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The Wong-Zakai type approximation problem has been intensively studied, since it
was first investigated by Wong and Zakai ([26]) for SDEs driven by one-dimensional

Brownian motion. It states that when replacing the driven noise by a suitable
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smooth approximation (for example, piecewise linear approximation or convolu-
tion with a mollifier) and making a drift correction in the equation, the solutions
to the approximating equations converge to the solution to the original SDE. Sim-
ilar results have been extended to the multidimensional case (see, e.g. [27]). In
infinite-dimensional case Wong-Zakai type approximation has also attracted a lot
of attention. In [25] K. Twardowska claimed the convergence of Wong-Zakai ap-
proximation for infinite-dimensional equations with usual monotone and coercive
coefficients. I. Chueshov and A. Millet in [5] studied Wong-Zakai approximation
for stochastic 2d hydrodynamical systems, which can be applied to stochastic 2d
Navier-Stokes equations. In [9, 10], I. Gyongy, A. Shmatkov and P. R. Stinga
obtained the rate of convergence for the Wong-Zakai approximation by estimating
the convergence rate of the corresponding approximating noise.

However, most papers in the literature consider Wong-Zakai approximation for
semi-linear equations in infinite dimensional case. In [9, 10, 25, 27] only SPDEs
with monotone coefficients were considered. M. Hairer and E. Pardoux in their
recent work [14] mainly concerned semi-linear SPDEs driven by space-time white
noise with spatial variable in one dimension. Many interesting nonlinear equa-
tions have been studied a lot recently, especially quasi-linear equations, includ-
ing stochastic porous medium equations and stochastic p-Laplace equations. We
would like to know whether Wong-Zakai approximation results hold for these equa-
tions. For this purpose, we extend the Wong-Zakai approximation theorem to a
class of nonlinear SPDEs driven by trace-class noise, where the coefficients satisfy
local monotonicity condition, which can cover all the above nonlinear SPDEs (see
Theorem 2.6). In fact, our main results can cover the results in [5] and stochastic
2d Navier-Stokes equations of course, if we choose the Gelfand triple V C H C V*
as in [5] and define a function p(-) on V appropriately (see Section 3.1).

For PDEs and SPDEs with monotone coefficients, the variational framework
is a basic approach for studying existence and uniqueness of the solutions to the
equations, especially for those that are not semi-linear. A big difference from
the semigroup approach (see [6]) is that the variational approach has no need of
the semigroup generated by a linear operator in the drift term. This variational
framework was initiated in the pioneering work of E. Pardoux [22] and further
developed in studying equations with martingales as integrators in the noise term
(e.g. [8, 11, 13, 15, 21]). In all the papers mentioned above, the coefficients satisfy
the standard monotonicity and coercivity conditions ([15, 21]). Recently, this
framework has been substantially extended by W. Liu and M. Rockner [16, 17]
for a more general class of SPDEs, for which the monotonicity condition holds
locally. Hence some more interesting examples, e.g., stochastic 2d Navier-Stokes

equations, stochastic Burgers type equations can be covered in this framework.



We prove the Wong-Zakai approximation theorem under their framework.

Furthermore, the approximation theorem provides a description for the Stroock-
Varadhan characterization (see [23]) of the topological support of the solutions to
SDEs and SPDEs. The support theorem has been studied for SDEs in [12, 27]. For
mild solutions to semi-linear equations, by properties of the corresponding semi-
group for the linear operator, similar results have been obtained in [20] for SDEs
in Hilbert spaces and [2, 3] for parabolic SPDEs. By [12, 18, 19] it is standard to
conclude the support theorem using Wong-Zakai approximation theorem. Since
the Wong-Zakai approximation results have been extended to the local monotonic-
ity framework, we can also describe the support of the solutions to SPDEs under
this framework (see Theorem 4.4).

The paper is organized as follows. In Section 2 we describe our framework
introduced in [16] and then obtain the main approximation results in Theorem
2.6. In Section 3 we discuss examples satisfying our assumptions. In Section 4 we
characterize the support of the distribution for the solutions. Appendix contains
the proof of Lemma 4.1, which can be applied to obtain Theorem 2.4 for the

existence and uniqueness of solutions to the approximating equations.

2 Framework and main result

Let (H, (-, -)) be a separable Hilbert space and identified with its dual space H* by
the Riesz isomorphism, and let (V, (-, -)y/) be a Hilbert space which is continuously

and densely embedded into H. Then we have the following Gelfand triple
VcH=H"CV”*
where V* is the dual space of V. It follows that
v«(h,v)y = (h,v), forallhe HyveV. (2.1)

Let {W(t) }+>0 be a cylindrical Wiener process in a separable Hilbert space (U, (-, -)r)
on a complete filtered probability space (£, F, (F)i>0; P), where (F;)i>o is the
normal filtration generated by W. Let (Ly(U; H), || - ||1,) denote the space of all
Hilbert-Schmidt operators from U to H. We consider Wong-Zakai approximation

for the following stochastic evolution equation on H:
dX(t) = A(t, X (t))dt + B(X(t))dW (t), (2.2)
where for any fixed time 7" > 0, the maps
A [0,T|xVxQ—=V*" B:HxQ— (L(U;H), | - |lL,)

are progressively measurable.



We now define an adapted finite-dimensional approximation of the process W.

In fact, we have the representation
ZB] e;, tel0,T) (2.3)

where ;s are standard independent real-valued Brownian motions and {e;,j > 1}

is an orthonormal basis in U. For n € N, we set § = L and define

Zé 155(19) — B3] Zﬁ” e te0,T]. (24)

Here and in the following for s € [0,T], |s]| denotes the largest integer which is
no more than s, and [s| denotes the smallest integer which is larger than s. We
always set 3;(t) = 0 for t <0 and j3;(t) = B;(T) for t > T; so ;(t) =0 for t > T.
Then ,B.J’f‘(t),j —=1,...,n are Fr-adapted and so is W"(t).

For j =1,...,n,let B; : H — H be defined by Bj(u) = B(u)e;, u € H. We
assume that for each j, B; is Fréchet differentiable with its derivative denoted by
DB;: H— L(H,H). Then we define the map

tro: H— H, try(u ZDB uweH. (2.5)

Consider the following approximating equations

AX"(t) =A(t, X™(t))dt + B(X"(£))W"(t)dt — %ﬁn(xn(t))dt
X"(0) =¢,

(2.6)

with W, tr, defined in (2.4) and (2.5), and the initial value £, the condition of

which will be given later.

Below we give the main assumptions and notations.

2.1 Assumptions and Notations

Assumption 1. There exist constants K > 0, a > 1,0 > 0, 8 > 0 and a
nonnegative adapted process f € Lz([0,T] x Q;dt @ P) with p > B + 2 such that
the following conditions hold for all vi,ve,v € V', uy,us,u € H, t € [0,T].

(H1) (Hemicontinuity) The map X — v« (A(t,v1 + Ava),v)y is continuous on R.
(H2) (Local monotonicity)
20 (A(t,v1) = Alt, v2), 01 = va)v < (f(t) + plva))l|vr — w27,
1B(ur) = Bluz) |17, < p'(us)llur — usll3,

where the functions p on'V and p' on H are measurable.
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(H3) (Coercivity)
v+ (A(t, v), v)y < Kl[v||F = 0l|v]l§ + f(1).
(H}) (Growth) )
P < (FO) + KIS (1 + (vl ),
IBu)ll7, < K(1+ [lullf),
p(v) < K1+ [[ol$) (1 + [[ollF), #'(w) < K1+ [[ullf).

[A(¢, )]

Remark 2.1. As we have mentioned in Introduction, Assumption 1, which origi-
nated from [16], is a general framework for the existence and uniqueness of solution
to equation (2.2). Under this framework, well-posedness of a lot of interesting
semi-linear and quasi-linear SPDEs have been obtained. Here we consider the
terms A and B separately in (H2), which is a little different from that in [16]. But
the same examples as in [16] can still be covered. This is required for obtaining
existence and uniqueness of solutions to approximating equations (2.6), since we
consider (2.6) as deterministic equations (the diffusion coefficient is 0) and we need
to estimate the drift parts A and BW™ separately. More details can be found in
proving Theorem 2.4.

For our approximation results, similarly as in [5], we give some regularity

assumptions on the diffusion coefficient B.

Assumption 2. For each j € N, the map B; is twice Fréchet differentiable with its
second Fréchet derivative denoted by D*B; : H — L(H,L(H,H)) ~ L(H x H, H),
and satisfies that

(P1) for any N > 0, there ezists a positive constant C(N) such that

sup sup {||DB;(w)|limy V1Bl V|1 D*Bj(w)| Lixmm} < C(N),

JEN [lullg<N
DBily:V =V, sup sup |[|DBj(u)* |y < C(N)|vlly, veV,
JEN [lullE <N
and for m € N,
lim sup HB(U) _B(u)onHLQ :07

M7 ul| g <N

where 11, denotes the orthogonal projection onto U,, := span{ey,--- ,en}
inU, i.e. I =" (x,e)ve;, v € U. DB;(-)* denotes the dual operator
of DB;(-).

(P2) there exists a constant C' > 0 such that for every n € N and u,uy,uy € H
[tra()lF < O+ Jlullz),

(tro(us) — tro(ur), wy — ug) < p'(u2)||ur — |,

where p' is given by (H4).



Assumption 2 is used to obtain well-posedness of the approximating equations
(2.6), which is similar as the conditions for Wong-Zakai approximation in the lit-
erature (e.g. [14, 25-27]). We will give examples for which Assumption 2 holds in

Section 3.

We recall the following definition from [16].

Definition 2.2. (cf. [16, Definition 1.1]) A continuous H-valued (F;)-adapted
process (X (t))scpo,r is called a solution to equation (2.2), if for its dt®@P-equivalence

class we have

X € Lo([0,T] x Q;dt @ P; V),

with @ > 1 in (H4) and P-a.s.
X(t) = X(0) +/O A(s, X(s))ds +/O B(X(s))dW (s) , t €[0,T]. (2.7)

The following conclusion is proved in [16].

Theorem 2.3. (¢f. [16, Theorem 1.1]) Suppose that Assumption 1 holds, then if
further & € LP(Q), Fo,P; H) with p in Assumption 1, there exists a unique solution
(X (t))ieo.r) to equation (2.2) such that X (0) = £ P-a.e. and

T

B( sup X0+ [ X)) < o (28)
te[0,7) 0

Under Assumptions 1 and 2, we similarly obtain existence and uniqueness of

solutions to approximating equations (2.6).

Theorem 2.4. Suppose that & € LP(Q), Fo,P; H) with p > {-%5 V (B + 2)} in
Assumption 1, then under Assumptions 1 and 2, there exist unique solutions
(X™(t))ieo,n) to equations (2.6) satisfying X™(0) = & P-a.e. and

t

X"(t) zf—i-/ A(S,X”(s))ds—i—/o B(X"(s))W”(s)ds—%/O tro(X"(s))ds.

0
Moreover,

sup E( sup ||X”(t)||’1’1,—i—/0 | X" ()| 5dt) < oc. (2.9)

n>1  te[0,T]

This is a special case of Lemma 4.1. Comparing with Theorem 2.3, we add in
Theorem 2.4 the assumption p > -2+, which ensures that the drift parts B W, tr,

and A stay in the same space. More details can be seen in Appendix.



2.2 Main Result

We first recall the following result from [5, Lemma 2.1], which is prepared for our

proof.

Lemma 2.5. Let T' > 0, then there exists a constant vo > 0 such that for every
Y > ’70/@7 te [OJT]7

lim P( sup sup |87(s)| > yn'/?2"/?) = 0,

n—oo M <j<n s<t

. 2.10
lim P(sup [[W"(s)||v > yn2"/?) = 0. (2.10
n—oo Sét
Now for N >0 ,neN, v > ’Yo/\/i we define the stopping times:
¢
=it {t € 0,7) 1X(8)|n +/ (f(5) + 1X()[§)ds > N} AT,
0
¢
3= int {1 € 0.7]: | X"(0)]ln +/ X (s)pds > N} AT,
0
73 = inf {t €[0,T]: [ sup sup |B;1(3)H
s€[0,t] 1<j<n
Y% [n_l/z sup ||W"(s)||U} > 7n1/22”/2} AT,
s€[0,t]
and
Tp.N i= T](Vl) A TSJ)\, AT, (2.11)

Then by (2.8), (2.9) and (2.10), it is obvious that

lim P(ry =7) = L; lim P(7) = T) = 1;

N—oo

lim P(Tff])\, = T) =1 uniformly for n € N.

N—oo

Below we state the Wong-Zakai approximation results.

Theorem 2.6. Suppose that & € LP(Q), Fo,Ps H) with p > {25 V (8 + 2)} in

Assumption 1, and that Assumptions 1 and 2 hold. Let X and X" be the solutions

to equations (2.2) and (2.6) with the same initial condition &, respectively. Then
lim E( sup [|X(¢) — X"(t)||3) = 0. (2.12)
N0 ¢e0,T]

Remark 2.7. When comparing X" with X, the most significant difference is that

the term [, B(X "(s))W"(s)ds cannot be expressed as stochastic integral directly.

Instead, we consider an additional term as follows. Using the identity f(f =



k 0 kfﬂ M and (2.4), we plus and then minus for correctness on the right-

hand side of (2.6)

| o5 = o s)as
5] (k1)one ko
_ Z/k ds%/( B(X"((k — 1)§) L, dW (u)

5 k—1)5

(k+1)SAt
/ . 5/ B(X"((k — 1)8))du) LWV (s) (2.13)

£14+1)6
/ iy 5/]5 Husny BIX" (L5 Jd))du)n dW (s)

(I$1+1)0 s
:/0 (5/&?16 s du) BOX(|210))TL,d Y (s),

where we used stochastic Fubini’s theorem in the second equality. To obtain the

last equality we added an extra term in the third equality
t 1 U514 s
[oG [ e Boe (Sl s),
t (5 s 5
L0 [516

which is equal to 0 since [£]d > ¢ for any s € [[£]0,¢]. In our proof of Theorem
2.6 below, we actually use the term in (2.13) instead of fot B(X"(s))W"(s)ds to
compare with the corresponding diffusion term fg B(X(s))dW (s) in (2.2).

Proof of Theorem 2.6. 1t is sufficient to prove that for N > 0 large enough,

lim E( sup [|X(t) — X"(t)||7;) =0 (2.14)

oo tG[O,T"’N}

with 7,, ;v given in (2.11). In fact, set Q, v :={w € Q: 7, x =T}, N > 0, using
Holder’s inequality

"S\M

=2 n
E( sup lo: [X(t) = X"(0)[[}) <P(n) 7 E( sup [|X () — X"(6)]F)
t€[0,T) te[0,T)
Then (2.8), (2.9) and (2.11) imply that for any € > 0, there exists a constant IV,
(independent of n) large enough such that the term on the right-hand side of the
above inequality is smaller than €/2 for n large enough. Fix such N, we choose as

above, we still denote it by N and denote 7, 5 by 7, for simplicity. Hence
E( sup [X() X0 ) =E( sup [lag , + Lo, JIX(0) - X"(0]%)
te[0,T] t€[0,T7]

<e/2+E( sup X))~ X"(0)[%).

te[0,7n]



Following the definition of 7, for some fixed constant v with v > ~y/ VT, there
exists a constant C(N) such that for all t € [0,7,] and j=1,...,n

X Ol + X" @Ol < C(N), /0 (IXIT + X" ()] )ds < C(N),  (2.15)

B+ n 2 o < 29n/2272, (2.16)

This property will be used repeatedly throughout this section. Constants may
change from line to line, but we indicate their dependence on parameters when

necessary. By (2.13) we obtain the following decomposition

X%ﬂ—X@%if<M&X%Qy—M&X@»%w
+AX%%®HmhmmMBMW§MMM—MX@DMWQ

510

S

# [ ([BOX ) — BOCS = 09IV (6) = 5 (X7 ) ds
Now applying Itd’s formula ([17, Theorem 4.2.5)) for X™(t) — X (t), we obtain
I1X7(6) = X (1)
= [ (2 A X 60) = A X)X 5) = X))

1 Us1+s 5
+I( / Liusiydu) BIX™ (| 5]0)) T — B(X(5))[2,ds

s [316
1 51408 <
F2X7) = X0 [ [ L) BOC(S9)L — B ()

S

FABOC(S) = BOX(LS] = DONII(s) = 5l X" (), X7(5) = X (s))ds ).

(2.17)

=1

Then the procedure of estimate to (2.17) will be mainly divided into three steps.
Step 1: We will obtain that there exists o(1) "= 0 such that

IE( sup (||X"(t) _X(t)H?{))

te[0,7n]
<E( su t4<[B(X"(S)) — B(X"((|2] - Do) (s)
(te[o,lgn]/o : 0 (2.18)
= SIra(X"(3)), X"(s) = X(s))ds) + o(1)
+2( 72006+ X6 + 72X IX7(6) = X (o) ).
Step 2: We will prove the right-hand side in (2.18)

lim E{ su t([B(X"(S)) — B(X"((|2] - 18)W"(s)
n—00 <te[0,IT)n} /0 0 (2.19)

—%74X%$%X%Q—X@»%>:0
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Then inserting (2.19) into (2.18), there exist constants A, "—= 0 such that

IE( sup ||X"(5)—X(5>H%{>

SE[0,tATR]

tATH (2.20)
<A B( [ 2009 + o006 + T2 (XD IX"(6) = X)),

Step 3: Set F(t) := sup,cpq IX"(s) — X (s)|7, Z(t) := fg2(f(s) + p(X(s)) +
720/(X(s)))ds for t € [0,T]. Then F and Z are adapted, nonnegative and con-
tinuous. By (2.11) and (H4) we have a constant C'(N) such that Z(t) < C'(N)
uniformly for ¢ € [0, 7,]. Then we rewrite (2.20) as

E(F(r) < AﬁE(/j F(s)dZ(s)).

By [7, Lemma 2.2] we have

Tn , C'(N)
E(/ F(s)dZ(s)) < Ane® (N)/ e Ydy,
0 0

n—oo

and by (2.20) we obtain that E(SuPte[o,rn] F(t)) == 0. The proof is completed.
[

Below we prove (2.18) and (2.19) successively.

Proof of (2.18). We denote the four terms on the right-hand side of (2.17) by
D, (t,i),i=1,..., 4 respectively, i.e.

X" () = X ()l = ZDn(t,i)- (2.21)
For D,(t,1), by (H2) we have

Dn(tl)ﬁ/o (f(s) + p(X () X"(5) — X ()l 3ls. (2.22)

For D,,(t,2), we first see that D, (s,2) is dominated for uniform s € [0,¢ A 7,,] by

thr 1 (31418 5 ,
/ 2l (L / Lsinny ) BOX(|218)I, ds
5
tATh
[ SIBOC )L, - BOCG) I, ds
0 (2.23)

+/0 Tn4||B(X"(L§J5))—B(X”(S))H%gds
N / TSIBCX(s)) - B(X(s))R,ds.

In (2.23), the first term is dominated by th/\T" |B(X™([£]6))]17,ds, which by

tATRL—20
(H4) and (2.15) converges to zero. By (P1) and (2.15) we see that the second

10



term also converges to zero. It is required that the third term converges to zero
and that the convergence rate is 6/2*¢ for € > 0 (see Lemma 2.8 below). Then by
Lemma 2.8, (H2), (H4) and (2.15), we have for the third term in (2.23)

n—oo

lim E( / CIBC(219) — B () ads) =0

Using (H2) for the forth term in (2.23) and putting all these estimates together,
we deduce that there exists o(1) "= 0 such that

JE( sup Dn(t,2)> §0(1)+E</0m 8p'(X<s))HXn(t)—X(t)ufth). (2.24)

t€[0,7]

For D, (t,3), using the B-D-G inequality, E(sup,c( ., |Dn(t,3)

) is dominated by

E<4 sup || X" (t) — X (t)||u

tel0,m]
L U S 2 7.11/2
LG [t BOCO(S 0, ~ BOX ), d52)
0 [516

By Young’s inequality, we further obtain that

E( sup |D,(t,3)]) <

t€[0,7n]

E( sup || X"(t)—X(®)||})+8E( sup [Dy(t,2)]). (2.25)

tE[O,Tn} t€[077-n]

N | —

Hence inserting (2.22), (2.24) and (2.25) into (2.21), we obtain (2.18). O

Lemma 2.8. Let 7, be defined by (2.11), then under the assumptions in Theorem
2.0, there exists a constant C(N, T, || f||1»/2) such that

E(/OT" ”X(S) - X(\%J(S)H%{ds) < C(N7 T, HfHLp/2)2_%n’

. (2.26)
n n S —3n
B( [ 1K) = X5 1)lfuds) < CONT, )2
Remark 2.9. Actually, in a similar way we obtain the results below:
" S 2 —3n
E( [ 1X(s) = X(13) = 1D9)lfds) < COVT )27,
0 (2.27)

N

Tn S s,
B( [ 1X(6) = XU19)ds) < VT2
The results also hold when X is replaced by X™ in (2.27).

Proof of (2.19). The main idea is to find a suitable term from [B(X™(s)) —
B(X™(([5] - 1)6))]W"(s) to compensate the correction term —%t?n(X”(s)) For
this purpose, by (2.4) and (2.5) we equivalently write

tro (X" = Xn: DB;(X™)B;(X"), B(X")W" = En: B;(X™)Br. (2.28)

11



Since for j € N, B, is twice Fréchet differentiable, we apply the second-order

Taylor’s formula to B; and have
B,(X"(s)) = By(X"((|5] = 1)9))
=DB;(X"((|5] = DODIX"(s) = X"((|5) = 1)3)]
b [ 0= DB X6 + (- XS] - 1)
{X"(s) = X"(15] = D8). X"() = X"((| 5] = Do)},

where D?B;(v){v1, va} denotes the value of the second Fréchet derivative D?B;(v)
on elements v; and v,. We rewrite the term X"(s) — X"(([3] —1)d) in (2.29) as
f(ngj—l)a X"(u)du, with X" formulated by (2.6). Then X"(s) — X™(([5] = 1)6)

equals to

(2.29)

s . 1~
/ (A(u, X™(uw)) + B(X™(w))W"™(u) — Etrn(X”(u)))du. (2.30)
(131-1
Using (2.4) and the second equality in (2.28), the term f(sm—n(s B(X™(uw))W"(u)du
o

in (2.30) equals to

n

. s |
EAIEEIY

q=1 %J_l)a

510

By(X"(u))du + B;j(s)/L J By(X™(u))du]. (2.31)
)5
5

Then inserting (2.28)-(2.31) into (2.19), we have the following decomposition:

[ B () = B3] = DI () = 5 (X7(5)

6 (2.32)
X"(s) — X(s))ds = Z Jo(t,4),
with
Z (DB (X™((|2 J—l) )

Jlo

/8 A, X™(u)), X™(s) — X (s))duds,
([31-1)é

L(6,2) Zz/ﬁn (5]~ DADB(X([5] - 1)9))

Jj=1 g=1

L5]6
/ B, (X" (u))du, X"(s) — X(s))ds,
(L31-1)é

=3 Y [ HekewEBeE - 1)

J=11<g<n,q#j

/L SM By (X" (u))du, X" (5) — X (s))ds,

s
o

12



(6,4) Z / (335 DB, (X (2] - 19)) / B,(X"(u))du

[3]0
— SDB,(X"(5)) B (X"(5)), X" (s) — X(5))ds

15) == 53 [ BEHDBE LS - 19)
/ (X" (w)du, X7(s) — X(5))ds,
(L5)-1

=3 [ B[ @D B+ (- X - 09

j=1"0
n n n n S n
{X"(s) - X ((LSJ = 1)0), X"(s) = X"((L5] = 1)9)}, X"(5) — X(s))ds.
In the following we estimate each term separately.

Estimate of J,(¢,1): By (2.1) and (P1) we obtain an equivalent representation

A(1,1) z/ is /L A X )
DB,(X"((L2] = 1) [X"(5) — X(s)]}vuds.
Then by (2.16) and (P1) we have

E( sup |Jn(t,1)|>

te[0,7n)

ZE</0 Wn [/(S ||A(U,X”(U))||‘%du]“7_l

l5]-1)é

I =X >||%duﬁds)

(L§]-1)d

<O 2" (E / ds/ Ly, U+ R g)du) © 5

(2.33)

a—1

<ot (5 [ (f) + X )H‘“v)du) "ok
<O, | )22,

Here we used (H4) and Holder’s inequality in the second inequality, and in the

third inequality by stochastic Fubini’s theorem we used

B( [ / [, U Xl d)

L5 (k)5 (k+1)6ATs
<53 / y / (f) + X" @l7)ds)  (234)

— J(k-1)5 )

<25E / )+ | X" (u )||‘€/-)du>.
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Estimate of J,(¢,2): Using (2.15), (2.16) and (P1) we roughly see that J,(t,2)
is dominated by C'(N)n? uniformly for ¢ € [0, 7,], which is useless for our proof.
Fortunately, the Gaussian r.v.s Bj”(s) and Bg(([%J — 1)d) appeared in J,(t,2) are
independent, it means that for any s € [0,7,], j,¢ = 1,...,n, E(8}(s)8; (([5] —
1)6)) = 0, by which we can give more precise calculations for J,(t,2). Using the

first-order Taylor’s formula for each B, and we have for u € [0, 7,],
By(X"(uw)) = B (X”((L(SJ —1)9))
/ DB,(vX"(u) + (1= ) X™(([5) = DOIX" (w) = X"((|5] — 1)8)]d.

which yields that J,(,2) is split into the sum

3
j=1

where

(1) Zf / F)FE] = DADB(X((13] = D) B(X(13] - 1))

XM (5] = 1)) = X((L5 J—l) ))ds

(2 =Y / B)F5] = DODBX([3] - D) BUX"((15] - 16),

J,q=1

X"(s) = X”((ng —1)0) + X((LgJ —1)0) — X(s))ds,

(69)= 3 [ BRI - DODBX (1) - 15)

Jq=1

510 1 S

/ du/ DB,(rX"(w) + (1 — ) X™((|Z] = 1)8))dv
(-0 Jo 0
4
n n S n
[X"(w) = X*((L5] = D)), X(s) — X(s))ds.

To estimate J,(t,2), we define a martingale in (2.35) below, and use its property

and the independence of f3;.
For M, (t, 1), since by (2.4) BJ"(S) = B]"(kd) for s € [ko, (k + 1)d), equivalently

ls]-1 »
My (t, 1) =Y Y 6267 (k6)By ((k — 1)) fi14
k=1 j,q=1
+Z5t— L J )ﬂ”((t | = 1)8)g;4(t)

CHL(E1) + Hy(t,2),
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with the coefficients fi_1 4, gj4(t) given by

fe-14.q = (DB;(X"((k—1)0)) By(X"((k —1)d)), X"((k —1)8) — X ((k —1)d)),
t t ot t

G1alt) = (DB, (X" (L5~ DO)BA(( 5] = 18), X" (1 5]~ 1)8) ~ X (L] ~ 1)6)).
For j,q,k € N, the centered r.v B]"(k‘é) and the coefficient fj ; , are Fjs-measurable,
5?(1{(5) is F(rx—1)s-independent. The local boundedness of DB; and B; yields
that there exists a positive constant C'(N) such that for all ¢t € [0,7,], k£ =

S 1], 7 =1,...,n, the coefficients fy ; 4, g;,4(t) are bounded by C(N). Thus
for I =1,...,[%], the process defined by

DD B k6)B (k= 1)0) i1 (2.35)

k=1 j,q=1

is an (Eg)—martingale. Furthermore, for any k; # ks € N, j1,jo, 1,2 = 1,...,n,
5]”1(]61 ) and (7 7 (ko6) are independent, and satisfy

E (87 (k10) B2 (k1 — 1)8) fiy 141,01 85 (k20) B0 (kz — 1)6) fi—1,joge) = 0. (2.36)

Doob’s inequality implies that

n

E( sup |Hn(t,1)> <252( 62 Z (k) B2 ((k 1)5)fk_1,j,q}2>1/2

tel0,m,]
L%

:252< Zﬁ" (k8)B™((k — 1)3) fir_ 1”})1/2

k= 7,9=1

where we used (2.36) in the equality and by (2.16) is further dominated by
C(N,T)n*27™/2. Using (2.16) again we have
]E< sup |Hn(t,2)|) < O(N)T*n*27".
te[0,7n]

Then
IE( sup ]Mn(t,l)\) < O(N,T)n?27"/2. (2.37)

te[0,7n]

For M, (t,2), the boundedness of DB;, B; and (2.16) imply that

B( sw [M(02)]) < CTE( [ 1X7(6) = X((15) = 1)8) )

t€[0,7]
Tn S
+CVTE( [ IX(5) - D9) = X(5)]uds).
0
which combined with Lemma 2.8 and Holder’s inequality, implies that

Eﬁ( sup | M (t, 2)\) < O(N, T, || f|| s ) 0327303, (2.38)

tE[O,Tn]
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Similarly, we also have

E( sup |Mn(t,3)\> < O(N, T, || f|| s 32735, (2.39)

tel0,m]
Estimate of J,(t,3): Let ¢ € N, we use the first-order Taylor’s formula for B,,

and by a similar computation as that for J,(¢,2) we deduce that

E( sup \Jn(t,?))\) < O(N, T, || f|| s )n32737/3, (2.40)

te|0,7]

Estimate of J,(¢,5): (P1), (P2) and (2.16) yield that

IE( sup |Jn(t,5)|) < O(N,T)n3/?27"/2, (2.41)

te[oﬂ_n]

Estimate of J,(¢,6): By Lemma 2.8, (2.16) and (P1) we have

E( sup |Jn(t,6)|> < O(N, T, ||| s )n3/22~/4, (2.42)

te[0,7]

Estimate of J,(¢,4): We deal with it similarly as for J,(¢,2). Let j € N, we use

the first-order Taylor’s formula for B; and have

6

To(t,4) =)~ Z,(t,4),

=1

where
Zt ) =3 JREACREE T EERID)
/ /DB (X" () + (1= )X ([ 3]~ 1))
X" (w) = X(([5) = DO)ldu, X7 (s) = X(s))ds.
Z / s = [519)8; () (DB,(X" (5] = 18) B,(X" (5] — 19)).
X"(s) = X(L5) = 19) + X(15) — 1) = X(s))ds,
A(t:3) Z [ = 51035 = S5 - 19)
B (X”(<L5J = 19). X"((15) - 18) = X(15] - Da))ds,
Zult.4) = =5 [ (5] = D9). X7 = X7(5] = D).



S

Zu(0.6)i= 5 [ (X"(9) = (X" (5] = D3 X"(5) = X (s))ds.

First, the boundedness of DB;, Bj, D?B; yields that there exists C'(N) > 0

sup () — Fra(0) 1 < C(N)nllu — vllg, w,v€ H.
lollesllull g <N
which combined with Remark 2.9 and (2.16), implies that up to a constant C'(N,T')
(i) E(supseio.r,) | Zn(t,2)]) is dominated by n?273"/%;
(ii) E(supieqo ) 1Zn(t, 7)), 4 < j < 6 are all dominated by n273"/,
Next, for Z,(t, 1), by (2.15), (2.16) and (P1)
B( sup |Z,0]) <Cw2B( [ ds [ X = XM((15) - D9 adu).
te[0,7n] 0 L%Jé 0
where | %] = [3] for any u € [[$]4,s). Similarly as in (2.34), by Fubini’s theorem
the term on the right-hand side of the above inequality is further dominated by
u

CONTB([ X" (w) = X7((13

I =1)0)[|adu).
Then using Holder’s inequality and Remark 2.9 we obtain that

IE( sup | Zn(t, 1)|) < O(N, T, || f|| s )n2273/5, (2.43)

tel0,m]

Now we only have to consider Z,(t,3), in which the correction term appears. We

rewrite it as

5] n

(k+1)5At _
Zd =33 [ (- k5 3]
DB,(X"((k = DO B (X ((k = 18)), X"(k ~ 1)) = X((k ~ 1))
1411

=:1,(t, 1)+ I,,(t,2),
where the coefficients g}, _;, h;(t) are given by
Gih—1 = (DB (X"((k — 1)8)) B;(X"((k — 1)9)), X"((k — 1)8) — X ((k — 1)9)),
t

(1) :=(DB (X" (L] = D& B (X" (L] = 1)3).
t

X"((15) = 18) = X (5] - 1))
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We see that for j = 1,...,n,k=1,..., %], the coefficient gjl-’k is Fis-measurable
and is bounded by some constant C'(N). The independence of 37 (kd) and Fx—1)s
yields that the r.v.s (\/_ ﬂ"(k:é)) gy are real-valued i.i.d standard Gaussian. Then
for I =1,..., "], the process defined by

l n

DS ((Vopy(k6)) = 1)gh (2.44)
k=1 j5=1
is an Fis-martingale. Furthermore, for ji,jo = 1,...,n, k1 # ko, we have

E( (VOB (16))* = 1] g} 4y [(VOBL (20))* = 1] gl gy ) = 0. (2.45)
As for J,(t,2), by Doob’s inequality, E( SUDye(0,7, [ In (2, 1)|) is dominated by
-1 n

5(E[ 62 S (Vg (ks)) —1)9},k_1]2>1/2

k=1 j=1
™

3
,_n

[F1-1 n

=5(2 30 [(/A500) - Do )

k=1

(2.46)

<C(N)T2 ™(n*2"E(2* —1)*)"/* < C(N)Tn2 "2,
where we used (2.45) in the equality and Z is a standard Gaussian r.v., i.e.
EZ =0, EZ*=1, EZ*=3.

Forany j =1,...,n, k=1,...,|%], t € [kd, (k + 1)), we have h;(t) = gj, ;-
Then E(sup;, 1 [1a(t,2)]) is dominated by

(s sw |t‘k52[t‘f‘smﬁ';(k&f—1}hj<t>|)

1<k<| 72| kO<t<(k+1)0Ar, 2 e

)5(21[3 sup Z| \/_ﬁ” (k6))* — 1|]2)>1/2 (2.47)

RSt (k+1)5
1/2
gC(N)5<n22”E(Z4 v 272+ 1)) < O(N,T)n2""2.
Combining (2.46) and (2.47) we have

E( sup |Zn(t,3)|> < O(N)Tn2~"/2, (2.48)

t€[0,7n]
Putting all these estimates of J, (¢, 1)-J,(t, 6) together, we complete the proof. []

Below we complete the proof of Lemma 2.8, which is similar as in [5, Prop.
5.1].
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Proof of Lemma 2.8. 1t6’s formula ([17, Theorem 4.2.5]) implies that

S

I1X(s) = X(L510)1%

=2 | vl XG0, X)Xt [ B

510 5

S

+2 /L X0 = X (U310, BOC)aw ()

We take integral w.r.t s for three terms on the right-hand side of (2.49) and
consider their expectations separately. By Holder’s inequality, (H4) and (2.8)

B 1, vt X0, X0 = X0l

<(@[" [ 1 X510

/ /LJ5 u) + K| X (u )II‘&)duds)aal (2.50)

1 T a—1
<(oE / IX() = XU30ls)" - (58 [ (7(5) + 1X()l)ds) *
SC(Nv T, Hf”LP/2)2in>
where we used stochastic Fubini’s theorem in the second inequality. By (H4) and

(2.15) we easily have

/ / |B(X ||L2duds) < C(N,T)2™ (2.51)
The Burkholder-Davies-Gundy inequality implies
s
sup / / X(1316), BIX (w))dW (u))ds)
te[o Tn] 0

(2.52)
S g 1/2
<cx( / ds /L B, IX ) = X0 )

which by (H4) and (2.15) is dominated by C(T, N)2~/2. Then combining (2.50)-
(2.52) with (2.49) we have

B( [ 1X() - XU I0Ids) < OIS 2™ (259

However, (2.53) is not enough for our use. Below we improve it by estimating
the third term on the right-hand side of (2.49) with the help of (2.53). Using
stochastic Fubini’s theorem and (2.53)

B s [ I = XA )

= / X ()~ X( 2] >||Hdu) < CN,T ||l )2
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Hence inserting into (2.52) and by (H4) we obtain

sup / (X (u) [ 16), B(X(u))dW(u)>dS) < C(N, 7||fHLp/2)2_%Tn.
t 0,7, 5
€0l Hé < 1

hen together with (2.50), (2.51), we complete the proof.

3 Application to Examples

Let D C R™ be a bounded open domain with smooth boundary denoted by 0D.
C3°(D; R™) denotes the set of all smooth functions from D to R"™ with compact
support. Wy (ID;R™) is the standard Sobolev space, i.e. the closure of C5°(ID; R")

with respect to the norm:

oy = ( / (@) + [Vu()Pdz)*.

Let p = 2, since D is bounded, by Poincare’s inequality there exists a constant ¢
such that
¢ / \Vu(z)|?dx > / lu(z)|*dz, ue W,?(D;R"). (3.1)
D D

Then we can consider Wy*(D; R") with the norm || - ||Wg’2(IDJ'R") and the corre-

sponding scalar product given by
(10w = [ (Vule), Vo@)da, u.o € WA DR,

In the following we use the notations |y|> :== Y.7" [v*|, v -z := > ;- y*a” for
g = ()2 = (2) € R™ and |5 i= S, S0, [P for = = (+59) € R™:™

3.1 Stochastic 2d hydrodynamical type systems

Let D C R? be a bounded open domain with smooth boundary. We consider
the Hilbert space H = L*(D;R?) with the inner product {-,-) given by (f,g) :=
fD x)dx for f g € H. Let Ay be a self-adjoint positive linear operator on

H. Set V Dom(A§) and || - [|[v = ||A2 ||z Let V* denote the dual of V' with
respect to (-,-). Thus we have the Gelfand triple V' C H C V* and we study the
following equation (c.f [4, 5])

dyu(t) + Agu(t) + C(u(t), u(t)) + Ru(t Z hi(u(t)dWE (), z e D (3.2)

with the initial condition u(0) = uy € L*(D;R?). R is a continuous operator in

H, the map C': V x V — V* satisfies the following conditions:

(®1) The map C is bilinear continuous;
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(®2) Forv; € V,i=1,2,3,
ve(C(v1,v2), v3)v = —v+(C(v1,v3), v2)v;

(®3) There exists a Banach space H possessing the properties:

(i) VCHCH;

(ii) there exists a constant ag > 0 such that
ol < aollvllullvlly, ve Vs
(ili) for every n > 0 there exists C, > 0 such that

ve(C(v1,v2),v3)v] < plloslly + Cyllonllzllvall3,, v € Vii=1,2,3.

{Wk(t);t > 0,k = 1,2,...} is a sequence of independent real-valued standard
Brownian motions on a complete probability space (€2, F, (F;)¢>0; P) with normal
filtration (F;)i>0 generated by W. h : D x R? — R? x [? is measurable, where
[? denotes the Hilbert space consisting of all sequences of square summable real
numbers with standard norm || - ||;2. For additive noise it is obvious that (P1)
and (P2) in Assumption 2 are fulfilled. We can also consider more general case
and here for simplicity we check the conditions for linear multiplicative noise, i.e.

h = (hy) is given by
hi(z,u) = gp(z)u, (z,u) €D x R* k€N,

where g = (g;,) : D — [? is differentiable on D, and there exists a constant M such
that for any x € D,2 =1,2

105 g(@) Iz + llg(@)lli> < M. (3:3)

This model involves qualitative properties of stochastic models, which describe
cooperative effects in fluids by taking into account macroscopic parameters such as
temperature and magnetic field. The corresponding mathematical models consist
in, for example, 2d Navier-Stokes equations and magneto-hydrodynamic equations
described below:

(1) stochastic 2d Navier-Stokes equations

{ ou =vAu— (u-V)u—Vp+ B(u)dW,;, z €D, (5.4)

divu =0, x€D; u=0on9D

where u = (u!(t, z),u?(t, z)) is the velocity of a fluid, p(¢,z) is the pressure and v

is the kinematic viscosity; Au =V - Vu.

21



(2) stochastic 2d magneto-hydrodynamic equations (see [24])

( 1 M?% V|b?
O =5 D= (u- V)u = Vp - ReRm( 5 — (0 V)b) + B(uy)dW,
1
;b :Eﬁb —(u-V)b+(b-V)u, €D, (3.5)

divu =0, divb =0, z €D,
u=0, b-n=0, 01b*— 0:b' =0 on D

\

where v = (u'(t,z),u?(t,z)) and b = (b'(t,x),b*(t,z)) denote velocity and mag-
netic fields, p(¢, z) is a scalar pressure. n denotes the outward normal to 9D and
Re, Rm, M correspond to the Reynolds number, the magnetic Reynolds number

and the Hartman number, respectively.
Equation (3.4): Define

Vi={veW,*(D;R?):V-v=0inD,v-n=0on oD},

3.6
ol = (/ Vol2d)2, v € V. (36)
D

Let H; be the closure of V4 in the norm ||ul|y, == ( \u|2dx)1/2 and endowed with
the L? scalar product. Set

WE2(D; R?) = {u € L*(D;R?) : D € L*(D;R?), V|a| <k}, k€ N.

The linear operators Ay, Py (Helmhotz-Hodge projection) and the map C' are
defined by

Py . L*(D;R?) — H,; orthogonal projection,
Ay : WD, RHNV, — Hy, Agu = vPylu, (3.7)
C: Hyx Vi — Hy, C(u,v) = —Py[(u-V)v], Clu) = C(u,u).
Choosing the Gelfand triple
‘/1 C H1 = Hf C ‘/1*,
we know that the maps

Ag: =V C: Vi x V=V

are well defined and satisfy the conditions (®1)-(®3) with H = L*(D;R?) N H,
(see [4,2.1.1]).
Equation (3.5): Set

Vo={ve W"[D;R*) :V-v=0inD,v-n =0 on oD},

3.8
vy, = (/ |Vv|2dm)l/2, v e V. (38)
D
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First, without loss of generality we can assume that % = 1; Indeed, if % #+

1, we consider \/=24—b instead. Then we can write (3.5) as (3.2) by choosing
H = H, x H; Withflo:onAo,RE(). We also set V = V; x V5 and define
C:VxV—=V*by

<C<Zl, ZQ), 23> = <C(U1, UQ), U3> — <C(b1, bg), U3> + <C(U1, bg), U3> — <C(bl, Ug), bg)

for z; = (u;,b;) € V. Here the spaces Hy, Vi, Vo and operators C, Ay have
been defined in (3.6), (3.7) and (3.8). Then the conditions (®1)-(®3) hold with
H = [L*(D;R?) x LY(D;R?)| N H (see [4, 2.1.2]).

Verifying (H1)-(H4),(P1)-(P2): In (3.2), we consider the Gelfand triple
Vo= Wy(D;R?) ¢ H = L*(D;R?) ~ H* C (W;?(D;R?)* and define the
coeflicients A and B below: for v € V,u € H, A(v) := —Ayv — C(v,v) — Rv e V*
and B(u) := h(-,u(-)) € Ly(I* H); set C(v) := C(v,v), v € V. We have By(u) :=
gu € H forue H, ke N.

Estimates of A and B:

(H1): The continuity of C' and R implies that (H1) holds.
(H2)+(H3): For vy, vy,v € V we have

ve(=Agv,v)y = —[lvllf;, = ve(Agur — Agua, 1 — va)v = —[[vr — v 7.
(®2,i1,iii) imply that (see [5, (2.8)]) there exists a; > 0 such that
v-(C(v),v)v =0,

ly+(C(v1) — Clva),v1 — va)v| < Jlor — vally + anllvr — vall7 |||

Since R is continuous and linear in H, by (2.1) there exists as > 0 such that

v-(Rv,v)v| = [(Rv,v)| < as|v||F, v+(Rvi — Rua,v1 — va)y < asljvr — vao|3

Then by (®3,ii) we deduce that
v-(A(),v)v < =} + azllvl,
ve(A(vr) = A(vz), v1 = vy < (a2 + araglval3 vl [Jor — w27
By (3.3) we have for any uy,uy € H
1B (ur) = Bua)ll7, 2 = /D lg(@) 1l [ur(2) — ua(2)[*dz < Mjur — ua|[f.

Hence (H2) and (H3) hold with p(-) = ayad|| - ||%]| - ||3 on V, o = M on H and
a=2, =2
(H4): For any vy, vy € V., we have

V*<AOU1,U2>V| < ||U1||V||U2||V7 %4 (RU1,02>V| < a2||U1||H||U2||Ha
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and by condition (®3,iii) and [5, (2.6)] there exists a3 > 0 such that

ve(C(w), va)v| < asllvi |3 ]lvallae < asllvr|lv[lorl|mllva]lv-

Considering that || - ||z < ¢|| - ||, then there exists a > 0 such that

AT+ < a(l + odll5) (1 + llonll7)-

Using (3.3) we have for any u € H

1B = [ late)uta) e < Ml

Hence (H4) holds.
We continue to check (P1)-(P2). For k € N, uj,uy € H, x € D,

hi(z,uy(x) + ue(z)) — hi(x, ui(x)) = gr()us(z).
Then DBy on H is given by
DBy.(uy)us = grus € H, uy,us € H.
We also obtain the dual operator of DBy, given by
DBy (uy) us = grug, ui,ug € H.

Similarly, the operator D?Bj, = 0 on H.
(P1): Forany N >0,ke NNue HveV

1B - By = > [ et 39)

k=n+1

which according to (3.3), uniformly converges to 0 for all w € H with ||ul|g < N.
Again by (3.3) and (3.1)

IDB) ol = Y [ lon@0uo(o) + Dgu(o)o(o) s
=L (3.10)
<2M/ S 10u0(@)? + [0(@) )z < 2M (e + D)ol
j=1,2
(3.3), (3.9) and (3.10) imply that (P1) holds.
(P2): By (3.3) we have for every u,uy,us € Hyn € N

(@)l = 1) giulla < Mulla,

(ﬁn(ul) - g”n(uz),ul — Up) = Z lgilur = wsall|7r < Mluy — sl
k=1

Hence (P2) holds with p'= M on H.
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3.2 Stochastic porous medium equations

Porous medium equation is a model to describe the flow of an ideal gas in a ho-
mogeneous porous medium (e.g. beds of sand, ground). Forgetting about physical

constants, it is given in one dimensional case by (c.f. [1, 21])
dX(t) = A(X ()™ 2X (t)dt + B(X(£))dW (t), « € [0,1],

with m > 2, the initial condition X (0,z) = Xy(z), = € [0, 1] and Dirichlet bound-
ary condition X (¢,0) = X (¢,1) = 0.

{Wk(t),t >0,k > 1} is a sequence of independent real-valued standard Brownian
motions on a complete probability space (€2, F, (Ft)i>0; P) with normal filtration
(Fi)es0 generated by W. The map B = (By) : H — Ly(1%; H) is B(H) /B(Ly (1% H))-
measurable and satisfies Assumptions 1,2 in Section 2.

A more general form is the following quasi-linear stochastic equation
dX(t) = AU(X(t))dt + > Bp(X(t))dW*(t), = € O,
k=1
where O C R is a bounded and open domain. ¥ : R — R (c.f. [21, 4.1.11]) is a
function satisfying:

(¥1) W is continuous;

(U2) For all s,t € R
(t = 5)(¥(t) = ¥(s)) = 0;

(¥3) There exist ¢ > 2, a > 0, ¢ > 0 such that for all s € R,

sU(s) > a|s|? — ¢

(W4) There exist c3,cq > 0 such that for all s € R,
[T (s)| < ey +csls]*,
where ¢ is as in (U3).

Let ¢ be given in (¥3), we take H := (W,*(0))* and identify H with its dual H*
and consider the Gelfand triple:

V= LIO) c (Wy*(0)* = H~H*CV*=(LY0)),
and define the porous medium operator A : L1(Q) — V*

A(w) :=A¥(v), veV, (3.11)



where by [21, Lemma 4.1.13], the Laplacian operator A defined on VVO1 2(0) ex-
tends to a linear isometry A : L%(O) — (L9(0))* = V* satistying that for all
ue Li1(0), v e LYO)

ve{—Au,v)y = L%<U’U>Lq = /Ou(a:)v(x)d$ (3.12)

(U4) implies that W(v) € La1(O) for any v € LY(O). Hence A is well-defined.
More details about the above Gelfand triple can be seen in [21, Remark 4.1.14].
The conditions (H1)-(H4) for the coefficient A are satisfied with the related con-
stants « = ¢, K =0, 0 =a, f(t) = 2c-vol(O) where vol(O) denotes the volume
of O; see [21, Remark 4.1.14].

Remark 3.1. A typical example satisfying (U1)-(¥4) is to set WU(s) = s|s|72 for
q > 2. We can also use the framework to other quasi-linear case, e.g. p-Laplace

evolution equation. The equation becomes
dX(t) = div(|[VX ()P 2VX(t))dt + B(X(t))dW (t).

Again we take p € [2,00), D C R™ open and bounded with smooth boundary.
Then we take V := W, ?(D;R"), H := L*(D), so V* = (W,”(D); R")*. Define
AV = V*by

A(u) := div(|VulP*Vu), u €V,

ve(A(u),v)y = — /D |Vu(x)|P~2(Vu(z), Vo(z))dz, v,u V.

A is called the p-Laplacian and A = A when p = 2. For any u,v € V, using
Holder’s inequality

p—1

/D V()P | Vo(a)|dz < ( / Vu(z)Pdz) 5 ( / Vo)Pdz)* < [ull? ol

which implies that the p-Laplacian operator A is well-defined. Under the Gelfand
Triple Wy ?(D;R™) C L*(D) = H ~ H* C V* = (Wy"(D;R"))*, A satisfies
conditions (H1)-(H4) (see [21, Remark 4.1.9]).

4 Support Problem

In this section we describe the support of solutions with the help of Wong-Zakai
approximation results. Let T' > 0 and let W be a cylindrical Wiener process in U
on some complete probability space (2, F, (Fi)i>0; P), with (F:)i>0 being normal
filtration generated by W. For n € N, t € [0, T}, set

M) = e ([ rawts) = 3 [ e )ls)
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with W given in (2.4), and

W) = W(t) — /0 W (s)ds. (@1)

Since the real-valued r.v.s Bj(k5), 7,k € N are independent and for each j,k € N,
61/23,(kd) is standard Gaussian. So for every n € N

— E(ewwn(t)n%}) — sup H E(eAIB;L(t)F) _ (E(6A§|Z|z))n <

t€(0,77] t€[0,T 1<j<n
holds for some standard Gaussian random variable Z and A > 0 small enough.
Thus by Girsanov’s theorem ([6, Theorem 10.14 and Proposition 10.17]), the pro-
cess {W" (t) }tejo,r) defined by (4.1) is a cylindrical Wiener process under P* with
the measure P" < P satisfying

aem
dP

Similarly, for arbitrary h € L*([0,T];U), we define the process

Fi=M"(t) , for t € [0,T].

Vi) = e (= [ Hea ) - 5 [ Inelds)

and .
W,?(t) = W”(t) —I—/ h(s)ds , for t € [0,T],n € N. (4.2)
0
Again by Girsanov’s theorem, we obtain another measure P} < P" < P such that
dpPy
d]P’Z Fi = M} (t) , for t € 0,71, (4.3)

and W,f is a cylindrical Wiener process under IP;l. Consider the following equations

dY;(t) =A(t, Y (t))dt + By (Y (£))dW (t) + B (Y, ()W (t)dt

(4.4)
+ B3(Y,' (1)) h(t)dt — F(Y,'(t))dt,

where for any fixed time 7" > 0, the maps
A:[0,T|xVxQ—=V*"F:HxQ— H,

Bi,By,Bs: HxQ — (LQ(Ua H)? || ’ ||L2(U§H))

are progressively measurable.

We note that (2.6) can be seen as a special case of (4.4) with B; =0, By =
B, By=0and F = %t}n. Then we obtain Theorem 2.4 by using Lemma 4.1. We
can also write (2.6) as (2.2) with the drift coefficient A = A + BW" — %257“” and
the diffusion coefficient B = 0. However, we cannot use Theorem 2.3 directly to

solve equations (2.6). By Assumptions 1 and 2 we can deduce that (H1), (H2)
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and (H4) hold for A. However, (H3) fails to hold, since by Assumption 1 we can
only obtain that

(B)W™ (1), u) < VE\/1+ [[ull llull W™ (1) o,

where we cannot find a uniform bound of |[W"(t)||y for all w € Q and ¢ € [0, T].
Below we give existence and uniqueness of solutions to equations (4.4). The
argument is similar as in the proof of [16, Theorem 1.1] and we put the proof in

Appendix.

Lemma 4.1. Let T > 0,h € L*([0,T); U) and § € LP(Q, Fo,P; H) withp > {25V
(B+2)} in Assumption 1. Assume that the coefficients A satisfies Assumption 1,
By, By, Bs satisfy the conditions in Assumption 1 for B and F' satisfies (P2). Then

there exist unique solutions Y, to equations (4.4) with initial value . Moreover,

Yr € C([0,T); H) P-a.e. and

T
swp( sup O+ [ I7Olar) < . (1.5

n>1 te€[0,T)

Remark 4.2. For h € L*([0,T); U), we consider the following two equations, which

can be seen as two special cases of (4.4)
1~
dZy(t) = A(t, Zn(t))dt + B(Z(t))h(t)dt — §t7’n(Zh(t))dt, (4.6)

dZI () =A(t, ZP(t))dt + B(Z(t))h(t)dt e
+ B(ZP(t))dW (t) — B(ZMt))W™(t)dt, (4.7

with 7, given in (2.5). By Lemma 4.1 there exist unique solutions Z, and Z}* to
equations (4.6) and (4.7), respectively; Z,, Z;' € C([0,T]; H), P-a.e. and

T
B( s 100+ [ 1Z00lar) <o

te[0,T

T
(s 1200 + [ 1 Oldr) < oo
0

n>1 tel0,T
By a similar computation as in Theorem 2.6 we obtain the following Wong-

Zakai approximation results.

Lemma 4.3. Suppose that { € LP(Q, Fo,P; H) with p > {25V (B + 2)} in
Assumption 1, and that Assumptions 1 and 2 hold. For h € L*([0,T);U), let
Zn, Z3' denote the solutions to equations (4.6) and (4.7), respectively. Then

lim ]E< sup || Z0(t) — Zh(t)yﬁ{) ~0. (4.8)
=00 t€[0,T

28



Proof. Let h € L*([0,T];U), for arbitrary n € N, we set the stopping times:
o) s =inf {t € [0,7]: |1Z4(0)]l s + / () + 12 ds > NpAT,
0@, : = inf {t € 0,7 : |20 + /Ot 1Z0(s) |2 ds > N} AT,

and

Op N ‘= 05\}) A (77(12’])\, A r,§3),

with 7.2 in (2.11) and by Remark 4.2 we similarly choose N > 0 large enough as
in the proof of Theorem 2.6 and denote o0, x by o, for simplicity. Thus in order

to obtain (4.8), it is sufficient to prove the following

lim E( sup [ Zx(t) — Z;(t)||7) = 0. (4.9)

oo te[ovan]

Using It6’s formula for || Z7(t) — Z(t)||%, and by comparison with (2.17), it suffices
to control the following term: by (H2) and Young’s inequality

/0 (B(Z(5)) — B(Z(s))h(s), Z0(s) — Zn(s))ds

S/O (0 (Zn() + (DN Z5 (5) = Zn(5) [ ls-

Together with estimates of terms on the right-hand side of (2.17), there exist
Cn — 0 as n — oo such that for all t € [0,T], E(sup,conq 125 (s) — Zn(s)]1%)
is dominated by

Cot B[ CUO + o(20(o) + 41205 + I ZS) = Zu5) )

By similar arguments as the estimate for (2.20), and using [7, Lemma 2.2], (4.5)
and (H4) we complete the proof. O

Let D = C([0,T]; H) denote the space of continuous functions, with the norm
|1l = supciory |l - (O)llm. We set £ := {Z,,h € L*([0,T];U)} and see that
L C D. Now we describe the support theorem.

Theorem 4.4. Suppose that £ € LP(Q, Fo,P; H) with p > {25 V (8 + 2)} in
Assumption 1, and that Assumptions 1 and 2 hold. Let X denote the solution to
equation (2.2) with initial condition £. Then supp (P o X~1) = L, where L denotes
the closure of L in D and supp (P o X~1) denotes the support of the distribution
Po X1

Proof. Let {W(t)}:+>0 be a cylindrical Wiener process in (U, (-, -)y) on a complete
filtered probability space (2, F, (Ft)i>0;P) with (F;)i>o being normal filtration
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generated by W, and let X and X" be the solutions to equations (2.2) and (2.6),
respectively. Choose h = W" in equations (4.6), existence and uniqueness of
solutions in this case can also be obtained by Lemma 4.1. We denote the solutions
to (4.6) by Zj» and have Zy;,, = X", P-a.e. Then Theorem 2.6 implies that for
every A > 0

1im P(|Zy = Xllp 2 ) = lim P(|X" = X[lp 2 A) = 0.
Since P-a.e. W™ € L*([0,T);U),
Supp(Po X~ 1) C L. (4.10)

Conversely, by [17, Remark 2.5.1] we can always find another Hilbert space U D U
such that there exists a Hilbert-Schmidt embedding from (U, (-, -)¢) to (U, (-, )g).
It follows that there exist {ex,k € N} C U,0 < A\, T 00,k € N such that {ex, k €
N} is an orthonormal basis in U and {y/Arex, k& € N} is an orthonormal basis in
U. Fix such U, set WU := C([0,00); U) and WY := {z € W7 |z(0) = 0}. WU is

equipped with metric

8

p(x1, ) = ggg;ﬂ”a:l ) —zo(t)||lg A L), 1,20 GWg,
k=1

which makes it a Polish space. Its Borel o-algebra is denoted by B(WJ). Then
P-ae. W € WU. Let {B,(WU)};50 be the normal filtration generated by the

canonical process w. We obtain another complete probability space
(WY, VisoBi(WY), B(W{); P),

where P denotes the distribution of w in C'([0, 00); U), i.e

Pow ' =PoW™ (4.11)

Let £ be Fy/B(H)-measurable and satisfy the assumptions in Theorem 2.3. Then
by Theorem 2.3 and the Yamada-Watanabe Theorem in [21, Theorem E.1.8], there

exists a measurable map
Spog-1 + (H x WG, B(H) ® BW{) = (C((0.T): H), BC(0.T]: H)))

such that X := Spoe-1(£, W) is the solution to equation (2.2) with the initial value
X (0) = £ P-a.e. For simplicity we always denote Spoe-1 by S. For h € L*([0,T7]; U),
define maps 77" on (WY, B(WY))

T (2) = o — /0 " (s)ds + / h(s)ds, ©e WU,

0
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where
() = S5 Ma(1516) — 2((15] — D8 ewoen, 1 € [0,7)

k=1

Then by (4.1)-(4.3), Tj? can be seen as measurable transformations of Wiener
space WY . Choose a By(WU)/B(H)-measurable map & : WU — H such that
Po& ' =Po& L. Then S(&(w),w) is also a solution to equation (2.2) with initial
condition & and noise w. Since & is Bo(WY)/B(H)-measurable, & (T} (w)) =
&(w). By the Yamada-Watanabe theorem, pathwise uniqueness implies that for
every A > 0,n €N

P(w : [|S8(éo(w), T3 (@) = Znllp = A) =PI Z}} — Znllp = V), (4.12)
where by Lemma 4.3 we have for the above A
h_)m P(|Z; — Zn|lp = A) = 0. (4.13)

PP =Po TP ' n € N together with (4.12),(4.13) implies that we can find some
ng € N such that

P (w : |S(So(w),w) = Zullp < A) = P(w : [S(&o(w), T;*(w)) = Zullp < A) > 0.

Then by (4.3) P} < P we have

P(| X — Znllp < A) =P(w : [|S(&(w),w) — Zpllp < A) > 0.
So
Supp(Po X 1) D L.

Together with (4.10) we complete the proof. O

A Proof of Lemma 4.1.

The proof follows by a similar argument as in [16]. We consider the standard
Galerkin approximation to equations (4.4). Let {g1,92,--} be an orthonormal
basis of H and set H,, := span{g1,...,gm}. Let P, :V* — H,, be defined by

Pry = ZV*(y»gj>nga yeVr (A1)
j=1
For h € L*([0,T];U), consider the following equations on H,,
dYy(t) = A", Yy, (1)) dE + By (Y, (), dW (2)
+ By (Y, (D)W (D)dt + By (Y, (D) h(t)dt — F™ (Y, (1)dt,  (A.2)
thfm(o) = me’
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with IL,,, P,, defined in (P1) and (A.1), A™ = P,A, F"" = P,,F, B" = P,,B;,i =
1,2,3. For any t € [0, T], E(|W"™(t)||3) = nd—" and

([B(v1) = Bua)]W" (1), v1 = v2) < || B(v1) = B(wa)l| [W"O)lvllor — vallF,

which by (H2) is dominated by (p/(v2) + [[W™()[1%) lv1 — va||%, vi,v2 € Hye [17,
Theorem 3.1.1], Assumptions 1 and 2 imply that there exist unique solutions Y} |
to equations (A.2). In order to construct the solutions to equations (4.4), we first

need some a priori estimate of Y}, .

Lemma A.1. Under the assumptions in Lemma 4.1, there exists C' > 0

T
sup B( sup [V (0 + [ IV O 21, 0l at)
n,meN te[0,T 0

(A.3)
T p
< Cels (MO (Bl + | 7113, +1).

Proof. First we see that
ve (A" (tu), v)y = (A™(t,u),v) = v« (A(t,u),v)y, v V,v € Hy,.

Similar equalities also hold for By*, Bf* and F™. Then we use It6’s formula for

1Y, ()]l% and consider each term on the right-hand side separately:

%7 W-w/Wmm 20 (A, Y7 (), Vi (5))
+p/"mwm@mzﬂm%@xBram4ﬁﬂmmvw»
[ IV B0 ()W), Vi 51
[ IV B ()b(s) i () s
t (A.4)
= [ IV F O ), Vs + 1P
2 IV B O )
# 00 =) [ I (B 070 )T ) V) s
:g;&m@w+wam%

where || P,,.¢|| g is dominated by ||£|| . For I, ,,(t,1), by (H3) it is dominated by

L] I () + K 6) s = OV ()]s
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and by Young’s inequality, is further dominated by

/0 (1 ()24 (Eptp—2)/201Y3 ()5 =00 /21X (3) [ 15 (5)[15) ds. (AL5)

For I, ,,(t,2), by the B-D-G inequality, E(supse[()’t] | Inm(s,2)]) is bounded by

B(\ sup (o)l + OO [ In()lds +1). (46

s€[0,t]

with A > 0 small enough and C'\ defined by Young’s inequality.
For I, (t,3), we replace W"(t) by 5 f[ J " s ndW (u). Using Fubini’s theorem
we see that 1, ,,(t,3) equals to

>

Then by the B-D-G inequality, E( SUPsefo,7] Inm(t, 3)) is dominated by

(k+1)8At ,
/ Luete-1ovo kal} (Y aim ()5~ Ba (Yl (8)) Yy (), TindW (w))ds.
k=0

T2"=1 9 n(k+1)s - , 12
B[ T5 [t N 1B )
O k=0

which by Fubini’s theorem, equals to E( fOT PPl (s )17~ 2||Bg(Yh’fm(s)) ||%2ds)1/2.
Together with (H4) we deduce

B sup fun(t:8)) < VEE( [ V0204 1)) s)

te[0,7

- (A.7)
<E (i sup [Vl +OT0IC [ (Vi) + 1)),
te[0,T 0
where p > 0 is a small constant and C), is defined by Young’s inequality.
For I, ,,(t,4), by Young’s inequality and (H4) there exists C' > 0 such that
t
Lnm(t, 4) S/O IV ()5 VI (L4 1Y)l 1) 1 (s) | uds
(A.8)

t
§C/O (IBNE Y ()17 + 1Y ()17 + 1) ds.

For I,,,,(t,5), by Young’s inequality and (P2) there exists A > 0 small enough
such that for all t € [0, T, I,,,»(t,5) is dominated by

A sup [V, (E )H%JFC(T,p)CA/O (Vi ()15 + 1)ds. (A.9)

t€[0,T]

By (H4), the sum of I,, ,,(¢,6) and I, ,,,(¢,7) is dominated by

K[g +p(p — 2)} /0 ||Yh7fm(8)||’}{_2(1 + ||Yh7fm(3)||12ﬁl>d3
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Again by Young’s inequality,
T
Ly (t,6) + Inm(t,7) < Cp/ (L + 1Y ()15 ) ds. (A.10)
0

Insert (A.5)-(A.10) into (A.4) and by Gronwall’s inequality we obtain (A.3). O

The rest of the proof is similar to the argument in [16] and we give all the

details here for completeness. We follow the notations that:
J=L0,T] x Q;dt @ P;V); J* = La-1([0,T] x Q;dt @ P;V*),
K = L*([0,T] x Q;dt @ P; Ly(U; H)).
Then according to Lemma A.1 and (H4), for all n,m € N we have

Yomlls + 1AC, ¥55,)

g < 0Q.

8]

Let A = Iﬁ, which by assumption p > —5 is less than 1. Then by Young’s

inequality there exists a constant C'y > 0 such that
. _a_ 1 . Lo
1B2(a) W (B[l < (MIBa(w)llz, + CaAllW" @)l 7) *

which by the inequality (a + b)=1 < 21(as"T + ba'1) and (H4), is further
dominated by

277 (AT KD (1+ ulff) 70 + 7 W@ 7).
It means that there exists C'(\, a, K') > 0 such that for all u € H, t € [0, 7]

ap

HBQ(U)W”@)H? < C()\,Q,K)(l + ||u||z;{ + ||W”(t)||gpfafp>'

77777

E|[W"(kd)||? = nd~'. Then there exists a constant C,, such that

T ap 2 . ap 2 .
E/O W ()| 7 7 dt = SEI[W™ (k6) || 77 <> 6Ca ,EBI|W" (kS)|[5 = Capn2".
k=1 k=1

Also by (P2) there exists C, > 0 such that

IF@)5" < Call+|Ioll7) ™7, v e H.

Let ¢; be a constant such that || - |y« < ¢ - ||g, again using the assumption

p > =7 and Lemma A.1 we deduce that for each n € N

g+ < 0o uniformly for m € N.

Thus for each n € N, there exists a subsequence my(n) — oo (which we still

denote by my, for simplicity):
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Ly, — Y;" weakly in J and weakly star in LP(Q; L>=([0, T); H)).

2. A™ (Y, ) — Up weakly in J*.

3. By™ (thfmk)Wn + By (Y, )= Fme (Y ) — Zp 4+ Vit — My weakly in J*.
4. B"™(Yy,,.) — Npt weakly in K and hence

/ B (Y )T 1V — / NIAW weakly in L([0, T]: dt: L2(, P: H)).
0 0

Now we define the process below: ¢ € [0, 77,
t t
Y (t) :=¢ +/ (U,’j(s) + Z7(s) + V' (s) — M,’f(s))ds +/ N (s)dW (s). (A.11)
0 0

Following the proof in [17, Theorem 4.2.4] we similarly show Y;» = Y, dt ® P-
a.e. Then together with [17, Theorem 4.2.5] and Lemma A.1 we know that Y;"
is an H-valued continuous (F;)-adapted process. Therefore, for the existence of

solutions to (4.4) it remains to verify that

ALY 4 Bo(Y)YW™ + Bs(Yyh — F(Y) = UP + 2+ V' — M7,

(A.12)
By(Y") = NP, dt @ P.

Let p, p/ be defined by (H4) and set

T
M = {gzﬁ . ¢ is V-valued F; -adapted process, E/ p(os)ds < oo}.
0
For ¢ € JN M N LP(Q; L>([0,T]; H)), we deduce that
E (e firole s s QIR |, (1)]) — B (1P lh)

t .
:E< / o= Jo (Frtp(@r)+40 (60) HIW™ (1) |3+ || ) dr [2v*< A(s, Y, (8), Yo, () v
0

- 2(Bo(Y 0 ()W () + BVt (5))hs = F (¥t (), Yit, ()
BT (Vi ()T, |2,
= (o p(65) + 40 (8) + IW" ()| + ) Y3, () 1| )
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which is further dominated by

t .
E( / o= Ja Frtp(b)+40! (Gr)+IW™ ()3 | dr
0

207 (A0, ¥, (50) = 4056, ¥, (5) = by + [ B33, (5)) = Ba(n)
o 2[Ba(Y, (5)) = Bol)IW(5) + [B(Yi () — Bs(@:)]s

— [F (¥, (5)) = F(93)), Vit () = 64)
= (o p(65) + 40 (8) + IW" ()3 + 1) 1Yit, (5) — 4ll3 | ds)

t .
M E( / e Jo Urtp(Br)+4' @)+ IW™ (DI + A iy dr
0

(20 (A5, Vit (5)) = A5,6,), )y + 20+ (A(5, 04), Vil ()

o 2[Ba(Vi, (5)) = Bal6)IW(5),6,) + 2(Ba(6)W(5), Vi, (5))
(B (V7 (5)) = B0l 62} + 2(Bs(6:) e, Vi, (5))
— 2P (Y, (5)) = F(65), 64) = 2F(8:), i, (5))

— 1B1(@)I, + 2BV, (), Bi(0)1

= 2o+ p(3) + 4 (8) + W ()IE + sl1B) (Vi (5), 95)

o (fo + p(0) + 4 (0) + [W () + 1Asl12) 6413 ] ds).

)
s)

We first note that for any nonnegative ¢ € L*°([0,T]; dt),
T T
B( [ wlrolr) = im B( | 70,0, @)a)
0 0 0
T /2 T 1/2
<(E [ i i) tmint ([ oy, 0Fa)
0 - 0
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Together with (H2) and (P2), this implies that

T .
E(/ " [e—fé(fs+p(¢>s)+4p/(¢s)+IIW"(s)II?]HIhSII%J)ds||yhn(t)||§I_ ||§||%1} dt)

0

T .
<hmme< / by [e*f(f(fs+p(¢s)+4p’(¢>s)+IIW”(S)H?ﬂrl\hsII?])ds||yhnmk(t)|’§[ PnElE } dt)
0 b

k—o0

t .
0

@wwu> Als, 82), 3)v +2v+(A(s, 6), Yi'(s))v

+ 277 (5) = Bal6)W(5), 6a) + 2 Bal )W (5), Y7 (5))
+2(V(5) = By(du)ha, 62) + 2Bs(0)hs, Y7(5))

— 2AM}(s) — F(6), 64) — 2(F(6,), Y7(5))

1B (@), + 2(N;i(s), Bu(s))1
= 2(fe + p(9s) + 49 () + W ()T + [IsllF) (Vi (), 05)
(o p(00) +40(60) + IV () I3+ 1l1E) 194 13 ) ds | ).

(A.13)
We also have the following equality:
E(e‘ fo(fs+p(¢s)+4p’(¢s)+|IW"(S)H2U+IIhsII?J)ds||yhn(t)||%I — ||§||12L1>
t .
:E( =I5 rtp(dr)+40" (6r)HIW T (I F+ 12 1) dr U(s),Y;"
| LR GAERIE)

+2AZ(5) + Vi(s) — ME(s), Y7 (5)) + INF(s) 3,
= (fo+ p(00) + 46 (8,) + W ()13 + s13) 197 (3) 3]s ).

Combining (A.13) and (A.14) we obtain that

T t .
0 2E< / %[ / o S b0 440 @)W 03+ e )
0 0

(20 (U3 () = Als, 6,), Vi (s) = b
+2(Zj(s) = Ba(gs)W"(s) + Vi'(s) = Bs(és)hs
= Mp(s) + F(4), Y (s) = 6) + | Bi(6,) = Ni(s)]2,
— (o p(65) + 4 (80) + W ()3 + 1 l3) 193 (5) — 05 I3 ) ds ).
(A.15)
Note that Lemma A.1 and (H4) imply that

Yre JNMNLP(Q; L=(0,T]; H)).

Thus for (A.15) if we first take ¢ = Y} — egw for ¢ € L([0, T] x Q; dt @ P;R) and
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v € V, then divide it by € and let ¢ — 0, we finally have

T t .
0 21@( / [ / ¢ I3 k0 () I )+ ) 5
0 0

(20- (U7 (5) = Als, 80). v} +2{Z}(5) — Ba(d)W"(s)
F V() = Ba(@a)hs = F(6:) + M7 (s), ) + [ Bu(2) = Np(s)|13,)ds] ).

Because of the arbitrariness of ¢ and ¢ we obtain (A.12). Therefore, Y;" are
solutions to (2.6). For further estimate of ||Y;"(¢)||};, we repeat the method used

in the proof of Lemma A.1 and similarly obtain that there exists C' > 0 such that
n T n - n [0 1 1
E<SUPte[O,T} 1Y () + fo 1Y, ()1 QHYh (t)[I-dt) is dominated by

Celo (IR ds (E”ng’I’{ + Hf||§p/2 + 1) uniformly for all n.

Uniqueness: For any n € N given, let X', Y;)" be the solutions to equations (2.6)
with initial values X and Y respectively. Then by (H2), (H4) and (P2) we have

the following estimate
I (e~ Jo oV ) +40 (DI O+ 1045 x0(2) — v (8)][12,) < B\ Xo — Yoll%.
So if Xy =Y, P-a.s., we easily have

I (&= Jo U e () +45/ 07 W O ksl sy () — X7(8)12,) = 0.

By (H4) and Lemma A.1 we have

t
/ (fs + p(YV(5)) + 40" (Y (5) + W™ ()7 + 1ol ) ds < oo, P-a.s., t€[0,T].
0
Then we obtain that
Xp(t) =Y, (t), P-ae., tel0,T].

The pathwise uniqueness follows from the path continuity of X;' and Y, in H.
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