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Abstract

Let X be a Hunt process on a locally compact space X such that the set EX
of its Borel measurable excessive functions separates points, every function
in EX is the supremum of its continuous minorants in EX and there are strictly
positive continuous functions v, w ∈ EX such that v/w vanishes at infinity.

A numerical function u ≥ 0 on X is said to be nearly hyperharmonic,
if
∫ ∗
u ◦XτV dP

x ≤ u(x) for every x ∈ X and every relatively compact open
neighborhood V of x, where τV denotes the exit time of V . For every such
function u, its lower semicontinous regularization û is excessive.

The main purpose of the paper is to give a short, complete and under-
standable proof for the statement that u = inf{w ∈ EX : w ≥ u} for every
Borel measurable nearly hyperharmonic function on X. Principal novelties of
our approach are the following:

1. A quick reduction to the special case, where starting at points x ∈ X
with u(x) <∞ the process X hits the set {y ∈ X : û(y) < u(y)} P x-a.s. only
finitely many times.

2. The consequent use of (only) the strong Markov property.
3. The proof of the equality

∫
u dµ = inf{

∫
w dµ : w ∈ EX, w ≥ u} not

only for measures µ satisfying
∫
w dµ < ∞ for some excessive majorant w

of u, but also for all finite measures.
At the end, the measurability assumption on u is weakened considerably.

Keywords: Nearly hyperharmonic function, strongly supermedian func-
tion, excessive function, Hunt process, balayage space.

AMS Classification: 60J62, 60J45, 31C05, 31D05.

1 Main result

Let X be a locally compact space with countable base, let B denote the σ-algebra of
all Borel sets in X, and let B(X), C(X) respectively be the set of all numerical func-
tions on X which are Borel measurable, continuous and real respectively. As usual,
given a set F of functions on X, a superscript “+”, a subscript “b” respectively will
indicate that we consider functions in F which are positive, bounded respectively.
Let M(X) denote the set of all positive (Radon) measures on X.

∗The research of the second author was supported by CRC 1283 of the German Research
Foundation.
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Let X = (Ω,M,Mt, Xt, θt, P
x) be a Hunt process on X (see [4, p. 45]). Let

P = (Pt)t>0 denote the transition semigroup of X, that is, Ptf(x) = Ex(f ◦Xt) for
all t > 0, f ∈ B+(X) and x ∈ X.

We assume that the Hunt process X is nice in the following sense. Its set

(1.1) EX := {w ∈ B+(X) : sup
t>0

Ptw = w}

of (Borel measurable) excessive functions has the following properties:

(C) Continuity: Every w ∈ EX is the supremum of its minorants in EX ∩ C(X).

(S) Separation: EX is linearly separating, that is, for all x 6= y and γ > 0, there
exists a function w ∈ EX such that w(x) 6= γw(y).

(T) Transience: There are strictly positive functions v, w ∈ EX ∩ C(X) such that
the quotient v/w tends to 0 at infinity.

Let us observe that (C) trivially holds if the kernels Pt, t > 0, or at least the
corresponding resolvent kernels Vλ :=

∫∞
0
e−λtPt dt, λ > 0, are strong Feller, that is,

map Bb(X) into Cb(X).
For every set A in X, the first entry time DA and the first hitting time TA are

defined for ω ∈ Ω by

DA(ω) := inf{s ≥ 0: Xs(ω) ∈ A} and TA(ω) := inf{s > 0: Xs(ω) ∈ A}.

Let Uc be the set of all relatively compact open sets V inX, V c := X\V . A numerical
function u ≥ 0 is called nearly hyperharmonic if

(1.2)

∫ ∗
u ◦XDV c dP

x ≤ u(x) for all x ∈ X and neighborhoods V ∈ Uc of x.

Clearly, the set N (denoted by N+ in [11]) of such functions is a convex cone
which contains EX and is stable under increasing limits and arbitrary infima. More-
over, it contains every numerical function u ≥ 0 which vanishes outside a set E
which is polar, that is, satisfies TE = ∞ almost surely. For space-time Brownian
motion on Rd ×R, every function u : Rd ×R→ [0,∞] satisfying u(x, t) ≤ u(x′, t′),
whenever t ≤ t′, is nearly hyperharmonic.

The purpose of this paper is to give a short, complete and understandable proof
for the following statement (where the implications (3)⇒ (2)⇒ (1) hold trivially).

THEOREM 1.1. For every u ∈ B+(X) the following statements are equivalent:

(1) The function u is nearly hyperharmonic.

(2) The function u is the infimum of its excessive majorants.

(3) For all µ ∈ M(X) such that µ(A) +
∫
X\Aw dµ < ∞ for some A ∈ B and

majorant w ∈ EX of u,

(1.3)

∫
u dµ = inf{

∫
w dµ : w ∈ EX, w ≥ u}.
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In particular, for every ϕ ∈ B+(X), the function Rϕ := inf{w ∈ EX : w ≥ ϕ} is the
smallest nearly hyperharmonic majorant of ϕ.

REMARK 1.2. Of course, (1.3) trivially holds if
∫
u dµ = ∞ (we take w = ∞).

Since EX is ∧-stable, the set of all µ ∈ M(X) satisfying (1.3) is a convex cone.
If ε > 0 and A ∈ B such that µ(A) +

∫
X\Aw dµ <∞, there is a union A′ of A with

a compact in X \ A such that µ(A′) <∞ and
∫
X\A′ w dµ < ε.

In fact, we shall finally prove that, for functions u : X → [0,∞], the equiva-
lence (1)⇔ (3) already holds if u is nearly Borel measurable (Theorem 6.1) and
that (1)⇔ (2) even holds if u is only supposed to be equal to a Borel measurable
function outside a polar set (Theorem 6.2). Moreover, assuming that u is nearly
hyperharmonic and equal to a universally measurable function outside a polar set,
we characterize the validity of (2) in various ways (Corollary 6.3).

Analogous statements can be found for different settings and functions, which
there are called strongly supermedian, in [13, 5, 6, 1, 2], but the proofs given therein
seem to be either incomprehensible or incomplete (see [13, 5, 6]) or, as in [1] and
[2, Section 4], very long and delicate.

The main novelties of our approach are

• the insight that for a proof of inequalities u ≥ η inf{w ∈ EX : w ≥ u} for
η ∈ (0, 1) it suffices to consider the special case, where starting in {u < ∞}
the Hunt process hits the set {û < u} almost surely only finitely many times,

• the consequent use of (only) the strong Markov property,

• the verification of the equalities in (2) and (3) first for nearly hyperharmonic
functions u ∈ B+(X) having a certain finiteness property, which then im-
plies (!) that every nearly hyperharmonic u ∈ B+(X) has this property,

• the equality (1.3) not only for measures µ satisfying
∫
w dµ < ∞ for some

excessive majorant w of u, but also for all finite measures µ.

Let us observe that the additional statement in Theorem 1.1 is not only of
interest in its own right, but also because of the following consequence (see [11,
Propositions 2.4, 2.5 and Theorem 3.1]).

COROLLARY 1.3. Let ϕ ∈ B+(X). Then Rϕ = ϕ ∨ R̂ϕ ∈ B+(X) and

Rϕ(x) = sup{
∫
ϕ ◦XDV c dP

x : x ∈ V ∈ Uc}, x ∈ X.

In Section 2 we discuss the close relationship between nice Hunt processes and
balayage spaces and establish a crucial inequality for nearly hyperharmonic functions
(Lemma 2.6). In Section 3 we treat the special case indicated above. In Section 4 we
shall see very quickly that the equality Ru = u for arbitrary nearly hyperharmonic
functions u ∈ B+(X) is a consequence of our result for the special case and yields
the additional statement in Theorem 1.1. The implication (1)⇒ (3) is derived in
Section 5, and in Section 6 we present our results under weaker measurability as-
sumptions. In Section 7 we briefly indicate the use of our approach in the general
setting of standard processes.
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2 Preliminaries

Let us first recall the following. Let W be any convex cone of positive numerical
functions on X having the properties stated in (C), (S) and (T) for EX (so that
every function in W is lower semicontinuous). The (W-)fine topology on X is the
coarsest topology on X which is at least as fine as the initial topology and such that
every function in W is continuous. Given ϕ : X → [0,∞], let ϕ̂, ϕ̂f resp. denote the
largest lower semicontinuous, finely lower semicontinuous resp. minorant of ϕ.

Then (X,W) is called a balayage space provided the following hold (see [3, 9]
and [10, Appendix 8.1]):

(i) If vn ∈ W , vn ↑ v, then v ∈ W .

(ii) If V ⊂ W , then înf V
f
∈ W .

(iii) If u, v′, v′′ ∈ W , u ≤ v′+ v′′, then there exist u′, u′′ ∈ W such that u = u′+ u′′

and u′ ≤ v′, u′′ ≤ v′′.

By [3, II.4.9] (see also [9, Corollary 2.3.8]), for our nice Hunt process X, the pair
(X, EX) is a balayage space (of course, limt→0 Ptf = f for every f ∈ Cb(X) by right
continuity of the paths). So we may use results obtained in [3] and in the recent
paper [11].

REMARKS 2.1. 1. We note that, conversely, for every balayage space (X,W)
with 1 ∈ W , there exists a corresponding nice Hunt process (see [3, IV.8.1]). For
that matter, the condition 1 ∈ W is not really restrictive since, given any balayage
space (X,W), the standard normalization W̃ := (1/w̃)W with any strictly positive

w̃ ∈ W ∩ C(X) leads to a balayage space (X, W̃) with 1 ∈ W̃ .
2. A characterization by harmonic kernels reveals that the notion of a balayage

space generalizes the notion of a P-harmonic space. Therefore the theory of balayage
spaces is known to cover the potential theory for very general partial differential
operators of second order (see, for instance, [7]).

Of course, for any numerical function ϕ ≥ 0 on X,

Rϕ := inf{w ∈ EX : w ≥ ϕ} ∈ N ,

and, by property (ii) of balayage spaces,

(2.1) R̂ϕ := R̂ϕ = R̂ϕ

f
∈ EX.

By [11, Proposition 2.2 and p. 6], we know even that û = ûf ∈ EX for all u ∈ N .
We recall that, for arbitrary subsets A of X and w ∈ EX,

RA
w := R1Aw = inf{v ∈ EX : v ≥ w on A} and R̂A

w := R̂A
w,

leading to measures εAx and ε̂Ax on X which are characterized by∫
w dεAx = RA

w(x) and

∫
w dε̂Ax = R̂A

w(x), w ∈ EX;
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see [3, II.4.3, II.5.4 and VI.2.1] (in [3] these measures are denoted by
◦
εAx and εAx ).

Given a stopping time T , we define as usual1

PTf(x) := Ex(f ◦XT ) for all f ∈ B+(X) and x ∈ X.

Suppose for the moment that A ∈ B. Then, by [3, VI.3.14], both DA and TA are
stopping times and

(2.2) PDAw = RA
w and PTAw = R̂A

w

for every w ∈ EX (cf. [4, 6.12]), where obviously PDAw = w on A and PDAw = PTAw
on X \ A. This implies that, for all f ∈ B+(X),

(2.3) PAf := PDAf ∈ B(X) and P̂Af := PTAf ∈ B(X);

see [3, VI.2.10]. So PA and P̂A are kernels on X; see [3, Section II].
Of course, (2.2) implies that, for all x ∈ X and B ∈ B,

PA(x,B) = εAx (B) and P̂A(x,B) = ε̂Ax (B).

In particular, our definition of nearly hyperharmonic functions by (1.2) coincides
with the definition given by [11, (2.2)].

The following simple stability result will be useful.

LEMMA 2.2. For every µ ∈ M(X), the set F of all functions f ∈ B+(X) such
that

∫
f dµ = inf{

∫
w dµ : w ∈ EX, w ≥ f} is a convex cone which is closed under

countable sums.

Proof. Of course, 0 ∈ F and af ∈ F for all a > 0 and f ∈ F . Let (fn) be a sequence
in F and f :=

∑
n≥1 fn such that

∫
f dµ <∞. Given ε > 0, we may choose wn ∈ EX,

n ∈ N, such that
∫
wn dµ <

∫
fn dµ + 2−nε. Then w :=

∑
n≥1wn ∈ EX, w ≥ f and∫

w dµ <
∫
f dµ+ ε.

We recall that an arbitrary set A in X is called thin at a point x ∈ X if ε̂Ax 6= εx.
By definition, the base b(A) of A is the set of all x ∈ X such that A is not thin at x,
that is, ε̂Ax = εx. By [3, VI.4.8],

(2.4) b(A) = {x ∈ X : TA = 0 P x-almost surely}, if A ∈ B.

By [3, VI.4.1 and VI.4.4], the base of every set A in X is a finely closed Gδ-set
containing the fine interior of A, and A ∪ b(A) is the fine closure of A. Moreover,
for every x ∈ X, the measure ε̂Ax is supported by the fine closure of A, that is, the
inner measure of its complement is zero; see [3, VI.4.6].

A set F in X is called totally thin if b(F ) = ∅ so that, in particular, F is finely
closed. A semipolar set is a countable union of totally thin sets. We know that, for
any infimum u of functions in EX, the set {û < u} is semipolar; see [3, VI.5.11].

1We tacitly assume that we have an isolated point ∆ added to X, that functions on X are
identified with functions on X∆ := X ∪ {∆} vanishing at ∆ and that Xt : [0,∞] → X∆ with
X∞ = ∆ and Xt(ω) = ∆, whenever t ≥ s and Xs(ω) = ∆.
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EXAMPLE 2.3. For space-time Brownian motion on Rd × R, every hyperplane
Ht := Rd × {t} is totally thin.

For the remainder of this section let us fix a function u ∈ B+(X) which is nearly
hyperharmonic. By [11, Proposition 2.5], for every A ∈ B,

(2.5) PAu ≤ u and P̂Au ≤ u.

REMARK 2.4. Let S, T be stopping times for X, S ≤ T . Then PTw ≤ PSw ≤ w
for every w ∈ EX; see [3, VI.3.4]. By [11, Corollary 2.6] (which uses that, for x ∈ X,
the extreme points in the weak∗-compact convex setMx(EX) of all measures µ on X
satisfying

∫
w dµ ≤ w(x) for every w ∈ EX are the measures εAx , A ∈ B), this implies

that PSu ≤ u. So the nearly hyperharmonic function u is strongly supermedian
in the sense of [1, 2, 5, 6, 14]. By [11, Proposition 2.7], we even get the inequality
PTu ≤ PSu (and hence, by a standard argument, Ex(u ◦XT |MS) ≤ u ◦XS P

x-a.s.
for every x ∈ X).

Since we shall not use these facts in the sequel, they may also be viewed as
consequences of Theorem 1.1 (to obtain PT (u∧ n) ≤ PS(u∧ n), n ∈ N, we consider
the finite measures µ := PT (x, ·) + PS(x, ·), x ∈ X).

Let us note that (2.5) implies the following.

LEMMA 2.5. The function u is finely upper semicontinuous and, starting in the
finely open set U := {u <∞}, the process X does not leave U , that is,

(2.6) P x[TX\U <∞] = 0 for every x ∈ U .

Proof. Let a ∈ [0,∞], A := {u ≥ a} and x ∈ X \A. By [3, VI.3.14], there exists an
increasing sequence (Kn) of compacts in the Borel set A such that TKn ↓ TA P x-a.s.
Since XTKn

∈ Kn on [TKn <∞], the inequalities PKnu ≤ u yield that

aP x[TA <∞] = lim
n→∞

aP x[TKn <∞] ≤ u(x) < a.

Hence P x[TA < ∞] < 1, x /∈ b(A). So A is finely closed showing that u is finely
upper semicontinuous. Finally, taking a =∞, we see that (2.6) holds.

For every V ∈ Uc, due to the lower semicontinuity of PV cu on V , we know that

(2.7) P̂vu = PV cu ≤ û on V

(see [11, (2.3)]). The following more general estimate will be crucial in Section 3.

LEMMA 2.6. Let A ∈ B and x ∈ X \ b(A) such that x is not finely isolated. Then

P̂Au(x) = Ex(u ◦XTA) ≤ û(x).

Proof. Since un := u ∧ n is nearly hyperharmonic for every n ∈ N and ûn ↑ û by
[11, Proposition 2.3], we may assume without loss of generality that u is bounded,
say u < M <∞.
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Let Wn ∈ Uc such that Wn ↓ {x} as n → ∞. By assumption, x ∈ b(X \ {x}),
and hence DW c

n
↓ DX\{x} = 0 P x-a.s., whereas TA > 0 P x-a.s. So there exists n ∈ N

such that τ := DW c
n

satisfies P x[TA ≤ τ ] < ε/M , and therefore

Ex(u ◦XTA) ≤ ε+ Ex(u ◦XTA ;TA > τ).

Let us note that τ > 0 P x-a.s. and that obviously, on the set [TA > τ > 0] we have
TA = τ +DA ◦ θτ whence XTA = XDA ◦ θτ . Thus we conclude that

Ex(u ◦XTA ;TA > τ) ≤ Ex(u ◦XDA ◦ θτ ) = Ex(EXτ (u ◦XDA))

= PτPAu(x) ≤ Pτu(x) ≤ û(x),

by the strong Markov property and (2.7).

Finally, let us recursively define stopping times SAn , A ∈ B, n ≥ 0, by

(2.8) SA0 := DA and SAn+1 := SAn + TA ◦ θSAn .

So SAn+1 is the time of the first hitting of A after the time Sn, XSAn+1
= XTA ◦ θSAn ;

see [3, Section IV.6].

PROPOSITION 2.7. Let A ∈ B and n ≥ 0. Then

(2.9) PA(P̂A)nf(x) = Ex(f ◦XSAn
) for all f ∈ B+(X) and x ∈ X.

Proof. Let Sn := SAn . For n = 0, (2.9) holds by (2.3). Suppose that (2.9) is true for
some n ≥ 0, and let f ∈ B+(X), x ∈ X. Then, by the strong Markov property,

PA(P̂A)n+1f(x) = Ex((P̂Af) ◦XSn) = Ex(EXSn (f ◦ TA))

= Ex(f ◦XTA ◦ θSn) = Ex(f ◦XSn+1).

3 A special case

Throughout this section we fix a nearly hyperharmonic function u ∈ B+(X) and
suppose the following.

ASSUMPTION 3.1. Starting in U := {u < ∞}, the Hunt process X hits the set
F := {û < u} a.s. only finitely many times: The stopping times Sn := SFn satisfy

(3.1) P x(
⋂
n≥0

[Sn <∞]) = 0 for every x ∈ U.

If x ∈ b(F ), then, by (2.4), Sn = 0 P x-a.s. for every n ≥ 0. Hence (3.1) implies
that b(F ) ∩ U = ∅. So F is in fact totally thin if u < ∞. By Lemma 2.5 and
a straightforward induction, we see that, for every x ∈ U and P x-a.e. ω ∈ [Sn <∞],

(3.2) XSn(ω) ∈ F ∩ U and Sn(ω) < Sn+1(ω),

and, for P x-a.e. ω ∈ Ω,

(3.3) {Sn(ω) : n ≥ 0, Sn(ω) <∞} = {s ≥ 0: Xs(ω) ∈ F}.
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EXAMPLE 3.2. Let us consider space-time Brownian motion on Rd ×R and fix
a sequence (tn) in R. For n ∈ N, let An be an arbitrary subset of Htn = Rd × {tn}
and let

vn := 1An + 1Rd×(tn,∞).

Then v :=
∑

n≥1 2−nvn ∈ N , 0 ≤ v ≤ 1, and {v̂ < v} is the union of all An, n ∈ N.
If {tn : n ∈ N} is dense in R and An = Htn , n ∈ N, then {v̂ < v} is finely dense

in Rd ×R and Sn = 0 a.s. for all n ∈ N. So Assumption 3.1 is very restrictive.
If tn = −1/n and An = Htn , n ∈ N, then v :=∞ · 1Rd×[0,∞] +

∑
n≥1 2−nvn ∈ N

and v satisfies Assumption 3.1 with b({v̂ < v}) = H0.

We define functions g and u0 on X by

g(x) := Ex
(∑
n≥0

(u− û) ◦XSn

)
and u0(x) := u(x)− g(x), x ∈ U,

and g(x) = u0(x) =∞, if x ∈ X \ U .

DEFINITION 3.3. For A ∈ B, let R(A) be the set of sums of a function in EX and
countably many functions PBw, where B ∈ B, w ∈ EX, B ⊂ A and w is bounded.

Clearly, R(A) ⊂ R(X) ⊂ N ∩ B+(X) and, by (2.2) and Lemma 2.2,

(3.4) v = Rv = inf{w ∈ EX : w ≥ v} for every v ∈ R(X).

In this section we shall establish the following result.

THEOREM 3.4. The function g is a minorant of u, both g and u0 are nearly
hyperharmonic, g − ĝ = u− û on U and û0 = u0 on U .

Further, there are functions g1, u1 ∈ R(F ) such that g1 = g on U and u1 = u
on U . In particular, if u <∞, then u0 ∈ EX and u = Ru.

We prepare its proof with a lemma leading to estimates by telescoping series.

LEMMA 3.5. Let V be an open set in X, τ := TV c, n ≥ 0 and x ∈ V ∩ U . Then

Ex(u ◦XSn∧τ − u ◦XSn+1∧τ ) ≥ Ex(u− û) ◦XSn ;Sn < τ) ≥ 0.

Proof. Let An := [Sn < τ ]. Of course, Sn ∧ τ = Sn+1 ∧ τ = τ on [Sn ≥ τ ]. Hence

Ex(u ◦XSn∧τ − u ◦XSn+1∧τ ) = Ex(u ◦XSn ;An)− Ex(u ◦XSn+1∧τ ;An).

Let T := TF∪V c = TF ∧ τ . By Lemma 2.6 and the strong Markov property,

Ex(û ◦XSn ;An) ≥ Ex(EXSn (u ◦XT );An) = Ex(u ◦XT ◦ θSn ;An),

where XT ◦ θSn = XSn+1∧τ on An, since Sn + T ◦ θSn = Sn+1 ∧ τ on An.

PROPOSITION 3.6. The function g is a minorant of u.

Proof. Let x ∈ U . By Lemma 3.5 with V := X, τ =∞,

g(x) ≤
∑
n≥0

(
Ex(u ◦XSn)− Ex(u ◦XSn+1)

)
≤ Ex(u ◦XS0) = PFu(x),

where PFu(x) ≤ u(x), by (2.5).
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Moreover, the following is an important ingredient.

LEMMA 3.7. Let E be a Borel subset of F , Tn := SEn for n ≥ 0,

w :=
∑
n≥0

(P̂E)n1 and v(x) := Ex(
∑
n≥0

1E ◦XTn), x ∈ X.

Then w ∈ EX, v = PEw ∈ R(F ) and PEw = 1E + P̂Ew. Moreover,

(3.5) PAv(x) = Ex(
∑
n≥0

1E ◦XSn 1[Sn≥DA]) for all A ∈ B and x ∈ X.

In particular, v(x) = Ex(
∑

n≥0 1E ◦XSn) for every x ∈ X.

Proof. For every n ≥ 0, wn := (P̂F )n1 is a bounded function in EX, hence w ∈ EX
and, by (2.2), v = PEw =

∑
n≥0 PEwn ∈ R(F ). Obviously, 1 + P̂Ew = w. If x ∈ E,

then w(x) = PEw(x). If x ∈ X \ E, then trivially P̂Ew(x) = PEw(x).
Let A ∈ B and x ∈ U . By Proposition 2.7 and the strong Markov property,

PAv(x) = Ex(EXDA (
∑
n≥0

1E ◦XTn))

= Ex(
∑
n≥0

1E ◦XTn ◦ θDA) = Ex(
∑
n≥0

1E ◦XDA+Tn◦θDA ),

where, for P x-almost every ω ∈ Ω, the last sum is the number of all s ≥ DA(ω) such
that Xs(ω) ∈ E, which in turn is the sum in (3.5); see (3.3). The proof is completed
taking A = X.

Proof of Theorem 3.4. There are Borel sets Fk in F and ak ∈ (0,∞), k ∈ N, with

(3.6) 1Uu− 1U û =
∑
k≥1

ak1Fk .

For every k ∈ N, let vk(x) := Ex(
∑

n≥0 1Fk ◦XS
Fk
n

), x ∈ X. Then, by Lemma 3.7,

(3.7) g1 :=
∑
k≥1

akvk ∈ R(F ) and g1 = g on U.

So g ∈ N ∩ B(X); see (3.2). Further, using [11, (2.4) and Proposition 2.3],

g = g1 =
∑
k≥1

ak(1Fk + v̂fk ) =
∑
k≥1

ak1Fk + ĝf1 = (u− û) + ĝ on U.

Next let V ∈ Uc and x ∈ V ∩ U . By Lemma 3.7 (with A := V c), we obtain that

g(x)− Pτg(x) = g1(x)− Pτg1(x) =
∑
n≥0

Ex((u− û) ◦XSn ;Sn < τ) ≥ 0

(showing once more that g is nearly hyperharmonic). Hence, by Lemma 3.5,

g(x)− Pτg(x) ≤
∑
n≥0

Ex(u ◦XSn∧τ − u ◦XSn+1∧τ ),
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where Ex(u ◦XS0∧τ ) = PDF∪V cu(x) ≤ u(x). Therefore

u0(x)− Pτu0(x) = u(x)− Pτu(x)− (g(x)− Pτg(x))

≥ lim
n→∞

Ex(u ◦XSn∧τ )− Ex(u ◦Xτ ).

If ω ∈
⋃
m≥0[Sm =∞] and τ(ω) <∞, then trivially u(Xτ (ω)) = limn→∞ u(XSn∧τ (ω)).

Hence Ex(u ◦ Xτ ) ≤ limn→∞E
x(u ◦ XSn∧τ ), by (3.1) and Fatou’s lemma, and we

obtain that u0(x)− Pτu0(x) ≥ 0. Thus u0 ∈ N .
Since g + u0 = u, and hence ĝ + û0 = û, we finally see that û0 = u0 on U and

u1 := g1 + û0 ∈ R(F ), u1 = g + u0 = u on U .

COROLLARY 3.8. If w ∈ EX such that w =∞ on {u =∞}, then u+w ∈ R(F ).

Proof. By Theorem 3.4, u+ w = u1 + g1 + w ∈ R(F ).

4 The general case

To reduce the general case of a nearly hyperharmonic function u ∈ B+(X) to the
special one considered in the previous section we first prove the following.

LEMMA 4.1. Let F ∈ B, w ∈ EX and η ∈ (0, 1) such that

(4.1) inf w(F ) > 0 and P̂Fw ≤ ηw on F.

Then P x
(⋂

n≥0[S
F
n <∞]

)
= 0 for every x ∈ {w <∞}.

Proof. Obviously, P̂Fw ≤ ηw on F ∪ b(F ) and a := inf w(F ∪ b(F )) = inf w(F ) > 0.
By induction, (P̂F )nw ≤ ηnw on F ∪b(F ) for every n ≥ 0. Let Ω0 :=

⋂
n≥0[S

F
n <∞].

Then, for all x ∈ X and n ≥ 0,

aP x(Ω0) ≤ Ex(w ◦XSFn
) = PF (P̂F )nw(x) ≤ (P̂F )nw(x) ≤ ηnw(x),

and hence P x(Ω0) = 0 if w(x) <∞.

PROPOSITION 4.2. Let u ∈ N∩B(X) with inf u(X) > 0. Further, let η ∈ (0, 1),

F := {û < ηu} and v := 1Fu+ 1X\F û.

Then ηu ≤ v ≤ u, v ∈ N ∩ B(X) and v satisfies Assumption 3.1.

Proof. Of course, û ≤ v ≤ u, hence v̂ = û and v ∈ N , by [11, Proposition 2.2].
Clearly, F = {v̂ < v} and inf v̂(X) = inf u(X) > 0.

The set A := {û ≤ ηu} containing F is finely closed, since u is finely upper
semicontinuous; see Lemma 2.5. Hence, for every x ∈ X, the measure PF (x, ·) is
supported by A, and therefore

PF û(x) ≤ ηPFu(x) ≤ ηu(x).

By regularization, P̂F û ≤ ηû, that is, P̂F v̂ ≤ ηv̂. If x ∈ {v < ∞}, then v̂(x) < ∞,
and P x

(⋂
n≥0[S

F
n <∞]

)
= 0, by Proposition 4.1 (applied to w := v̂).
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Let us say that a function u ∈ N has the finiteness property (FP) if, for every
x ∈ X with u(x) <∞, there exists a function w ∈ EX such that w =∞ on {u =∞}
and w(x) <∞. Trivially, every u ∈ N with u <∞ has this property (take w = 0).

THEOREM 4.3. Let u ∈ N be Borel measurable satisfying (FP). Then u = Ru.

Proof. Let x ∈ X, η ∈ (0, 1) and ε > 0. Of course, u+ε ∈ N and u+ε satisfies (FP).
By Proposition 4.2, there exists v ∈ N ∩ B(X) satisfying Assumption 3.1 and such
that η(u + ε) ≤ v ≤ u + ε. We choose w1 ∈ EX such that w1 = ∞ on {u = ∞}
and w1(x) < ε. Then v + w1 ∈ R({v̂ < v}), by Corollary 3.8. Thus, by (3.4),
ηRu ≤ Rv+w1 = v + w1 ≤ u+ ε+ w1. In particular, ηRu(x) ≤ u(x) + 2ε.

The following consequence of Theorem 4.3 may be surprising. Its combination
with Theorem 4.3 establishes the implication (1)⇒ (2) in Theorem 1.1.

COROLLARY 4.4. Every Borel measurable u ∈ N has the property (FP).

Proof. Let u ∈ N be Borel measurable, x ∈ X with u(x) <∞ and E := {u =∞}.
Clearly, 1E = 1 ∧ infn∈N(u/n) ∈ N . By Theorem 4.3, there are wn ∈ EX, n ∈ N,
such that

wn ≥ 1E and wn(x) < 2−n.

Then w :=
∑

n≥1wn ∈ EX, w =∞ on E and w(x) < 1.

To prove the additional statement in Theorem 1.1, let us consider ϕ ∈ B+(X)
and recall that Nϕ := inf{u ∈ N : u ≥ ϕ} is the smallest nearly hyperharmonic

majorant of ϕ, Nϕ = ϕ ∨ N̂ϕ ∈ B+(X) (see [11, Proposition 2.4]), and hence

Nϕ = inf{w ∈ EX : w ≥ Nϕ} ≥ inf{w ∈ EX : w ≥ ϕ} = Rϕ ≥ Nϕ.

5 The remaining part of Theorem 1.1

For a proof of the implication (1)⇒ (3) in Theorem 1.1 we note that, for every
u ∈ N ∩ B(X), the set {û < u} is semipolar (which, for example, follows from
u = inf{w ∈ EX : w ≥ u}) and that every semipolar Borel set is the union of
compacts Kn, n ∈ N, and a polar set E ∈ B; see [11, Proposition 5.2] in connection
with Remark 6.4 below. We start with a lemma on compact sets which will quickly
lead to the basic approximation result in Corollary 5.4.

LEMMA 5.1. Let K be a compact in X and let w be a bounded function in EX.
Then there exists a decreasing sequence (Vn) of finely open Borel sets containing K
such that PKw = infn∈N PVnw.

Proof. By [3, VI.1.2 (and its proof)], PKw is the infimum of all functions PVw,
where V is a finely open Borel set containing K. By a topological lemma of Choquet
(see [3, I.1.8]), there is a sequence (Vn) of such sets satisfying

P̂Kw = ̂inf
n∈N

PVnw.

Fixing a decreasing sequence (Un) of open sets in X with
⋂
n∈N Un = K, we may

assume without loss of generality that Vn+1 ⊂ Vn ⊂ Un for every n ∈ N. Then, by
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[3, VI.2.6], every function PVnw, n ∈ N, is harmonic on X \Un. Hence infn∈N PVnw
is harmonic on X \K, by [3, III.3.1], and we obtain that

PKw = P̂Kw = inf PVnw on X \K.

The proof is completed observing that PKw = w = inf PVnw on K.

PROPOSITION 5.2. Let A be the union of compacts Kn in X, n ∈ N, and
a polar set E ∈ B. Further, let w ∈ EX and µ ∈ M(X) be such that w is bounded
and µ(X) <∞. Then∫

PAw dµ = inf{
∫
PVw dµ : A ⊂ V, V finely open Borel }.

Proof. Of course, we may suppose that the sequence (Kn) is increasing. Moreover,
we may assume that µ(A) = 0, since PAw = w = PVw, whenever A ⊂ V ⊂ X.

Let us fix ε > 0. Since TE = ∞ a.s., we have PE1 = 0 on X \ E. Hence,
by [3, VI.1.9], there exists an open neighborhood U of E such that

∫
PU1 dµ < ε.

Moreover, by Lemma 5.1, there exist finely open Vn ∈ B, n ∈ N, such that

Kn ⊂ Vn and

∫
PVnw dµ <

∫
PKnw dµ+ 2−nε.

Defining Wn := V1 ∪ · · · ∪ Vn and proceeding as in the proof of [3, VI.1.4] we get∫
PWnw dµ ≤

∫
PKw dµ+ (1− 2−n)ε for every n ∈ N.

Let W :=
⋃
n≥1Wn and V := W ∪U . Then PVw ≤ PWw+PUw and PWnw ↑ PWw,

by [3, VI.1.7]. Thus we finally conclude that
∫
PVw dµ ≤

∫
PKw dµ+ 2ε.

REMARK 5.3. In [13, p. 138] such a result is shown for sets A which are strictly
thin, that is, satisfy P̂A1 < η on A for some η ∈ (0, 1), proving first the following
stunning approximation of the hitting time TA: For every probability measure ν
on X not charging A, there exists a decreasing sequence (Vn) of finely open sets
containing A such that limn→∞ P

ν [TVn < TA] = 0; cf. [12, Propositions 5.1 and 5.2].

COROLLARY 5.4. Let u ∈ N ∩ B(X), v ∈ R({û < u}) and let µ ∈ M(X) be
a finite measure. Then

(5.1)

∫
v dµ := inf{

∫
w dµ : w ∈ EX, w ≥ v}.

Proof. By (2.1), PVw ∈ EX for all finely open sets V ∈ B and w ∈ EX. Thus (5.1)
follows immediately from Proposition 5.2 and Lemma 2.2.

DEFINITION 5.5. For every Borel measurable u ∈ N , let Mu(X) denote the set
of all µ ∈ M(X) such that u is µ-integrable and µ(A) +

∫
X\Aw dµ < ∞ for some

Borel set A in X and majorant w ∈ EX of u.

Let us say that a Borel measurable u ∈ N has the finiteness property (FP′) if,
for every µ ∈ Mu, there exists a function w ∈ EX with w =∞ on the set {u =∞}
and

∫
w dµ <∞. Trivially, every u ∈ N with u <∞ has this property (take w = 0).

12



THEOREM 5.6. Let u ∈ N be Borel measurable and µ ∈ Mu(X). If u < ∞ or,
more generally, if u has the property (FP′), then∫

u dµ = inf{
∫
w dµ : w ∈ EX, w ≥ u}.

Proof. Let η ∈ (0, 1) and ε > 0. Assuming that u has the property (FP′), we choose
w1 ∈ EX such that w1 = ∞ on {u = ∞} and

∫
w1 dµ < ε. By Remark 1.2, there

exists A ∈ B and w0 ∈ EX such that w0 ≥ u and µ(A) <∞,
∫
X\Aw0 dµ < ε. We fix

δ > 0 such that δµ(A) < ε, and define

ν := 1Aµ and u1 := u+ δ.

By Proposition 4.2 and Corollary 3.8, there exists a Borel measurable v ∈ N
such that ηu1 ≤ v ≤ u1 and v + w1 ∈ R({v̂ < v}). Then, by Corollary 5.4,∫

u dµ+ 2ε >

∫
(u1 + w1) dν ≥

∫
(v + w1) dν

= inf{
∫
w dν : w ∈ EX, w ≥ v + w1} ≥ η inf{

∫
w dν : w ∈ EX, w ≥ u}.

So there exists w ∈ EX such that w ≥ u and η
∫
w dν <

∫
u dµ+2ε. We may assume

without loss of generality that w ≤ w0. Then

η

∫
w dµ < η

∫
w dν + ε <

∫
u dµ+ 3ε.

Letting ε tend to 0 and η tend to 1 the proof is completed.

COROLLARY 5.7. Every Borel measurable u ∈ N has the property (FP′).

Proof. Let u ∈ N be Borel measurable, µ ∈ Mu(X) and E := {u = ∞}. In
particular,

∫
u dµ <∞, and hence µ(E) = 0. Obviously, 1E = 1∧ infn∈N(u/n) ∈ N .

Hence, by Theorem 5.6, there exist functions wn ∈ EX, n ∈ N, such that

wn ≥ 1E and

∫
wn dµ <

∫
1E dµ+ 2−n = 2−n.

Then w :=
∑

n≥1wn ∈ EX, w =∞ on E and
∫
w dµ < 1.

Combining Corollary 5.7 with Theorem 5.6 we obtain the implication (1)⇒ (3)
in Theorem 1.1.

6 Weakening of the measurability assumption

In this section we shall consider nearly hyperharmonic functions which may not be
Borel measurable. Let B∗ be the σ-algebra of all (B-)universally measurable sets

and, as in [11], let B̃, B̃∗ respectively denote the σ-algebra of all sets A in X for
which there exists a set B in B,B∗ respectively such that the symmetric difference
A4B is polar, that is, P̂A4B1 = 0.
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Let us observe that, for functions u ≥ 0 which are B̃∗-measurable, the upper
integral in (1.2) may be replaced by the integral, since the measures PV c(x, ·) = εV

c

x ,
x ∈ V ∈ Uc, do not charge polar sets; see [3, VI.5.6].

Let f be a positive function on X which is B̃-measurable. Since every polar set
is contained in a Borel polar set and every countable union of polar sets is polar,
there exist f1 ∈ B+(X) and f2 ∈ B+(X) such that the set {f2 > 0} is polar and
f1 ≤ f ≤ f1 + f2.

The following result extends the implication (1)⇒ (3) of Theorem 1.1 to func-
tions which are nearly Borel measurable, that is, B̃ ∩ B∗-measurable.

THEOREM 6.1. Let u be a nearly Borel measurable function in N . Then∫
u dµ = inf{

∫
w dµ : w ∈ EX, w ≥ u}

for every µ ∈ M(X) such that µ(A) +
∫
X\Aw dµ < ∞ for some A ∈ B and some

majorant w ∈ EX of u.

Proof. There exist u1, u2 ∈ B+(X) such that u1 ≤ u ≤ u1 + u2 and the set {u2 > 0}
is polar. Of course, we may assume that û ≤ u1. Let us fix µ ∈ M(X) such that
µ(A) +

∫
X\Aw dµ < ∞ for some A ∈ B and majorant w ∈ EX of u. Choosing

v1, v2 ∈ B+(X) such that v1 ≤ u ≤ v1 + v2 and v2 = 0 µ-a.e., we may assume that
u1 ≤ v1 and v2 ≤ u2. Then v1 ∈ N , by [11, Proposition 2.2]. Since {v2 > 0} is
polar, we know that v2 ∈ N , and hence v := v1 + v2 ∈ N . Thus, by Theorem 1.1,∫

u dµ =

∫
v dµ = inf{

∫
w dµ : w ∈ EX, w ≥ v}

≥ inf{
∫
w dµ : w ∈ EX, w ≥ u} ≥

∫
u dµ.

For the implication (1)⇒ (2) we even have the following.

THEOREM 6.2. Let u be a B̃-measurable function in N . Then

u = inf{w ∈ EX : w ≥ u}.

Proof. Let us fix x ∈ X. There exist v1, v2 ∈ B+(X) such that v1 ≤ u ≤ v1 + v2 and
the set {v2 > 0} is polar whence v2 ∈ N . Of course, we may assume that û ≤ v1,
v1(x) = u(x) and v2(x) = 0. By [11, Proposition 2.2], v1 ∈ N . So v := v1 + v2 ∈ N
and Rv = v, by Theorem 1.1. Thus Ru(x) ≤ Rv(x) = v(x) = u(x) ≤ Ru(x).

Using results of [11, Section 4] this leads to a characterization of the equality

Ru = u for nearly hyperharmonic B̃∗-measurable functions. To this end we recall
that the σ-algebra of all finely Borel subsets of X (that is, the smallest σ-algebra
on X containing all finely open sets) is the smallest σ-algebra containing B and all
semipolar sets; see [11, Section 5]. In particular, B̃ ⊂ Bf .

THEOREM 6.3. Let u ∈ N and suppose that u is B̃∗-measurable. Then the
following statements are equivalent:
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(i) u = inf{w ∈ EX : w ≥ u}.

(ii) u is finely upper semicontinuous.

(iii) u is finely Borel measurable.

(iv) u is B̃-measurable.

(v) The set {û < u} is semipolar.

Proof. Trivially, (i)⇒ (ii)⇒ (iii). Moreover, (iii)⇔ (v) and (iii)⇒ (iv), by [11, Propo-
sition 5.3 and Corollary 5.4]. By Theorem 6.2, (iv)⇒ (i).

Clearly, previous statements on reduced functions Rϕ can now be extended to

functions ϕ ≥ 0 on X which are only supposed to be Bf ∩ B̃∗-measurable.

REMARK 6.4. The result [11, Corollary 5.4] relies on [11, Proposition 5.2] the
proof of which uses [8, Theorem 1.5] stating that, given a semipolar set S, there
exists a measure µ on X such that µ∗(B) > 0 for every non-polar subset B of S.
This is correct; its proof, however, is not, since [8, Lemma 1.3] is wrong.

Assuming without loss of generality that S is the union of totally thin Borel
sets Fn, n ∈ N, we many obtain a valid proof exhausting each Fn by sets

Fn,m := Fn ∩Km ∩ {P̂Fnq < ηmq}, m ∈ N,

where q is a continuous strict potential on X, (Km) is a sequence of compacts in X
and ηm ∈ (0, 1) such that Km ↑ X and ηm ↑ 1 as m→∞.

Indeed, let us fix x ∈ X and m,n ∈ N. Let F := Fn,m, η := ηn,m. We recursively
define measures µk on F taking µ0 := εx and

µk := µ̂Fk−1 :=

∫
ε̂Fy dµk−1(y), k ∈ N.

Then
∫
q dµk =

∫
P̂F q dµk−1 ≤ η

∫
q dµk−1, and hence inf q(F ) · µk(F ) ≤ ηkq(x) for

every k ∈ N. So limk→∞ µk = 0 which leads to a proof of [8, Theorem 1.5] not using
[8, Lemma 1.3].

7 Application of our method to general standard

processes

It should be clear to the experts that our approach works as well (at least) for general
standard processes as studied in [4] provided we assume that, for the potential kernel
V :=

∫∞
0
Pt dt, there exist bounded B∗-measurable functions hn on X such that V hn

is bounded for every n ∈ N and V hn ↑ ∞; see [4, III.6.12]. A suitable set N of
functions could then be the set of all nearly Borel measurable functions u ≥ 0 on X
satisfying PTu ≤ u for all strong terminal times T ; see [4, pp. 78 and 124]. The lower
semicontinuous regularization û of u (which for a nearly hyperharmonic function in
our setting of a nice Hunt process is the greatest excessive minorant of u) would
have to be replaced by ũ := limt→0 Ptu, which for supermedian functions u is the
greatest excessive minorant.
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