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Abstract We determine all possible vectors (P(x < y),P(y < z),P(z < x)) for inde-
pendent random variables x, y, z satisfying the condition P(x = y = z) = 0. Surprisingly,
this result is obtained as a probabilistic interpretation of our algebraic result on the free
2-step nilpotent Lie semigroup of rank 3.1

1. Introduction

Let x, y, z be random variables. We will assume that

(1) P(x = y = z) = 0

and set
p = P(x < y), q = P(y < z), r = P(z < x).

Then we have

0 = P(x ≥ y ≥ z ≥ x) ≥ P(x ≥ y) + P(y ≥ z) + P(z ≥ x)− 2 = 1− p− q − r,

0 = P(x < y < z < x) ≥ P(x < y) + P(y < z) + P(z < x)− 2 = p+ q + r − 2,

Thus, 1 ≤ p+ q + r ≤ 2. The inequalities

(2) 0 ≤ p, q, r ≤ 1, 1 ≤ p+ q + r ≤ 2

define a triangular antiprism in R3, which we will denote by A. Thus, (p, q, r) ∈ A.
In general there are no other restrictions on the vector (p, q, r). (To show this, it suffices

to consider the cases when one of the random variables is constant.) The situation changes
if the random variables are supposed to be independent. The following theorem is our
main result.

Theorem 1. For the (pairwise) independent random variables x, y, z satisfying (1), the
set of possible vectors (p, q, r) is the curved (non-convex) polyhedron Acut cut from the
antiprism A by the inequalities

min{p+ qr, q + rp, r + pq} ≤ 1, min{qr, rp, pq} ≤ p+ q + r − 1.

Note that Acut is a centrally symmetric star body with the center at (1
2
, 1
2
, 1
2
). It is

invariant under all permutations of the coordinates p, q, r.
The assertion of the theorem can be formulated in a different way as follows: given the

probabilities P(x < y) = p and P(y < z) = q, then all possible values of the probability
P(x < z) = 1− r constitute the interval

[min{pq, p+ q − 1

p
,
p+ q − 1

q
}, 1],
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if p+ q ≥ 1, and the interval

[0,max{p+ q − pq, q

1− p
,

p

1− q
}],

if p + q ≤ 1. (These two cases reduce to one another by changing the signs of the
inequalities.)

It is quite remarkable that this theorem appears as a probabilistic interpretation of an
algebraic theorem related to 2-step nilpotent Lie semigroups (see Theorem 3).

Acknowledgements. This work was completed during the stay of the second author at
Bielefeld University in summer of 2018. He thanks this university for its hospitality.

2. Basic objects and formulas

Let g = g(n) denote the free two-step nilpotent real Lie algebra of rank n with genera-
tors ξ1, . . . , ξn, so that the elements

ξi (1 ≤ i ≤ n), [ξi, ξj] (1 ≤ i < j ≤ n)

constitute a basis of it. Let further G = G(n) be the simply connected Lie group with
Lie(G) = g(n). Every element g ∈ G is uniquely represented in the form

g = exp
(∑

i

di(g)ξi +
1

2

∑
i<j

dij(g)[ξi, ξj]
)
.

The numbers di(g) and dij(g) will be called the canonical coordinates of g. For i > j, we
set dij(g) = −dji(g).

It is easy to see that

(3) exp ξ · exp η = exp(ξ + η +
1

2
[ξ, η])

for ξ, η ∈ g (a very special case of the Campbell–Hausdorff formula). It follows that, for
two elements g, h ∈ G,

(4) di(gh) = di(g) + di(h), dij(gh) = dij(g) + dij(h) +

∣∣∣∣di(g) dj(g)
di(h) dj(h)

∣∣∣∣ .
Set xi = exp ξi and xti = exp tξi for t ∈ R. It is easy to see that every element g ∈ G

can be represented in the form

(5) g = xt1i1 . . . x
tm
im
.

It follows from (3) by induction on m that the canonical coordinates of such an element
are

(6) di(g) =
∑

k: ik=i

tk, dij(g) =
∑

k.l: ik=i, il=j

sgn(l − k)tktl.

For this reason, the number di(g) will be called the degree of g in xi, and the vector
(di(g), . . . , dn(g)) will be called the multidegree of g.

It follows from (4) that, if the multidegrees of elements g, h ∈ G are proportional,
then the canonical coordinates of the product gh are just the sums of the corresponding
canonical coordinates of g and h.

Our main object will be the semigroup B = B(n) ⊂ G(n) generated by the elements
xti with t ≥ 0, which can be called the free two-step nilpotent semigroup of rank n. For
n ≥ 3, finding an explicit description of B(n) in the canonical coordinates turns out to
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be an interesting and difficult problem. We shall do this for n = 3. Unexpectedly, this
result can be interpreted in terms of probability theory.

Proposition 1. The semigroup B lies in the body defined by the inequalities

di ≥ 0 (1 ≤ i ≤ n), |dij| ≤ didj (1 ≤ i < j ≤ n).

Proof. For any g ∈ B represented in the form (5) with t1, . . . , tm ≥ 0 we have according
to (6)

di(g) =
∑

k: ik=i

tk ≥ 0, |dij(g)| ≤
∑

k.l: ik=i, il=j

tktl =
( ∑
k: ik=i

tk
)(∑

l: il=j

tl
)

= di(g)dj(g).

�

3. The case n = 2

The following description of the semigroup B(2) is known: see, for example, [1], Section
2.1.

Proposition 2. In the canonical coordinates, the semigroup B(2) is defined by the in-
equalities

(7) d1 ≥ 0, d2 ≥ 0, |d12| ≤ d1d2.

Moreover, every element g ∈ B(2) can be represented in the form

(8) g = xs11 x
t
2x

s2
1 with s1, s2, t ≥ 0.

Proof. According to Proposition 1, all the elements of B(2) satisfy the inequalities (7).
On the other hand, calculating the canonical coordinates of the element (8), we obtain

d1(g) = s1 + s2, d2(g) = t, d12(g) = (s1 − s2)t.
It is easy to see that the equations

s1 + s2 = d1, t = d2, (s1 − s2)t = d12

have a solution in non-negative numbers for any d1, d2, d12 satisfying the inequalities (7).
�

Some authors call B(2) the Heisenberg beak.

4. Automorphisms

The following transformations of the generators x1, . . . , xn extend to automorphisms of
the group G leaving invariant the semigroup B:

1) any permutation of x1, . . . , xn;
2) any transformation µ(c1, . . . , cn) : xi 7→ xcii with c1, . . . , cn > 0.
It is clear that

(9) di(µ(c1, . . . , cn)g) = cidi(g), dij(µ(c1, . . . , cn)g) = cicjdij(g).

We set for brevity

g(c) = µ(c. . . . , c)g.

for c > 0. Obviously,

(10) di(g
(c)) = cdi(g), dij(g

(c)) = c2dij(g).
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Similarily, one can define the transformation µ(c1, . . . , cn) for any c1, . . . , cn ≥ 0. This
will be an endomorphism of the group G taking the semigroup B into itself.

For the element g ∈ G given by (5), the element

(11) g> = xtmim . . . x
t1
i1
∈ G

will be called the transpose of g. It is easy to see that

(12) di(g
>) = di(g), dij(g

>) = −dij(g)

In particular, this shows that the element g> does not depend on the expression of g in
terms of the generators. The map g 7→ g> is an antiautomorphism of the group G leaving
the semigroup B invariant.

5. The section

It follows from (9) that if all the degrees di(g) are strictly positive, then by means of an
automorphism of the form µ(c1, . . . , cn) the element g is equivalent to a unique element
of multidegree (1, . . . , 1).

Let us call the section of B and denote by B1 = B1(n) the set of all elements g ∈ B of
multidegree (1, . . . , 1). The following proposition shows that the semigroup B is uniquely
reconstructed from B1.

Proposition 3.

B =
⋃

c1,...,cn≥0

µ(c1, . . . , cn)B1.

Proof. Obviously, B ⊃
⋃

c1,...,cn≥0 µ(c1, . . . , cn)B1. Conversely, take any g ∈ B. Assume
for deficiency that

di(g) = ci > 0 for i ≤ k, di(g) = 0 for i > k.

Then g = µ(c1, . . . , ck, 0, . . . , 0)g1, where

g1 = µ(c−11 , . . . , c−1k , 1, . . . , 1)gxk+1 . . . xn ∈ B1.

�

Theorem 2. In the canonical coordinates dij, the section B1 is a centrally symmetric

star body in R
n(n−1)

2 contained in the cube

(13) |dij| ≤ 1 (1 ≤ i < j ≤ n).

Proof. Note that, for any element g represented as a palindrome in x1, . . . , xn, we have
g> = g and, hence, all the coordinates dij(g) are equal to zero. Taking any palindrome

of multidegree (1, . . . , 1) (for example, x
1/2
1 . . . x

1/2
n−1xnx

1/2
n−1 . . . x

1/2
1 ), we obtain an element

g0 ∈ B1 with all dij(g0) = 0, i.e. the origin of the coordinate space R
n(n−1)

2 .
For any g ∈ B1 we also have g> ∈ B1. In view of (12), this means that B1 is centrally

symmetric.
Making use of (10) and (4), for any g ∈ B1 and 0 < c < 1 we obtain

h = g(c)g
(1−c)
0 ∈ B1

and
dij(h) = c2dij(g).
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This shows that B1 is a star body.
The last assertion of the theorem follows from Proposition 1. �

6. The probabilistic interpretation

Definition 1. A word in x1, . . . , xn of pattern [xi1 , . . . , xim ] is a sequence w = (xt1i1 , . . . , x
tm
im

)
with t1, . . . , tm ∈ R. It is called non-negative, if t1, . . . , tm ≥ 0, and normalized, if∑

k; ik=i tk = 1 for each i.

The product
g(w) = xt1i1 . . . x

tm
im

is an element of the group G, which belongs to B, if the word w is non-negative, and to
B1, if, moreover, it is normalized.

To each normalized non-negative word, one can associate n random variables, which we
will denote by the same letters x1, . . . , xn as the generators of G, assuming that xi takes
the value k with probability tk, if ik = i, and 0 otherwise. We will suppose that these
random variables are (pairwise) independent. Then the formula (6) means that

dij(g(w)) = P(xi < xj)−P(xi > xj) = 2P(xi < xj)− 1.

Making use of this interpretation, one can prove

Proposition 4. The elements of the section B1 satisfy the inequalities

(14) |dij + djk + dki| ≤ 1 (1 ≤ i, j, k ≤ n).

Proof. Since xi < xj and xj < xk implies xi < xk,

P(xi < xk) ≥ P(xi < xj) + P(xj < xk)− 1

and, therefore,
dik ≥ dij + djk − 1

or, equivalently,
dij + djk + dki ≤ 1.

Similarly, one can prove that

−(dij + djk + dki) = dik + dkj + dji ≤ 1.

�

Remark 1. Nothing will change, if we take any increasing sequence a1, . . . , am instead of
1, . . . ,m for values of our random variables.

7. The case n = 3

From now on, we assume that n = 3. For more convenience, set

x1 = x, x2 = y, x3 = z.

Besides, assuming that d1 = d2 = d3 = 1, we will use the probabilistic coordinates p, q, r
defined by

(15) d12 = 2p− 1, d23 = 2q − 1, d31 = 2r − 1,

instead of the canonical coordinates d12, d23, d31. For an element g ∈ B1 represented by a
normalized non-negative word, they have the following sense:

(16) p = P(x < y), q = P(y < z), r = P(z < x).



6 H. ABELS AND E.B. VINBERG

In the probablistic coordinates, the inequalities (13) and (14) take the form

(17) 0 ≤ p, q, r ≤ 1, 1 ≤ p+ q + r ≤ 2.

They define a triangular antiprism A with the center (1
2
, 1
2
, 1
2
). The central symmetry is

given by

(p, q, r) 7→ (1− p, 1− q, 1− r).

Proposition 5. All the side faces of the antiprism A (coming from the faces of the cube
0 ≤ p, q, r ≤ 1) lie in B1.

Proof. By symmetry, it suffices to consider just one side face. For the face F lying in the
plane p = 1, the proof is achieved by a direct calculation of the probabilistic coordinates
of the elements g ∈ B1 represented by normalized non-negative words of pattern [zxyzy],
i.e. of the products of the form

(18) g = zsxytz1−sy1−t with 0 ≤ s, t ≤ 1.

Namely, we have

p = 1, q = t(1− s), r = s,

and it is easy to see that every point of F is obtained for some admissible values of s, t. �

Proposition 6. The elements of B1 represented by normalized non-negative words of
patterns [xyzy], [yzxz], [zxyx] lie on the side edges of A (which are edges of the cube
0 ≤ p, q, r ≤ 1).

Proof. By symmetry, it suffices to consider the products of the form xytzy1−t (0 ≤ t ≤ 1).
They are just the products (18) with s = 0, so their probabilistic coordinates are 1, t, 0. �

Proposition 7. The intersection of A with each of the quadric surfaces

(19) p+ qr = 1, q + rp = 1, r + pq = 1

lies in B1.

Proof. For the surface p+qr = 1, the proof is achieved by a calculation of the probabilistic
coordinates of the normalized non-negative words of the pattern [xyzxy]. Namely, for

(20) g = xsytzx1−sy1−t with 0 ≤ s, t ≤ 1

we have

p = 1− t+ st, q = t, r = 1− s,
and it easy to see that every point of the intersection of A with the surface r + pq = 1 is
obtained for some admissible values of s, t. �

The plane p+q+r = 3
2

parallel to the bases of the antiprism A divide it into two parts,

say A+ and A−, the former being defined by the inequality p + q + r ≥ 3
2

and the latter
by the opposite inequality. They are symmetric to one another with respect to the center
of A.

Proposition 8. The intersection of A with the surface

(21) min{p+ qr, q + rp, r + pq} = 1

strictly lies in A+.
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Proof. Let the point (p, q, r) ∈ A satisfy (21). Assume that p ≤ q, r. Then p + qr ≤
q + rp, r + pq, so p+ qr = 1 and

p+ q + r ≥ p+ 2
√
qr = p+ 2

√
1− p.

It is easy to see that the function f(t) = t+ 2
√

1− t is decreasing on [0, 1] and f(1
2
) > 3

2
.

Thus, if p ≤ 1
2
, we are done. But if p > 1

2
, then also q, r > 1

2
and, hence, p+q+r > 3

2
. �

Cut the ”upper” base of A lying in the plane p+q+r = 2, along the surface (21). Then
we shall obtain three curved quadrilateral faces instead of the former plane triangular face.
Each of them contains one vertex and halves of two sides of the former face, and all three
new faces intersect in one point. Making use of the central symmetry, let us do the same
with the ”lower” base of A. As a result, we shall obtain some curved polyhedron with
6 plane triangular faces and 6 curved quadrilateral faces. Denote it by Acut. According
to the above, the boundary of Acut is contained in B1. Since B1 is a star polyhedron, it
follows that Acut ⊂ B1.

Let Ap, Aq, Ar be the bodies defined in A by the inequalities

(22) p+ qr ≤ 1, q + rp ≤ 1, r + pq ≤ 1,

respectively, and A′p, A
′
q, A

′
r be symmetric to Ap, Aq, Ar with respect to the center of A.

It follows from Proposition 8 that

Ap ∪ Aq ∪ Ar ⊃ A−, A′p ∪ A′q ∪ A′r ⊃ A+

and

(23) Acut = (Ap ∪ Aq ∪ Ar) ∩ (A′p ∪ A′q ∪ A′r).

Theorem 3. B1 = Acut.

Proof. For each t ≥ 0, define a map

Lx(t) : B1 → B1

as the left multiplication by xt with the subsequent dividing all the exponents of x by
1 + t, which makes the total degree in x equal to 1. In the coordinates p, q, r it looks as
follows:

(24) (p, q, r) 7→ (
p+ t

1 + t
, q,

r

1 + t
, ).

In a similar way, define Ly(t) and Lz(t).
Clearly, any element of B1 can by obtained by a consecutive application of maps

Lx(t), Ly(t), Lz(t) to the elements considered in Proposition 6. Thus, it suffices to prove
that Acut is invariant under all these maps. By symmetry, it suffices to prove this for
Lx(t) only.

Note that the permutation of y and z, which obviously commutes with Lx(t), acts by
the formula

(p, q, r) 7→ (1− r, 1− q, 1− p)
and, hence, takes Ap, Aq, Ar to A′r, A

′
q, A

′
p, respectively. In particular, it takes Ap∪Aq∪Ar

to A′p∪A′q∪A′r. In view of (23), it follows that it suffices to prove that the body Ap∪Aq∪Ar

is invariant under Lx(t).
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If (p, q, r) ∈ Ap, i.e., p+ qr ≤ 1, then

p+ t

1 + t
+

qr

1 + t
=
p+ qr + t

1 + t
≤ 1,

so the body Ap is invariant under Lt(x).
If (p, q, r) ∈ Ar, i.e., r + pq ≤ 1, then

r

1 + t
+

(p+ t)q

1 + t
≤ r + pq + t

1 + t
≤ 1,

so the body Ar is also invariant under Lt(x).
Let now (p, q, r) ∈ Aq, i.e., q + rp ≤ 1. Then

q +
r(p+ t)

(1 + t)2
≤ 1 for p ≥ 1

2
,

since under the latter condition p+t
(1+t)2

≤ p.

Finally, let (p, q, r) ∈ Aq, but p < 1
2
. Let us prove that in this case Lx(t)(p, q, r) ∈ Ap.

Assume that p+ qr > 1. Then

p2 − q2 = p(p+ qr)− q(q + rp) ≥ p− q,

whence p ≥ q (since p + q ≥ p + qr > 1). Thus, q ≤ p < 1
2
. But then p + qr ≤ 1, a

contradiction. �

8. Proof of the main theorem

Making use of the probabilistic interpretation (16) of the coordinates p, q, r, one can
deduce Theorem 1 from Theorem 3.

If x, y, z take only finitely many values and the sets of their values are disjoint, the
assertion directly follows from Theorem 3 (see also Remark 1). In particular, we obtain
that any vector of Acut serves as (p, q, r) for suitable random variables x, y, z (taking only
finitely many values).

Thus, it remains to prove that (p, q, r) ∈ Acut for any independent random variables
x, y, z satisfying (1). This will be achieved by approximation.

Let us first get rid of the restriction that the sets of the values of x, y, z are disjoint
(though assuming that the intersection of all of them is empty). Suppose that, say, x and
y take some value a with positive probabilities. Consider a new random variable x′ taking
the value a′ > a each time when x takes the value a, and being equal to x in all the other
cases. If a′ is close enough to a, then

P(x′ < y) = P(x < y) and P(z < x′) = P(z < x).

Proceeding in this way, in several steps one can obtain new random variables, whose sets
of values are disjoint, without changing the probabilities p, q, r. Thus, the assertion of
Theorem 1 is true for any random variables taking only finitely many values, provided
that the condition (1) holds.

Let now x, y, z be arbitrary independent random values satisfying the condition (1).
Take any n ∈ N and consecutively determine numbers a1 < a2 < . . . such that for any
u ∈ {x, y, z} and any i

P(ai−1 < u < ai) ≤
1

n
,
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assuming that a0 = −∞, and for any i there exists u ∈ {x, y, z} such that

P(ai−1 < u ≤ ai) ≥
1

n
.

Clearly, the process will stop at some am with m ≤ 3n, and for any u ∈ {x, y, z} we shall
have

P(am < u < +∞) ≤ 1

n
.

Choose three different points xi, yi, zi in each interval (ai−1, ai) for i = 1, . . . ,m,m+ 1
(assuming that am+1 = +∞) and consider new random variables x′, y′, z′ taking the values
ai with the same probabilities as x, y, z and the values xi, yi, zi with probabilities

P(ai−1 < x < ai), P(ai−1 < y < ai), P(ai−1 < z < ai),

respectively. Representing the line as a disjoint union of the intervals (ai−1, ai) and points
ai, we see that

|P(x < y)−P(x′ < y′)| = |
m+1∑
i=1

P(ai−1 < x < y < ai)− εiP(ai−1 < x < ai)P(ai−1 < y < ai)| ≤
3n+ 1

n2
,

where εi = 1, if xi < yi and 0 otherwise. Similar inequalities are obtained for |P(y <
z)−P(y′ < z′)| and |P(z < x)−P(z′ < x′)|.

Thus, the point (P(x < y),P(y < z),P(z < x)) can be approximated by points of Acut

and, hence, lies in Acut.
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