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Abstract

This article considers investment decisions in an uncertain and competitive framework, with a first

investor, the leader, always producing up to full capacity (dedicated) and a second investor, the follower,

being able to adjust output levels within constraint of the installed capacity (flexible). Both firms need

to decide on the investment timing and investment capacity size. The main findings are as follows.

Compared to a situation where the follower always produces up to full capacity, the leader has a larger

incentive to accommodate a flexible follower. This is because the leader also benefits from the follower’s

volume flexibility. Due to the first mover advantage, the leader’s value is higher than the follower’s value,

despite the follower’s technological advantage in flexibility.
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1 Introduction

Uncertainty is a main characteristic of the business environment nowadays. The technology advancement

has shortened product life cycles, increased product variety, and indulged more demanding consumers. This

contributes to the uncertainty in consumer demand and poses challenges on the manufacturing firms. The

ability to produce to the least cost is no longer enough. The capability to absorb demand fluctuations has

become an important competitive issue. Flexibility is considered an adaptive response to the environmental

uncertainty (Gupta and Goyal, 1989). Browne et al. (1984) have defined eight different flexibility types,
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among which, the volume flexibility is described as “the ability to operate an FMS (Flexible Manufacturing

Systems) profitably at different production volumes.” Later on, Sethi and Sethi (1990) further describe vol-

ume flexibility as “the ability to be operated profitably at different overall output levels.” According to Beach

et al. (2000), utilizing flexibility presents performance-related benefits. Numerous studies have supported

the importance of volume flexibility (Jack and Raturi, 2002). For instance, Goyal and Netessine (2011) show

that volume flexibility may help the firm combat the product demand uncertainty. In a monopolistic market,

Hagspiel et al. (2016) and Wen et al. (2017) analyze the volume flexibility’s influences on a monopolistic in-

vestor’s investment decision and show that it increases the value of the investment. In a competitive setting,

an important question for the investors would be how the volume flexibility influences investment decisions

and the investors’ strategic interactions.

This article considers volume flexibility in a homogenous good market. Demand is linear and subject to

stochastic shocks, which follow a geometric Brownian motion process. There are two firms that decide on

entering the market by investing in a production plant. More specifically, they have to decide about the

investment timing and the investment capacity. I take the firm roles as exogenous, and the first investor,

the leader, has dedicated technology. The follower, i.e., the firm that invests secondly, has volume flexibility.

The leader always produces up to capacity and has a first mover advantage. The follower can adjust output

levels according to market demand. A surprising outcome is that, because the market price is affected by the

follower’s flexible output, the leader benefits from the follower’s flexibility when market demand is low. This

is because the follower reduces the output quantity in such a case. This provides insights for the equilibrium

with endogenous firm roles where the two firms can choose to be volume flexible or to be dedicated. It turns

out that the dedicated leader and flexible follower described above is very likely to be the equilibrium for

endogenous firm roles. The intuition is that volume flexibility mitigates the fluctuations in market prices,

which is attainable with one flexible firm. If one firm chooses to be flexible, the other firm would choose to

be dedicated. By doing this, the other firm can occupy a constant market share on one hand, and benefit

from the mitigated price fluctuations on the other hand. Besides, the leader will not choose to be flexible.

Otherwise the leader would loose its first mover advantage, i.e., the competitive advantage, because the

leader cannot commit to an output quantity. The follower would choose to be volume flexible due to the fact

that it yields higher value. One can easily find both dedicated and flexible firms in the electricity market:

a nuclear power station is dedicated and a fossil fuel power station is flexible. According to Goyal and

Netessine (2007), a firm may find it difficult to produce below capacity due to fixed costs associated with,

for example, labor, commitment to suppliers and production ramp-up1.

The analysis starts with a market where no firms are active. Then two intervals on market demand are

identified for the leader, with one interval where it is optimal to deter the entry of the flexible follower and

the other one where it is optimal to accommodate the entry. I find that compared to a dedicated follower,

the leader is less likely to deter a flexible follower. This is because when there is demand uncertainty, both

1I will not model these issues explicitly in this article.
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the leader and the flexible follower tend to wait for more information about the future market and invest

later. For the entry deterrence strategy, the leader has an incentive to overinvest to deter the entry of the

follower2. Being dedicated and unable to the instant market demand, the leader is more vulnerable to the

negative demand shocks. For the follower, the volume flexibility yields higher values and thus motivates

to invest earlier compared with a dedicated follower. This results in a shorter monopoly period for the

leader and diminishes the attractiveness of entry deterrence compared to the case where the follower is

dedicated. Furthermore, compared to a dedicated follower, it is more likely for the leader to accommodate

a flexible follower. For the accommodation strategy, the two firms invest at the same time, so the incentive

to overinvest in order to deter the follower’s entry disappears. The market price reacts to the follower’s

output adjustment, and this diminishes the leader’s vulnerability to demand uncertainty. The incentive to

overinvest in order to reduce the capacity size of the flexible follower and to benefit from the follower’s output

adjustment is still strong. This makes accommodation of the flexible follower more attractive to the leader.

I also find that in a fast growing market, the flexible follower produces below capacity right after invest-

ment. While in a slowly growing or shrinking market, the flexible follower produces up to capacity right after

investment. In the intermediate case, the flexible follower produces up to capacity right after investment

when uncertainty is low and below capacity when uncertainty is high. These findings are the same as that for

the flexible monopolist by Wen et al. (2017). The strategic interactions between the leader and the flexible

follower do not influence these results. Moreover, there is “free riding”on the follower’s flexibility since the

volume flexibility affects market prices, and thus enlarges the profitability of the leader. So, the flexible

follower cannot fully capture the innovative benefits from the technology advancement. However, this does

not diminish the follower’s incentive to invest in the volume flexibility technology, because it still generates

a larger value for the follower regardless the leader chooses and entry deterrence or entry accommodation

strategy.

The duopoly model with volume flexibility first contributes to the research stream of monopolistic volume

flexibility investment combining investment timing and capacity determination, by Dangl (1999), Hagspiel

et al. (2016), and Wen et al. (2017). The general result is that flexibility leads to an increase in the installed

capacity and project value. The influence of flexibility on investment timing depends on two effects, with

one effect that higher value motivates a flexible firm to invest earlier and the other effect that larger installed

capacity motivates it to invest later. This article shows that flexibility affects the flexible follower in a similar

way as it affects the flexible monopolist. Its influence on the leader depends on the leader’s competition

strategy, and the dedicated leader also gets a higher value when implementing the accommodation strategy.

In this article, firms not only make decisions about capacities, but also about investment timings in

the continuous time setting. It contributes to the literature of capacity choices with volume flexibility in

a competitive framework using discrete time models. Gabszewicz and Poddar (1997) study a two-stage

2Overinvesting refers to that a firm invests more capacity as the first investor than when investing simultaneously with the

other firm at a predetermined point of time.
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model with capacity choice in the first stage and capacity constrained quantity competition in the second

stage, and show that the firms choose the certainty-equivalent Cournot capacity. If the second stage is a

capacity-constrained price competition instead of quantity competition, Reynolds and Wilson (2000) find

that symmetric equilibrium does not exist in pure strategies for capacity choices if demand is sufficient

volatile. Besanko and Doraszelski (2004) consider two types of competition: quantity competition and price

competition in each period of an infinite time horizon. Quantity competition results in an industry structure

of equal-sized firms, while price competition results in unequal-sized firms.

Besides the economics literature, volume flexibility is also studied in operations management. For example,

Anupindi and Jiang (2008) consider the volume flexibility in a three-stage framework: capacity choice in the

first stage, production decisions in the second stage and pricing decisions in the third stage. Flexible firms

can make production decisions when demand is observed. Under competition, they find that firms choose to

be inflexible for multiplicative demand shocks, while flexible for additive demand shocks. In a two-product

setting with demand uncertainty for both products, Goyal and Netessine (2011) introduce volume flexibility

and find that volume flexibility combats aggregate demand uncertainty for the two products. Current

research on volume flexibility focuses more on the capacity choices and adopts discrete time models in the

analysis. For every dynamic period, the firm needs to decide whether and how much to invest conditional on

the available information at the beginning of the period, see for instance Besanko and Doraszelski (2004) and

Besanko et al. (2010). In these two papers, the purpose is to analyze the firm sizes in market equilibria. By

using a continuous time model, this article analyzes the decision on both investment timing and investment

capacity. More specifically, this research analyzes the influence of volume flexibility on the timing of market

entry. In a competitive setting, the first investor has a larger incentive to accommodate than to deter the

entry of the second investor, given the second investor has volume flexibility. This is due to the fact that

volume flexibility combats demand uncertainty for both investors in the market, similarly as that proposed

by Goyal and Netessine (2011) for two products.

The duopoly model with flexibility in this research also extends the literature on entry deterrence and

entry accommodation investment. According to Lieberman and Montgomery (1988), the first investor’s

investment serves as a commitment to maintain a high level of production output, which is a price cut threat

to decrease entrant’s profit. Spence (1977) studies preemptive commitment by constructing static investment

models and show that entry can be deterred by installing excess capacity to make a new entrant unprofitable.

Maskin (1999) introduces uncertainty and obtains the same conclusion. Dixit (1980) proves that in a static

setting, entry deterrence is largely ineffective if the leader cannot commit to producing at full capacity,

because the leader facing irrevocable entry finds it optimal to make an accommodating output reduction. I

prove that in a stochastic dynamic setting, deterring the entry of a flexible follower does not necessarily make

the leader better off. Using discrete time models, Reynolds (1987) shows that the equilibrium capacity choice

is a decreasing function of the current rival capacity. This article shows that in a continuous time setting,

the second investor’s optimal capacity decreases with the first investor’s capacity. Besanko et al. (2010)
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argue that preemption is more likely when the products have low heterogeneity and there is uncertainty

about the entrant’s exact cost/benefit of capacity addition/withdrawal. In this article, the products are

homogeneous, time is continuous, and there is uncertainty about the market demand. My results show that

the accommodation is more likely due to the benefits from the influence of volume flexibility on market prices.

The asymmetric firm roles of a dedicated leader and a flexible follower, are direct extensions of symmetric

firm roles of dedicated leader and follower by Huisman and Kort (2015). In this paper, the influence of

volume flexibility is addressed and the entry accommodation is more likely to be implemented by the leader.

For the given incumbent’s decisions, Yang and Zhou (2007) show that it is impossible for the incumbent with

excess capacity to deter the potential entrant who holds the option to entry forever. This result is supported

also by Huisman and Kort (2015), who consider both the deterrence and the accommodation of the potential

entrant. In this article, by comparing situation of volume flexibility with situation of no volume flexibility, I

focus on the possibility to implement entry deterrence and accommodation, and show that the first investor

has less incentive to deter the entry of the second investor if the second investor has volume flexibility.

This article is organized as follows. Section 2 describes the duopoly investment problem. Section 3 analyzes

the flexible follower’s optimal investment decision. The dedicated leader’s optimal investment decision is in

Section 4. In Section 5, the influence of flexibility on the leader and the follower is analyzed. Section 6

concludes.

2 Model Setup

Consider a framework where two firms can invest in production capacity to enter a market or serve a

particular demand. Of the two firms, the follower (second investor) has volume flexibility technology and

adjust output levels up to the installed capacity after the investment. The leader (first investor) has no such

technology and can only produce at full capacity level. Denote by KD ≥ 0 and KF ≥ 0 the capacity of the

dedicated leader and the flexible follower, respectively. For both firms, the unit cost for capacity investment

is δ > 0 and the unit cost for production is c > 0. The price at time t ≥ 0 is p (t), given by the inverse

demand function

p (t) = X(t) [1− γ (qD (t) + qF (t))] ,

where γ > 0 is a constant, qD (t), equal to KD, and qF (t), no larger than KF , denote the production output

for the dedicated and flexible firm at time t, respectively, and the uncertainty in demand, {X(t)|t ≥ 0},
follows a geometric Brownian Motion (GBM) process

dX(t) = αX(t)dt+ σX(t)dWt,

in which X(0) > 0, α is the trend parameter, σ > 0 is the volatility parameter, and dWt is the increment of

a Wiener process. The inverse linear demand function has among others been adopted by Pindyck (1988)

and Huisman and Kort (2015). Both firms are risk neutral and have a discount rate of r, which is assumed
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to be larger than α, the trend of GBM X(t). This is to prevent that it is optimal for the firms to always

delay the investment (see Dixit and Pindyck, 1994). From now on I drop the argument of time whenever

there can be no misunderstanding.

3 Flexible Follower’s Optimal Investment Decision

The leader is assumed to be already in the market when the flexible follower makes investment decisions.

Given X(t) = X and the leader’s investment capacity KD, denote πF (X,KD,KF ) as the profit for the

flexible follower after investing in capacity KF . The follower is flexible and can adjust its output quantity

between 0 and the invested capacity KF . The output maximizes the follower’s profit flow, which is equal to

πF (X,KD,KF ) = max
0≤qF≤KF

{X [1− γ (KD + qF )]− c} qF .

Given 0 ≤ KD < 1/γ, the optimal output level for the follower is

qF (X,KD,KF ) =


0 0 < X < c

1−γKD ,

X−c
2γX − KD

2 X ≥ c
1−γKD and KF >

X−c
2γX − KD

2 ,

KF X ≥ c
1−γKD and KF ≤ X−c

2γX − KD
2 .

(1)

The corresponding profit flow is given by

πF (X,KD,KF ) =


0 0 < X < c

1−γKD ,

(X−c−γXKD)2

4γX X ≥ c
1−γKD and KF >

X−c
2γX − KD

2 ,

(X − c− γXKD)KF −K2
F γX X ≥ c

1−γKD and KF ≤ X−c
2γX − KD

2 .

(2)

The flexible follower’s investment decision is solved as an optimal stopping problem and can be formalized

as

sup
T≥0,KF≥0

E

[∫ ∞
T

πF (X(t),KD,KF ) exp(−rt)dt− δKF exp(−rT )

∣∣∣∣X(0)

]
,

conditional on the available information at time 0, where T is the time when the flexible follower invests,

and KF is the acquired capacity at time T . Denote by VF (X,KD,KF ) the value for the flexible follower,

and it satisfies the Bellman equation

rVF = πF +
1

dt
E[dVF ]. (3)

Applying Ito’s Lemma, substituting and rewriting lead to the following differential equation (see also, e.g.,

Dixit and Pindyck (1994))

1

2
σ2X2 ∂

2VF (X,KD,KF )

∂X2
+ αX

∂VF (X,KD,KF )

∂X
− rVF (X,KD,KF ) + πF (X,KD,KF ) = 0. (4)
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Substituting (2) into (4) and employing value matching and smooth pasting for X = c/(1 − γKD) and

X = c/(1− γKD − 2γKF ) yield the follower’s value after investment as given by

VF (X,KD,KF ) =



L (KD,KF )Xβ1 0 < X < c
1−γKD ,

M1 (KD,KF )Xβ1 +M2 (KD)Xβ2

+ (1−γKD)2X
4γ(r−α) − c(1−γKD)

2γr + c2

4γX(r+α−σ2) X ≥ c
1−γKD and KF >

X−c
2γX − KD

2 ,

N (KD,KF )Xβ2 − cKF
r + XKF (1−γKD−γKF )

r−α X ≥ c
1−γKD and KF ≤ X−c

2γX − KD
2 ,

(5)

in which

β1 =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
> 1, (6)

β2 =
1

2
− α

σ2
−
√(

1

2
− α

σ2

)2

+
2r

σ2
< −1. (7)

The expressions of L(KD,KF ), M1(KD,KF ), M2(KD), N(KD,KF ) can be found in Appendix A.1. If

KD = 0, the model reduces to the monopoly case.

The follower does not produce right after the investment for 0 < X < c/(1−γKD). Thus, L(KD,KF )Xβ1

is positive and represents the option value to start producing in the future as soon as X reaches c/(1−γKD).

M1(KD,KF )Xβ1 is negative and corrects for the fact that if X reaches c/(1− γKD − 2γKF ), the follower’s

output will be constrained by the installed capacity level. M2(KD)Xβ2 has both a negative and a positive

effect. The negative effect corrects for the positive quadratic form of cash flows even when X drops below

c/(1 − γKD). The positive effect comes from the option that the follower would temporarily suspend

production for a too small market demand. When σ2 < r + α, the negative effect dominates the positive

effect, and if σ2 > r+α the positive effect dominates3. N(KD,KF )Xβ2 is positive and describes the option

value that if demand decreases, i.e., X drops below c/(1− γKD − 2γKD), the follower produces below full

capacity. The optimal investment decision is found in two steps. First, given KD and the level of X, the

optimal value of KF is found by maximizing VF (X,KD,KF )− δKF , which yields KF (X,KD). Second, the

optimal investment threshold X∗F (KD) for the follower can be derived. The two steps are summarized in the

following proposition, where

F (β) =
2β

r
− β − 1

r − α −
β + 1

r + α− σ2
. (8)

and σ̄ is such that

σ̄2 =
−2
(
Λ− α2

)
(2r − α) + 4

√
rΛ (Λ− α2) (r − α)

Λ− (2r − α)
2 , (9)

3Compared to Hagspiel et al. (2016), the dominance of positive and negative effect can be determined in this paper. This

is probably due to the fact that I adopt a multiplicative inverse demand structure, and they study an additive inverse demand

function.

7



with Λ =
(

2δr(r−α)−αc
c

)2
. σ̄ > 0 is a value of the drift parameter that determines if the follower produces

below or up to capacity right after investment. σ̄ is only defined for r − c/δ < α ≤ δr2/(c+ δr).

Proposition 1 Given that the dedicated firm has already invested capacity KD ∈ [0, 1/γ), there are two

possibilities for the follower’s investment decisions:

1. Suppose α > δr2/(c+ δr), or both r − c/δ < α ≤ δr2/(c+ δr) and σ > σ̄. The follower produces

below capacity right after investment. For any X ≥ c/(1 − γKD), the optimal capacity KF (X,KD)

that maximizes V (X,KD,KF )− δKF is given by

KF (X,KD) =
1

2γ

(
1− γKD −

c

X

[
2δ (β1 − β2)

c (1 + β1)F (β2)

] 1
β1

)
, (10)

and the optimal investment threshold X∗F (KD) satisfies

c(1− γKD)F (β1)

4γβ1

(
X(1− γKD)

c

)β2

+
1

4γ

[
β1 − 1

β1

X(1− γKD)2

r − α − 2c(1− γKD)

r

+
β1 + 1

β1

c2

X(r + α− σ2)

]
− δKF (X,KD) = 0. (11)

If X(0) < X∗F (KD), then the optimal capacity of the follower is K∗F (KD) = KF (X∗F (KD),KD). If

X(0) ≥ X∗F (KD), then the follower invests at t = 0 with capacity K∗F (KD) = KF (X(0),KD).

2. Suppose α ≤ r− c/δ, or both r− c/δ < α ≤ δr2/(c+ δr) and σ ≤ σ̄. Then the follower produces up to

capacity right after investment. For any X ≥ c/(1− γKD), the optimal capacity KF (X,KD) satisfies

c (1 + β2)F (β1)

2 (β1 − β2)

(
X(1− 2γKF − γKD)

c

)β2

+
X(1− 2γKF − γKD)

r − α − c

r
− δ = 0, (12)

and the optimal investment threshold X∗F (KD) satisfies

cF (β1)

4γβ1

(
X

c

)β2 (
(1− γKD)1+β2 − (1− 2γKF − γKD)1+β2

)
+

(β1 − 1)X

β1

KF − γKDKF − γK2
F

r − α − cKF

r
− δKF = 0, (13)

with KF = KF (X,KD). If X(0) < X∗F (KD), then the optimal capacity of the follower is K∗F (KD) =

KF (X∗F (KD),KD). If X(0) ≥ X∗F (KD), then the follower invests at t = 0 with capacity K∗F (KD) =

KF (X(0),KD).

From Proposition 1, the influence of the leader’s investment capacity on the follower’s investment decision

is concluded in Corollary 1. Their proof can be found in Appendix A.2 and A.3.

Corollary 1 The dedicated leader’s capacity level KD influences the follower’s investment decision such

that if the leader invests more, then the follower invests later and invests less.
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This result is intuitive because the leader always produces up to capacity after investment, and the more

the leader invests, the smaller market share is left for the flexible follower. When deciding on the capacity,

the follower takes the future market demand into consideration. Thus, a smaller market share decreases the

follower’s investment capacity. Moreover, given the current market demand level, the market price decreases

if the leader invests more. This would lower the follower’s potential profits and delay the follower’s entry

because the follower prefers to wait for a higher market price.

4 Dedicated Leader’s Optimal Investment Decision

The leader also takes the follower’s decisions into consideration when deciding on the market entry. Suppose

the leader invests at t with capacity size KD and X(t) = X. Corollary 1 shows that the leader’s capacity

influences the follower investment timing. Assume there exists a capacity size for the leader, K̂D(X), such

that the follower’s optimal threshold satisfies X∗F (K̂D) = X, and K̂D(X) can be derived from (11) as to

satisfy

c(1− γKD)F (β1)

2β1

(
X(1− γKD)

c

)β2

+
β1 − 1

2β1

X(1− γKD)2

r − α − c(1− γKD)

r
+
β1 + 1

2β1

c2

X(r + α− σ2)

−δ(1− γKD) +
cδ

X

(
2δ(β1 − β2)

c(1 + β1)F (β2)

) 1
β1

= 0. (14)

From Corollary 1 it can be concluded that if KD ≤ K̂D(X), then X ≥ X∗F (KD), implying that the follower

invests at the same time with the leader. If KD > K̂D(X), then X < X∗F (KD), implying that the follower

invests later than the leader. The former corresponds to the leader’s entry accommodation strategy and

the latter corresponds to the entry deterrence strategy, as described by Huisman and Kort (2015). In the

following analysis, the leader’s entry accommodation and entry deterrence strategy are characterized as the

local optimum for the leader’s value maximization problem given by

sup
KD≥0

E

[ T∫
0

(KD(1− γKD)X(t)− cKD) e−rtdt

+

∞∫
T

(KD(1− γKD − γqF (X,KD,KF ))X(t)− cKD) e−rtdt− δKD

∣∣∣∣∣∣X(0) = X

]
,

where T is the moment that the flexible follower invests. Note that T > 0 under the entry deterrence strategy

and T = 0 under the entry accommodation strategy.

The leader’s investment value is generated by the leader’s profit flow. Before the follower’s entry, the

leader is the only producer in the market. After the follower’s entry, both firms are active in the market.

The follower might not produce, produce below, and produces up to capacity after investment. Thus there

are three cases for the leader’s profit flow. For the given GBM level X and the leader’s capacity size KD,
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the leader’s profit flow πD(X,KD) is given by

πD(X,KD) =


KD(1− γKD)X − cKD if 0 < X < c

1−γKD ,

KD
2 (X − c− γXKD) if X ≥ c

1−γKD and K∗F (KD) > X−c
2γX − KD

2 ,

XKD[1− γ(KD +K∗F (KD))]− cKD if X ≥ c
1−γKD and K∗F (KD) ≤ X−c

2γX − KD
2 .

Applying Ito’s Lemma, substituting and rewriting leads to the following differential equation (see, e.g.,

Dixit and Pindyck (1994))

1

2
σ2X2 ∂

2VD(X,KD)

∂X2
+ αX

∂VD(X,KD)

∂X
− rVD(X,KD) + πD(X,KD) = 0.

Substituting πD into this differential equation and employing value matching and smooth pasting at X =

c/(1− γKD) and X = c/(1− γKD − 2γK∗F (KD)) give the value of the leader after the follower’s investment

as

VD(X,KD) =



L(KD)Xβ1 + KD(1−γKD)
r−α X − cKD

r if 0 ≤ X < c
1−γKD ,

M1(KD)Xβ1 +M2(KD)Xβ2

+XKD(1−γKD)
2(r−α) − cKD

2r if X ≥ c
1−γKD and K∗F (KD) > X−c

2γX − KD
2 ,

N (KD)Xβ2 − cKD
r

+
KD(1−γKD−γK∗

F (KD))
r−α X if X ≥ c

1−γKD and K∗F (KD) ≤ X−c
2γX − KD

2 .

(15)

The derivation and expressions of L(KD), M1(KD), M2(KD), N (KD), and their signs can be found in

Appendix A.4. For 0 ≤ X < c/(1− γKD), the demand is so low that the follower’s production is tem-

porarily suspended. However, the dedicated leader still produces at full capacity. In the leader’s value

function, L(KD)Xβ1 measures the decrease in the leader’s value when the follower resumes production

in the future. This happens as soon as X becomes larger than c/(1− γKD). For X ≥ c/(1− γKD)

and K∗F (KD) > (X − c) / (2γX) − KD/2, i.e., c/(1− γKD) ≤ X < c/ (1− γKD − 2γK∗F (KD)), the fol-

lower produces below capacity right after investment. M1(KD)Xβ1 corrects for the fact that if X reaches

c/ (1− γKD − 2γK∗F (KD)), then the production of the follower is constrained by the installed capacity, hence

the value of the leader increases. The term M2(KD)Xβ2 denotes the decrease in the leader’s option value,

due to the fact that when X falls below c/ (1− γKD), the market demand becomes so small that the fol-

lower suspends production, whereas the leader still produces at full capacity, which results in negative profit.

For X ≥ c/ (1− γKD) and K∗F (KD) ≤ (X − c) / (2γX) −KD/2, i.e., X ≥ c/ (1− γKD − 2γK∗F (KD)), the

follower produces up to capacity right after investment. The term N (KD)Xβ2 corrects for the fact that

when X drops below c/ (1− γKD − 2γK∗F (KD)), the follower produces below capacity, and the value of the

leader would increase.

The leader’s strategies are analyzed for two cases, i.e., the follower produces below and up to capacity

right after investment. This is because according to Wen et al. (2017), the flexible firm always produces

right after investment. Before the follower invests, the leader’s value function consists of two parts with

10



one part from the monopolistic profit flow, and the other part correcting for the fact that the leader loses

its monopoly privilege when the follower invests. Given that the leader invests at X, let the leader’s value

before the follower’s entry be

VD(X,KD) = B(KD)Xβ1 +
KD(1− γKD)

r − α X − cKD

r
,

where B(KD) has different expressions and will be derived for the two cases4. The leader’s value function

after the follower’s investment is shown in (15). Then in every case both the entry deterrence and the entry

accommodation strategy are analyzed.

• The flexible follower produces below capacity right after investment when α > δr2/(c+ δr), or both

r − c/δ < α ≤ δr2/(c+ δr) and σ > σ̄.

Given that the leader invests at X, the value function before and after the follower’s entry is as follows

VD(X,KD) =

 B1(KD)Xβ1 + KD(1−γKD)
r−α X − cKD

r X < X∗F (KD),

M1(KD)Xβ1 +M2(KD)Xβ2 + KD(1−γKD)
2(r−α) X − cKD

2r X ≥ X∗F (KD),
(16)

with

B1(KD) =M1(KD) +M2(KD)X∗β2−β1

F (KD)− KD(1− γKD)

2(r − α)
X∗1−β1

F (KD) +
cKD

2r
X∗−β1

F (KD), (17)

according to value matching condition at X∗F (KD), which is defined by (11). Intuitively, B1(KD) is negative

(see Appendix A.5). It corrects for the fact that when X(t) reaches X∗F (KD), the follower enters the market,

putting an end to the leader’s monopolistic privilege. The leader’s entry deterrence and accommodation

strategies, when the follower produces below capacity right after investment, are described in the following

proposition (see also Appendix A.5 for the proof).

Proposition 2 Suppose α > δr2/(c+ δr), or both r − c/δ < α ≤ δr2/(c+ δr) and σ > σ̄.

(a) Entry Deterrence Strategy

The entry deterrence strategy will be considered whenever X ∈ (Xdet
1 , Xdet

2 ), where Xdet
1 satisfies(

Xdet

X∗F (0)

)β1
[
− δ

(1 + β1)F (β2)

(
β2 − 1

r − α −
β2
r

)
+
c1−β2X∗β2

F (0)

2(β1 − β2))

(
β1 − 1

r − α −
β1
r

)
− X∗F (0)

2(r − α)
+

c

2r

]

+
Xdet

r − α −
c

r
− δ = 0, (18)

4B(KD) and L(KD) are different. According to Dixit and Pindyck (1994), the fundamental component in the leader’s value

function, i.e.,
KD(1−γKD)

r
X − KD

r
, is generated by the profit flows. L(KD)Xβ1 describes the deviation of VD(X,KD) from

the fundamental component due to the possibility that X will move across the boundary c
1−γKD

. B(KD)Xβ1 describes the

deviation of VD(X,KD) from the fundamental component due to the possibility that X will move across the follower’s optimal

investment threshold X∗
F .

11



where X∗F (0) can be derived from (10) and (11) given that KD = 0, and Xdet
2 together with Kdet

D (Xdet
2 )

satisfy (14) and

1− γKD − β1γKD

KD(1− γKD)
B1(KD)(Xdet)β1 +

1− 2γKD

r − α Xdet − c

r
− δ = 0. (19)

The optimal investment threshold Xdet
D and investment capacity Kdet

D are

Xdet
D =

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
,

Kdet
D ≡ Kdet

D (Xdet
D ) =

1

(β1 + 1)γ
,

when X < Xdet
D and Xdet

D ∈ [Xdet
1 , Xdet

2 ]. If Xdet
D ≤ X ≤ Xdet

2 , in order to implement the entry

deterrence strategy, the leader invests immediately at X with capacity Kdet
D (X) that satisfies (19). Then

the value of the entry deterrence strategy is

V detD (X) = B1(Kdet
D (X))Xβ1 +

Kdet
D (X)

(
1− γKdet

D (X)
)

r − α X − cKdet
D (X)

r
. (20)

(b) Entry Accommodation Strategy

The entry accommodation strategy will be considered if X ≥ Xacc
1 , where Xacc

1 and the corresponding

Kacc
D (Xacc

1 ) satisfy (14) and

1− γKD − β1γKD

KD(1− γKD)
M1(KD)(Xacc)β1 +

1− γKD − β2γKD

KD(1− γKD)
M2(KD)(Xacc)β2

+
1− 2γKD

2(r − α)
Xacc − c

2r
− δ = 0. (21)

The optimal investment threshold Xacc
D satisfies

c

2β1

(
β1 − 1

r − α −
β1
r

)(
β1X

acc

c(β1 + 1)

)β2

+
(β1 − 1)Xacc

2(r − α)(β1 + 1)
− c

2r
− δ = 0, (22)

when X < Xacc
D and Xacc

D ≥ Xacc
1 . The optimal investment capacity for the entry accommodation

strategy is

Kacc
D ≡ Kacc

D (Xacc
D ) =

1

(β1 + 1)γ
.

If X ≥ Xacc
D , in order to implement the entry accommodation strategy, the leader invests immediately at

X with capacity Kacc
D (X) that satisfies (21). The value of the entry accommodation strategy is

V accD (X) =M1(Kacc
D (X))Xβ1 +M2(Kacc

D (X))Xβ2 +
Kacc
D (X) (1− γKacc

D (X))

2(r − α)
X − cKacc

D (X)

2r
. (23)

• The flexible follower produces up to capacity right after the investment when α ≤ r − c/δ, or both

r − c/δ < α ≤ δr2/(c+ δr) and σ ≤ σ̄.

Similar to where the follower produces below capacity right after investment, given that the leader invests

at X, the value function before and after the follower’s entry can be written as

VD(X,KD) =

 B2(KD)Xβ1 + KD(1−γKD)
r−α X − cKD

r X < X∗F (KD),

N (KD)Xβ2 +
KD(1−γKD−γK∗

F (KD))
r−α X − cKD

r X ≥ X∗F (KD),
(24)

12



with

B2(KD) = N (KD)X∗β2−β1

F (KD)− γKDK
∗
F (KD)

r − α X∗1−β1

F (KD), (25)

according to the value matching condition at the flexible follower’s investment threshold X∗F (KD), which is

defined by (13).

Similar as B1(KD), B2(KD) corrects for the fact that when the follower enters the market, i.e. X reaches

X∗F (KD), it would put an end to the leader’s monopoly privilege. Thus, B2(KD) is negative, shown in

Appendix A.6. Because X∗F (KD) increases with KD according to Corollary 1, it is possible for the ded-

icated leader to delay the entry of flexible follower through the entry deterrence strategy by investing

Kdet
D (X) > K̂D(X). Otherwise, the two firms invest at the same time, implying the leader applies the

entry accommodation strategy by investing Kacc
D ≤ K̂D(X). This critical size for the leader’s capacity,

K̂D(X), can be derived from (13) with the follower’s optimal investment capacity K∗F (X) ≡ K∗F (KD(X))

satisfying (12).

The leader’s investment decision under entry deterrence and accommodation strategies, when the follower

produces up to capacity right after investment, are summarized in the following proposition with the proof

in Appendix A.6.

Proposition 3 Suppose α ≤ r − c/δ, or both r − c/δ < α ≤ δr2/(c+ δr) and σ ≤ σ̄.

(a) Entry Deterrence Strategy

The entry deterrence strategy is possible if X ∈
(
Xdet

1 , Xdet
2

)
. Xdet

1 satisfies

c

2(β1 − β2)

(
Xdet

X∗F (0)

)β1
((

β1 − 1

r − α −
β1
r

)[(
X∗F (0)

c

)β2

−
(
X∗F (0) (1− 2γK∗F (0))

c

)β2
]

− β1 − β2
r − α

2γX∗F (0)K∗F (0)

c

)
+
Xdet

r − α −
c

r
− δ = 0, (26)

where K∗F (0) and X∗F (0) can be derived from (12) and (13) given that KD = 0. Xdet
2 , Kdet

D (Xdet
2 ) and

K∗F (Xdet
2 ) satisfy (12), (13), and

1− γKD − β1γKD

KD(1− γKD)
B2(KD)(Xdet)β1 +

1− 2γKD

r − α Xdet − c

r
− δ = 0. (27)

The optimal investment threshold Xdet
D and the corresponding optimal capacity Kdet

D are equal to

Xdet
D =

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
,

Kdet
D ≡ Kdet

D (Xdet
D ) =

1

(β1 + 1)γ
,

if X < Xdet
D and Xdet

D ∈ [Xdet
1 , Xdet

2 ]. If Xdet
D ≤ X < Xdet

2 , in order to implement the entry deterrence

strategy, the leader invests immediately at X with capacity Kdet
D (X) that satisfies (27). The value of the

entry deterrence strategy is

V detD (X) = B2(Kdet
D (X))Xβ1 +

Kdet
D (X)

(
1− γKdet

D (X)
)

r − α X − cKdet
D (X)

r
. (28)
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(b) Entry Accommodation Strategy

The entry accommodation strategy is possible if X > Xacc
1 . Xacc

1 , Kacc
D (Xacc

1 ), and K∗F (Xacc
1 ) satisfy

(12), (13), and

(1− γKD − β2γKD)(Xacc)β2

KD(1− γKD)
N (KD) +

Xacc(1− γKD − γK∗F (KD))(1− 2γKD)

(r − α)(1− γKD)
− c

r
− δ = 0. (29)

The optimal investment threshold Xacc
D satisfies

c(Xacc)β2

2β1

(
β1 − 1

r − α −
β1
r

)((
1− γKacc

D

c

)β2

−
(

1− γKacc
D − 2γK∗F (Kacc

D )

c

)β2
)

+
(β1 − 1)Xacc

β1(r − α)
(1− γKacc

D − γK∗F (Kacc
D ))− c

r
− δ = 0, (30)

if X < Xacc
D and Xacc

D ≥ Xacc
1 . The optimal investment capacity for the entry accommodation strategy

is

Kacc
D ≡ Kacc

D (Xacc
D ) =

1

(β1 + 1)γ
.

If X ≥ Xacc
D , in order to implement the entry accommodation strategy, the leader invests immediately at

X and the corresponding capacity Kacc
D (X) satisfies (29). The value of the entry accommodation strategy

is

V accD (X) = N (Kacc
D (X))Xβ2 +

Kacc
D (X) (1− γKD − γK∗F (Kacc

D (X)))

r − α X − cKacc
D (X)

r
. (31)

A numerical example is provided to illustrate the possibility for the entry deterrence and accommoda-

tion strategies in Figure 1 and 2. Note that in this example the follower produces below capacity right

after investment. Similar analysis can be conducted for the follower producing up to capacity right after

investment.
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16

Xdet
1

Xacc
1 Xdet
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K
D

K̂D(X)

Kdet
D (X)

Kacc
D (X)

Figure 1: Illustration of K̂D(X), Kdet
D (X), and Kacc

D (X) when the flexible follower produces below capacity

right after investment. Parameter values are r = 0.1, α = 0.03, σ = 0.2, γ = 0.05, c = 2, δ = 10.
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Figure 1 illustrates the capacity levels K̂D, Kdet
D , and Kacc

D as functions of X. For the given parameter

values, the leader implements the deterrence strategy for X ∈ [Xdet
1 , Xdet

2 ], and the accommodation strategy

for X ≥ Xacc
1 . When both strategies are implementable, the leader chooses the strategy that generates

higher values. More specifically, for the given parameter values in Figure 1, Xdet
1 = 2.42, Xdet

2 = 11.73. The

optimal threshold for the entry deterrence strategy is Xdet
D = 6.30. Suppose the current level of geometric

Brownian motion is X. If X < 6.30, to delay the entry of the flexible follower, the leader waits until X

reaches 6.30. For any X between 6.30 and 11.73, the leader needs to invest immediately to delay the flexible

follower. For X > 11.73, the entry deterrence strategy is not possible because the market demand is large

enough for both firms to be active. Moreover, Xacc
D = 8.50 < Xacc

1 = 9.23, which makes Xacc
D have no

meaning for the leader in this numerical example. This is because X has to reach Xacc
1 to make the follower

invest at the same time as the leader.
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Xdet
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V
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V det
D (X)

V acc
D (X)

Figure 2: Illustration of V detD (X) and V accD (X) when the flexible follower produces below capacity right after

investment. Parameter values are r = 0.1, α = 0.03, σ = 0.2, γ = 0.05, c = 2, δ = 10.

Figure 2 shows the value of the entry deterrence strategy V detD and accommodation strategy V accD as

functions of X, for the case that the flexible follower produces below capacity right after investment. Note

that V detD = V accD at X = X̂. For Xdet
1 < X < X̂, the deterrence strategy is chosen and the leader invests

at Xdet
D = 6.30 with capacity KD(Xdet

D ) = 6.67. For X ≥ X̂, the leader implements the accommodation

strategy. Given that X̂ > Xacc
1 , the leader invests immediately with capacity level Kacc

D (X) if X ≥ X̂.

It can be concluded from Proposition 2 and 3 that the accommodation strategy is not possible if X < Xacc
1 ,

and the deterrence strategy is not possible if X > Xdet
2 . When Xacc

1 < X < Xdet
2 , the strategy that gives

higher value will be chosen. Huisman and Kort (2015) have shown analytically that Xacc
1 < Xdet

2 when there

is no volume flexibility. Figure 3 checks numerically whether this still holds for a flexible follower. Departing

from the default parameter values α = 0.03, σ = 0.2, r = 0.1, c = 2, δ = 10, and γ = 0.05, when changing σ,

α, r, c, δ and γ, Xdet
2 is always larger than Xacc

1 . Thus, it can be assumed that Xdet
2 > Xacc

1 also holds for a
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flexible follower5. However, different from Huisman and Kort (2015), where Xacc
D < Xacc

1 always holds, the

numerical analysis in Figure 3 shows that for significantly small α or δ, Xacc
D > Xacc

1 . Note that Xacc
D implies

that the market demand should be large enough to accommodate both firms. When α is small or negative,

and the follower produces up to full capacity right after investment, a larger market demand is required to

accommodate two firms. This leads to Xacc
D > Xacc

1 . When δ is small, i.e., investing is less costly, both firms

are encouraged to install larger capacities and a larger Xacc
D results. The above analysis is summarized in

the following proposition.
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Figure 3: Illustration of Xacc
1 , Xdet

2 , and Xacc
D . Default parameter values are α = 0.03, σ = 0.2, r = 0.1,

c = 2, δ = 10, γ = 0.05.

Proposition 4 Denote X̂ as

X̂ = min{X|Xacc
1 < X < Xdet

2 and V accD (X) = V detD (X)}.

5Given that Xdet
2 > Xacc

1 , there is no boundary solution when analyzing the entry deterrence and entry accommodation

strategies, which are two local optimum for the leader’s investment problem.
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Let X(t) = X, the optimal investment capacity for the leader is

K∗D(X) =



Kdet
D (Xdet

D ) if 0 ≤ X < Xdet
D ,

Kdet
D (X) if Xdet

D ≤ X < X̂,

Kacc
D (Xacc

D ) or Kdet
D (X̂) if X̂ ≤ X < Xacc

D ,

Kacc
D (X) if X ≥ max{X̂,Xacc

D }.

(32)

The optimal investment threshold for the leader is

X∗D =



Xdet
D if 0 ≤ X < Xdet

D ,

X if Xdet
D ≤ X < X̂,

Xacc
D or X̂ if X̂ ≤ X < Xacc

D ,

X if X ≥ max{X̂,Xacc
D }.

(33)

The leader’s and the follower’s optimal investment capacities, K∗D(X) and K∗F (X), are demonstrated in

Figure 4 when the follower produces below capacity right after investment. For given parameter values

r = 0.1, α = 0.03, σ = 0.2, γ = 0.05, c = 2, and δ = 0.5, then Xdet
D = 4.3050 and X̂ = 4.4779. If X < Xdet

D ,

the leader waits until X reaches Xdet
D to implement the entry deterrence strategy. If Xdet

D ≤ X < X̂,

the entry deterrence strategy is implemented immediately at X. When X ≥ X̂, the leader chooses entry

accommodation strategy because it yields higher value. Different from Huisman and Kort (2015) that

Xacc
D < X̂, we have in this numerical example thatXacc

1 = 4.4072 < X̂ < Xacc
D = 4.8238. For X̂ ≤ X < Xacc

D ,

the leader waits until X reaches Xacc
D , i.e., the leader is holding an option to invest in the accommodation

strategy. This is shown in Figure 4 as the void area for the interval X̂ ≤ X < Xacc
D .
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Figure 4: Illustration of K∗D(X) and K∗F (X) when the flexible follower produces below capacity right after

investment. Parameter values are r = 0.1, α = 0.03, σ = 0.2, γ = 0.05, c = 2, δ = 0.5.
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Figure 5 demonstrates the values of the leader and the follower as functions of X when the follower

produces below capacity right after investment. If X < Xdet
D , the leader waits to invest with the entry

deterrence strategy capacity. The follower is also waiting to invest, and expects the leader to invest at Xdet
D

with capacity Kdet
D (Xdet

D ). If Xdet
D ≤ X < X̂, the leader invests immediately at level X with deterrence

capacity Kdet
D (X). When X̂ ≤ X < Xacc

D , the leader implements entry accommodation strategy and waits

to invest at Xacc
D with capacity Kacc

D (Xacc
D ). The follower invests at the same time but with capacity

K∗F (Kacc
D (Xacc

D )). Because of the switch from the entry deterrence to accommodation, the leader’s value

function has a kink and the follower’s value function is shown to jump at X̂. When X ≥ Xacc
D , the leader

invests immediately with the entry accommodation strategy capacity Kacc
D (X). The follower also invests at

the same time as the leader but with capacity K∗F (Kacc
D (X)).
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Figure 5: Illustration of V ∗D(X) and V ∗F (X) when the flexible follower produces below capacity right after

investment. Parameter values are α = 0.03, σ = 0.2, r = 0.1, c = 2, δ = 10, γ = 0.05.

5 Influence of Flexibility

In order to analyze the influence of the follower’s volume flexibility, the optimal investment decisions without

flexibility are derived in Appendix B. By comparing the leader’s investment decisions with a flexible and

with a dedicated follower, I get the following proposition.

Proposition 5 Volume flexibility does not influence the leader’s investment decisions under entry deterrence

strategy. Moreover, it also does not influence the leader’s optimal capacity under entry accommodation

strategy.

In this section, numerical analysis is carried out to investigate how flexibility influences the leader’s and the

follower’s investment decisions. More specifically, I consider the possibility of each strategy by comparing

Xdet
1 , Xdet

2 , and X̂, with and without the follower’s volume flexibility. The analysis of X̂ is because that

the leader only switches to accommodation strategy when X ≥ X̂. I analyze how flexibility influences the
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Figure 6: Illustration of Xacc
D , X̂, and Kacc

D (X̂) with and without flexibility. Parameter values are r = 0.1,

α = 0.03, γ = 0.05, c = 2, δ = 10.

leader’s optimal capacity and option values at X̂. Moreover, this section also considers the follower’s optimal

investment decisions, with and without volume flexibility, under the leader’s deterrence and accommodation

strategies. The influence of flexibility on the follower’s values at the moment of investment is also analyzed.

5.1 Flexibility Influences Leader

This subsection analyzes numerically the dedicated leader’s investment strategies. For the given parameter

values in Figure 6, it is demonstrated in the left penal that Xacc
1 > Xacc

D when the follower is flexible, which

makes the optimal threshold Xacc
D have no meaning as when the follower is not flexible by Huisman and

Kort (2015). From Proposition 4, the leader invests at X̂ if X̂ ≥ Xacc
D , because accommodation strategy

generates higher value. In the left penal, it is also shown that X̂ > Xacc
1 , implying that it is possible to

implement at X̂ the accommodation strategy. So I further analyze the influence of follower’s flexibility on

X̂. X̂ when follower is flexible is smaller than when follower is not flexible, implying that the leader switches

to accommodation strategy earlier and the accommodation strategy is more likely, see Figure 7 for more.

Moreover, X̂ increases with σ as shown in left penal of Figure 6. This means that the leader switches

to accommodation strategy later in a more volatile market. The intuition is that both the leader and the

follower invest more in case of upward demand shocks when there is more uncertainty, shown in the right

panel. Furthermore, the right panel also shows that when switching to accommodation strategy, the leader

invests less if the follower is flexible. This will be explained further in 5.2.

The follower’s flexibility influences the possibility for the leader to implement two strategies. The analysis

is carried out by considering the interval [Xdet
1 , Xdet

2 ], where the entry deterrence strategy is possible, and

X ≥ X̂, where the accommodation strategy is considered. Figure 7 demonstrates that, the interval to

implement deterrence strategy shrinks and the interval to implement accommodation strategy enlarges when

the follower is flexible. The changes in the intervals reflect the tendency for the leader to implement the
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corresponding strategy. It holds that for the given parameters, the leader tends to delay the flexible follower’s

entry less and is more likely to implement the accommodation strategy.
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Figure 7: Illustration of Xdet
1 , Xdet

2 , and X̂ with and without flexibility. Parameter values are r = 0.1,

α = 0.03, γ = 0.05, c = 2, δ = 10.

The leader’s tendency to implement different strategies depends on how the follower’s flexibility influences

its value. Figure 8 illustrates the leader’s value under the entry deterrence strategy at threshold Xdet
D and

accommodation strategy at X̂, with and without flexibility. For the entry deterrence strategy, it is shown

that the leader’s value at Xdet
D under the follow’s flexibility is no larger than that without flexibility. This

is because the flexibility does not change the leader’s investment threshold and capacity, but it makes the

follower enter the market earlier, see Figure 8, implying an earlier end to the leader’s monopoly privilege.

Under the accommodation strategy, the leader invests earlier and less when the follower is flexible. However,

as shown in Figure 8, the leader’s values at the moment of investment is larger than that without flexibility6.

This implies that when implementing the accommodation strategy, the leader also benefits from the follower’s

flexibility. However, if the leader deters follower’s entry, then the follower’s flexibility decreases its value.

5.2 Flexibility Influences Follower

In this subsection, I analyze how the volume flexibility influences the follower’s investment threshold, capac-

ity, and value under different leader strategies.

When the leader implements entry deterrence strategy, the flexible follower invests earlier with more

capacity and has higher value, as shown in Figure 9. Given that the follower can adjust output levels to the

market demand, and prefers to invest more in case the market demand increases in the future. Intuitively the

6Note that X̂ is different, depending on whether the follower’s flexible. When comparing investment values at different X̂s,

the comparison is made at a predetermined point of time, for instance, at X̂ where the follower is flexible. The discount factor

for the leader’s value when the follower is flexible is equal to
(
X̂Li/X̂Lf

)β1
, where X̂Lf stands for X̂ in the flexible follower

situation, and X̂Li stands for X̂ in the inflexible follower situation.
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Figure 8: Illustration of V detD (Xdet
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D ) when investing at the optimal threshold Xdet
D , and
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D (X̂)) when investing at level X̂ with and without flexibility. Parameter values are r = 0.1,

α = 0.03, γ = 0.05, c = 2, δ = 10.
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Figure 9: Illustration of X∗F (Kdet
D ), K∗F (Kdet

D ), and VF (X∗F (Kdet
D )) under entry deterrence strategy with and

without flexibility. Parameter values are r = 0.1, α = 0.03, γ = 0.05, c = 2, δ = 10.
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Figure 10: Illustration of X∗F (Kacc
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D (X̂)), and VF (Kacc
D (X̂)) under the entry accommodation

strategy with and without flexibility. Parameter values are r = 0.1, α = 0.03, γ = 0.05, c = 2, δ = 10.

firm would invest later so that the market demand is higher to compensate for the larger investment costs.

However, as shown in Figure 9, this is not the case because of another effect that the technological advantage

yields higher values for the follower (right panel) and motivates the follower to invest earlier. For the given

parameter values, It is apparently that the latter effect dominates. Besides, the difference between with and

without flexibility increases with σ for the follower. This is because for smaller σ, market uncertainty is low

and the flexible follower produces up to capacity right after investment, so the differences in X∗F (Kdet
D ) and

K∗F (Kdet
D ) are relatively small. However, with more market uncertainty, i.e., larger σ, the flexible follower

produces below capacity right after investment and puts more capacity on hold for future positive demand

shocks, so the differences are relatively large.

The dedicated leader switches from deterrence to accommodation strategy at X̂. Note that for the

accommodation strategy, the follower invests at the same time as the leader, thus X∗F (Kacc
D (X̂)) in Figure

10 is the same as X̂ in Figure 6. Figure 10 shows that under leader’s accommodation strategy, the flexible

follower also invests earlier and more, and has higher value than an inflexible follower. The reason is similar

as that in the deterrence strategy. Given that two firms invest at the same time, the leader also invests

earlier than that when the follower is dedicated. For the leader, investing earlier implies smaller investment

capacity because the leader is dedicated.

5.3 First Mover Advantage v.s. Technological Advantage

This subsection investigates whether the follower’s technological advantage in volume flexibility can overcome

the leader’s first mover advantage.

Figure 11 compares the leader and the follower’s values for the entry deterrence and accommodation
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Figure 11: Comparison of V detD (X∗F ,K
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D (X̂)) and VF (Kacc

D (X̂)) under the entry accommodation strategy, with and without flexibility.

Parameter values are r = 0.1, α = 0.03, γ = 0.05, c = 2, δ = 10.

strategies, with and without flexibility. The leader always has higher values than the follower, implying the

first mover advantage cannot be leapfrogged by the volume flexibility advantage. Gal-Or (1985) has shown

with symmetric players that the leader has larger profits compared to the follower if the follower’s reaction

function is downward-sloping. In my model with asymmetric firms and continuous time setting, the result is

similar in that the optimal follower’s optimal capacity decreases with the leader’s installed capacity. Another

possible reason is that the leader benefits from the follower’s volume flexibility without sharing costs for these

benefits.

6 Conclusion

This article introduces volume flexibility into the strategic capacity investment problem under uncertainty.

In the duopoly framework, the follower has technological advantage over the leader in that the follower can

adjust output quantity within the constraint of installed production capacity, and the leader always produces

up to capacity. When making decisions about investment timing and investment capacity, the leader not

only takes into account the incentives to preempt, but also the influence of the follower’s volume flexibility

on the market price. This is because the flexible follower competes against the dedicated leader on one

hand, and on the other hand makes the market price fluctuate less when there is demand volatility. I show

that compared to a dedicated follower, the dedicated leader is more likely to accommodate the entry of the

flexible follower. This is due to that the entry deterrence strategy decreases the leader’s value when the

follower is flexible, and the accommodation strategy increases the leader’s value. The leader does not like to

deter because volume flexibility makes the follower to enter the market earlier and thus shortens the leader’s

monopoly period. Whereas when implementing the accommodation strategy, two firms enter the market
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later than that under the deterrence strategy, so the market demand is larger. In a way, the leader benefits

more from the less fluctuating market prices due to follower’s volume flexibility.

Several extensions are possible for this paper. For instance, under the multiplicative demand structure I

find that the dedicated leader installs monopolistic capacity size for the entry deterrence and accommodation

strategy. This is a strong result. It is worthwhile to do a robustness check with a different demand structure.

Another extension is the firms only invest once in my model. If the firms can invest several times, i.e., have

several investment options, it would be interesting to study their strategic interactions.
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Appendix

A Flexible Follower

A.1 Expression of L1 (KD, KF ) ,M1 (KD, KF ) ,M2 (KD), and N (KD, KF )

In the follower’s value function VF (X,KD,KF ), the lengthy expression for L1, M1, M2 and N2 are as follows,

L (KD,KF ) =
c2F (β2)

4γ(β1 − β2)

((
1− γKD

c

)β1+1

−
(

1− 2γKF − γKD

c

)β1+1
)
,

M1 (KD,KF ) = − c2F (β2)

4γ (β1 − β2)

(
1− 2γKF − γKD

c

)β1+1

,

M2 (KD) =
c2F (β1)

4γ(β1 − β2)

(
1− γKD

c

)β2+1

,

N (KD,KF ) =
c2F (β1)

4γ(β1 − β2)

((
1− γKD

c

)β2+1

−
(

1− γKD − 2γKF

c

)β2+1
)
.

In order to get more insight of the value function, I analyze the signs for these four expressions. Given

that r > α, it holds that β1 > 1 and F (β2) > 0. From Wen et al. (2017), it also holds that β2 < −1, and

F (β1) < 0 when σ2 < r + α; −1 < β2 < 0, and F (β1) > 0 when σ2 > r + α. Thus, it can be concluded

that L(KD,KF ) > 0, M1(KD,KF ) < 0, and N(KD,KF ) > 0. If σ2 < r + α, then M2(KD) < 0, and if

σ2 > r + α, then M2(KD) > 0.

A.2 Proof of Proposition 1

The optimal investment capacity KF (X,KD) of the follower maximizes VF (X,KD,KF )−δKF . The analysis

is carried out for three different regions.

• Region 1: 0 < X < c/(1− γKD).

Given the expression of L1, the first order condition of VF (X,KD,KF )− δKF with respect to KF gives

c(1 + β1)F (β2)

2 (β1 − β2)

(
X(1− 2γKF − γKD)

c

)β1

− δ = 0. (A.1)

Thus,

KF (X,KD) =
1

2γ

(
1− γKD −

c

X

[
2δ (β1 − β2)

cF (β2) (1 + β1)

] 1
β1

)
. (A.2)

• Region 2: X ≥ c/(1− γKD) and KF >
X−c
2γX − KD

2 .

Given the expression of M1 and M2, taking the first order condition of VF (X,KD,KF )− δKF with respect

to KF yields

KF (X,KD) =
1

2γ

(
1− γKD −

c

X

[
2δ (β1 − β2)

cF (β2) (1 + β1)

] 1
β1

)
. (A.3)
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• Region 3: X ≥ c/(1− γKD) and KF ≤ X−c
2γX − KD

2 .

Given the expression for N2, the first order condition of VF (X,KD,KF ) − δKF with respect to KF yields

that KF (X,KD) must satisfy

c (1 + β2)F (β1)

2 (β1 − β2)

(
X(1− 2γKF − γKD)

c

)β2

+
X(1− 2γKF − γKD)

r − α − c

r
− δ = 0. (A.4)

The optimal investment threshold X∗F (KD) in each region can be derived by the value matching and

smooth pasting conditions at X∗F (KD):AX
∗β1

F (KD) = VF (X∗F (KD),KD,KF (X∗F (KD),KD))− δKF (X∗F (KD),KD) ,

β1AX
∗β1−1
F (KD) = d

dX [VF (X∗F (KD),KD,KF (X∗F (KD),KD))− δKF (X∗F (KD),KD)] .

Thus, X∗F (KD) satisfies the following implicit equation

VF (XF ,KD,KF (XF ,KD))− δKF (XF ,KD)

=
XF (KD)

β1

d [VF (XF ,KD,KF (XF ,KD))− δKF (XF ,KD)]

dX
. (A.5)

• Region 1

The implicit equation (A.5) implies that

δKF = 0. (A.6)

• Region 2

The optimal threshold X∗F (KD) satisfies

− F (β2)c1−β1 (1− 2γKF − γKD)
1+β1 Xβ1

4γ (β1 − β2)
+
c1−β2(1− γKD)1+β2

4γ(β1 − β2)
F (β1)Xβ2 +

(1− γKD)
2
X

4γ (r − α)

− c (1− γKD)

2γr
+

c2

4γX (r + α− σ2)
− δKF

=
X

β1

[
β2F (β1)c1−β2(1− γKD)1+β2Xβ2−1

4γ(β1 − β2)
+

(1− γKD)2

4γ(r − α)
− c2

4γX2(r + α− σ2)

]
− F (β2)c1−β1(1− γKD − 2γKF )1+β1Xβ1

4γ(β1 − β2)
,

which is equivalent to

c(1− γKD)F (β1)

4γβ1

(
X(1− γKD)

c

)β2

+
1

4γ

[
β1 − 1

β1

X(1− γKD)2

r − α − 2c(1− γKD)

r

+
β1 + 1

β1

c2

X(r + α− σ2)

]
− δKF = 0. (A.7)

• Region 3
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The optimal investment threshold X∗F (KD) satisfies

c
[
(1− γKD)1+β2 − (1− 2γKF − γKD)1+β2

]
F (β1)

4γ(β1 − β2)

(
X

c

)β2

+KF

(
(1− γKD − γKF )X

r − α − c

r
− δ
)

=
β2
β1

c
[
(1− γKD)1+β2 − (1− 2γKF − γKD)1+β2

]
F (β1)

4γ(β1 − β2)

(
X

c

)β2

+
KF

β1

X(1− γKD − γKF )

r − α .

Rearranging terms yields

cF (β1)

4γβ1

(
X

c

)β2 [
(1− γKD)1+β2 − (1− 2γKF − γKD)1+β2

]
+

(β1 − 1)KF

β1

X(1− γKD − γKF )

r − α − cKF

r
− δKF = 0. (A.8)

Note that in the monopoly case by Wen et al. (2017), whether the flexible firm produces up to capacity

depends on the economic setting. Similarly as for the follower in the duopoly situation, if the firm produces

below capacity right after investment, then qF (X,KD,KF (X,KD)) < KF (X,KD), i.e.,

1

2γ

(
1− γKD −

c

X

[
2δ (β1 − β2)

cF (β2) (1 + β1)

] 1
β1

)
>
X(1− γKD)− c

2γX
.

It is equivalent to

2δ(β1 − β2) < cF (β2)(1 + β1), (A.9)

which is the same as in the monopoly case. Furthermore, it can be deduced that

2δ(β1 − β2) ≥ cF (β2)(1 + β1) (A.10)

defines Region 3, where the firm produces up to capacity right after investment. The definitions of Region

2, equation (A.9), and Region 3, equation (A.10), for the flexible follower firm are the same as that for the

flexible monopoly firm in Wen et al. (2017).

A.3 Proof of Corollary 1

• Region 2

Derive dX∗F (KD)/dKD and check whether the leader’s installed capacity level would delay the flexible

follower’s investment. Dividing (11) by (1− γKD) yields that

cF (β1)

4γβ1

(
X(1− γKD)

c

)β2

− δ

2γ

(
1− c

X(1− γKD)

[
2δ(β1 − β2)

c(1 + β1)F (β2)

] 1
β1

)

+
1

4γ

[
β1 − 1

β1

X(1− γKD)

r − α − 2c

r
+
β1 + 1

β1

c2

r + α− σ2

1

X(1− γKD)

]
= 0. (A.11)

Comparing (A.11) with the implicit equation that determines the optimal investment threshold in the cor-

responding monopoly model, I find that X(1 − γKD) replaces X∗ in the corresponding monopoly case.

Apparently, (1− γKD)XKD
F is a constant that solves (A.11). Thus, it can be concluded

dX∗F (KD)

dKD
=
γX∗F (KD)

1− γKD
> 0, (A.12)
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implying that investing in more capacity by the dedicated leader would delay the investment of the flexible

follower. According to (10), taking the derivative of K∗F (KD) with respect to KD, it follows that

dK∗F (KD)

dKD
= −γK

∗
F (KD)

1− γKD
≤ 0. (A.13)

This implies that an increase in the inflexible leader’s investment capacity decreases the flexible follower’s

optimal capacity to invest with.

• Region 3

The investment timing X∗F (KD) and investment capacity K∗F (KD) are determined by (12) and (13) when

the follower produces up to capacity right after the investment. Rewriting these two equations yields

F (β1)c1−β2(1 + β2)Hβ2(KD)

2(β1 − β2)
+
H(KD)

r − α − c

r
− δ = 0, (A.14)

and

c1−β2F (β1)
[
W 1+β2(KD)−H1+β2(KD)

]
4γβ1X∗F (KD)

−
( c
r

+ δ
)
K∗F (KD) +

(β1 − 1)
(
W 2(KD)−H2(KD)

)
4γβ1(r − α)X∗F (KD)

= 0,

(A.15)

respectively, where

W (KD) = X∗F (KD)(1− γKD),

H(KD) = X∗F (KD)(1− γKD − 2γK∗F (KD)).

Note that H(KD) is a constant and solves (A.14). From dH(KD)/dKD = 0, it follows that

dX∗F (KD)

dKD
=

γX∗F (KD)

1− γKD − 2γK∗F (KD)

(
2

dK∗F (KD)

dKD
+ 1

)
. (A.16)

W (KD) solves equation (A.15). Taking the derivative of (A.15) with respect to KD yields(
(1 + β2)c1−β2F (β1)W β2(KD)

2β1
+

(β1 − 1)W (KD)

β1(r − α)
−
( c
r

+ δ
)) γK∗F (KD) + (1− γKD)

dK∗
F (KD)
dKD

1− γKD − 2γK∗F (KD)
= 0,

implying,

c(1 + β2)F (β1)

2β1

(
W (KD)

c

)β2

+
(β1 − 1)W (KD)

β1(r − α)
=
c

r
+ δ. (A.17)

(A.17) implies that W (KD) is also a constant and satisfies

dW (KD)

dKD
= −γX∗F (KD) + (1− γKD)

dX∗F (KD)

dKD
= 0.

It can be further derived that
dX∗F (KD)

dKD
=
γX∗F (KD)

1− γKD
> 0. (A.18)

Moreover, from (A.16) and (A.18), it follows that

dK∗F (KD)

dKD
= −γK

∗
F (KD)

1− γKD
< 0. (A.19)

Thus, for the case that the flexible follower produces up to capacity right after the investment, the dedicated

leader can delay and decrease the investment of the follower by investing in a larger capacity.
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A.4 Expressions of L(KD), M1(KD), M2(KD), N (KD)

Employing value matching and smooth pasting at X1 = c/(1−γKD) and X2 = c/ (1− γKD − 2γK∗F (KD)),

then for a given KD (0 ≤ KD < 1/γ), it can be derived that

M2(KD) =
cKD

2(β1 − β2)

(
β1 − 1

r − α −
β1
r

)(
c

1− γKD

)−β2

, (A.20)

M1(KD) = − cKD

2(β1 − β2)

(
β2 − 1

r − α −
β2
r

)(
c

1− γKD − 2γK∗F (KD)

)−β1

, (A.21)

L(KD) =
cKD

2(β1 − β2)

(
β2 − 1

r − α −
β2
r

)[(
c

1− γKD

)−β1

−
(

c

1− γKD − 2γK∗F (KD)

)−β1
]
,(A.22)

N (KD) =
cKD

2(β1 − β2)

(
β1 − 1

r − α −
β1
r

)[(
c

1− γKD

)−β2

−
(

c

1− γKD − 2γK∗F (KD)

)−β2
]
.(A.23)

In order to check the signs for L(KD), M1(KD), M2(KD), and N (KD), first analyze the signs of (β −
1)/(r − α)− β/r = αβ−r

r(r−α) for β = β1 and β = β2.

If α ≥ 0, then αβ2−r < 0 because β2 < 0. If α < 0, then αβ2−r = α

(
1
2 − α

σ2 − r
α −

√(
1
2 − α

σ2

)2
+ 2r

σ2

)
,

with 1
2 − α

σ2 − r
α > 0. From

(
1
2 − α

σ2 − r
α

)2 − ( 12 − α
σ2

)2 − 2r
σ2 = − r

α + r2

α2 > 0, we get αβ2 − r < 0. So,

β2−1
r−α −

β2

r < 0.

If α ≤ 0, then αβ1 − r < 0. If α > 0, then αβ1 − r = α

(
1
2 − α

σ2 − r
α +

√(
1
2 − α

σ2

)2
+ 2r

σ2

)
, with

1
2 − α

σ2 − r
α < 0, because r > α. From

(
r
α + α

σ2 − 1
2

)2 − ( 12 − α
σ2

)2 − 2r
σ2 = r2

α2 − r
α > 0, it holds that

αβ1 − r < 0. So, β1−1
r−α −

β1

r < 0.

Thus, it can be concluded that when 0 ≤ KD < 1/γ, then L(KD) < 0, M1(KD) > 0, M2(KD) < 0,

N (KD) > 0.

A.5 Proof of Proposition 2

A.5.1 Negative B1(KD)

Before the derivation of the dedicated leader’s optimal investment capacity in the entry deterrence and

accommodation strategies, first check the sign of B1(KD).

B1(KD) = M1(KD) +M2(KD)X∗β2−β1

F (KD)− KD(1− γKD)

2(r − α)
X∗1−β1

F (KD) +
cKD

2r
X∗−β1

F (KD)

=
cKD

2X∗β1

F (KD)

[
− 1

β1 − β2

(
β2 − 1

r − α −
β2
r

)(
X∗F (KD)

X2(KD)

)β1

− 1

r − α
X∗F (KD)

X1(KD)
+

1

r

+
1

β1 − β2

(
β1 − 1

r − α −
β1
r

)(
X∗F (KD)

X1(KD)

)β2
]
.

For X∗F (KD)/Xi(KD) with i = {1, 2}, it holds that

d

dKD

X∗F (KD)

Xi(KD)
=

1

X2
i (KD)

(
γX∗F (KD)Xi(KD)

1− γKD
− γX∗F (KD)Xi(KD)

1− γKD

)
= 0.
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This implies that X∗F (KD)/Xi(KD) is a constant and does not change with KD. So I can set KD = 0, then

X∗F (KD)

X1(KD)
=
X∗F (0)

c
,

and

X∗F (KD)

X2(KD)
=
X∗F (0)

c
(1− 2γK∗F (0)) =

(
2δ(β1 − β2)

c(1 + β1)F (β2)

) 1
β1

.

Equation (11) is the corresponding implicit equation to determine X∗ in the monopoly case:

F (β1)

(
X∗

c

)β2

+
β1 − 1

r − α
X∗

c
− 2β1

r
+

β1 + 1

r + α− σ2

c

X∗
− 2β1δ

c

(
1− c

X∗

[
2δ(β1 − β2)

c(1 + β1)F (β2)

] 1
β1

)
= 0. (A.24)

Rewrite such that

B1(KD) =
cKD

2(β1 − β2)X∗β1

F (KD)

[
−
(
β2 − 1

r − α −
β2
r

)
2δ(β1 − β2)

c(1 + β1)F (β2)

+

(
β1 − 1

r − α −
β1
r

)(
X∗

c

)β2

− (β1 − β2)

(
1

r − α
X∗

c
− 1

r

)]

=
cKD

2X∗β1

F (KD)
F(X∗),

where X∗ satisfies (A.24). Next, I show numerically that F(X∗) is negative. The demonstration is shown in

Figure A.1. Note that γ does not influence F(X∗), so the numerical analysis is just about the influence of α,

σ, r, c, and δ. The default parameter values are α = 0.05, r = 0.1, σ = 0.2, c = 2, δ = 10. Some combination

of parameter values does not make the flexible follower produce below capacity right after investment. After

ruling out these combinations, F(X∗) changing with parameters is illustrated in Figure A.1. The numerical

analysis confirms the conjecture that B1(KD) is negative when the flexible follower produces below capacity

right after investment. In the following analysis, I take B1(KD) as negative.
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Figure A.1: Illustration of negative F(X∗) changing with α, σ, r, c, and δ. Default parameter values are

α = 0.05, r = 0.1, σ = 0.2, c = 2, δ = 10.
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A.5.2 Proof of Proposition 2

In order to get the optimal investment decisions for the dedicated leader, I first calculate the first derivative

of B1(KD) with respect of KD. First, M1(KD) can be rewritten as

M1(KD) = − c1−β1KD

2(β1 − β2)

(
β2 − 1

r − α −
β2
r

)[
c

X∗F (KD)

(
2δ(β1 − β2)

c(1 + β1)F (β2)

) 1
β1

]β1

= − KD

X∗β1

F (KD)

δ

(1 + β1)F (β2)

(
β2 − 1

r − α −
β2
r

)
.

With dK∗F (KD)/dKD and dX∗F (KD)/dKD given by (A.12) and (A.13), it can be calculated that

dM1(KD)

dKD
=

1− γKD − β1γKD

KD(1− γKD)
M1(KD).

Furthermore, it follows that

d

dKD
M2(KD)X∗β2−β1

F (KD) =
1− γKD − β1γKD

KD(1− γKD)
M2(KD)X∗β2−β1

F (KD).

Note also

d

dKD

KD(1− γKD)

2(r − α)
X∗1−β1

F (KD) =
(1− γKD − β1γKD)X∗1−β1

F (KD)

2(r − α)

and

d

dKD

cKD

2r
X∗−β1

F (KD) =
cX∗−β1

F (KD)(1− γKD − β1γKD)

2r(1− γKD)
,

then according to (17), it can be derived that

dB1(KD)

dKD
=

1− γKD − β1γKD

KD(1− γKD)
B1(KD).

Next, I analyze the entry deterrence and accommodation strategies for the dedicated leader, which include

the optimal investment capacities and optimal investment thresholds.

1. Entry Deterrence Strategy

The investment capacity Kdet
D (X) for a given level of X satisfies

∂VD(X,KD)− δKD

∂KD
=

1− γKD − β1γKD

KD(1− γKD)
B1(KD)Xβ1 +

1− 2γKD

r − α X − c

r
− δ = 0. (A.25)

The entry deterrence strategy cannot happen when Kdet
D (X) < K̂D(X), which yields X > Xdet

2 with

Xdet
2 and Kdet

D (Xdet
2 ) satisfying (14) and (A.25). This is because the demand is high enough for the

follower to invest immediately to enter the market. The entry deterrence strategy also does not happen

when Kdet
D (X) < 0, yielding X < Xdet

1 with Xdet
1 satisfying[

− δ

(1 + β1)F (β2)

(
β2 − 1

r − α −
β2
r

)
+
c1−β2X∗β2

F (0)

2(β1 − β2)

(
β1 − 1

r − α −
β1
r

)
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− X∗F (0)

2(r − α)
+

c

2r

](
Xdet

1

X∗F (0)

)β1

+
Xdet

1

r − α −
c

r
− δ = 0, (A.26)

where X∗F (0) can be derived from (10) and (11) given that KD = 0. Thus, the entry deterrence strategy

is only possible when X ∈ (Xdet
1 , Xdet

2 ). Suppose the investment threshold of the dedicated leader is

Xdet(KD) if the follower invests with capacity KD in the entry deterrence strategy. The leader’s value

function before and after the investment is as follows

VD(X,KD) =



A(KD)Xβ1 X < Xdet(KD),

B1(KD)Xβ1 + KD(1−γKD)
r−α X − cKD

r Xdet(KD) ≤ X < X∗F (KD),

M1(KD)Xβ1 +M2(KD)Xβ2

+KD(1−γKD)
2(r−α) X − cKD

2r X ≥ X∗F (KD).

(A.27)

The value matching and smooth pasting conditions to determine Xdet(KD) are

A(KD)Xβ1 = B1(KD)Xβ1 +
KD(1− γKD)

r − α X − cKD

r
− δKD,

β1A(KD)Xβ1−1 = β1B(KD)Xβ1−1 +
KD(1− γKD)

r − α .

Thus, the threshold of the entry deterrence strategy Xdet(KD) is

Xdet(KD) =
β1

β1 − 1

r − α
1− γKD

( c
r

+ δ
)
. (A.28)

Substituting Xdet(KD) into (A.25), the optimal investment capacity Kdet
D and investment threshold

Xdet(Kdet
D ) can be derived as

Kdet
D ≡ Kdet

D (Xdet(Kdet
D )) =

1

(β1 + 1)γ
,

Xdet(Kdet
D ) =

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
.

2. Entry Accommodation Strategy

Note that from (A.20), we can get

∂M2(KD)

∂KD
=

1− γKD − β2γKD

KD(1− γKD)
M2(KD).

The optimal capacity Kacc
D (X) satisfies the following implicit equation

1− γKD − β1γKD

KD(1− γKD)
M1(KD)Xβ1 +

1− γKD − β2γKD

KD(1− γKD)
M2(KD)Xβ2 +

1− 2γKD

2(r − α)
X − c

2r
− δ = 0.

(A.29)

The entry accommodation strategy only happens when X ≥ X∗F (KD), implying that the market

demand is large enough to allow both the dedicated leader and the flexible follower to invest at the same

time. Let Xacc
1 be such that Xacc

1 = X∗F (Kacc
D (Xacc

1 )), then Xacc
1 and the corresponding Kacc

D (Xacc
1 )
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satisfy (A.29) and (14). Suppose the dedicated leader invests at Xacc(KD) when the capacity level is

KD in the entry accommodation strategy, then the leader’s value function before and after investment

is

VD(X,KD) =


A(KD)Xβ1 X < Xacc(KD),

M1(KD)Xβ1 +M2(KD)Xβ2

+KD(1−γKD)
2(r−α) X − cKD

2r X ≥ X∗F (KD) ≥ Xacc(KD).

(A.30)

The value matching and smooth pasting conditions to determine Xacc(KD) are

A(KD)Xβ1 =M1(KD)Xβ1 +M2(KD)Xβ2 +
KD(1− γKD)

2(r − α)
X − cKD

2r
− δKD,

β1A(KD)Xβ1−1 = β1M1(KD)Xβ1−1 + β2M2(KD)Xβ2−1 +
KD(1− γKD)

2(r − α)
.

Thus, the investment capacityKacc
D (Xacc) and investment thresholdXacc(Kacc

D ) satisfy equation (A.29)

and

(β1 − β2)M2(KD)Xβ2 +
(β1 − 1)KD(1− γKD)

2(r − α)
X − cβ1KD

2r
− β1δKD = 0. (A.31)

Rewrite these two equations, then Kacc
D (Xacc) and Xacc(Kacc

D ) satisfy

1− γKD − β1γKD

KD(1− γKD)
M1(KD)Xβ2 +

1− γKD − β2γKD

1− γKD

c

2(β1 − β2)

(
β1 − 1

r − α −
β1
r

)(
X

X1

)β2

+
1− 2γKD

2(r − α)
X − c

2r
− δ = 0,

and

c

2β1

(
β1 − 1

r − α −
β1
r

)(
X

X1

)β2

+
(β1 − 1)(1− γKD)

2β1(r − α)
X − c

2r
− δ = 0.

Solving these two equations yields

Kacc
D ≡ Kacc

D (Xacc(Kacc
D )) =

1

(β1 + 1)γ
.

The accommodation strategy threshold Xacc(KD) when follower is flexible can be compared to when

follower is dedicated, where the threshold is (β1+1)(r−α)
β1−1

(
c
r + δ

)
according to Huisman and Kort (2015).

To make the comparison, let

Z(X) =
c

2β1

(
β1 − 1

r − α −
β1
r

)(
β1

(β1 + 1)c

)β2

Xβ2 +
β1 − 1

2(β1 + 1)(r − α)
X − c

2r
− δ.

Then

Z

(
(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
))

=
c

2β1

(
β1 − 1

r − α −
β1
r

)(
β1(r − α)

(β1 − 1)c

( c
r

+ δ
))β2

− δ

2
< 0.

Because

dZ(X)

dX
=
cβ2
2β1

(
β1 − 1

r − α −
β1
r

)(
β1

(β1 + 1)c

)β2

Xβ2−1 +
β1 − 1

2(β1 + 1)(r − α)
> 0,
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it can be concluded that

Xacc(Kacc
D ) >

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
,

implying the entry accommodation threshold when the follower is flexible is larger than that when the

follower is not flexible.

A.6 Proof of Proposition 3

A.6.1 Negative B2(KD)

When the flexible follower produces up to capacity right after investment, then

B2(KD) = N (KD)X∗β2−β1

F (KD)− γKDK
∗
F (KD)

r − α X∗1−β1

F (KD)

=
cKDX

∗−β1

F (KD)

2(β1 − β2)

[(
β1 − 1

r − α −
β1
r

)((
X∗F (KD)

X1(KD)

)β2

−
(
X∗F (KD)

X2(KD)

)β2
)

+
β1 − β2
r − α

(
X∗F (KD)

X2(KD)
− X∗F (KD)

X1(KD)

)]
.

Note that

dX∗F (KD)

dKD
=

γX∗F (KD)

1− γKD
,

dXi(KD)

dKD
=

γXi(KD)

1− γKD
, i ∈ {1, 2}.

Thus for the terms X∗F (KD)/Xi(KD) with i ∈ {1, 2} in B2(KD),

d

dKD

X∗F (KD)

Xi(KD)
=

1

X2
i (KD)

(
γX∗F (KD)Xi(KD)

1− γKD
− γX∗F (KD)Xi(KD)

1− γKD

)
= 0.

Similar to the case that flexible follower produces below capacity right after investment, X∗F (KD)/X1(KD)

and X∗F (KD)/X2(KD) are constants and do not change with KD. Thus

X∗F (KD)

X1(KD)
=

X∗F (0)

c
,

X∗F (KD)

X2(KD)
=

X∗F (0)

X2(0)
.

Let X∗F (0) = X∗ and X2(0) = 1 − 2γK∗, with X∗ as the optimal investment threshold and K∗ as the

optimal capacity in the monopoly case where the firm produces up to capacity right after investment. I

rewrite B2(KD) as

B2(KD) =
cKDX

∗−β1

F (KD)

2(β1 − β2)
G(X∗,K∗),

where X∗ and K∗ satisfy

c(1 + β2)F (β1)

2(β1 − β2)

(
(1− 2γK∗)X∗

c

)β2

+
c

r − α
(1− 2γK∗)X∗

c
− c

r
− δ = 0

35



-0.06 -0.02 0 0.02
−1.2
−1
−0.8
−0.6
−0.4

·102

α

G

0 0.1 0.2 0.3

−4

−2

0
·103

σ
0.2 0.4 0.6 0.8

−1.2
−1
−0.8
−0.6
−0.4

·102

r

0 1 2
−8
−6
−4
−2
0
·103

c
10 20 30 40

−2

−1.5

−1
·102

δ

0 0.1 0.2

−1.1
−1
−0.9

·102

γ

Figure A.2: Illustration of negative G(X∗,K∗) changing with α, σ, r, c, δ, and γ. Default parameter values

are α = 0.02, r = 0.1, σ = 0.2, c = 2, δ = 10, γ = 0.05.

and

cF (β1)

4γβ1

((
X∗

c

)β2

− (1− 2γK∗)

(
(1− 2γK∗)X∗

c

)β2
)

+
β1 − 1

β1

(1− γK∗)X∗K∗
r − α − cK∗

r
− δK∗ = 0.

B2(KD) is intuitively negative. However, it is too complicated to show this analytically. So I try to

show it is negative numerically to verify the conjecture. Figure A.2 demonstrates G(X∗,K∗) changing with

parameters. The default parameter values are given as α = 0.02, r = 0.1, σ = 0.2, c = 2, δ = 10, and

γ = 0.05. Some combination of parameter values does not define the case that the follower produces up to

capacity right after investment. After ruling out such combinations, the negative G(X∗,K∗) is illustrated

in Figure A.2. This confirms the conjecture that B2(KD) is negative. So in the following analysis, I assume

negative B2(KD).

A.6.2 Proof of Proposition 3

I start with the derivative of B2(KD) with respect to KD, where K∗F (KD) and X∗F (KD) are defined by (12)

and (13), and dK∗F (KD)/dKD and dX∗F (KD)/dKD are defined by (A.18) and (A.19). It holds that

dN (KD)

dKD
=
N (KD)(1− γKD − β2γKD)

KD(1− γKD)
,

dN (KD)X∗β2−β1

F

dKD
=

(1− γKD − β1γKD)N (KD)

KD(1− γKD)
X∗β2−β1

F ,

and

d

dKD
KDK

∗
FX
∗1−β1

F =
1− γKD − β1γKD

KD(1− γKD)
KDK

∗
FX
∗1−β1

F .
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Thus,
dB2(KD)

dKD
=

1− γKD − β1γKD

KD(1− γKD)
B2(KD).

1. Entry Deterrence Strategy

The optimal capacity by the dedicated leader, Kdet
D (X), satisfies the first order condition

∂VD(X,KD)− δKD

∂KD
=

dB2(KD)

dKD
Xβ1 +

1− 2γKD

r − α X − c

r
− δ

=
1− γKD − β1γKD

KD(1− γKD)
B2(KD)Xβ1 +

1− 2γKD

r − α X − c

r
− δ = 0. (A.32)

The entry deterrence strategy cannot happen if Kdet
D (X) < K̂D(X). If the dedicated leader invests at

X, then the deterrence strategy is only possible when X < Xdet
2 . Xdet

2 , Kdet
D (Xdet

2 ), and K∗F (Kdet
D )

satisfy (12), (13), and (A.32), with X∗F (Kdet
D ) = Xdet

2 . Similar to the case that the flexible follower

produces below capacity right after investment, the deterrence strategy is not possible if Kdet
D < 0,

which results that X > Xdet
1 with Xdet

1 satisfying

c

2(β1 − β2)

(
Xdet

1

X∗F (0)

)β1
((

β1 − 1

r − α −
β1
r

)[(
X∗F (0)

c

)β2

−
(
X∗F (0) (1− 2γK∗F (0))

c

)β2
]

−β1 − β2
r − α

2γX∗F (0)K∗F (0)

c

)
+

1

r − α −
c

r
− δ = 0, (A.33)

where K∗F (0) and X∗F (0) satisfy (12) and (13). Thus, the entry deterrence strategy is only possible if

X ∈
(
Xdet

1 , Xdet
2

)
. If the leader applies the entry deterrence strategy and invests at Xdet(KD) with

capacity level KD, then the value function before and after investment is

VD(X,KD) =


A(KD)Xβ1 X < Xdet(KD),

B2(KD)Xβ1 + KD(1−γKD)
r−α X − cKD

r Xdet(KD) ≤ X < X∗F (KD),

N (KD)Xβ2 +
KD(1−γKD−γK∗

F (KD))
r−α X − cKD

r X ≥ X∗F (KD).

(A.34)

For a given capacity level KD, from value matching and smooth pasting at Xdet(KD), Xdet(KD) must

satisfy

A(KD)Xβ1 = B2(KD)Xβ1 +
KD(1− γKD)

r − α X − cKD

r
− δKD,

β1A(KD)Xβ1−1 = β1B2(KD)Xβ1−1 +
KD(1− γKD)

r − α .

It can be derived that

Xdet(KD) =
β1(r − α)

(β1 − 1)(1− γKD)

( c
r

+ δ
)
. (A.35)

Kdet
D and Xdet(Kdet

D ) satisfy (A.32), thus the optimal investment capacity Kdet
D and investment thresh-

old Xdet(Kdet
D ) are

Kdet
D ≡ Kdet

D (Xdet(Kdet
D )) =

1

(β1 + 1)γ
,

Xdet(Kdet
D ) =

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
.
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2. Entry Accommodation Strategy

The investment capacity by the dedicated leader Kacc
D (X) for a given level of X satisfies the first order

condition

∂VD(X,KD)− δKD

∂KD
=

dN (KD)

dKD
Xβ2 +

X(1− γKD − γK∗F (KD))(1− 2γKD)

(r − α)(1− γKD)
− c

r
− δ

=
(1− γKD − β2γKD)N (KD)

KD(1− γKD)
Xβ2 +

X(1− γKD − γK∗F (KD))(1− 2γKD)

(r − α)(1− γKD)

− c
r
− δ = 0. (A.36)

The entry accommodation strategy only happens when the market has grown large enough to hold the

two firms, i.e., X ≥ X∗F (KD). Define Xacc
1 = X∗F (Kacc

D (Xacc
1 )), then Xacc

1 , Kacc
D (Xacc

1 ), and K∗F (Kacc
D )

satisfy (12), (13), and (A.36). Suppose the dedicated leader uses the entry accommodation strategy

and invests at Xacc(KD) with capacity KD, then the leader’s value function is

VD(X,KD) =

A(KD)Xβ1 X < Xacc(KD),

N (KD)Xβ2 +
KD(1−γKD−γK∗

F (KD))
r−α X − cKD

r X ≥ X∗F (KD) ≥ Xacc(KD).

(A.37)

From value matching and smooth pasting, I get that the investment threshold Xacc(KD) satisfies

A(KD)Xβ1 = N (KD)Xβ2 +
KD(1− γKD − γK∗F (KD))

r − α X − cKD

r
− δKD,

β1A(KD)Xβ1−1 = β2N (KD)Xβ2−1 +
KD(1− γKD − γK∗F (KD))

r − α .

Thus, it holds that Xacc(KD) must satisfy

β1 − β2
β1

N (KD)Xβ2 +
β1 − 1

β1(r − α)
XKD (1− γKD − γK∗F (KD))− cKD

r
− δKD = 0. (A.38)

Rewrite (A.36) and (A.38), then Xacc(Kacc
D ) and Kacc

D satisfy

1− γKD − β2γKD

1− γKD

cXβ2

2(β1 − β2)

(
β1 − 1

r − α −
β1
r

)(
X−β2

1 −X−β2

2

)
+
X(1− γKD − γK∗F (KD))

r − α
1− 2γKD

1− γKD
− c

r
− δ = 0,

and

cXβ2

2β1

(
β1 − 1

r − α −
β1
r

)(
X−β2

1 −X−β2

2

)
+
X(1− γKD − γF ∗(KD))

r − α
β1 − 1

β1
− c

r
− δ = 0.

From

1− γKD − β2γKD

(β1 − β2)(1− γKD)
=

1

β1
,

and

1− 2γKD

1− γKD
=
β1 − 1

β1
,

it follows that the optimal investment capacity is

Kacc
D ≡ Kacc

D (Xacc(Kacc
D )) =

1

(β1 + 1)γ
.
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A.7 Proof of Proposition 4

Given in the text.

A.8 Proof of Proposition 5

When the follower is flexible, from Proposition 2 and Proposition 3, the leader’s entry deterrence strategy is

the same regardless of whether the follower produces below or up to capacity right after investment. When

there is no flexibility, the leader’s entry deterrence (and entry accommodation strategy) can be found in

Appendix B. The leader’s entry deterrence strategy are the same regardless of with or without the follower

flexibility. From Proposition 2 and Proposition 3, it also holds that the leader’s investment capacity under

entry accommodation strategy is Kacc
D = 1

(β+1)γ , regardless of whether the follower produces below or up to

capacity right after investment. This capacity level is the same as that when there is no follower flexibility.

B No Flexibility

This section analyzes what the follower and leader’s decisions are when there is no flexibility. It means that

both firms would always produce up to full capacity. For the follower, given that the leader invests and

always produces KD and the follower invests and always produces KF , the profit flow at time t equals

πF (t) = (X(t) (1− γ (KD +KF ))− c)KF .

Here, I do not allow production suspension. So for a low level X, i.e., X (1− γ(KD +KF )) < c, the firms

may have negative profit flows. Given the initial geometric Brownian motion level X, the value of the follower

is

VF (X,KD,KF ) = E

[∫ ∞
t=0

KF (X(t) (1− γ (KD +KF ))− c) exp (−rt)dt |X(0) = X

]
=

XKF (1− γ(KD +KF ))

r − α − cKF

r
.

The follower’s investment capacity maximizes

max
KF>0

VF (X,KD,KF )− δKF ,

thus, given X and KD,

KF (X,KD) =
1

2γ

(
1− γKD −

r − α
X

( c
r

+ δ
))

. (B.1)

Before the investment, the follower holds an option to invest. Suppose the option value is

VF (X,KD) = AF (KL)Xβ1 .

According to value matching and smooth pasting, the investment threshold XF (KD,KF ) when investing

with KF satisfies

AFX
β1

F =
X∗FKF (1− γ(KD +KF ))

r − α − cKF

r
− δKF ,
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β1AFX
β1−1
F =

KF (1− γ(KD +KF ))

r − α .

Thus,

XF (KD,KF ) =
β1(r − α)

(β1 − 1)(1− γKD − γKF )

( c
r

+ δ
)
. (B.2)

Combining (B.1) and (B.2), the follower’s optimal investment capacity and threshold are

K∗F (KD) =
1− γKD

(1 + β1)γ
, (B.3)

X∗F (KD) =
(β1 + 1)(r − α)

(β1 − 1)(1− γKD)

( c
r

+ δ
)
. (B.4)

If X∗F (KD) ≤ X(0), then the follower would invest immediately at t = 0 with capacity K∗F (X(0),KD).

For the leader, to deter or accommodate the entry of the follower would be dependent on the leader’s

critical capacity level

K̂D(X) =
1

γ

(
1− (β1 + 1)(r − α)

(β1 − 1)X

( c
r

+ δ
))

. (B.5)

Entry Deterrence Strategy If the leader invests a capacity larger than K̂D(X), then the follower invests

later. However, if the leader invests a capacity not larger than K̂D(X), then the follower invests at the same

time with the leader. Suppose the investment threshold is Xdet
D (KD) when investing capacity KD, then the

leader’s value under entry deterrence strategy is assumed to be

VD(X,KD) =


AD(KD)Xβ1 if X < Xdet

D (KD),

BD(KD)Xβ1 + XKD(1−γKD)
r−α − cKD

r if Xdet
D (KD) ≤ X < X∗F (KD),

β1XKD(1−γKD)
(1+β1)(1−α) − cKD

r if X ≥ X∗F (KD).

By value matching at X∗F (KD), I get

BD(KD)X∗β1

F +
X∗FKD(1− γKD)

r − α =
β1X

∗
FKD(1− γKD)

(β1 + 1)(r − α)
.

Thus,

BD(KD) = −KD(1− γKD)X∗F
(β1 + 1)(r − α)

X∗−β1

F = − KD

β1 − 1

( c
r

+ δ
)( (β1 + 1)(r − α)

(β1 − 1)(1− γKD)

( c
r

+ δ
))−β1

.

Suppose the leader invests at X, then the investment capacity under the deterrence strategy, Kdet
D (X),

satisfies

− 1− (β1 + 1)γKD

(β1 − 1)(1− γKD)

( c
r

+ δ
)( X(β1 − 1)(1− γKD)

(β1 + 1)(r − α)
(
c
r + δ

))β1

+
X(1− 2γKD)

r − α − c

r
− δ = 0. (B.6)

The corresponding value for the leader’s entry deterrence strategy is

V detD (X) = −K
det
D (X)

β1 − 1

( c
r

+ δ
)(X(β1 − 1)(1− γKdet

D (X))

(β1 + 1)(r − α)
(
c
r + δ

) )β1
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+
XKdet

D (X)(1− γKdet
D (X))

r − α − cKdet
D (X)

r
− δKdet

D (X). (B.7)

If X is sufficiently small, then the optimal investment threshold is

Xdet
D =

β1(r − α)

(β1 − 1)(1− γKdet
D )

( c
r

+ δ
)
. (B.8)

Substitute (B.8) into (B.6) gives

1− (β1 + 1)γKdet
D =

(
1− (β1 + 1)γKdet

D

)( β1
β1 + 1

)β1

.

Thus,

Kdet
D =

1

(β1 + 1)γ
,

Xdet
D ≡ Xdet

D (Kdet
D ) =

(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)
.

The corresponding follower’s investment decisions are

K∗F (Kdet
D ) =

β1
(β1 + 1)2γ

,

X∗F (Kdet
D ) =

(β1 + 1)2(r − α)

β1(β1 − 1)

( c
r

+ δ
)
.

Moreover, the entry deterrence strategy can not happen for

0 ≤ K̂D(X) < Kdet
D ,

i.e.,

Xdet
1 ≤ X ≤ Xdet

2 ,

where

Xdet
2 =

2(β1 + 1)(r − α)

β1 − 1

( c
r

+ δ
)

and Xdet
1 satisfies

− 1

β1 − 1

( c
r

+ δ
)( X(β1 − 1)

(β1 + 1)(r − α)
(
c
r + δ

))β1

+
X

r − α −
c

r
− δ = 0. (B.9)

If Xdet
D ≤ X, then the deterrence strategy is implemented immediately with capacity Kdet

D (X) satisfying

(B.6).

Entry Accommodation Strategy Under the entry accommodation strategy, the follower invests at the

same time as the leader. Suppose the investment threshold is Xacc
D (KD) when investing capacity KD, then

the leader’s value under entry accommodation strategy is assumed to be

VD(X,KD) =

AD(KD)Xβ1 if X < Xacc
D (KD),

XKD(1−γKD)
2(r−α) − cKD

2r + δKD
2 if X ≥ Xacc

D (KD).
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For a given level of X, the investment capacity under the entry accommodation strategy is

Kacc
D (X) =

1

2γ

(
1− r − α

X

( c
r

+ δ
))

.

The accommodation strategy can only be chosen when Kacc
D (X) ≤ K̂D(X), which means that it is only

possible when

X ≥ Xacc
1 =

(β1 + 3)(r − α)

β1 − 1

( c
r

+ δ
)
.

Moreover, the value matching and smoothing pasting conditions yield that for the given capacity KD, the

investment threshold Xacc
D (KD) satisfies

AD(KD)Xβ1 =
XKD(1− γKD)

2(r − α)
− cKD

2r
− δKD

2
,

β1AD(KD)Xβ−1 =
KD(1− γKD)

2(r − α)
.

Thus, it holds that

Xacc
D (KD) =

β1(r − α)

(β1 − 1)(1− γKD)

( c
r

+ δ
)
.

Then the optimal investment capacity Kacc
D and the optimal investment threshold Xacc

D are

Kacc
D =

1

(β1 + 1)γ
,

Xacc
D =

(β1 + 1)(r − α)

(β1 − 1)

( c
r

+ δ
)
.

If Xacc
D ≤ X, then the leader invests immediately at X with capacity

KD(X) =
1

2γ

(
1− r − α

X

( c
r

+ δ
))

.

Note that Xacc
1 > Xacc

D . This means that the leader implements the accommodation strategy only when X

reaches Xacc
1 . Then the leader invests at Xacc

1 with capacity

KD(Xacc
1 ) =

2

(β1 + 3)γ
.

The leader’s value at Xacc
1 is

VD(Xacc
1 ,KD(Xacc

1 )) =
2

(β1 − 1)(β1 + 3)γ

( c
r

+ δ
)
.

The corresponding follower’s investment decisions under the leader’s accommodation strategy are

K∗F (Kacc
1 ) =

β1 + 1

(β1 + 3)γ
,

X∗F (Kacc
1 ) =

(β1 + 3)(r − α)

β1 − 1

( c
r

+ δ
)
.

42


