4.3), by a standard interpolation method, it suffices to prove it for @ = 0, £2k, - - -.
For @ =0,2,4,---, it follows by the chain rule. For @ = -2, still by duality, we have

T2 A1 g2y = f sup [(g.f, g)"dz = f sup (I - A f, (T - M) dz.
R llgll pr <1 R? Jlgll pr <1

Recalling that
I=A)¢-g) = —Ad.- g+ ¢.- (I-A)g =2V, - Vg,
we have

KA— )7 f. A= D) (@) < A=A f - Al llgll,
+ 1@ = 27" f - Bl A= Al + 20T = D)7 f - VI, IVl
< (I =27 f - Al + 1T = A7 £ - ell, + 1T = A - Vgl gl -

Combining the above inequalities, we get
— _ _ p
T F1 gy S f =27 - Agelly + =AY - gl + =AY F Vo.l,) de
R
SNA=A)AE = 1A,
For general @ = —4, -6, - - -, it follows by similar calculations. O

Remark 4.2. In fact, a discretized version of Lemma was proven in [[17]. Our proof pre-
sented here is much simpler.

Lemma 4.3. For any v € (0,1), p € (d/y,>) and a € [0,y], there is a constant C =
C(d,a,y, p) > 0 such that for all 6 € (0,1) and z € R,

I = XNy < CIAY2 11,677, (4.4)
16



where f, := f(z) and x°(x) := xs(x — 2), x5 is defined as 2.1). Moreover, for any continuous
function f with ||A7/2f||p < oo, we have

lim suplI(f: = f)2llop = 0. 4.5)
4
Proof. (i) We first consider the case @ < y. Since py > d, by (2.6) we have

I = PXCIE < AT f[peP— f Deo(x = 2)lPdx 5 |AY72 f|s7P. (4.6)
Rt
Noticing that
IAY 201, = 1A 2xsll, < SN2 /o), < 67742,
by (2.3) and (2.6) we have for [y| < 6,
I = DC+3) = (= O, S IFC+3) = FLI e + 1A = HC +DEE+3) =X,

< DIIAY2£1L, + IAY2 £1L,6 P o+ 3) = X1,
< DIIAY2£1L, (1 + &P A2 < P IAY2 Al

Thus, by (2.3)) and (4.6 we have

@ dy
IA(CF = P < f G = 9+ = (o= Pl
R
d d
SUAPLL, | Do + 1A 11,67 e
pics Y] pi>s ]

<S AL,

(i1) Next we consider the case @ = y. By definition, we have

d
AP((f. = D0 = A2 f(x) - x2(x) + f (f(2) = fx+ DU + ) = x20x) |y|dy+y'
Rd
Clearly, we have
1A 00, < A2 £

To estimate the second term denoted by ﬂf(x), noticing that for |y| < 0,
Xo(x+y) = xx) =0 if |x — 2] > 36,

we may write

av P
1791 = f (F@) = FE+ M+ 3) ~ )| dx
=<3 | Jyi<s [yl
s 5 dy |
+ (f@) = [+ MU (x +y) = x(0)—= | dx
l—z1<35 |Jpyi>o Iyl
s 5 dy g
+ (f(@) = fx+ WX +y) =X () —= | dx
lx—=z1>36 |Jyl>6 Iyl
=L +5L+1L.
For I;, by (2.6) we have
d p
I < A7 flpd f W0+ )~ | dx
he—gl<36 | Jpi<s [yl

17



S 1A fpe77 f dx < [|AT2£11P,

14

51 f b
d+y-1

—2l<35 wi<s V14T

/2 2P ydip D ’
L S[IAYE 11 lx+y—1z o | dx
l—z<36 \Jpl>s Iyl

p
RINGIT ( f |y|-d-"/f’dy) < I,
[y[>6

and

For I5, noticing that if |x — z| > 36, then y(x) = 0 and if |x + y — z| < 26, then x2(x +y) = 0, we

have
13:f
[x—z|>30
dy

s IAY2 f1], 677
L—z|>36 \fwngs P (lx = z| = 26)*r

Combining the above calculations, we obtain (4.4)).

p

dx

| (@) — fCx 4 0+ )
>0 Jx+y—2l<26 ly | Y

P
Y2 P
dx < A2 f|D.

(iii) If @ < 1y, the limit (4.5]) is obvious. If & = v, letting f" = f  p,, by (@.4) we have
I = ey <UL = 2Ny + 1 = e = = SOy
C(IVF 1,8 + 1A“2(f = £P)I,)
which gives by first letting 6 — 0, then n — oo. O
ForT >0and @ € R,1 < p < o0, we introduce the following Banach space:
Hy" = LP([0, T]; H*P).
We first show the following result about constant coefficient equation.

Theorem 4.4. Let a(x) = a be a constant symmetric positive definite matrix. Let A > 0, a € R,
p>1landT > 0. Forany ¢ € H***P and f € H}”, there is a unique solution u € H?Q’p to the
Cauchy problem

ou=2L—Au+ f, ul0)=¢. 4.7)

Moreover, for any 6 € [0, 2], there is a constant C > 0 only depending on the elliptic constant
ofaand 0, p,d, T such that for all 1 > 1,

A ulgror < C(A' 2Pl + Il (4.8)

Proof. Let P{f(x) := Ef( V2a - B, + x) be the Gaussian heat semigroup with diffusion matrix
V2a. By Duhamel’s formula, the unique solution of (#.7)) can be written as

!
u(t, x) = e " Plo(x) + f e =P (s, x)ds.
0

t
e f P* f(s,-)ds
0
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T
IVzullpapNI Iv2P ¢|I§pdt+f

p

p
. dr < llelly, ., + 11l




On the other hand, for any 6 € [0, 2), noticing that
1P fllo, < CE21 £, £ >0,

we have

- T b
s [ et e 7 et ) o
0 0 0
T T P
< (f /lptdt) ||‘10||e+ap f (f e_A(I_S)(t - S)_B/ZHf(S’ )”(tpds) &
0 0 0

1 - e—/lpT T T s 02 p
=T||90||9+a,, j; (fo e s = 5, e Lo A>od) ds

< gl + AF AL
‘70 O+a D f H‘;P’
where the last step is due to Minkowskii’s inequality. The proof is complete. |

To show the corresponding result for variable coefficient a = oo™ /2, we make the following
assumptions about o

(H(’ ) ||Aﬁ/20-||q < oo for some B € (0,1] and g € (£, o), and there is a constant ¢, > 1 such that

¢y kP < lo(éP < colél, Vx, € € RY. (4.9)

Theorem 4.5. Let 3 € (0,1) and q € (g, c0). Under (H ), for any a € [0,8] and p > -4 there
isady>1 large enough such that for all A > Ao, T > 0 and any ¢ € H>* %P, f € H,*?, there is
a unique u € HT P solving the following PDE

!
u(t) = ¢ + f (£ = Duls) + f(9)|ds in HP, (4.10)
0
Moreover, for any 6 € [0, 2], there is a constant C > 0 such that for all 1 > Ay,
Al < C(AE 7l g + 1l ). .11

Proof. By the standard continuity method, it suffices to show the a priori estimate (4.11). We
use the freezing coeflicient argument. Let ¢ be a nonnegative and nonzero smooth function with
support in B := {x € R? : |x| < 1} and define for z € R,

¢°(x) 1= 6~ p(x6 ), $2(x) 1= ¢°(x - 2), @ = a(2).
Multiplying both sides of PDE @.10) by ¢°, we have
O pou) = L(Pu) — Aglu + f¢2 + (L% = L) plu) = L9 - u - 2a70,¢20u,

where the above equality holds in H=*7 for Lebesgue almost all 7 > 0. Let x°(x) := ys(x — 2),
where y; is defined as in (2.1). Noticing ¢ > ‘—1, we can choose y € [, 8] and p, > ¢ such that

Yy 1 o« _
@B = p2 < <1

< =

Since x° = 1 on the support of ¢°, we have x? - V"¢° = V"¢? for m = 0,1,2. Thus, for any
6 € [0,2], by (4.8) and Lemma[2.2]

_9 _0_1 a, a
A 2||¢§u||Hf;a-p < A7l llo-a,p + ||f¢6||H-w + (&L -2 )(¢fu)||H;’~ﬁ

+].L¢ - v + lla"0:¢28, lly-r
19



1-¢-1 s 5 5 2046
< A7 1@Bllo-ap + 1 Bllser + 1@ = @Ml V(@0 lor
ij, 0 o 0
1@ o (10376 - tllor + 110:6520 ullor)

Here and below, the constant contained in < is independent of A, and €. Since o is bounded
and ||A%%0||, < o0, by (2.3), and (2.6)), one sees that
lalls + 18°all, < oo,
and by Gagliardo-Nirenberg’s inequality (2.7)),
IA72all,, < lallS?PIAPall)’P < oo,
Thus for any & > 0, by (4.5]), we can choose § small enough so that

S
sup ”(az - a))(z”a,pz < E
z

Moreover, it is easy to see that

. 0
Cs := supllax:lla,p, < 0.
Z

Combining the above calculations, we get that for any € > 0, there is a 6 > 0 such that
1-8 46 < /ll—g—l 5 s s
A2 lzullgoer < p@ello-ap + ILf Gl v + ell@Tullp-cn
s s
+Cs > (10562 - ullor + 110,620 ulco0)
ij

Taking p-order power for both sides and then integrating with respect to z and by Lemma[4.1]
we get

_8 1—8_1

A lullyrer S A2 lglly-ap + 1 fllcor + lltllz-eo + Collullg-ar.

Letting 6 = 2, 1, respectively, and choosing first £ small enough and then A large enough, we
obtain the desired estimate. O

As an easy corollary of the above result, we have
Theorem 4.6. Let a € (0, %], p > & and B € [, 1], g € (£, 00). Under (ng) and b € H™*?,

there is a Ay > 1 large enough such that for all > Ao, T > 0 and any ¢ € H**P, f € H,"”,
there is a unique u € H;. " such that

u®) = ¢ + f [ = A+ b-Vyu(s) + f(s)|ds in H-. (4.12)
0

Moreover, for any 6 € [0,2], there is a constant C > 0 which only depends on the parameters
and the constants in the assumptions,

0_1

Al < C(AF 7l + 1o ). (4.13)

Proof. By the continuity method, we still only need to prove (.13)). Let b, = b * p,. By (4.11)
and (2.9) with p; = p and p, = pd/(d — p(1 — 2a)) > d/a, we have
[4 _o_1
A lullgo-or < C (APl llap + If + b - Vally o)

1=¢_1
S CA2 0 l@llo-ap + 1 fllzer + ClIb = byl pllVurllgerz + Cliby - Vudllry

@I) 1=¢_1
< CA2 gl p + I fllegyer + Cllb = ball-a pllidllgz-er + Cllballoollullgg1r-
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First choosing € = 2 and n large enough so that C||b — b,||-,, < 1/2, then letting 6 = 1 + « and
A large enough so that C||b,ll < 172 /4, we get #@.13). ]

Remark 4.7. Notice that u satisfies (#.12) if and only if u,(z, x) := eYu(z, x) satisfies
!
() = @ + f |2+ b Vyuy(s) + e f(5)]ds in H.
0

We also have the following solvability to elliptic equations.
Theorem 4.8. Assume that one of the following two conditions holds:
(i) Let B € (0,1), g € (£, 00) and a € (0,8], p > ﬁ. Assume that b = 0 and (H,g,q) hold.
(ii) Let a € (0, %], p> ﬁ and 8 € [a, 1], g € (£, c0). Assume that b € H " and (H;q) hold.

Then there is a Ay > 1 large enough such that for all 1 > Ay and any f € H *7, there is a unique
u € H>*P such that

(L= A+b-Vyu=f in H™, (4.14)

Moreover, for any 6 € [0,2], there is a constant C > 0 which only depends on the parameters
and the constants in the assumptions such that for all 1 > A,

A ullg-ap < Cllfll-arp- (4.15)

Proof. We only consider the case (ii). Case (i) is similar by Theorem Let T > 0 and
¢ : R — R be a nonzero smooth function with compact support in (0, T). Let u € H>~*? solve
elliptic equation (4.14)). Then u(z, x) := u(x)¢(¢) satisfies the parabolic equation

on=(L-A2+b-Vyi+ f¢+ugd” in H*P,
For any 6 € [0, 2], by (4.13)) we have
A alyg-or < CUFD + u g

Hence,
Al 0ll0:r) < C(Ifapllllror + il pll o)
and
A lully—ap < Cillfll-ap + Calltlla .
Choosing # = 0 and A > 2C,, we get the desired estimate. O

5. MAIN RESULTS AND PROOFS

5.1. Statement of main results. We make the following assumptions about b:
(H, ) b = bV + b, where b'" satisfies that for some @ > 0 and ko, k1, k; > 0,

(x, bV (x))
"< —wolxl” + k1, V)] < (1 + (1), (5.1
V1 +|xP

and b € H™" for some & € (0, 3] and p € (7%, ).
Our first main result is
Theorem 5.1. Let a € (0, 3], p € (7%, ) and B € [@, 1], g € (4, 0). Under (Hf ) and (H}, ),

for any x € R, there exists a unique martingale solution P, € M f”,f(x) to SDE (L.1). Moreover,

letting B, := E®s, we have the following conclusions:
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(i) Forany T > 0 and m € N, there is a constant Cy > 0 such that forall0 <ty <t; < T,

E.w;, — w,[*" < Cr(ty — to)", (5.2)
and for all f € H P,
2m —a—-YHm m
E.|A] - ALI™ < Cr(ty — 1) 7" £ . (5.3)

(ii) If 9 = 0 in B.1)), then for any ¢ € H**?, u(t, x) := P,p(x) := Exp(w,) € L (R,; H**)
uniquely solves the following Cauchy problem in H™*7,
ou=(ZL+b-Viu, ul0)=q¢. (5.4)
Moreover, P, admits a density p(t,x,y) enjoying the following two-sided estimate: for
some ci,c; > landallt > 0, x,y € RY,
eyt 2g kPt ¢ p(t,x,y) < et 2g7 WP/t (5.5)
and gradient estimate: for some c3,c4 > 0andallt > 0, x,y € R,
IV.p(t, %, )| < cat™ @D 2emeb (5.6)
(iii) If ¢ > 0 in (5.1), then P, admits a unique invariant probability measure u(dx) = o(x)dx
with o € H”", where y € (0, A (1 —a)]and r € (1, #).

Remark 5.2. The above (iii) seems to be new even for b® = 0 although there are systematic
studies about the regularity of invariant measures o in the monograph [4].

As an easy corollary of Theorem [5.1] and Proposition [3.13] we have

Corollary 5.3. Under the same assumptions of Theorem[5.1| there exists a unique weak solution
(Q, Z,(F)iz0, P: X, B) for SDE (1)) so that P o X™' € J£,%(C).

In the above corollary, we require that the law of weak solution satisfies the local Krylov
estimate, that is, Po X! € %/p“(@). This is crucial when we use Zvonkin’s transformation to
show the uniqueness. Nevertheless, under some extra assumptions (see below), we can
directly prove such a priori estimate for any weak solutions as stated below.

Theorem 5.4. Let o € (0, %), pE (ﬁ, o)andpf € [a, 1], g € (‘E’, 00). Under (H;q) and (Hz’p),

for any x € RY, there exists a unique weak solution to SDE (1)) in the sense of Definition
so that for each T,R > 0 and s,t € [0, T],

ElAL,, — AL, I* < Cralt — 507079, (5.7)

IANR
where ng := inf{t > 0 : |X,| > R}). Moreover, Po X! € %/p" and the conclusions in Theorem|5.1
still hold.
Remark 5.5. In [2, Theorem 2.6], Bass and Chen require (3.7) to hold uniformly for b,.

5.2. SDE with dissipative drift. In this subsection, we consider SDE with dissipative drift
but without distributional part. First of all, we recall a stochastic Gronwall’s inequality due to
Scheutzew [24]] (see also [26, Lemma 3.8]).

Lemma 5.6 (Stochastic Gronwall’s inequality). Let &(t) and n(t) be two nonnegative cadlag
F-adapted processes, A, a continuous nondecreasing .%;-adapted process with Ao = 0, M, a
local martingale with My = 0. Suppose that

() <n(n) + f E(s)dA; + M,, YVt > 0. (5.8)
0
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Then for any 0 < g < p < 1 and stopping time T, we have

1/ (-p)/
[EE D) < (&) (e P) B, (5.9)
where £(1)" = sup g, €(5)-
We first show the following result.
Theorem 5.7. Suppose that b = bV satisfies (5.1)), o satisfies #9) and for some y € (0, 1)
lo(x) — oI < cilx =y, Yx,y € RY (5.10)
For each x € RY, there is one and only one element in e//(gf(x) denoted by P,. Moreover, letting
E, := B and P,p(x) := E.@(w,), we have the following conclusions:
(@) For eachm € N, there is a constant C > 0 such that for all T > 0 and x € R¢,
T
Ex( sup |w,|'") +E, ( f |ws|'"—‘+ﬁds) <SC( +|x™+T™), (5.11)
te[0,T] 0
and for each T > 0, there is a constant Cy > 0 such that for all0 <ty <t; < T,

Exlwtl - Wl‘()|2m < CTltl - tOlm' (5'12)

(b) If9 = 0, then we have P,p(x) = fRd p(t, x, y)p(y)dy with p(t, x, y) satisfying (5.3) and (5.6).
(¢) If ¥ > 0O, then P, has a unique invariant probability measure.

Proof. (a) For n € N, let y,, be the cutoff function defined by (2.1)) and define
b"(x) := b(x) - xn(x).

By [23, Theorem 7.2.1], there is a unique element P" € ///;)”Zf,’(x). Let h(y) := (1 + [y>)™%. By
(@.9) and (5.1), there are constants «, k; > 0 independent of n such that for all |y| < n,

L7h(y) + (Vh(y), 0" () < —kpyl™ 7 + &, (™" + 1).
Let 7, be defined by (3.1)) with R = n. By definition, one has
ATy
h(Winr,) = h(x) + f (.Z‘Th +b"- Vh)(ws)ds + M\,
0

ATy " (5.13)
< h(x) - & f " ds + i f (Worr, "™ + Dds + My,
0 0

where M.,,, is a continuous martingale under P’;. By Lemma [5.6, for any ¢ € (0, 1), there is a
constant C > 0 such that for all 7 > 0 and x € R?,

T 0
Epﬁ(sup h(w,m)‘s) < Ch(x)5+c(EP¥ f (Wenr, " + l)ds) :
t€[0,T] 0

In particular, taking 6 = 1 — i and by Young’s inequality, we get

1-+

n 1 n m

E™ ( sup |wm,l|’"‘1) SC+ ") +CT' ™ (EPX ( Sup [Wir, "™ + 1))
t€[0,T] 1€[0,T]

1o
<CA+ 1™ + 5EPx ( sup Winr, "' + 1) +CT™ "
t€[0,T]
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Here and below, the constant C > 0 is independent of n,7 > 0 and x € R?. Hence, for any
me N,

EF ( sup |w,mn|’"-‘) <SC( + |x™ 1+ 1,
t€[0,T]

which implies

P'(1, < T) = P;( sup Wi, | > n) <CA+ "+ T/ "> 0. (5.14)
te[0,T]

Thus, by [25} p.250, Corollary 10.1.2], there is a unique P, € ,///[(T)”;" (x) such that for all n € N,
P, =P} on B, (C), (5.15)

and so,

Ex( sup Iwmnl’") SC(+ |x™+T1T™). (5.16)
1€[0,T]

Substituting (5.16) into (5.13)), we also have

T AT,
E, ( f stl’”_”ﬁds) <CA +|x"+T™). (5.17)
0

By (5.14) and taking limits n — oo for (5.16) and (5.17), we get (5.11).

On the other hand, notice that
!
M, =w,—y— f b"(w,)ds is a continuous local martingale
0
with quadratic variation process
!
(M, M), := f a’(wy)ds.
0

Hence, for each T > 0 and m € N, by Burkholder’s inequality, there is a constant C > 0
independent of n such that forall 0 <7y < t; < T,

11
f b (wy)ds
1o

11 11 m
< Clty = 1" 'E, f 16" (w,)["ds + CE, ( f Ia(ws)ldS)
fo fo

2m

+ CE, |M, - M,

2m
Eylwy, = wy,[”" < CE, |

1]
< Clty — to]'E, f (1 + [wy*™)ds + C(t; — t)™ < Clt; — to|™.
fo

(b) If 9 = 0 in (5.1), then b is bounded measurable. Since o is uniformly non-degenerate and
Holder continuous, it is well known that the semigroup P, admits a density p(¢, x,y) so that

Pp(x) = fRd o(y)p(t, x,y)dy, and p(t, x, y) satisfies (5.3) and (for example, see [3, Theo-
rem 1.1 and Section 4.2]).

(c) If 9 > 0, then by (5.11)) with m = 1 and the classical Bogoliubov-Krylov’s argument, there

exists an invariant probability measure associated with P,. To show the uniqueness, as usual
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we show the strong Feller property and irreducibility of P,. Let ¢ be a bounded measurable
function. For any 7 > 0 and x,y € R?, we have

[Ea(wy) = Bypw)| = [Balwi) Lscr,) = Byl @) Lscr, )] + lplloo(Pulrn < 1) + Py(x, < 1))
< [EF@(wi) = B o(wy)] + 2lglles (Pi(Ts < 1) + Pi(T, < 1)). (5.18)
By (5.14)), we have for any R > 0,

lim sup Pi(r, < 1) = 0.

n—e0 |y

Since for each ¢t > 0, the mapping x — E® f(w,) is continuous (see part (b)), letting x — y in
and then n — oo, we obtain the continuity of x - P,f(x) = E,f(w,).

Next we show the irreducibility of P,. Fix xy, x € R%, ¢ > 0 and a > 0. Choose 7 large enough
so that D,, := {y : |y| < n} contains xy and B,(xp) := {y : |y — xo| < a}. Notice that two-sided
estimate (5.5)) for the heat kernel of P! holds (see part (b)). By [26, Theorem 7.11] or as in [8],
Theorem 2.2.4], one has

Pr(wr € Ba(x0)) = Po(w; € Ba(x0); 1 < 7)) = Pi(w; € Bu(x0);1 < 7,) > 0,
which means that P, is irreducible. The proof is complete. O

Furthermore, we can show the following result.

Lemma 5.8. Assume (Hf ) for some § € (0,1) and q > d/B, and b = bV satisfies (3.1)). Let
v € (0,8] and v > %. For each x € RY, letting P, € //13,‘;’ (x) be the unique element, there is a
constant C > 0 independent of x such that for all f € CX(RY) and T > 0,

T
E« (f f(ws)ds) S Clfllyy T+ T + Ix]).. (5.19)
0

Moreover, for any T > 0 and m € N, there is a constant Cr > 0 such that for any f € C>(RY)

and 0 <ty <t <T,
1
f Sfwy)ds
fo

In particular, global Krylov’s estimate holds for P,, and //(g’;o (x) C ///zf(x).

2m

< Cr(ty — 1) 2797 £ (5.20)

-y

E,

Proof. Under the assumptions of the theorem, by (2.6), one sees that the assumptions of Theo-
rem [5.7|are satisfied. For each x € RY, let P, € .Z g”;’ (x) be the unique element. By Proposition
3.13| there is a unique weak solution (Q, %, (%)s0,P; X, B) so that P, = P o X~! and the
following SDE is satisfied

X,:x+f O'(XS)dBS+f b(X,)ds. (5.21)
0 0

Since a = o00*/2 is Holder continuous, by the classical Schauder theory of PDE (see [[19, p.56,
Theorem 4.3.2]), for any f € CX(R?), there are 4 > 0 and a unique u € C;(R?) solving the
following PDE:

ZLu— Au=f.
Moreover, since the assumption (i) of Theorem [{.8]is satisfied for @ = y and p = v, by (.13)
we also have

lullo—yy < Cllfll=y0- (5.22)
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Now by (5.21)) and Itd’s formula, we have

u(X;) = u(x) + f (ZLu+b-Vu)(X,)ds + f(Vu <o) (X,)dB;
0 0 (5.23)

= u(x) + f (f + Au+b-Vu)(X,)ds + f(Vu - 0)(X;)dB;.
0 0

Taking expectations and by (5.22)), Sobolev’s embedding (2.4), we obtain
t 1
E(f f(Xs)ds) < 2+ AD)||ullo + IVull E (f Ib(Xs)ldS)
0 0

!
<C||f||-y,v(1+t+E(f IXslﬁdS)) < Cllfllyw T+ 2+ 1)
0

Thus, we get (5.19).
On the other hand, for 0 < ¢ty < t; < T, since

11 11
X, - X, = f b(X,)ds + f o(X,)dB;, (5.24)

To fo

by (5.23) and easy calculations, we have

fl fXpds = u(X,,) — u(X,) - fl(/lu +b - Vu)(X,)ds — fl(Vu - 0)(X;)dB;

1 11
= (X, — X)) - f | Vu(rX, + (1= rX,) - Vu(X,)|dr - f u(X)ds  (5.25)
0

fo

- f lb(Xs)'(Vbt(Xs)—Vu(Xzo))dS— f I(VM(XS)—Vu(Xto))'Cf(Xs)st‘

Let 6 := 1 —y — 4. By Sobolev’s embedding (2:4) and (3:22),
IVu(x) = Vu@) < Vulli—yplx = Y < Iflloylx = yI°. (5.26)
By (5.23), (5.12), (5.26), Burkholder’s inequality and (5.22)), we have

1 2m
f f(Xods

2 2m(1+6 2 2
S AR EIX, = X PO+ 1A e = 10l

E

+ E( f | IVu(X,) — Vu(x,0)|2ds)

fo

1 m
2 1+6 2 26
S A, — g™ +)+||f||_’;’,yE(f X — X dS)
to

S AP = g™+
Thus we complete the proof. O
5.3. Proofs of Theorems and Leta € (0,1], p € (7%,) and B € [, 1], g € (4, ).

Below we assume (Hg q) and (Hg’p). By (ii) of Theorem there exists a constant Ay > 0 such
that for all A > Ay, there is a unique u = u; : R — R? belonging to H*™** so that

(L - 2+b? - Vyu=-b%in H*.
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By @.15), for any 6 € [0, 2], there is a constant C > 0 such that for all A > A,
/ll_g”ull(i—a,p < ClIB? =g p- (5.27)

In particular, taking 0 € (1 +a + %, 2) and by Sobolev’s embedding (2.4)), we can choose A large
enough so that
IVull. < 1/2. (5.28)

Now, define
O(x) ;= x+u(x) : RY > R4

By (5.28) and with 6 = 2, it is easy to see that
3 =y < 1D(x) = O < 2/x = yl, 1= VOlli_0p = IVulliap < CIB? |0 (5.29)
Hence, ® € D, and
LD +b? .V = du in H 7. (5.30)
Define
F:=(VO-0)o®', b:=u+d" V0o (5.31)
We have the following key observation.

Lemma 5.9. For A large enough, there are &y, Ky, %, > 0 such that for all y € RY,

2= < —Rohl” + &1 and 1b(y)| < ®a(1 + "), (5.32)
V1+yP
where O is the same as in (5.1)). Moreover, & satisfies (Hg, ) withp’ =B A (1 —a) and q' being

defined by (3.9).

Proof. If 9 = 0, there is nothing to prove (5.32)). Below we assume # > 0. First of all, it is clear
that

b < Alulles + ko(1 + D7 GNPl < (1 + Iyl”).
Observing that
y=07'() +u(@'(y), Vo) =1+ Vux),

by the definition of 5 and (5.1)), we have

b)) _ A u@ o)) Lo bO(@ () Lo - Vu) (@~ ()

V1I+DP V1I+DP VI+DhP V1I+DP
(@~ ), V(@7 () N 6D (@' W)l + [IVallslyl)

V1+DhP V1+DP

V14D O)P fa(l+ l(D_l(y)lﬁ)IIUIloo + [Vl

VI+DP VI+DP

By (5.27) and Sobolev’s embedding (2.4), we have lim,_,« [|[Vu,|lo = 0. The first estimate in
(5.32) follows by choosing A large enough and (5.29). Moreover, by (i) of Proposition lox
satisfies (Hg,’ q,). O

< Alulle +

< Aulles + (k2 = k1|07 DY)

Now we can give
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Proof of Theorem For each x € RY, by Proposition 3.7, Lemmas and Theorem

the unique martingale solution P, € ///(Z}f’(x) is given by
P, = Poy o @, (5.33)

where P, € A 7(y) is the unique martingale solution starting from y associated with &, b. We
shall write Ey .= EP and P(y) = Eygo(wt).

(i) It follows by (5.33) and Theorem[5.7, Lemma 5.8}

(ii) If ¥ = 0 in (5.1)), then by (5.33)), Lemma[5.9]and (ii) of Theorem 5.7, we have

pt,x,y) = p(t, (x), D(y)) det(VD(y)),

where p(t, x,) is the heat kernel of P,. Since j(t, x, y) enjoys the estimates (5.3)) and (5.6), by

(5.29), it is easy to see that p(t, x, y) also enjoys the estimates (5.5]) and (5.6).
Next we show the probabilistic representation part. For any ¢ € N,,enH™?, by Theorem [4.6]

and Remark there is a unique u¥ € H?“’p N HZT”’ satisfies
!
u?(f) = @ + f (ZL* +D-Vur(s)ds. (5.34)
0

Since u? € Hi’p , by applying generalized 1t6’s formula to (¢, x) — u¥(T — ¢, x) (see [16, p.121]),
we get E.u?(0, wr) = u?(T, x), i.e. Exp(wr) = u#(T, x). Furthermore, for general ¢ € H>*”, let
¢n 1= ¢ * p, be the mollifying approximation. By Theorem 4.6} it is easy to see that

n—oo
10:u”" = il + U = ullyp-er < Clign = @lla-a,p — 0.

By taking limits for u#(¢, x) = E,¢,(w,), we get the probabilistic representation for the unique

solution u¥ of (5.34)):

u?(t, x) = Bxp(w,) € HzT_a’p, pe H P, (5.35)
Moreover, by we have

Pyp(x) = E™g(w,) = EF*™p(w;) = (P 0 @™H)(@(x)),
Since @ € Z)L‘“, by Lemmas (2.4) and Proposition we have
llg © @' |a-ap Sllp 0 @I, + V(0 0 D Dll1—ap = llgll, + [V 0 @7 - VO],
sllelly + 1IVell—ap (VO™ = Tlli—ap + D < llello-ap-

Hence, by (5.39), P,(p o ®7') € H?a’p and Pp = P(po ® oD ¢ H?“’p. By (3.10), (3.11)
and (5.34)), one sees that P, satisfies (5.4).

(ii1) If ¢ > 0, by Theorem P, admits a unique invariant probability measure ji, and by
Lemma there is a constant C independent of 7 and y such that for any y € (0,8'], v > %

and any f € CX(RY), y € RY,
1 (7. 1 - T L+l +T
. fo Pt = —E, ( fo f(ws)dS) <l L

which implies by Birkhorff’s ergodicity theorem,

1 (7.
i = fim 7 [ s < il
© 0

Hence, fi(dy) = 0(y)dy and 0 € H”", where r = -5 € (I, #). Finally, by [26) Proposition
2.8], u = ft o @ is the unique invariant probability measure of P,. Moreover, it is clear that
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p(dx) = o(x)dx with o(x) = § o O(x) det(VD(x)). Noticing that 1 — =52 < &l < 1 by

r’

Sobolev’s embedding, Lemmas [2.2] and [2.4] one sees that o € H”". O
Finally we prove Theorem

Proof of Theorem[5.4] By Proposition [3.13] and Theorem [5.1] it suffices to show that for any
weak solution (Q, .7, (%0, P; X, B), if holds, then the local Krylov estimate holds for
the law of X. Let f € CZ(RY). By Theorem for A large enough, there is a unique u € H**
solving the following PDE:

Lu— Au = f.

By (2.4) and (.15)), we have
Vi) = Vu)| < IVatllig pl = 51777 < N fll-aplr = 17707 (5.36)

Moreover, by Schauder’s theory of PDE (see [[19} p.56, Theorem 4.3.2]), we also have u € C>.
Hence, by 1t6’s formula for Dirichlet processes (see Lemma (3.11]),

! ! !
u(X;) = u(x) + f(/lu - HXy)ds + f Vu(X;) - dAi’ + f(Vu - 0)(X,)dB;.
0 0 0
As in the calculations of (5.25)), for ¢y < t;, we have

t 1 1]
f f(X,)ds = (X, — X,,) f | Vu(rX,, + (1 = NX,) - Vu(X,)|dr - 2 f u(X,)ds
1y 0

. . o (5.37)
+ f (Vu(X,) = Vu(X,,)) - dA? - f (Vu(X;) = Vu(Xy,)) - 0(X;)dB;.
o to
Since E|A],, —A?, [ < Clt; — 12275, by (3-12) we have
E|X[1/\7]R - X[()/\UR|4 < Cltl - t0|2,
and by (5.36),

E[Vu(Xy npe) = VitXigpnl' < CIFIL, iy = 16170747,
Thus, by 5 — @ — 4 > 0 and Lemma 3.12| with p = ¢ = 4, we get

1 ATIR 2
Bl [Tt - uox,) - aal] < IR, i -
foANR
By (5.37) and as in proving (5.20), we have
11 AR 2 J
E f FX)ds| < ClSIP, it — 1677
ToATIR
The proof is complete. O
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