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dependent case.
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1. INTRODUCTION

Let P(R%) be the space of all probability measures over (R? B(R?)), which is
endowed with the weak convergence topology. Consider the following distribution
dependent stochastic differential equation (abbreviated as DDSDEs):

dX, = bt(Xtvu’Xt)dt+Jt(Xt7N’Xt)thﬂ (11)

where b : Ry x R? x P(RY) — R? and o : Ry x R? x P(RY) — RY @ R? are
two Borel measurable functions, W is a d-dimensional standard Brownian motion
on some filtered probability space (Q, %, (#)i>0,P), and px, :=Po X, ! is the
time marginal of X; at time ¢, By Ito’s formula, it is easy to see that px, satis-
fies the following non-linear Fokker-Planck equation (abbreviated as FPE) in the
distributional sense:

Dupix, = (L7 ) px, + div(b¥ px, ), (1.2)
X

where 0¥ () 1= oy(x, px, ), b (z) == by(z, px, ), and (£ )* is the adjoint operator
of the following second order partial differential operator
d
aX 1 i ik
27 f@) =g > (oo™ (@, 1x,)0:0; f (x). (1.3)
i,J,k=1
We note that if

o @) = [ @, 8@ = [ wle ).

This work is supported by NNSFC grant of China (No. 11731009) and the DFG through the
CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis,
stochastics and their applications”.



2 MICHAEL ROCKNER AND XICHENG ZHANG

then DDSDE (1.1) is also called mean-field SDE or McKean-Vlasov SDE in the
literature, which naturally appears in the studies of interacting particle systems and
mean-field games (see [14, 20, 24, 4, 6], in particular, [5] and references therein).

Up to now, there are numerous papers devoted to the study of this type of
nonlinear FPEs and DDSDE (1.1). In [12], Funaki showed the existence of mar-
tingale solutions for (1.1) under broad conditions of Lyapunov’s type and also the
uniqueness under global Lipschitz assumptions. His method is based on a suitable
time discretization. Thus, the well-posedness of FPE (1.2) is also obtained. More
recently, under some one-side Lipschitz assumptions, Wang [28] showed the strong
well-posedness and some functional inequalities to DDSDE (1.1). In [9], Hammer-
sley, Sitsa and Szpruch proved the existence of weak solutions to SDE (1.1) on a
domain D C R? with continuous and unbounded coefficients under Lyapunov-type
conditions. Moreover, uniqueness is also obtained under some functional Lyapunov
conditions. Notice that all the above results require the continuity of coefficients.
In [7], Chiang obtained the existence of weak solutions for time-independent SDE
(1.1) with drifts that have some discontinuities. When the diffusion matrix is uni-
formly non-degenerate and b, o are only measurable and of at most linear growth,
by using the classical Krylov estimates, Mishura and Veretennikov [21] showed the
existence of weak solutions. The uniqueness is also proved when o does not depend
on i and is Lipschitz continuous in x and b is Lipschitz continuous with respect
to p with Lipschitz constant linearly depending on z. It should be noted that
by Schauder’s fixed point theorem and Girsanov’s theorem, Li and Min [17] also
obtained the existence and uniqueness of weak solutions when b is bounded mea-
surable and o is nondegenerate and Lipschitz continuous. On the other hand, by
a purely analytic argument, Manita and Shaposhnikov [19] and Manita, Romanov
and Shaposhnikov [18] showed the existence and uniqueness of solutions to the non-
linear FPE (1.2) under quite general assumptions. As observed in [1], by a result
of Trevisan [25] (see Theorem 5.1 below), one in fact can obtain the well-posedness
of DDSDE (1.1) from [19] and [18]. In [1], a technique is developed to prove weak
existence of solutions to (1.1) by first solving (1.2) which works also for coefficients
whose dependence on px, is of “Nemytskii-type”, i.e., are not continuous in px, in
the weak topology.

In this work we are interested in extending Krylov-Rockner’s result [15] to the
singular distribution dependent case, that is not covered by all of the above results.
More precisely, we want to show the well-posedness of the following DDSDE:

X, = ( /R n(Xeynx, (dy)) dt + V2dWW, (1.4)

where b: Ry x R? x RY — R9 is a Borel measurable function and satisfies
(H?) [be(,y)| < he( — y) for some h € LY, (Ry; LP(RY)), where p,q € (2,00)

= loc
satisfy % + % < 1, and LP(R?) is the localized LP-space defined by (2.2)
below.
Here the advantage of using the localized space zp(Rd) is that for any 1 <p < p’ <

o,

L®R?Y) + L (RY) ¢ L (RY) € LP(RY) Cpoa Ky_1,
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where Ky_; is the usual Kato’s class defined by

Kg_1:= {f : lim sup / lz —y|' e f (y)dy = 0} )
|lz—y|<e

€20 yeRa

We note that the above DDSDE is not covered by Huang and Wang’s recent results
[10] since p1 = [pa be(z,y)p(dy) is not weakly continuous. In fact, if we let

Bila) = [ bia)ntdy), e PR, (15)
R
then by |b(x,y)| < hi(z — y), we only have
IBe s 1) = Be(es i)y < Whellplle = p'll v, (1.6)
where || - ||y is the total variation distance, and || - ||, is defined by (2.2) below.

Throughout this paper we assume d > 2. One of the main results of this paper is
stated as follows (but see also section 4 for corresponding results when the diffusion
matrix o is non-degenerate, but not constant):

Theorem 1.1. Under (H®), for any 8 > 2 and initial random variable X, with
finite 3-order moment, there is a unique strong solution to SDE (1.4). Moreover,
the following assertions hold:

(i) The time marginal law py of Xy uniquely solves the following nonlinear FPE
in the distributional sense:

Orprt = Apg + div (pe (be (0, -)) e ltiﬁ)lﬂt(dy) =Po X, ' (dy) (1.7)

in the class of all measures such that t — p; is weakly continuous and

T
[ [ el < e, 1 >0
0 JR4JRA

(ii) we(dy) = pi¥(y)dy and (t,y) — pX(y) is continuous on (0,00) x R? and
satisfies the following two-sided estimate: for any T > 0, there are constants
Y0, ¢o = 1 such that for all t € (0,T] and y € RY,

o " Prnotto(y) < o7 (1) < coPageiio(y),

where Py (y) := (2mt) =42 [0, e~ l7=vI*/(20) 0 (da) is the Gaussian heat semi-
group.

(iii) If divb = 0, then for each t > 0, p(-) € CY(R?) and we have the following
gradient estimate: for any T > 0, there are constants vy1,c1 = 1 such that for
allt € (0,T] and y € R?,

Vo ()| < ert™ 2Py pio(y).

Example 1.2. Let by(x,y) := ai(x,y)/|z —y|* for some « € [1,2), where a;(x,y) :
Ry x R? x R? — R? satisfies that for some k > 0,

lac(z,y)| < Kl —yl.

Then it is easy to see that b satisfies (H®) for some p > d and ¢ = co.
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Remark 1.3. Here an open question is to show the following propagation of chaos
(see [24]): Given N € N, let XN+J, j=1,--- | N solve the following SDEs

AxNI = — th NI xNhat+v2dwi, j=1,--- N,

where W.j,j =1,---,N are N-independent d-dimensional Brownian motion. Let
X be the unique solution of SDE (1.4) in Theorem 1.1. Is it possible to show that

XNy X in distribution as N — oo ?

FEven for bounded measurable b, the above question seems to be still open.

To show the existence of a solution to DDSDE (1.4), by the well-known result for
bounded measurable drift b obtained in [21] (see also [17]and [32]), for each n € N,
there is a solution to the following distribution dependent SDE:

dXP = (/ b?(Xf,y),uth(dy)> dt +v2dW;, X§ = Xo, (1.8)
Rd

where b} (x,y) := (—n)Vb(x,y) An. By the well-known results in [29], one can show
the following uniform Krylov estimate: For any p1,q1 € (1,00) with pil + (12—1 <2

and T > 0, there is a constant C' > 0 such that for any f € }’l:gi (1),

T
sup B ( / ft<Xt">dt> < Crlfligsy . (1.9)

By this estimate and Zvonkin’s technique, we can further show the tightness of X
in the space of continuous functions. However, since b is allowed to be singular,
it is not obvious by taking the limit n — oo to obtain the existence of a solution.
Indeed, one needs the following Krylov estimate: for suitable pg,qo € (1,00) and
any f: Ry xR x RT - R,

supE( / £(X7, X ) 1Pl oy

where X™ is an independent copy of X”. When b is bounded measurable, such an
estimate is easy to get by considering (X", X ") as an R??-dimensional It6 process
and using the classical Krylov estimates (see [21]). While for singular b, such
simple observation fails in order to obtain best integrability index p. We overcome
this difficulty by a simple duality argument (see Lemma 2.7 below). Moreover,
concerning the uniqueness, under assumption (1.6), we shall employ Girsanov’s
transformation as usual.

This paper is organized as follows: In Section 2, we prepare some well-known
results and tools for later use. In Section 3, we show the existence of weak and
strong solutions to DDSDE (1.1) when the drift satisfies (H"), and the diffusion
coefficient is uniformly nondegenerate and bounded Hélder continuous. In Section
4, we prove the uniqueness of weak and strong solutions to (1.1) in two cases: the
coefficients b and o are Lipschitz continuous in the third variable with respect to
the Wasserstein metric; drift b is Lipschitz continuous in the third variable with
respect to the total variation distance and the diffusion coefficient does not depend
on the distribution. In Section 5, we present some applications to nonlinear FPE
(1.2) and prove Theorem 1.1.
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Finally we collect some frequently used notations and conventions for later use.
e For >0, Py(R?) := {p € P(RY) : [qu|x]?p(dz) < oo}.
e For R >0, set Bp := {x ¢ R%: |z| < R}.
e For a function f: R? = R, Mpf(x) := SUD,c(0, ) IBilT\ fBr |f1(z + y)dy.
e Let Sioen be the set of all measurable stochastic processes on (2, %, P) that
are stochastically continuous.
o Let b: Ry xRYx P(R?) — R? be a measurable vector field. For X € Sqoen,
define
b (@) = bu(@,x,), pix, = Po X, (1.10)

e For a signed measure p, we denote by ||u[|rv = sup| ¢ <1 [#(f)| the total
variation of pu.
e For j = 1,2, we introduce the index set .#; as following:

;= {(p7q)€(1,oo):%+%<j}. (1.11)

e For a matrix o, we use ||o||gs to denote the Hilbert-Schmidt norm of o.

e We use A < B (resp. =) to denote A < OB (resp. C~!B < A < CB) for
some unimportant constant C' > 1, whose dependence on the parameters
can be traced from the context.

2. PRELIMINARIES

In this section we recall some well-known results. We first introduce the following
spaces and notations for later use. For («,p) € Ry X (1,00), the usual Bessel
potential space H*P is defined by

HP = {f € Lipe(R?) : | fllap = (T = 2)*2f], < oo},
where || - ||, is the usual LP-norm, and (I — A)*/2f is defined by Fourier transform
(I—A)*2f = F (1 +]- ))2Ff).
Notice that for n € N, an equivalent norm in H™? is given by
[l = £l + 1V £l
For T >8>0, p,q € (1,00) and « € Ry, we introduce space-time function spaces
LE(S,T) := Lq([S, TY; Lp), HEP(S,T) := L‘I([,S’7 TY; Ha’p).

Let x € C°(R%) be a smooth function with x(z) = 1 for |z| < 1 and x(z) = 0 for
|z| > 2. For 7 > 0 and z € RY, define

Xz (x) == x((z = 2)/r). (2.1)
Fix r > 0. We introduce the following localized H*P-space:

HoP = {f e HEP(RY), | /]

loc

aip = 5D ||/l < 00}, (2.2)
z
and the localized space-time function space ﬁg"p(S, T) with norm
1 e 5.y 5= P 1 Fllisgo sy < 0 (2.3)
! ’ z€ER?

For simplicity we shall write

e, . T, T . 0,
Hq P(T) = Hq P(0,T), ]Lf;(T) = qu(O,T),
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and N N N B
quz,p = ﬂT>0Hg’p(T)7 ]Lg = ﬂT>0]Lg(T).

The following lemma list some easy properties of Hg? (see [35] and [29]).
Proposition 2.1. Let p,q € (1,00), « € Ry and T > 0.

(i) Forr #1r' >0, there is a C = C(d,a,r,7',p,q) > 1 such that

C~Vsup || fxillmg» ¢y < sup | FxElluer ey < Csup || fx5 o » (7). (2.4)
z z z
In other words, the definition of ]ﬁlg"p does not depend on the choice of r.

(ii) Let o > 0, p,q € [1,00) and p’ € [p, ﬁlpch + 00 - 1ya>a]- It holds that
for some C = C(d,a,p,p’) > 0,

Iz oy < Cllfllgr (ay- (2.5)
(iii) For any k € N, there is a constant C = C(d, k,a,p,q) > 1 such that
C MW gz rmrry < Wz vy + 19" Py < Ol s ooy
(iv) Let (pe)ee(o1) be a family of mollifiers in R and f.(t,z) := f(t,-) * p-(z).
For any f € IFPV]IZ"”, it holds that f- € L (R;C°(RY)) and for some C =

loc

C(d,O@p, q) > 07
Vel ooz < Oy, Ve € (0,1), (2.6
and for any ¢ € C°(RY),
iig(l) 1(fe — f)‘P”H‘;”’(T) =0. (2.7)
(v) Forr=p/(p—1) and s =q/(¢—1),
T
fl=om < 1150, =  sup / fe(x)ge(x)dadt|, 2.8
Wtz = Uy = s [0 ] oot (29)
1(T)
T
and lolt, iy = s || [ o], (2.9
: 171y <1 | Jo Jra
n(T)
where |l o, = s1D.cze Lo Fligery and loll, gy = Tecne [1a.0l1zcr)
Q. =1L, (zi,zi+1], z= (21, ,2q) € Z% (2.10)

Proof. The first four conclusions can be found in [35, Proposition 4.1]. We only

prove (v). The equivalence between || f |\|H~_p(T) and || f |H€ip ) is obvious by definition.
a q

Concerning the others, we note that by Holder’s inequality,

T T
| [ @t = 3 [ 16, @) flw)aedaar

z€ze (2.11)

< 3 110.flzcrto.lksr) < Wyl
ZEL

]%LI(T)'

On the other hand, assume that z, is a sequence in Z? so that for Q,, == Q.. ,

1m ||1q, fllugr = 1l o (2.12)
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If we take
1/g—1

x) = 1, ()| fi(x) P~ T q
gi(z) = (/O |1ant||pdt>

g, fillp™*

with the convention 0/0 = 0, then by easy calculations, we have ||g||% =1 and

L(T)

T T 1/q
/ Rdﬁ(x)gt(x)dxdﬁ(/ ||1ant|gdt) = 0. Flkscry
0 0

which together with (2.11) and (2.12) yields (2.8). Similarly, if we take

1/s—1

r—1 T
fle) = Y HetDll) (/ ||1ngt|:dt> ,

2 gl

then [|]f, ., = 1 and

/OT/W fi(x)g:(x)dzdt = Z

2€7Z4

T 1/s

which together with (2.11) yields (2.9). O
We now recall the following result about L9(LP)-solvability of PDE (see [29]).

Theorem 2.2. Let (p,q) € %1 (see (1.11)) and T > 0. Assume that oy(z,n) =
ot(x) and by(z, p) = be(x) are independent of i, and satisfy that for some ¢y > 1,
v € (0,1] and for allt >0, z,y,£ € RY,

o el < loe(@)el < colel, Nlow(x) = oe(y)llms < colz —y7, (2.13)
and \||b|\|]f;q)(T) < Ko for some kg > 0, Then for any A = 1 and f € f[:f]’(T), there
erists a unique solution u € Hg*p(T) to the following backward parabolic equation:

ou+ (L7 —Nu+b-Vu=f, T, z)=0. (2.14)
Moreover, letting © := (v, co,d, p, q, ko, T), we have the following:
(i) For any a € [0,2 — %), there is a ¢1 = c1(, ©) > 0 such that for all X > 1,
AT lullge,r () + Nullgze ) < Cllflep () (2.15)

(ii) Let (o’,b', f') be another set of coefficients satisfying the same assumptions
as (o,b, f) with the same parameters (v, co, ko). Let u' be the solution of
(2.14) corresponding to (o', b, f'). For any « € [0,2 — %), there is a constant
ca = co(a, ©) > 0 such that for all X > 1,

_a_ 1
ATETS flu— u/Hlﬁg(;v(T) <ellf - f/‘”]]jg(:r)

, i (2.16)
+ CQ”f”Eg(T)(HU —0'||Lee(r) + Ib—b mig(T))-

Proof. The existence and uniqueness of u € I?]Iﬁ” (T) as well as the first conclusion
are proved in [29, Theorem 3.1]. We only show (ii). Let w = 4/ — u. Then

Ow+ (L7 —Nw+b Vo= (L — L Yu+b-V) Vu+ f — f.
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By (2.15) and Holder’s inequality we have
N7 wllgerry S 1L =L ut 0= 6) - Vut £ = fllzper
SN0’ = ol V2l + 18 = Yl - IVl + 1 = Fllzz o,
Estimate (2.16) now follows by Sobolev’s embedding (2.5) due to % + % < 1 and
(2.15). m

Remark 2.3. It should be noted that if b is bounded measurable, then the assertions
in Theorem 2.2 holds for all p,q € (1,00).

The following stochastic Gronwall inequality for continuous martingales was
proved by Scheutzow [22], and for general discontinuous martingales in [30].

Lemma 2.4 (Stochastic Gronwall’s inequality). Let £(t) and n(t) be two non-
negative cadlag F-adapted processes, Ay a continuous nondecreasing Fy-adapted
process with Ag = 0, M; a local martingale with My = 0. Suppose that

t
&(t) < n(t) +/ &(s)dAg + My, YVt > 0. (2.17)
0
Then for any 0 < g <p <1 and 7 > 0, we have

B < (52) (s ) T B, ey

p—d
where &(t)" := supepo,4 §(5)-

We also recall the following result about maximal functions (see [29, Lemma
2.1)).

Lemma 2.5. (i) For any R > 0, there exists a constant C = C(d, R) such that
for any f € L®(RY) with Vf € L} _(R?) and Lebesque-almost all x,y € R,

loc

[f (@) = f(y)| < Clz = y[(M&[VF|(z) + Mr[VFI(y) + [ flle); (2.19)

where Mg is defined at the end of the introduction.
(ii) For any p > 1 and R > 0, there is a constant C = C(R,d,p) such that for
any T >0 and all f € LE(T),

IMafly iy < Ol (2.20)
We introduce the following notion about Krylov’s estimates.

Definition 2.6. Let p,q € (1,00) and T,k > 0. We say a stochastic process
X € Stocn satisfies Krylov’s estimate with index p,q and constant r if for any

feli(T),

T
E </0 ft(Xt)dt> < Al gz o) (2.:21)

The set of all such X will be denoted by K%

For a space-time function f;(z,y) : Ry x R x R? — R and p1, p2, qo € [1,00],
we also introduce the norm

T 40
P2
I/l 72 ) := sup / (/ ||1szt<-,y>||§fdy>
z,z' €R4 0 Q.

z

a0
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The following lemma is an easy consequence of Proposition 2.1 (v).

Lemma 2.7. Let p1,p2,qo,q1,q2 € (1,00) wzth —|— e 1—|— o and T, k1, k2 > 0.
Let X € KV and Y € K22 be two mdependent pmcesses Then for any
Rl sR2

ft(‘ray) € Egé7p2 (T)7

T
E (/ ft(Xt’ Y;)dt) < K1R2 |||f“|i:gé,p2 Ty (222)
0

Proof. Let Z' = X and Z% = Y. First of all, by Krylov’s estimate (2.21), for each
i = 1,2, there is a function p?* € L7/ (T) with r; =

Pi L — 9
5y Si = g7 SO that

T
/ / fe(x)pi (x)dzdt = (/0 ft(ZtZ)dt> < Rill fllgz: oy < mill Flleze oy

By Proposition 2.1 (v), we further have

mpZ ‘”ET‘ T = H]'szz ||]L7:1(T) < Ki, 1= 1723
Cy i
' z€74

where Q. is defined by (2.10). Now by the independence of X,Y and Holder’s
inequality, we have

T T
E (/0 ft(Xt;Y;S)dt> = / /Rd y folz, ) pis (z)pY (y)dadydt

=5 3 [ L] 100, e @k wasavat

z€Z4 2" €74
< Z Z ||1szQz,f\\1L§3”’2(T)|\1QZPX|L”(T)||1Q2/PY||L23(T)
2€7Z% 2’ €74

S wky sup |[1g.xq. flluzy 2y = makallfllzerrs (),
z,z' €14 0

which gives (2.22). The proof is complete. (I

Now we prove the following convergence lemmas, which have independent inter-
est and will be crucial for showing the existence of solutions in Section 3.

Lemma 2.8. Let X", Y™ XY € Siocn be such that for each t > 0, X|* converges
to X; almost surely and Y" converges to Yy in distribution. Let p,q > 1 and
T,B,k > 0. Suppose that X™ € K, for each n € N, and for some C1 > 0,

sup sup E|X7'? < C). (2.23)
n tel0,T]

If for each (t,x), p — be(x, 1) is continuous with respect to the weak convergence
topology and for some v > 1, Cy > 0 and all Z € Sioch,

167 N2 () < Coa, (2.24)
where b? is defined by (1.10), then

lim E </T bY" (XP) — b}”(Xt)|dt> = 0. (2.25)

n— oo 0
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Proof. To prove (2.25), it suffices to show the following;:

T
lim E (/ bY(XT) — b)Y (X]) dt) =0, (2.26)
n—oo 0
T
lim E (/ |0 (X7) — b (Xy)| dt) =0. (2.27)
n—oo 0

We first look at (2.26). Since py» weakly converges to py, for each ¢ > 0, by the
assumption we have

b (x) "= b (z), VY(t,z) € Ry x R (2.28)
For fixed R, M > 0, since X" € K§% (see (2.21)), by the definitions we have

E(/OTlBR(Xt")

N HlBR(an - by)llbY"—bYKMHLg(T) + HlBR (b - by)l\b"" —b"|>MHLg(T)

<[ (0" = 0oy <[l p oy + (LB 0T = 0] /MO

b (X7 — b ()

dt) < K|1p, (07 — by)mig(T)

||]L5(T

By the dominated convergence theorem and (2.28), the first term converges to zero
as n — oo for each M > 0. By (2.24), the second term converges to zero uniformly
in n as M — oco. Thus, we obtain that for any R > 0,

T
nh_}n;OE (/0 1, (X))

On the other hand, by Holder and Chebyshev’s inequalities and (2.23), we have

T
. ( [ o dt)

T —1
< [ P> By (B[00 -0 ()

b () — b (X7)

dt) = 0. (2.29)

by (X7) = b (X7')

2=

7) at

1
~ vy
dt)

y—1 y—1
T\ 7 1 224) (CiT\ 7 1
< (Rﬁ) K |||an — bYMMS(T) < (RB K7 - 2Cs.

Combining this with (2.29), we obtain (2.26).
Next we show (2.27). Let b () := bY () 0= () be a mollifying approximation
of bY. By Proposition 2.1 (iv) and (2.23), as above one can derive that

T
lim sup E /
€0 neNU{oco} 0

where we have used the convention X := X. On the other hand, since by (2.21),

T
supE /
n 0

T
< swp P> BT T (B0 B o)
t€[0,T] 0

b (XF) = b (X])

dt) =0, (2.30)

b F(XF) = b, (Xe)

,
ey

! dt) < C||pYe
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and for fixed ¢ > 0 and any ¢ > 0, # — b, =(z) is continuous, by the dominated
convergence theorem, we have

T
lim E (/ ‘bfvf(xt”) - bf’E(Xt)‘ dt) —0,
which together with (2.30) yields (2.27). O

There are, of course, many examples where the weak continuity assumption of
i by(x, 1) in the above lemma is not satisfied, as in the following interesting case:

b, 1) = / B y)uldy), (2.31)

where b : R; x R? x R? — R is a bounded measurable function. Obviously the
weak continuity of u — b(t, z, u) does not hold. However, in this case we still have
the following limiting result.

Lemma 2.9. Let X", Y™ XY € Sioen be such that for each t > 0, X' converges
to Xy almost surely and Y,* converges to Y; in distribution. Let p1,p2,qo,q1,q2 €
(1,00) with q% + q% =1+ q% and T, B,k > 0. Suppose that X" € Ki'* and
YY" e K’}ff" for each m € N, and that there is a constant C1 > 0 such that

sup sup E (|Xt"\5 + |Yt"\*3) < (. (2.32)
n tel0,T]

Let v > 1. Then for any b € ]’I:x{]’é”“ (T), we have

lim E </T by " (X)) — bf(Xt)|dt> =0. (2.33)
0

n—oo

Proof. Let Ny, := NU{oo} and Y := Y, X := X. Since b* " only depends on the
distribution of Y, by Skorohod’s representation, without loss of generality we may
assume that (X™)p,en, and (Y")nen,, are independent, and (X7*,Y") — (X, Y:)
a.e. as n — oo for each t. Notice that by the assumptions and (2.22),

T
sup E </ |bt(th’ Y;n)r/dt) < K ‘”b”'%’vmwm (T) < 00. (234)
n€EN, 0 7490

Let b5 (z,y) = bs * 0-(z,y) be a mollifying approximation of b. As in the proof of
(2.26), we have

T
lim sup E (/ |bS (X, Y™ Et(Xt”,Yt”)|dt> =0. (2.35)
e—0 nENs 0
Thus, to prove (2.33), it suffices to show that for fixed ¢ € (0, 1),
T
lim E (/ b5 (X7 Y)") — bf(Xt"JQ)ldt> =0,
0

n—oo

T
0

n—oo

which follows by (2.34) and the dominated convergence theorem. (]
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3. EXISTENCE OF WEAK AND STRONG SOLUTIONS

In this section we show the weak existence and strong existence of DDSDEs
with singular drifts. First of all we recall the notions of martingale solutions and
weak solutions for (1.1). Let C be the space of all continuous functions from R to
R?, which is endowed with the usual Borel o-field B(C). The set of all probability
measures on (C, B(C)) is denoted by P(C). Let w; be the coordinate process over
C, that is,

wi(w) =w, weC.

For t > 0, let B;(C) = o{ws : s < t} be the natural filtration. For a probability
measure P € P(C), the expectation with respect to P will be denoted by E if there
is no confusion.

Definition 3.1 (Martingale solutions). We call a probability measure P € P(C) a
martingale solution of DDSDE (1.1) with initial distribution v € P(RY) if Powy ' =
v and for any f € C(RY),
t t
/ \fs"Pﬂ(ws)ds—i—/ b - V f|(ws)ds < 0o, P—a.s, V>0,
0 0

where of (x) == oy (x, 1) and b () := by(z, 1}, pf ==Pow; ", and

M/ = flwe) — f(wo) — / (L7 F)(ws)ds — / OF -V w)ds,  (3.1)

is a continuous local B(C)-martingale under P. All the martingale solutions of
DDSDE (1.1) with coefficients o,b and initial distribution v are denoted by .#°.

Definition 3.2 (Weak solutions). Let (X, W) be two R-valued continuous adapted
processes on some filtered probability space (2, F,(Ft)i>0,P). We call

(Q7 ya (yt)t207 P7 X, W)
a weak solution of DDSDE (1.1) with initial distribution v € P(R?) if

(i) Po XO_1 =v and W is a d-dimensional standard .%;-Brownian motion.

(ii) For allt > 0, it holds that

t t
/ |bs|(X8,,uXS)ds+/ oo s (Xo, ix.)ds < 00, P —as.
0 0

and
t t
X =X, +/ bs(Xs, px,)ds +/ 0s(Xs, px,)dWs, P —a.s. (3.2)
0 0

Remark 3.3. It is well known that weak solutions and martingale solutions are
equivalent (cf. [23]), which means that for any P € .Z2°, there is a weak solution

(Q7 ya (ﬁt)t207 P7 X7 W)
to DDSDE (1.1) with initial distribution v € P(R%) such that
P=Pox '

Now we make the following assumptions about ¢ and b:
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(H®) For each t,, the mapping p + o (x, 1) is weakly continuous, and there are
co =1 and v € (0,1] such that for all t > 0, z,2',£ € R and pu € P(RY),
co €l < loe(a, €l < eolél, Nlow(a, p) = o0’ p)|lms < colw — 2’7, (3.3)

The drift b satisfies one of the following conditions:
(i) For each t,z, the mapping p +— by(z, ) is weakly continuous, and for
some (p,q) € S and ko > 0,

sup Hlbz |||E§(T) < ko < 00. (3.4)
Z€Stoch

(ii) b has the form (2.31) with b satisfying (H?).
It should be noticed that under (H®), (3.4) holds. Indeed, by definition we have

T

Z 19 —
171y, = sp |
T
<sp [
z€RJO

T
< sup// X" hs[ 1z, (dy)ds
zeRd JOo JRA

q
ds
p

Xy /]R , bs (-, y)pz, (dy)

q
ds

p

X /R , hs(- = y)pz, (dy)

T T
< / sup [zhall® iz, (RY)ds = / hallids.
0 z€R4 0

To show the existence of weak solutions, we first establish the following apriori
estimates.

Lemma 3.4. Let B > 0. Under (H°?), for any v € Pg(RY) and Z € Siocn, there
is a unique weak solution (Q, F,(F)i>0,P; X, W) to the following SDE:

dX; = b7 (Xp)dt + o (Xp)dW;, Po X' =w.

Moreover, letting © = (d, p, q, co, 7, ko, 8), we have
(i) For any T > 0, there is a C1 = C1(©,T) > 0 such that

E ( sup |Xt|3> < Ci(E|Xo|” + 1), (3.5)
t€[0,T)
and for any 6 < T,
E| sup [Xips— X | < C16%2 (3.6)
te[0,T—4]

(ii) For any (p1,q1) € 2 and T > 0, there is a constant Cy = Ca(p1,q1,0,T) > 0
such that for all 0 <tg <t1 < T and f € LA (to,t1),

t1
B[ 10000 7) < gy (3.7
to

Proof. The proof of this lemma is essentially contained in [33]. For the reader’s
convenience, we sketch the proofs below. We use Zvonkin’s transformation to kill
the drift b2. For A\, T > 0, consider the following backward PDE:

Oru + (%"Z —Nu+4bZ - Vu+b? =0, u(T,z) = 0.
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Since b2 € ]Ijg(T) with (p,q) € 41, by Theorem 2.2, for A\ > 1, there is a unique
solution u € ]ﬁlg’p (T') solving the above PDE. Moreover, for any « € [0,2— %), there
is a constant ¢; = ¢1(«,©,T) > 0 such that for all A > 1,

@

ATE %|||U||\ﬁ;P(T) +llullgzs oy < callb?lgp 1. (3.8)
In particular, since % + % < 1, by (2.5) we can choose A large enough so that
l[ulloe () + [[VullLee () < 1/2.
Now if we define
Dy () := x + ue(x),
then it is easy to see that
[z —y[/2 < [Pe() = e(y)| < 20z —yl, (3.9)
and
00+ .27+ b7 - VP = M. (3.10)
By the generalized It formula and (3.10), we have

Y = 0.(Xy) = Po(Xo) + )\/Ot us(Xs)ds + /Ot(asz -V, (Xs)dWs,

:<I>0(X0)+/O BS(YS)dH/O Fo(Ys)dWs, (3.11)

where

G:= (07 - V®)od ! b:=Auod .
Moreover, by (3.8), (3.9) and the Sobolev embedding (2.5), it is easy to see that
for some ca = ¢2(0©,T) > 0 and vy = Y0(7,p, q) € (0,1),

e el < |Ge(@)é| < eall, N16e(x) — 5e(y)llms < calw —y[™, (3.12)
and
Bl 7y + | VBl (1) < 4A. (3.13)

By well-known results, SDE (3.11) admits a unique weak solution (cf. [23]). More-
over, as in [33], one can check that X; := ®;!(Y;) solves the original SDE.

(i) Let 5 > 0. By (3.12) and (3.13), estimate (3.5) directly follows by BDG’s
inequality. We prove (3.6). Fix 6 € (0,7). Let 7 be any stopping time less than
T —§. By equation (3.11) and BDG’s inequality, we have

T+6 5 B
/ b(X4)ds

which yields (3.6) by [34, Lemma 2.7] and (3.9).

(ii) It was proved in [31, Theorem 2.1] (see also [30, Theorem 5.7]) that for
any (p1,q1) € Ha, there is a constant Co = Ca(p1,q1,0,T) > 0 such that for all
0<to<t; <T and feLp(to,ty),

B

T+6
EY s - Y, SE +B| [ ax)am.

t1
B[ £000[%) < Call g
0
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By a change of variable and (3.9) again, we obtain (3.7). O

Remark 3.5. An important conclusion of (ii) above is the following Khasminskii’s
type estimate (see [30, Lemma 3.5]): For any \,T > 0 and f € LL (T) with
(p1,q1) € A,

T
E exp <A / |fS<Xs>|ds> <Gy, (3.14)

where Cs only depends on X\,0,p1,q1, T and || f|lz» (7)
q1

Now we can show the following weak existence result.

Theorem 3.6. Let 3> 2. Under (H%), for any v € Pg(R?), there exists a weak
solution (Q, F, (Ft)i>0, P; X, W) to DDSDE (1.1) with Po X5 ' = v.

Proof. Let X = Xg. For n € N, consider the following approximating SDE:
t

¢
xr :XSL—F/ b?(X;’,uXSn)ds—l—/ os (X7, pxn ) AW, (3.15)
0 0
where
b2 () o= (=) V b ) Ay B2, y) = (=) V Da(,9) A
Since b™ is bounded measurable, by [21] or [32, Theorem 1.2], there is a weak
solution
(Qa gzv (g\t)t>03 Pv Xna W)
to DDSDE (3.15) with P o (X7')~! = v. Moreover, since
sup [Jb™ 7|~ < sup  [|b7 - < Ko,
L 18y < s 1 gy
by Lemma 3.4, the following uniform estimates hold:
(i) For any T' > 0, there is a constant C; > 0 such that

sup E ( sup |Xf|ﬂ> < CL(E|Xol +1),
n t€[0,T)

and for all ¢ € (0,7),

supE ( sup | X[\ s — th|,6> < C16°72.
n te[0,7—6]

(ii) Let (p1,q1) € H. For any T > 0, there is a C2 > 0 such that for all
feLg (D),

T
sup E (/O fs(X?)d8> < Coll Fllgzs oy

Now by (i), the laws Q™ of (X™, W) in C x C are tight. Let Q be any accumulation
point of Q™. Without loss of generality, we assume that Q™ weakly converges to
some probability measure Q. By Skorokhod’s representation theorem, there are a
probability space (€,.%,P) and random variables (X™ W™) and (X, W) defined
on it such that

(X", W") = (X, W), P—a.s. (3.16)
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and
Po(X",W")1=Q"=Po (X", W)™!, Po(X,W)'=Q. (3.17)
Define .7} := o(W", X"; s < t). We note that
PW,—-W, e |F)=PW, - W, €")
= P(W!—WI e | ZM =P(W - W e ).

In other words, W™ is an .%#/-Brownian motion. Thus, by (3.15) and (3.17) we
have

t t
X=Xy 4 / b (X g, )ds + / 0o (X7 g ATV
0 N 0 N

By (ii), (3.16), Lemmas 2.8, 2.9 and [13, Theorem 6.22, p383], one can take limits
as n — oo to obtain

t t
X = Xo +/ bs(Xswu’f(s)ds +/ O'S(Xsnu’f(s)dWs'
0 0

Here we only check that the assumptions of Lemma 2.9 are satisfied in the case
that b takes the form (2.31) with b satisfying (H®). Clearly, by (ii) above, for any
(p1,q1) € H, there is a k > 0 such that for each n € N,

g0 P1,q1
X" e Ko

We note that |b(z,y)| < hi(z—y), where for some (p, q) € #, h € LZOC(RJr; LP(RY) C

L. One can choose v > 1 so that d“’ + 7 < 1. Now if we take p; = po = 7, qgo = q,

q=qz = q+'y’ then it is easy to see that (p1,q1) € H and

b P, _ T YP1,00 ’YPlP
be]Lq —]quo cn />1L7q0 .

Thus one can apply Lemma 2.9 to conclude that

lim ]:] (/ |b ),LLXn _bs(Xs,lu,X-sNds) =0.

n—0o0

Moreover, as in showing (2.35), we also have

lim supE</ 0™ — be|(X, Y)d ):0,

where Y. is an independent copy of X", The proof is thus complete. O
About the existence of strong solutions, we have
Corollary 3.7. Let 8 > 2. Under (H°?), if for some (p1,q1) € 91,

sup ||[VoZ H|]Lq1(T) < 00,

ZES¢och
then for any initial random variable Xy with finite B-order moment, there exists a
strong solution to DDSDE (1.1).

Proof. Let (Q,.Z,(%#)t>0,P; X, W) be a weak solution of DDSDE (1.1). Define
b (@) 1= bulw, px,), 0 (@) 1= oyl ), i, = Po X,
Consider the following SDE:
dZ, = bX (Zy)dt + o7 (Z;)dW;.
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Under the assumption of the theorem, it has been shown in [29] that there is a
unique strong solution to this equation. Since X also satisfies the above equation,
by strong uniqueness, we obtain that X = Z is a strong solution. O

Remark 3.8. Although we have shown the existence of strong or weak solutions,
the uniqueness of strong solutions or weak solutions is a more difficult problem.

4. UNIQUENESS OF STRONG AND WEAK SOLUTIONS
In this section we study the uniqueness of strong and weak solutions. We intro-
duce the following assumptions about the dependence on third variable pu:
(A9") Let (p,q), (p1,q1) € # and 6 > 1. Tt holds that
Z z
sup I llgsery < 00r  sup IVoZ I g < o0,
Z E€Stoch ZE€Stoch !

and there are £ € L] (R;) and a constant ¢o > 1 such that for any two

random variables X,Y with finite #-order moments,

16:C px) = bu (- iy )l < Lell X =Y,

4.1
o) — ooty Yoo < ol X — ¥ o (1)

where || - ||p stands for the L%-norm in the probability space (Q2,.7,P).
Notice that (4.1) is equivalent to that for all p, u’ € Py(RY),

[1B¢(-5 1) = b 1) lp < LW (s, 1),
lloe(; 1) = e 1) lloo < cOWa(p, 1),

where Wy is the usual Wasserstein metric of #-order. For convenience, we would
like to use (4.1) rather than introducing the Wasserstein metric.

Remark 4.1. We note that in [10], (4.1) is assumed to hold for p = cc.
We first show the following strong uniqueness result.

Theorem 4.2. Let > 1 and B > 2V 0. Under (H°?) and (Ag’b), for any initial
random variable Xy with finite B-order moment, there is a unique strong solution

to DDSDE (1.1).

Proof. Below we fix p,q € 1, and without loss of generality, we consider the time
interval [0, 1] and assume that for some vy > 1,

141 Lvaco,1) + ZSUF 1 HbZHug(l) < 0. (4.2)
Otherwise, we may choose v > 1 so that %’Y + %’Y < 1 holds and replace (p,q)
with (p/7, q/7v). The existence of strong solutions has been shown in Corollary 3.7.
We only need to prove the pathwise uniqueness. Let X, Y be two strong solutions
defined on the same probability space with same starting points Xg = Yy a.s. We
divide the proof into three steps and use the convention that all the constants below
will be independent of T" € [0, 1].
(i) Let T € (0,1) and A > 0. We consider the following backward PDE:

O + (L7 = Nu+ b VX 455 =0, w¥(T.2) = 0. (4.3)
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By Theorem 2.2, for A > 1, there is a unique solution uX € ﬁg,p (T) solving the
above PDE. Moreover, for any a € [0,2 — %), there is a constant ¢; > 0 such that
forall A\ > 1 and T € [0,1],

NN oy + I 2o iy < ¥ gy (4.4)
In particular, since % + % < 1, by (2.5), we can choose A large enough so that
[ lLoe () + V™ Lo (ry < 1/2, VT € [0, 1]. (4.5)
Below we shall fix such a A and define
O (x) == +u;* (2).
It is easy to see that
0, 0% + 277 X + 1% . V¥ = a¥.
(ii) By the generalized 1t formula, we have
X, = 0F (X)) = F (Xo) + A/Ot u (X)ds + /Ot X (Xs)dW, (4.6)
where
5% =X . Vo¥.
Similarly, we define Y, = ®Y (Y;), and for simplicity write
& =Xt — Vi, gt ::Xt_ﬁ-
Noting that by (4.5),
o =yl < 2|2 (2) — @ ()] < 227" () — Y (y)] + 2] —u¥ [l (m)
and
|7 (2) — @Y (y)| < 2|z =yl + [[u™ — " ||Loe (1),
we have

16 < 21&] + 20w = wM Loy, €] <206 + 0¥ = @ L (). (4.7)
By (4.6) and again It6’s formula, we have for any 8 > 1,

~ ~ t ~ ~
€17 = 1€l® + A /0 P2 (6 X (X)) — u) (Vo) ds
t ~ ~
8 / &P (G (X)) — 6Y (V) s, dW)
t ~ ~
+8(3-1) [ EPEN(r) - oY () as

t
5 [IEP1E 0 = 8 () s
=Lh+L+13+1,+ 1.
Since by (4.5),
o ()~} ()] < e — 9l + [0 — 0 e,

by Young’s inequality we obtain

t t
I < / €[Pds + A / X () — uY (Va)[Pds
0 0



WELL-POSEDNESS OF DISTRIBUTION DEPENDENT SDES WITH SINGULAR DRIFTS 19

¢
S [ I+ e P )s 4 AT =
Let
ga () = [V ()| + Vo (@) + [|VuX e 1) + 0% e (1)
By the definition of 6%, we also have that
53 () =&, (y)]

< N0 e () IV@X () = VOY )] + o (@) = oY )] - V¥ ey
<o s oy IV (@) = Vi ()] + [V (y) = Ve (s,9)])
+ (I (@) = X W) + 10X () = oY W)]) - VDX [lomry

(2.19)
S o=yl (Mig¥ (@) + Mgk ) + 90 = Va Jrwry + 103 = oY e

Hence,
t 3 2
I [ (J6l? +1E17) (MeX (X + Mg (1)) ds
0
t
+ﬂww—wM@m+Am{—gmm
Combining the above calculations and noting that |£| < [|[uf — ud [|se, We obtain

t
P S 1 = Wy + [ (1617 + 1617 + 11 )
0 (4.8)

+/0t <|£S|B+|£S|B)(Mlgs( 5) + MigX (Y, )) ds + M,

where M; is a continuous local martingale.
(iii) Now we define

t 2
A, ::t+/ (Mlgf(Xs)+Mlgf(Ys)) ds.

0
By (4.8) and (4.7), we obtain that for all ¢ € [0,T],

e I S 10 = ey + [ Vlias [ (17 + E1)aa+ 2
Note that by the assumption and (2 20),
(5,2) = (My V2 (2)])? € LY/ (T),

a/2
and
2
(5,2) = (M| Vo (2)))? € L2 3(T),
Since (5,1), (5,4 ) € S, by Khasminskii’s estimate (3.14), we have

EexpyAr < 0o, Vv >0, VT €]0,1].

Thus we can use the stochastic Gronwall inequality (2.18) to derive that

s€[0,T] s€[0,T]

B/6 T
sup ||§s||§’<sup E|589> S e =V e gy + / lélgds.  (4.9)
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Noticing that by (4.1),

T 1/q
165 = b llgp oy < ( / éznxt—mmdt) < Nellzaory sup_lElo,
0 t€[0,T

and
0% — ¥ |lLee(ry < co sup || Xy — Yillo =co sup [|&]lo,
tel0, T tel0,T

we have by (2.16),

HUX - UY”H}X’;’O(T)

S = gy + gy (17 = 0¥ ey + 1% = 0¥ gy, )

@2 .
< (Moo my + 1 Igg ) ol S T sup il
€0, €0,

Substituting this into (4.9), we obtain
8 Bly=1) B
sup |[[&llg < CT =7 sup & lly, T € (0,1),
s€[0,T] t€[0,T]
where C' does not depend on T € (0,1). By choosing T small enough, we get
||£t||g =0 for all ¢ € [0,T]. By shifting the time T', we obtain the uniqueness. O

It is obvious that b defined in (2.31) does not satisfy (4.1). Below we shall relax
it to the weighted total variation norm by Girsanov’s transformation. The price we
have to pay is that we need to assume that the diffusion coefficient does not depend
on the time marginal law of X. For 6 > 1, let

do(x) := 1+ |z|°.
We assume
(Kg’b) Let (p,q), (p1,q1) € H and 0 > 1 and o¢(x, 1) = o¢(z). It holds that

sup 67 lyry < 00, [¥ollzay oy < oo,

toch

and there is an ¢ € LY (R, ) such that for all 4, 4/ € P(RY) and ¢ > 0,

ot -, 1) = b(t, -, 1)y < Lelldo - (10— 1) Izv- (4.10)
It should be noted that [27, Theorem 6.15] implies,

W, 1) < cllg - (1 — 1) |40

Theorem 4.3. Let § > 1 and 8 > 20. Under (H?) and (Ag’b), for any initial
random variable Xy with finite B-order moment, there is a unique weak solution to
DDSDE (1.1), which is also a unique strong solution.

Proof. We use the Girsanov transform in the same way asin [21] to show the weak
uniqueness, and so also the strong uniqueness. Since under the assumptions of the
theorem, weak solutions are also strong solutions (see Corollary 3.7), without loss
of generality, let X i = 1,2 be two solutions of SDE (1.1) defined on the same
probability space (€2,.%,P) and with the same Brownian motion and starting point
&. That is,

AXD = oy (X AW, 4+ by (XD, p$Dyae, xiP =¢, (4.11)
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where ugi) =Po (Xt(i))’l. We want to show ugl) = u§2).
Since o¢(z, ) = o¢(x) satisfies (2.13) under our assumptions, it is well known
that there is a unique weak solution to SDE

dZt = O't(Zt)th, ZO = f

Let 8 > 26. Since o is bounded, it is easy to see that

sup E|Z|° < C(E|§|ﬁ + 1). (4.12)
t€[0,T]
Define
. -~ t ~.
50 = o7 @) 0 ), WO =W [ B0,
0
and

, T_. 1 /T .
é””q(f) ‘= exp / b (Z,) - dW, — 5/ 6$)(Z)[Pds ¢ .
0 0

X"

Since [|b(® |||£§(T) < "|]E§’(T) < oo for some (p,q) € 1, by Khasminskii’s esti-

mate (3.14), we have

T
Eexp {7/ |l~)g)(Zs)2ds} < Crpy, Vv >0, (4.13)
0

and for any v € R,
E(&7) < Cr., < . (4.14)
Hence, for each ¢ = 1,2, Eé’T(i) =1, and W is still a Brownian motion under
fT(Z) - P, and
AZ; = o(Z) AW + X" (Z)dt, 7o = €.
Since the above SDE admits a unique strong solution (see also (4.11)), we have
(EP) o Z7 =P o (X)) =4 i=12.

Therefore, for § = % < 2, by Holder’s inequality, we get

oo - (1) — ) lev = lldo - (6P 0 Z5t — (EPP) 0 Z7Y) ||y
<E(00(20)I&f" = 621) < g0 (Z0) sy 165 = &2l

(4.12)
1 2 1 2
=11+ Z2llgall 6 = EPNs < ClE — &2 . (4.15)
Noting that
a&? = &0 (2,) - awy,
we have
A& — &2 = (VW (2) - P8P (7)) - aw.
By Itd’s formula, we have
dgt) — P12 = 1600 (2,) — P07 (2,)2dt + My,
<2160 — PP (Z,)12dt + 2163 B (2,) - 07 (2) Pdt + M,
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where M is a continuous local martingale. Since § < 2, by the stochastic Gronwall
inequality (2.18) and (4.13), we obtain

T
160 - 2|2 < / E|62 (50 (2) - 3 (2)[2dt.

Since (p,q) € #, one can choose v € (1,1/(d/p + 2/q)) so that

0/ (27),4/(27)) € H2.
Thus by Holder’s inequality and Krylov’s estimate (3.7), we further have

1

M p@y2 W T @) )
le® — a2 < / i (2,) — B2 (2 at

S L P T

T 2
s(/ 166 (-, 1My — b, ‘2>>||th>

(410) a
(/ oo - (M) — <2’>||Tvdt>7

which together with (4.15) yields

1 1) 2
o0 02~ W < [ 2l (2 )yt
By Gronwall’s inequality, we obtain

1 2 1 2
60 () = pg) iy = 0= i) = g
The proof is thus complete. [

5. APPLICATION TO NONLINEAR FOKKER-PLANCK EQUATIONS

In this section we present some applications to nonlinear Fokker-Planck equa-
tions. First of all we recall the following superposition principle: one-to-one cor-
respondence between DDSDE (1.1) and nonlinear Fokker-Planck equation (1.2),
which was first proved in [1, 2], and is based on a result for linear Fokker-Planck
equations due to Trevisan [25] (see also [11] for the special linear case where the
coefficients are bounded). We repeat the argument from [1, 2] here.

Theorem 5.1 (Superposition principle). Let p; : Ry — P(R?) be a continuous
curve such that for each T > 0,

/ / (100 )] b )] ) (et < v (5.1)

Then p; solves the monlinear Fokker-Planck equation (1.2) in the distributional
sense if and only if there exists a martingale solution P € .#° to DDSDE (1.1)
so that for each t > 0,

=Pow, !
In particular, if there is at most one element in MY with time martingale ju; :=

x,,t = 0, satisfying (5.1), then there is at most one solution to (1.2) satisfying
(5.1).
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Proof. ¥ P € #2° and py = Pow; ', then by (5.1) and Ttd’s formula, it is easy
to see that u; solves (1.2). Now we assume p; solves (1.2). Consider the following
linear Fokker-Planck equation:

Onfie = (L7 )" i+ div (b - fir),

where b} (z) := by(z, ut) and of' (z) := o¢(, pt). Since u; is a solution of the above
linear Fokker-Planck equation, by [25, Theorem 2.5], there is a martingale solution

Pc.#7" " so that

Mt:IP’owt_l.

In particular, P € .#7*. The last assertion is then obvious and thus the proof is
complete. 0

From the above superposition principle and our well-posedness results, we can
obtain the following wellposedness result about the nonlinear Fokker-Planck equa-
tions.

Theorem 5.2. In the situations of Theorems 4.2 and 4.3, there is a unique con-
tinuous curve i solving the nonlinear Fokker-Planck equation (1.2).

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence and uniqueness of solutions to the nonlinear
FPE (1.7) are consequences of Theorem 4.3 and Theorem 5.1. We now aim to show
the existence and smoothness of the density p;* (y). Let p; be the solution of the
Fokker-Planck equation (1.7). We consider the following SDE:

dX, = b(X,)dt + V2dW,, Xo =¢, (5.2)

where bf(z) = [ be(x,y)pe(dy). Since b € f[:{z’, where %+ % < 1, it is well
known that the operator A + b - V admits a heat kernel ppu(s,x;t,y) (see [8,
Theorems 1.1 and 1.3]), which is continuous in (s, x;t,y) on {(s,z;t,y) : 0 < s <
t < 0co,z,y € R} and satisfies the following two-sided estimate: For any T > 0,
there are constants cg,vy > 1 such that for all 0 < s < ¢t < T and z,y € R?

eyt (t — s) Wm0l (=9) < (s mityy) < co(t — s) Y 2emlmmYI (o(t=9))
and the gradient estimate: for some cy,v; > 1,
Voo (5, 238, y)| < c1(t — 8) @D/ 20 lz=vl*/(n(t=9))
If divb = 0, then pp (s, x;t,y) = p—pu(s,y;t,2), and so in this case,
IV poe (5, 258, )| < e (t — §) (@D 2 lz—yl*/(n(t=9))

In particular, the density of the law of X, is just given by
p¥w) = [ pOast)(Po X5 (o)

Strong uniqueness of SDE (5.2) ensures that piX (y)dy = p:(dy). The desired esti-
mates now follow from the above estimates. ]

Acknowledgement: The authors thank Dr. Xing Huang for pointing out an
error in the earlier version.
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