
Bismut Formula for Lions Derivative of

Distribution Dependent SDEs and

Applications�

Panpan Renb), Feng-Yu Wanga;b)

a) Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

b) Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

673788@swansea.ac.uk, wangfy@tju.edu.cn, F.-Y.Wang@swansea.ac.uk

October 12, 2018

Abstract

By using Malliavin calculus, Bismut type formulas are established for the Lions

derivative of Ptf(�) := Ef(X�
t ), where t > 0; f is a bounded measurable function, and

X
�
t solves a distribution dependent SDE with initial distribution �. As applications,

explicit estimates are derived for the Lions derivative and the total variational distance

between distributions of solutions with di�erent initial data. Both degenerate and non-

degenerate situations are considered. Due to the lack of the semigroup property and

the invalidity of the formula Ptf(�) =
R
Ptf(x)�(dx), essential di�culties are overcome

in the study.

AMS subject Classi�cation: 60J60, 58J65.
Keywords: Distribution dependent SDEs, Bismut formula, Warsserstein distance, L-derivative.

1 Introduction

The Bismut formula introduced in [3], also called Bismut-Elworthy-Li formula due to [12],
is a powerful tool in characterising the regularity of distribution for SDEs and SPDEs. A
plenty of results have been derived for this type formulas and applications by using stochastic
analysis and coupling methods, see for instance [24] and references therein.

�Supported in part by NNSFC (11771326, 11831014, 11431014).
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On the other hand, because of crucial applications in the study of nonlinear PDEs
and environment dependent �nancial systems, the distribution dependent SDEs (also called
McKean-Vlasov or mean �led SDEs) have received increasing attentions, see [10, 11, 13, 14,
18, 22, 23] and references therein. Recently, this type SDEs have been applied in [5, 9, 17, 20]
to characterize PDEs involving the Lions derivative (L-derivative for short) introduced by
P.-L. Lions in his lectures [6]. In this paper, we aim to investigate Bismut type L-derivative
formula and applications for distribution dependent SDEs with possibly degenerate noise.

To introduce our main results, we �rst recall the L-derivative. Let P(Rd) be the space
of all probability measures on Rd, and let

P2(R
d) =

�
� 2P(Rd) : �(j � j2) :=

Z
Rd

jxj2�(dx) <1
�
:

Then P2(R
d) is a Polish space under the Wasserstein distance

W2(�; �) := inf
�2C (�;�)

�Z
Rd�Rd

jx� yj2�(dx; dy)
� 1

2

; �; � 2P2(R
d);

where C (�; �) is the set of couplings for � and �; that is, � 2 C (�; �) is a probability measure
on Rd�Rd such that �(� �Rd) = � and �(Rd� �) = �. We will use 0 to denote vectors with
components 0, or the constant map taking value 0.

De�nition 1.1. Let f : P2(R
d) ! R, and let g : M �P2(R

d) ! R for a di�erentiable
manifold M .

(1) f is called L-di�erentiable at � 2P2(R
d), if the functional

L2(Rd ! R
d; �) 3 � 7! f(� � (Id + �)�1)

is Fr�echet di�erentiable at 0 2 L2(Rd ! R
d; �); that is, there exists (hence, unique)


 2 L2(Rd ! R
d; �) such that

(1.1) lim
�(j�j2)!0

f(� � (Id + �)�1)� f(�)� �(h
; �i)p
�(j�j2) = 0:

In this case, we denote DLf(�) = 
 and call it the L-derivative of f at �.

(2) If the L-derivative DLf(�) exists for all � 2P2(R
d), then f is called L-di�erentiable.

If, moreover, for every � 2 P2(R
d) there exists a �-version DLf(�)(�) such that

DLf(�)(x) is jointly continuous in (x; �) 2 Rd�P2(R
d), we denote f 2 C(1;0)(P2(R

d)).

(3) g is called di�erentiable on M � P2(R
d), if for any (x; �) 2 M � P2(R

d), g(�; �)
is di�erentiable at x and g(x; �) is L-di�erentiable at �: If, moreover, rg(�; �)(x) and
DLg(x; �)(�)(y) are joint continuous in (x; y; �) 2M2�P2(R

d), wherer is the gradient
operator on M , we write g 2 C1;(1;0)(M �P2(R

d)).
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As indicated in [20] that for any n � 1, g 2 C1(Rn) and h1; � � � ; hn 2 C1
b (R

d), the
cylindrical function

� 7! g(�(h1); � � � ; �(hn))
is in C(1;0)(P2(R

d)) with

DLg(�)(x) =
nX
i=1

�
@ig(�(h1); � � � ; �(hn))

�rhi(x); (x; �) 2 Rd �P2(R
d):

Obviously, if f is L-di�erentiable at �, then

(1.2) DL
�f(�) := lim

"#0

f(� � (Id + "�)�1)� f(�)

"
= �

�hDLf(�); �i�; � 2 L2(Rd ! R
d; �):

We may call DL
� the directional L-derivative along �. This directional derivative has been

used in earlier references, see for instance [21] for the Wasserstein di�usions constructed
using the directional derivative on P2(S

1), where S1 is the unit circle.
When DL

�f(�) is a bounded linear functional of � 2 L2(Rd ! R
d; �), there exists a

unique � 2 L2(Rd ! R
d; �) such that DL

�f(�) = �(h�; �i) holds for all � 2 L2(Rd ! R
d; �).

In this case, � 7! f(��(Id+�)�1) is Gâteaux di�erentiable at 0, and we say that f is weakly
L-di�erentiable at �, since the Gâteaux di�erentiability is weaker than the Fr�echet one.

By (1.2), for an L-di�erentiable function f on P2(R
d), we have

(1.3) kDLf(�)k := kDLf(�)(�)kL2(�) = sup
�(j�j2)�1

jDL
�f(�)j:

For a vector-valued function f = (fi), or a matrix-valued function f = (fij) with L-
di�erentiable components, we write

DL
�f(�) = (DL

�fi(�)); or D
L
�f(�) = (DL

�fij(�)); � 2P2(R
d):

Let Wt be a d-dimensional Brownian motion on the natural �ltered probability space
(
0;F 0; fF 0

t gt�0;P). To ensure that for any � 2P2(R
d) there exists a random variable X

on Rd with distribution �, let �0 be a probability measure on Rd which is equivalent to the
Lebesgue measure, and enlarge the probability space as

(
;F ; fFtgt�0;P) := (
0 � Rd;F 0 �B(Rd); fF 0
t �B(Rd)gt�0; P

0 � �0):

Then
Wt(!) := Wt(!

0); t � 0; ! := (!0; x) 2 


is a d-dimensional Brownian motion on (
;F ; fFtgt�0;P): Let L� denote the distribution
of a random variable on the probability space (
;F ;P). In case di�erent probability spaces
are concerned, we write L�jP instead of L� to emphasize the reference probability measure
P.

Consider the following distribution dependent SDE on Rd:

(1.4) dXt = bt(Xt;LXt)dt+ �t(Xt;LXt)dWt; X0 2 L2(
! R
d;F0;P);
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where
� : [0;1)� Rd �P2(R

d)! R
d
d; b : [0;1)� Rd �P2(R

d)! R
d

are continuous such that for some increasing function K : [0;1)! [0;1) there holds

jbt(x; �)� bt(y; �)j+ k�t(x; �)� �t(y; �)k
� K(t)

�jx� yj+W2(�; �)
�
; t � 0; x; y 2 Rd; �; � 2P2(R

d)
(1.5)

and

(1.6) k�t(0; �0)k+ jbt(0; �0)j � K(t); t � 0;

where and in what follows, for x 2 Rd we denote by �x the Dirac measure at x, and k�k is the
operator norm. For any t � 0, let L2(
 ! R

d;Ft;P) be the class of Ft-measurable square
integrable random variables on Rd. By (1.5) and (1.6), for any s � 0 and Xs 2 L2(
 !
R
d;Fs;P), (1.4) has a unique solution (Xs;t)t�s with Xs;s = Xs and

(1.7) E

h
sup
t2[s;T ]

jXs;tj2
i
<1; T � s;

see, for instance [27], where gradient estimates and Harnack inequalities are also derived
for the associated nonlinear semigroup. See also [16, 18] for weaker conditions ensuring the
existence and uniqueness of solutions to (1.4). For any � 2P2(R

d) and s � 0, let (X�
s;t)t�s

be the solution to (1.4) with LXs;s = �: Denote

(1.8) P �
s;t� = LX

�
s;t
; t � s; � 2P2(R

d):

Let

(1.9) (Ps;tf)(�) = (P �
s;t�)(f) :=

Z
Rd

fd(P �
s;t�) = Ef(X�

s;t); t � s; f 2 Bb(R
d); � 2P2(R

d):

Then for any 0 � s � t, Ps;t is a linear operator from Bb(R
d) to Bb(P2(R

d)).
In this paper, we aim to establish the Bismut type formula for the L-derivative of Ps;tf

for t > s. By considering the SDE for ~Xt := Xt+s; t � 0, without loss of generality we may
and do assume s = 0. So, for simplicity, below we only establish the derivative formula for
Ptf := P0;tf; t > 0. More precisely, for any T > 0, � 2P2(R

d) and � 2 L2(Rd ! R
d; �), we

aim to construct an integrable random variable M�;�
T such that

(1.10) DL
� (PTf)(�) = E

�
f(X�

T )M
�;�
T

�
; f 2 Bb(R

d);

which in turn implies the L-di�erentiability of PTf . Note that the derivative formula for
(PTf)(x) := (PTf)(�x) along a vector v 2 Rd is derived in [2], which is the special case of
(1.10) with � = �x and � � v. Moreover, formulas of the L-derivative and integration by
parts have been presented in [8] for the following de-coupled SDE:

dXx;�
t = b(t;Xx;�

t ; P �
t �)dt+ �(t;Xx;�

t ; P �
t �)dWt; X

x;�
t = x;
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which is di�erent from the original SDE (1.4) but has important applications in solving
PDEs with Lions' derivatives, see [5, 17, 20] and references within.

When the SDE (1.4) is distribution independent, i.e. bt(x; �) = bt(x) and �t(x; �) = �t(x)
do not depend on �, the Bismut type formula

(1.11) rPTf(x) = E
�
f(Xx

T )M
x
T

�
; x 2 Rd; f 2 Bb(R

d)

has been well studied in the literature, where Mx
T is an integrable random variable on Rd,

which is measurable in x 2 Rd when it varies, see for instance [1, 15, 25, 26, 28] and references
within. Since the coe�cients are distribution independent, we have

(1.12) (PTf)(�) =

Z
Rd

(PTf)(x)�(dx);

so that PTf is L-di�erentiable with DL(PTf)(�) = rPTf: Hence, by (1.11) and (1.12) we
obtain

DL
� (PTf)(�) = �(hDLPTf; �i) =

Z
Rd

E
�
f(Xx

T )hMx
T ; �(x)i

�
�(dx)

= E
�
f(X�

T )hMX
�
0

T ; �(X�
0 )i

�
:

Therefore, (1.10) holds for M�;�
T = hMX

�
0

T ; �(X�
0 )i.

However, when the SDE is distribution dependent, as explained in [27] that in general
(1.12) does not hold, so it is non-trivial to establish the Bismut type formula (1.10).

The remainder of the paper is organized as follows. In section 2, we state our main results
on Bismut formulas of DL

�PTf and applications, for both non-degenerate and degenerate
distribution dependent SDEs. To establish the Bismut formula using Malliavin calculus, we
make necessary preparations in Section 3 concerning partial derivatives in the initial value,
and Malliavin derivative for solutions of (1.4). Finally, complete proofs of the main results
are addressed in Section 4.

2 Main results

Let j � j denote the norm in Rd, and k � k denote the operator norm for matrices or more
generally linear operators. We make the following assumption.

(H) For any t � 0, bt; �t 2 C1;(1;0)(Rd �P2(R
d)). Moreover, there exists a continuous

function K : [0;1)! [0;1); such that (1.6) holds and

max
n
krbt(�; �)(x)k; kDLbt(x; �)(�)k; 1

2
kr�t(�; �)(x)k2; 1

2
kDL�t(x; �)(�)k2

o
� K(t); t � 0; x 2 Rd; � 2P2(R

d);

where as in (1.3), kDLf(�)k := kDLf(�)(�)kL2(�) for an L-di�erentiable function f at
�.
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Obviously, (H) implies (1.5) and (1.6), so that the SDE (1.4) has a unique solution for any
initial value X0 2 L2(
! R

d;F0;P).
In the following two subsections, we state our main results for non-degenerate and de-

generate cases respectively.

2.1 The non-degenerate case

For each t > 0, let �t be invertible such that

(2.1) k�t(x; �)�1k � �t; t � 0; x 2 Rd; � 2P2(R
d)

holds for some continuous function � : [0;1) ! (0;1): Let � 2 P2(R
d), and let Xt solve

(1.4) for X0 2 L2(
 ! R
d;F0;P) with LX0 = �. Given � 2 L2(Rd ! R

d; �), consider the
following SDE for v�t on Rd:

dv�t =
n
r

v
�
t
bt(�;LXt)(Xt) +

�
EhDLbt(y; �)(LXt)(Xt); v

�
t i
���
y=Xt

o
dt

+
n
r

v
�
t
�t(�;LXt)(Xt) +

�
EhDL�t(y; �)(LXt)(Xt); v

�
t i
���
y=Xt

o
dWt; v

�
0 = �(X0):

(2.2)

By (H), this linear SDE is well-posed with supt2[0;T ] Ejv�t j2 � C�(j�j2) for some constant

C = C(T ) > 0, see (4.21) below. Denote g0s =
d
ds
gs for a di�erentiable function g of s 2 R.

Theorem 2.1. Assume (H) and (2.1). Then for any f 2 Bb(R
d); � 2P2(R

d) and T > 0,
PTf is L-di�erentiable at � such that for any g 2 C1([0; T ]) with g0 = 0 and gT = 1,

DL
� (PTf)(�) = E

�
f(XT )

Z T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

��
; � 2 L2(Rd ! R

d; �);(2.3)

where Xt solves (1.4) for LX0 = �. Moreover, the limit

(2.4) DL
�P

�
T� := lim

"#0

P �
T� � (Id + "�)�1 � P �

T�

"
=  P �

T�

exists in the total variational norm, where  is the unique element in L2(Rd ! R; P �
T�) such

that  (XT ) = E
� R T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

���XT

�
; and ( P �

T�)(A) :=
R
A
 dP �

T�; A 2
B(Rd).

Remark 2.1. When f 2 C1
b (R

d), (2.3) can be proved as in the distribution independent
case by constructing a proper random variable h on the Cameron-Martin space such that
DhXT = r�XT . However, for the L-di�erentiability of PTf , one has to construct 
 2
L2(Rd ! R

d; �) such that (1.1) holds for PTf replacing f , which is non-trivial.
Moreover, comparing with the classical case where (2.3) for f 2 C1

b (R
d) can be easily

extended to f 2 Bb(R
d), there is essential di�culty to do this in the distribution dependent

setting. More precisely, when bt and �t do not depend on the distribution, we have the
semigroup property PTf(�) = Pt;T (Ptf)(�) for t 2 (0; T ), where Ptf(x) := Ptf(�x) for
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the Dirac measure �x at point x. In many cases the regularity of Pt ensures that Ptf 2
C1
b (R

d) for f 2 Bb(R
d). Then for any f 2 Bb(R

d), one may apply the derivative formula
(2.3) with (Pt;T ; Ptf) replacing (PT ; f) to derive a derivative formula for PTf . However,
in the distribution dependent case, due to the lack of (1.12) we no longer have PTf(�) =
Pt;T (Ptf)(�), so that this argument becomes invalid. To overcome this di�culty we will
make a new approximation argument, see step (a) in the proof of Theorem 2.1 for details.

As applications of Theorem 2.1, the following result consists of estimates on the L-
derivative and the total variational distance between distributions of solutions with di�erent
initial data.

Corollary 2.2. Assume (H) and (2.1) for some increasing functions K and continuous

function �.

(1) For any f 2 Bb(R
d) and T > 0,

(2.5) kDL(PTf)(�)k2 := sup
�(j�j2)�1

jDL
� (PTf)(�)j2 �

(PTf
2)(�)� (Ptf(�))

2R T

0
��2
t e�8K(t)tdt

:

(2) For any T > 0,

(2.6) jPTf(�)� PTf(�)j2 � kfk21W2(�; �)
2R T

0
��2
t e�8K(t)tdt

; �; � 2P2(R
d); f 2 Bb(R

d):

Consequently, for any T > 0 and �; � 2P2(R
d),

(2.7) kP �
T�� P �

T�k2var := sup
A2B(Rd)

j(P �
T�)(A)� (P �

T�)(A)j2 �
W2(�; �)

2R T

0
��2
t e�8K(t)tdt

:

2.2 Stochastic Hamiltonian systems

Consider the following distribution dependent stochastic Hamiltonian system for Xt =
(X

(1)
t ; X

(2)
t ) on Rm+d = R

m � Rd:

(2.8)

(
dX

(1)
t = b

(1)
t (Xt)dt;

dX
(2)
t = b

(2)
t (Xt;LXt)dt+ �tdWt;

where (Wt)t�0 is a d-dimensional Brownian motion as before, and for each t � 0, �t is an
invertible d� d-matrix,

bt = (b
(1)
t ; b

(2)
t ) : Rm+d �P2(R

m+d)! R
m+d

is measurable with b
(1)
t (x; �) = b

(1)
t (x) independent of the distribution �. Letr = (r(1);r(2))

be the gradient operator on Rm+d = R
m �Rd, where r(i) is the gradient in the i-th compo-

nent, i = 1; 2. Let r2 = rr denote the Hessian operator on Rm+d. We assume
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(H1) For every t � 0, b
(1)
t 2 C2

b (R
m+d ! R

m); b
(2)
t 2 C1;(1;0)(Rm+d �P2(R

m+d)! R
d), and

there exists an increasing function K : [0;1)! [0;1) such that (1.6) and

krbt(�; �)(x)k+ kDLb
(2)
t (x; �)(�)k+ kr2b

(1)
t (�; �)(x)k � K(t)

hold for all t � 0; (x; �) 2 Rd �P2(R
d).

Obviously, this assumption implies (H) for the SDE (2.8). We aim to establish the
derivative formula of type (1.10) with Pt and P

�
t being de�ned by (1.8) and (1.9) for the SDE

(2.8). To follow the line of [28] where the distribution independent model was investigated,
we need the following assumption (H2).

For any s � 0; let fKt;sgt�s solve the following linear random ODE on Rm
m:

d

dt
Kt;s = (r(1)b(1))(Xt)Kt;s; t � s;Ks;s = Im�m;(2.9)

where Im�m is the m�m-order identity matrix.

(H2) There exists B 2 Bb([0; T ]! R
m
d) such that

(2.10) h(r(2)b
(1)
t �Bt)B

�
t a; ai � �"jB�

t aj2; 8a 2 Rm

holds for some constant " 2 [0; 1): Moreover, there exists an increasing function � 2
C([0; T ]) with �t > 0 for t 2 (0; T ] such that

(2.11)

Z t

0

s(T � s)KT;sBsB
�
sK

�
T;sds � �tIm�m; t 2 (0; T ]:

Example 2.1. Let

b
(1)
t (x) = Ax(1) +Bx(2); x = (x(1); x(2)) 2 Rm+d

for some m�m-matrix A and m� d-matrix B. If the Kalman's rank condition

Rank[B;AB; � � � ; AkB] = m

holds for some k � 1, then (H2) is satis�ed with �t = cT t for some constant cT > 0, see the
proof of [28, Theorem 4.2]. In general, (H2) remains true under small perturbations of this

b
(1)
t :

According to the proof of [28, Theorem 1.1], (H2) implies that the matrices

Qt :=

Z t

0

s(T � s)KT;sr(2)b(1)s (Xs)B
�
sK

�
T;sds; t 2 (0; T ]

are invertible with

(2.12) kQ�1
t k � 1

(1� ")�t
; t 2 (0; T ]:
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For (Xt)t2[0;T ] solving (2.8) with LX0 = � and � = (�(1); �(2)) 2 L2(Rm+d ! R
m+d; �), let

�
(2)
t =

T � t

T
�(2)(X0)�

t(T � t)B�
tK

�
T;tR T

0
�2sds

Z T

t

�2sQ
�1
s KT;0�

(1)(X0)ds

� t(T � t)B�
tK

�
T;tQ

�1
T

Z T

0

T � s

T
KT;sr(2)

�(2)(X0)
b(1)s (Xs)ds; t 2 [0; T ];

(2.13)

and

(2.14) �
(1)
t = Kt;0�

(1)(X0) +

Z t

0

Kt;sr(2)

�
(2)
s

b(1)s (Xs(x)) ds; t 2 [0; T ]:

Moreover, de�ne

h�t :=

Z t

0

��1
s

n�
EhDLb(2)s (y; �)(LXs)(Xs); �si

���
y=Xs

+r�sb
(2)
s (�;LXs)(Xs)� (�(2)

s )0
o
ds; t 2 [0; T ]:

(2.15)

Let (D�;D(D�)) be the Malliavin divergence operator associated with the Brownian motion
(Wt)t2[0;T ], see Subsection 3.2 below for details. Then the main result in this part is the
following.

Theorem 2.3. Assume (H1) and (H2). Then h� 2 D(D�) with EjD�(h�)jp < 1 for all

p 2 [1;1). Moreover, for any f 2 Bb(R
m+d) and T > 0, PTf is L-di�erentiable at � such

that

(2.16) DL
� (PTf)(�) = E

�
f(XT )D

�(h�)
�
:

Consequently:

(1) (2.4) holds for the unique  2 L2(Rm+d ! R; P �
T�) such that  (XT ) = E(D�(h�)jXT ):

(2) There exists a constant c � 0 such that for any T > 0,

(2.17) kDL(PTf)(�)k � c
p
PT jf j2(�)� (PTf)2(�)

p
T (T 2 + �T )R T

0
�2sds

; f 2 Bb(R
m+d);

(2.18) kP �
T�� P �

T�kvar � cW2(�; �)

p
T (T 2 + �T )R T

0
�2sds

; �; � 2P2(R
d):

3 Preparations

We �rst introduce a formula of the L-derivative re-organized from [6, Theorem 6.5] and [9,
Proposition A.2], then investigate the partial derivatives of Xt in the initial value, and the
Malliavin derivatives of Xt with respect to the Brownian motion Wt.
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3.1 A formula of L-derivative

The following result is essentially due to [6, Theorem 6.5] for f 2 C(1;0)(P2(R
d)), and [9,

Proposition A.2] for boundedX and Y . We include a complete proof for readers' convenience.

Proposition 3.1. Let (
;F ;P) be an atomless probability space, and let X; Y 2 L2(
 !
R
d;P) with LX = �. If either X and Y are bounded and f is L-di�erentiable at �, or

f 2 C(1;0)(P2(R
d)), then

(3.1) lim
"#0

f(LX+"Y )� f(�)

"
= EhDLf(�)(X); Y i:

Consequently,

(3.2)
��� lim
"#0

f(LX+"Y )� f(�)

"

��� = ��EhDLf(�)(X); Y i�� � kDLf(�)k
p
EjY j2:

Proof. It is easy to see that (3.2) follows from (1.3) and (3.1). Indeed, letting � 2 L2(Rd !
R
d; �) such that �(X) = E(Y jX), we have��EhDLf(�)(X); Y i�� = ��EhDLf(�)(X); �(X)i�� = ���(hDLf(�); �i)��

� kDLf(�)k � k�kL2(�) = kDLf(�)k�EjE(Y jX)j2� 1
2 � kDLf(�)k

p
EjY j2:

Below we prove (3.1) for the stated two situations respectively.
(1) Assume that X and Y are bounded. For any Rd-valued random variable �, let

F (�) = f(L�): Next, let (�
; �F ; �P) be an atomless Polish probability space, and let �X 2
L2(�
 ! R

d; �P) with L �Xj�P = �, where L�j�P denotes the distribution of a random variable
under �P. According to [9, Proposition A.2(iii)], if

�F ( �Y ) := f(L �Y j�P); �Y 2 L2(�
! R
d; �P)

is Fr�echet di�erentiable at �X with derivative D �F ( �X) = DLf(�)( �X); then

(3.3) lim
"#0

f(LX+"Y )� f(LX)� "EhDLf(�)(X); Y i
"

= 0:

Equivalently, (3.1) holds. Below we construct the desired �X and (�
; �F ; �P) such that
D �F ( �X) = DLf(�)( �X):

A natural choice of (�
; �F ; �P) is (Rd;B(Rd); �), but to ensure the atomless property, we
take (�
; �F ; �P) = (Rd �R;B(Rd �R); �� �); where � is the standard Gaussian measure on
R. Then (�
; �F ; �P) is an atomless Polish probability space. Let

�X(�!) = x; �! = (x; r) 2 Rd � R:
We have L �X = �. Moreover, let

~f(~�) = f(~�(� � R)); ~� 2P2(R
d � R):

10



It is easy to see that the L-di�erentiability of f at � implies that of ~f at �� �0 with

(3.4) DL ~f(�� �0)(x; r) = (DLf(�)(x); 0); (x; r) 2 Rd � R:

Finally, on the probability space (
;F ;P) we have

(3.5) F (Y ) := f(LY ) = ~f(L ~Y );
~Y := (Y; 0) 2 L2(
! R

d � R;F ;P):

Letting ~X = (X; 0) 2 L2(
! T d � R;F ;P), by [9, Proposition A.2(iii)], the formula (3.3)
holds for ( ~X; ~Y ; ~f; �� �0) replacing (X; Y; f; �), i.e.

lim
"#0

~f(L ~X+" ~Y )� ~f(L ~X)� EhDL ~f(�� �0); " ~Y i
"

= 0:

Combining this with (3.4) and (3.5), we prove (3.3). Therefore, (3.1) holds.
(2) Let f 2 C(1;0)(P2(R

d)) and let � 2 P2(R
d) and X 2 L2(
 ! R

d;P) with LX = �.
For any n � 1, let

xn =
xp

1 + n�1jxj2 ; x 2 Rd:

By (3.1) for bounded X and Y , for any n � 1 we have

f(LXn+"Yn)� f(LXn) =

Z "

0

d

ds
f(LXn+sYn) ds

=

Z "

0

EhDLf(LXn+sYn)(Xn + sYn); Yni ds:
(3.6)

Since f 2 C(1;0)(P2(R
d)); it follows that

sup
n�1;s2[0;"]

kDLf(LXn+sYn)k <1; lim
n!1

ff(LXn+"Yn)� f(LXn)g = f(LX+"Y )� f(LX);

and for any s 2 [0; "],

lim
n!1

E
�jX �Xnj2 + jY � Ynj2 + jDLf(LXn+sYn)(Xn + sYn)�DLf(LX+sY )(X + sY )j2� = 0:

Then letting n!1 in (3.6) we arrive at

(3.7) f(LX+"Y )� f(LX) =

Z "

0

EhDLf(LX+sY )(X + sY ); Y i ds; " > 0:

This implies (3.1). More precisely, it is easy to see that fLX+sY g is compact inP2(R
d). So,

f 2 C(1;0)(P2(R
d)) implies

(3.8) A := sup
s2[0;1]

p
EjDLf(LX+sY )(X + sY )j2 = sup

s2[0;1]

kDLf(LX+sY )kL2(LX+sY ) <1:
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Combining this with the continuity property of DLf on Rd �P2(R
d), we conclude that

lim
"#0

DLf(LX+sY )(X + sY ) = DLf(LX)(X) weakly in L2(
! R
d;P):

In particular,

(3.9) lim
"#0
EhDLf(LX+sY )(X + sY ); Y i = EhDLf(LX)(X); Y i:

Moreover, (3.8) implies

sup
s2[0;1]

E
��hDLf(LX+sY )(X + sY ); Y i�� � A

p
EjY j2 <1:

Due to this, (3.7) and (3.9), the dominated convergence theorem gives

lim
"#0

f(LX+"Y )� f(LX)

"
= lim

"#0

1

"

Z "

0

EhDLf(LX+sY )(X + sY ); Y i ds
= EhDLf(LX)(X); Y i:

3.2 Partial derivative in initial value

For any T > 0, let CT = C([0; T ]! R
d) be the path space over Rd with time interval [0; T ];

and let X0; � 2 L2(
! R
d;F0;P). For any " � 0, let (X"

t )t�0 solve the SDE

(3.10) dX"
t = bt(X

"
t ;LX"

t
)dt+ �t(X

"
t ;LX"

t
)dWt; X"

0 = X0 + "�:

Obviously, Xt = X0
t solves (1.4) with initial value X0. Consider the following linear SDE for

v
�
t on Rd:

dv�t =
n
rv

�
t
bt(�;LXt)(Xt) +

�
EhDLbt(y; �)(LXt)(Xt); v

�
t i
���
y=Xt

o
dt

+
n
rv

�
t
�t(�;LXt)(Xt) +

�
EhDL�t(y; �)(LXt)(Xt); v

�
t i
���
y=Xt

o
dWt; v

�
0 = �:

(3.11)

The main result of this part is the following.

Proposition 3.2. Assume (H). Then for any T > 0, the limit

(3.12) r�Xt := lim
"#0

X"
t �Xt

"
; t 2 [0; T ]

exists in L2(
 ! CT ;P): Moreover, (v�t := r�Xt)t2[0;T ] is the unique solution to the linear

SDE (3.11).
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To prove the existence of r�Xt in (3.12), it su�ces to show that when " # 0

(3.13) �"(t) :=
X"

t �Xt

"
; t 2 [0; T ]

is a Cauchy sequence in L2(
! CT ;P); i.e.

(3.14) lim
";�#0

E

�
sup
t2[0;T ]

j�"(t)� ��(t)j2
�
= 0:

To this end, we need the following two lemmas.

Lemma 3.3. Assume (H). Then

sup
"2(0;1]

E

�
sup
t2[0;T ]

j�"(t)j2
�
<1:

Proof. By (H), there exists a constant C1 > 0 such that

djX"
t �Xtj2

=
�
2hbt(X"

t ;LX"
t
)� bt(Xt;LXt); X

"
t �Xti+ k�t(X"

t ;LX"
t
)� �t(Xt;LXt)k2HS

	
dt+ dMt

� C1

�jX"
t �Xtj2 +W2(LX"

t
;LXt)

2
	
dt+ dMt;

where
dMt := 2

D
X"

t �Xt; (�t(X
"
t ;LX"

t
)� �t(Xt;LXt))dWt

E
satis�es

(3.15) dhMit � C2
1

�jX"
t �Xtj2 +W2(LX"

t
;LXt)

2
	2
dt:

Then by the BDG inequality, and noting that W2(L�;L�)
2 � Ej� � �j2 for two random

variables �; �, we may �nd out a constant C2 > 0 such that

(3.16) E

�
sup
s2[0;t]

jX"
s �Xsj2

�
� "2j�j2 + 2C1

Z t

0

EjX"
s �Xsj2ds+ C2E

p
hMit:

Noting that W2(LX"
s
;LXs)

2 � EjX"
s �Xsj2, (3.15) yields

C2E

p
hMit � C1C2E

�Z t

0

�jX"
s �Xsj2 +W2(LX"

s
;LXs)

2
	2
ds

� 1
2

� C1C2E

�
sup
s2[0;t]

�jX"
s �Xsj2 + EjX"

s �Xsj2
	Z t

0

�jX"
s �Xsj2 + EjX"

s �Xsj2
	
ds

� 1
2

� 1

2
E

h
sup
s2[0;t]

jX"
s �Xsj2

i
+
C3

2

Z t

0

EjX"
s �Xsj2 ds
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for some constant C3 > 0. Combining this with (3.16) and noting that due to (1.7)

E

h
sup
s2[0;t]

jX"
s �Xsj2

i
<1;

we arrive at

E

�
sup
s2[0;t]

jX"
s �Xsj2

�
� 2"2j�j2 + C3

Z t

0

EjX"
s �Xsj2ds; t 2 [0; T ]; " > 0:

Therefore, Gronwall's inequality gives

sup
"2(0;1]

E

�
sup
t2[0;T ]

j�"(t)j2
�
= sup

"2(0;1]

1

"2
E

�
sup
s2[0;T ]

jX"
s �Xsj2

�
� 2eC3TEj�j2 <1:

For any di�erentiable (real, vector, or matrix valued) function f on Rd �P2(R
d), let

�"
f (t) =

f(X"
t ;LX"

t
)� f(Xt;LXt)

"
�r�"(t)f(�;LXt)(Xt)

� �
EhDLf(y; �)(LXt)(Xt); �

"(t)i	��
y=Xt

; t 2 [0; T ]; " > 0:
(3.17)

Lemma 3.4. Assume (H). For any (real, vector, or matrix valued) C1;(1;0)-function f on

R
d �P2(R

d) with

(3.18) Kf := sup
(x;�)2Rd�P2(Rd)

�jrf(�; �)(x)j2 + kDLf(x; �)(�)k2L2(�)
�
<1;

there holds

(3.19)
���"

f (t)
��2 � 4Kf

�
Ej�"(t)j2 + j�"(t)j2� and lim

"#0
E
���"

f (t)
��2 = 0; t 2 [0; T ]:

Proof. Let X"
t (s) = Xt + s(X"

t �Xt); s 2 [0; 1]: By the chain rule and (3.1), we have

f(X"
t ;LX"

t
)� f(Xt;LXt)

"
=

1

"

Z 1

0

n d

ds
f
�
X"

t (s);LX"
t (s)

�o
ds

=

Z 1

0

n
r�"(t)f(�;LX"

t (s)
)(X"

t (s)) +
�
E


DLf(y; �)(LX"

t (s)
)(X"

t (s)); �
"(t)

����
y=X"

t (s)

o
ds:

Combining this with (3.18) we obtain

���"
f (t)

��2 � 2

Z 1

0

���r�"(t)

�
f(�;LX"

t (s)
)(X"

t (s))� f(�;LXt)(Xt)
	���2ds

+ 2

Z 1

0

����E
DLf(y; �)(LX"
t (s)

)(X"
t (s)); �

"(t)
����

y=X"
t (s)

� �
E


DLf(y; �)(LXt)(Xt); �

"(t)
����

y=Xt

���2ds
� 8Kf (j�"(t)j2 + Ej�"(t)j2

�
:

(3.20)
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So, the �rst inequality in (3.19) holds. Moreover, Lemma 3.3 implies

lim
"#0
E

�
sup
s2[0;1]

jX"
t (s)�Xtj2

�
� lim

"#0
EjX"

t �Xtj2 = 0:

Thus, the C1;(1;0)-property of f , Lemma 3.3 and the �rst inequality in (3.20) yield that
�"
f (t)! 0 in probability as "! 0. Combining this with the �rst inequality in (3.19), Lemma

3.3, and using the dominated convergence theorem, we derive lim"#0 E
���"

f (t)
��2 = 0:

Proof of Proposition 3.2. Let (�"
b(t); Kbt) and (�"

�(t); K�t) be de�ned as in (3.17) and (3.18)
for bt and �t replacing f respectively. By (H), there exists a constant C1 > 0 such that

sup
t2[0;T ]

�
Kbt +K�t

� � C1 <1:

Then Lemma 3.4 gives ���"
b(t)

��2 + ���"
�(t)

��2 � 4C
�j�"(t)j2 + Ej�"(t)j2�;

lim
"#0
E
����"

b(t)
��2 + ���"

�(t)
��2� = 0; t 2 [0; T ]:

(3.21)

By (3.10), (3.13), and (3.17) for bt and �t replacing f; we have

�"(t) =

Z t

0

n
�"
b(s) +r�"(s)bs(�;LXs)(Xs) +

�
EhDLbs(y; �)(LXs)(Xs); �

"(s)i���
y=Xs

o
ds

+

Z t

0

D
�"
�(s) +r�"(s)�s(�;LXs)(Xs) +

�
EhDL�s(y; �)(LXs)(Xs); �

"(s)i���
y=Xs

; dWs

E

for t 2 [0; T ]: So, for any "; � 2 (0; 1]; �";�(t) := �"(t)� ��(t) satis�es

j�";�(t)j2 � 4

Z t

0

���"
b(s)� ��

b(s)
��2ds+ 4

����
Z t

0



�"
�(s)� ��

�(s); dWs

�����
2

+ 4T

Z t

0

���r�";�(s)bs(�;LXs)(Xs) +
�
EhDLbs(y; �)(LXs)(Xs); �

";�(s)i�jy=Xs

���2ds
+ 4

����
Z t

0

D
r�";�(s)�s(�;LXs)(Xs) +

�
EhDL�s(y; �)(LXs)(Xs); �

";�(s)i�jy=Xs ; dWs

E����
2

:

Combining this with (H) and using the BDG inequality, we �nd out a constant C2 > 0 such
that

E

�
sup
s2[0;t]

�";�(s)

�
� C2

Z T

0

E

����"
b(s)� ��

b(s)
��2 + ���"

�(s)� ��
�(s)

��2�ds
+ C2

Z t

0

Ej�";�(s)j2 ds; t 2 [0; T ]:
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Since Lemma 3.3 ensures that E
�
sups2[0;t] �

"(s)
�
<1, by Gronwall's lemma this yields

E

�
sup
s2[0;T ]

�";�(s)

�
� C2e

C2T

Z T

0

E

����"
b(s)� ��

b(s)
��2 + ���"

�(s)� ��
�(s)

��2�ds:
Combining this with (3.21) and Lemma 3.3, and applying the dominated convergence theo-
rem, we prove the �rst assertion in Proposition 3.2.

Finally, by (3.10), (3.12), (3.21) and (3.17) for bt; �t replacing f , we conclude that v
�
t :=

r�Xt solves the SDE (3.11). Since this SDE is linear, the uniqueness is trivial. Then the
proof is �nished.

3.3 Malliavin derivative

Consider the Cameron-Martin space

H =

�
h 2 C([0; T ]! R

d) : h0 = 0; h0t exists a.e. t; khk2H :=

Z T

0

jh0tj2dt <1
�
:

Let � 2 L2(
 ! R
d;F0;P) with L� = �; and let �T be the distribution of W[0;T ] :=

fWtgt2[0;T ], which is a probability measure (i.e. Wiener measure) on the path space CT :=
C([0; T ]! R

d). For F 2 L2(Rd � CT ; �� �T ), F (�;W[0;T ]) is called Malliavin di�erentiable
along direction h 2 H, if the directional derivative

DhF (�;W[0;T ]) := lim
"!0

F (�;W[0;T ] + "h)� F (�;W[0;T ])

"

exists in L2(
;P). If the map H 3 h 7! DhF 2 L2(
; �) is bounded, then there exists a
unique DF (�;W[0;T ]) 2 L2(
 ! H;P) such that hDF (�;W[0;T ]); hiH = DhF (�;W[0;T ]) holds
in L2(
;P) for all h 2 H. In this case, we write F (�;W[0;T ]) 2 D(D) and call DF (�;W[0;T ])
the Malliavin gradient of F (�;W[0;T ]). It is well known that (D;D(D)) is a closed linear
operator from L2(
;FT ;P) to L2(
 ! H;FT ;P). The adjoint operator (D�;D(D�)) of
(D;D(D)) is called Malliavin divergence. For simplicity, in the sequel we denote F (�;W[0;T ])
by F . Then we have the integration by parts formula

(3.22) E
�
DhF

��F0

�
= E

�
FD�(h)

��F0

�
; F 2 D(D); h 2 D(D�):

It is well known that for adapted h 2 L2(
! H;P), one has h 2 D(D�) with

(3.23) D�(h) =

Z T

0

hh0t; dWti:

For more details and applications on Malliavin calculus one may refer to [19] and references
therein.

For any " � 0 and adapted h 2 L2(
! H;P), let (Xh;"
t )t�0 solve the SDE

(3.24) dXh;"
t = bt(X

h;"
t ;L

X
h;"
t
)dt+ �t(X

h;";
t L

X
h;"
t
)d(Wt + "ht); X

h;"
0 = X0:
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By (H) and h0� 2 L2(
� [0; T ];P� dt), this SDE is well-posed. Obviously, Xh;0
t = Xt solves

(1.4) with initial value X0. When �t(x; �) does not depend (x; �), this SDE reduces to a
random ODE for Y h;"

t := X
h;"
t � �tWt, which is well-posed also for non-adapted h like h� in

Theorem 2.3. The main result of this part is the following.

Proposition 3.5. Assume (H). Let h 2 L2(
! H;P), which is adapted if �t(x; �) depends
on x or �. Then the limit

(3.25) DhXt := lim
"#0

X
h;"
t �Xt

"
; t 2 [0; T ]

exists in L2(
! CT ;P): Moreover, (wh
t := DhXt)t2[0;T ] is the unique solution to the SDE

dwh
t =

n
rwh

t
�t(�;LXt)(Xt) +

�
EhDL�t(y; �)(LXt)(Xt); w

h
t i
���
y=Xt

o
dWt

+
n
rwh

t
bt(�;LXt)(Xt) +

�
EhDLbt(y; �)(LXt)(Xt); w

h
t i
���
y=Xt

+ �t(Xt;LXt)h
0
t

o
dt

(3.26)

with wh
0 = 0:

Proof. Comparing with the linear SDE (3.11), the additional term �t(Xt;LXt)h
0
t comes from

the derivative with respect to " at " = 0 of the term "�t(X
h;"
t ;L

X
h;"
t
)h0t in (3.24), since

d

d"

�
"�t(X

h;"
t ;L

X
h;"
t
)
	��

"=0
= lim

"#0
�t(X

h;"
t ;L

X
h;"
t
) = �t(Xt;LXt):

Taking this into account, we may prove Proposition 3.5 by repeating the proof of Proposition
3.2. We omit the details to save space.

4 Proofs of main results

We �rst present an integration by parts formula for r�XT with � 2 L2(
 ! R
d;F0;P),

then prove Theorem 2.1, Corollary 2.2 and Theorem 2.3 respectively.

4.1 An integration by parts formula

Theorem 4.1. Assume (H) and (2.1). Let f 2 C1
b (R

d) and � 2 L2(
 ! R
d;P). Then for

any 0 � r < T and g 2 C1([r; T ]) with gr = 0 and gT = 1,

(4.1) E
�hrf(XT );r�XT i

��Fr

�
= E

�
f(XT )

Z T

r



g0t�t(Xt;LXt)

�1v
�
t ; dWt

�����Fr

�
:

Proof. Having Propositions 3.2 and 3.5 in hands, the proof is more or less standard. For v�t
solving (3.11), we take

(4.2) ht =

Z t

t^r

g0s�s(Xs;LXs)
�1v�s ds; t 2 [0; T ]:
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By (H), (2.1), and that h 2 L2(
! H;P) is adapted, Proposition 3.5 applies. Let ~vt = gtv
�
t

for t 2 [r; T ]. Then (3.11) and (4.2) imply

d~vt =
n
r~vtbt(�;LXt)(Xt) +

�
EhDLbt(y; �)(LXt)(Xt); ~vti

���
y=Xt

+ g0tv
�
t

o
dt

+
n
r~vt�t(�;LXt)(Xt) +

�
EhDL�t(y; �)(LXt)(Xt); ~vti

���
y=Xt

o
dWt

=
n
r~vtbt(�;LXt)(Xt) +

�
EhDLbt(y; �)(LXt)(Xt); ~vti

���
y=Xt

+ �t(Xt;LXt)h
0
t

o
dt

+
n
r~vt�t(�;LXt)(Xt) +

�
EhDL�t(y; �)(LXt)(Xt); ~vti

���
y=Xt

o
dWt; t � r; ~vr = 0:

So, (~vt)t�r solves the SDE (3.26) with ~vr = 0. On the other hand, by (4.2) we have h0t = 0
for t < r, so that the solution to (3.26) with wh

0 = 0 satis�es wh
r = 0. So, the uniqueness of

this SDE from time r implies ~vt = wh
t for all t � r. Combining this with Propositions 3.2

and 3.5, we obtain
r�XT = v

�
T = gTv

�
T = ~vT = wh

T = DhXT :

Thus, by the chain rule and the integration by parts formula (3.22), for any bounded Fr-
measurable G 2 D(D), we have

E
�
Ghrf(XT );r�XT i

�
= E

�
Ghrf(XT ); DhXT i

�
= E

�
GDhf(XT )

�
= E

�
DhfGf(XT )g � f(XT )DhG) = E(Gf(XT )D

�(h)
�
;

where in the last step we have used DhG = 0 since G is Fr-measurable but h0t = 0 for t � r.
Noting that the class of bounded Fr-measurable G 2 D(D) is dense in L2(
;Fr;P), this
implies

E
�hrf(XT );r�XT i

��Fr

�
= E(f(XT )D

�(h)
��Fr

�
:

Combining this with

D�(h) =

Z T

r

hh0t; dWti =
Z T

r



g0t�t(X

�
t ; P

�
t �)

�1vt; dWt

�
due to (3.23) and (4.2), we prove (4.1).

4.2 Proof of Theorem 2.1

Let � 2P2(R
d). We �rst establish (2.3) for f 2 Bb(R

d), then construct 
 2 L2(Rd ! R
d; �)

such that

(4.3) lim
�(j�j2)!0

j(PTf)(� � (Id + �)�1)� (PTf)(�)� �(h�; 
i)jp
�(j�j2) = 0;

which, by de�nition, implies that PTf is L-di�erentiable at � with DLPTf(�) = 
.
(a) Proof of (2.3) for f 2 Bb(R

d). When f 2 C1
b (R

d), (2.3) follows from (4.1) for
� = �(X0). Below we extend the formula to f 2 Bb(R

d). For s 2 [0; 1]; let X�;s
t solve (1.4)
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for X�;s
0 = X0 + s�(X0). We have ��;s := L

X
�;s
0

= � � (Id + s�)�1; and by the de�nition of

r�XT for � = �(X0),

(PTf)(�
�;")� (PTf)(�) = E[f(X�;"

T )� f(XT )] =

Z "

0

d

ds
E[f(X�;s

T )] ds

=

Z "

0

Eh(rf)(X�;s
T );r�(X0)X

�;s
T i ds; f 2 C1

b (R
d):

(4.4)

Next, let (v�;st )t2[0;T ] solve (3.11) for � = �(X0) and X
s
t replacing Xt, i.e.

dv�;st =
n
r

v
�;s
t
bt(�;LX

�;s
t
)(X�;s

t ) +
�
EhDLbt(y; �)(LX

�;s
t
)(X�;s

t ); v�;st i���
y=X�;s

t

o
dt

+
n
r

v
�;s
t
�t(�;LX

�;s
t
)(X�;s

t ) +
�
EhDL�t(y; �)(LX

�;s
t
)(X�;s

t ); v�;st i���
y=X�;s

t

o
dWt;

(4.5)

for v�;s0 = �(X0): Then (4.4) and (4.1) imply

(PTf)(�
�;")� (PTf)(�)

=

Z "

0

E

�
f(X�;s

T )

Z T

0



g0t�t(X

�;s
t ;L

X
�;s
t
)�1vst ; dWt

��
ds; f 2 C1

b (R
d):

(4.6)

By a standard approximation argument, we may extend this formula to all f 2 Bb(R
d).

Indeed, let

�"(A) =

Z "

0

E

�
1A(X

�;s
T )

Z T

0



g0t�t(X

�;s
t ;LXs

t
)�1v

�;s
t ; dWt

��
ds; A 2 B(Rd):

Then �" is a �nite signed measure on Rd withZ
Rd

fd�" =

Z "

0

E

�
f(X�;s

T )

Z T

0



g0t�t(X

�;s
t ;L

X
�;s
t
)�1v

�;s
t ; dWt

��
ds; f 2 Bb(R

d):

So, (4.6) is equivalent to

(4.7)

Z
Rd

fdP �
T�

�;" �
Z
Rd

fdP �
T� =

Z
Rd

fd�"; f 2 C1
b (R

d):

Since �T;" := P �
T�

�;" + P �
T� + j�"j is a �nite measure on Rd, C1

b (R
d) is dense in L1(Rd; �T;").

Hence, (4.7) holds for all f 2 Bb(R
d) � L1(Rd; �T;"): Consequently, (4.6) holds for all

f 2 Bb(R
d): Thus,

(PTf)(�
�;")� (PTf)(�)

"

=
1

"

Z "

0

E

�
f(X�;s

T )

Z T

0



g0t�t(X

�;s
t ;L

X
�;s
t
)�1v

�;s
t ; dWt

��
ds; f 2 Bb(R

d):

(4.8)
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It is easy to see from (H) that

lim
s!0

sup
t2[0;T ]

E
�jX�;s

t �Xtj2 + jv�;st � v
�
t j2
�
= 0:

So,

(4.9) lim
"#0

1

"

Z "

0

E

����
Z T

0



g0tf�t(X�;s

t ;L
X
�;s
t
)�1v

�;s
t � �t(Xt;LXt)

�1v
�
t g; dWt

����� = 0:

Combining this with (4.8), we see that (2.3) for f 2 Bb(R
d) follows from

(4.10) lim
"#0
E

�
ff(X�;"

T )� f(XT )g
Z T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

��
= 0; f 2 Bb(R

d):

To prove this equality, for r 2 (0; T ) we denote

Ir :=

Z r

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

�
:

Applying (4.1) with gt :=
t�r
T�r

for t 2 [r; T ], we derive

��E[Irff(X�;"
T )� f(XT )g]

�� = ����E
�
Ir

Z "

0

hrf(X�;s
T );r�(X0)X

�;s
T ids

�����
� E

�
jIrj �

����
Z "

0

E
�hrf(X�;s

T );r�(X0)X
�;s
T i��Fr

�
ds

����
�

� kfk1
Z "

0

E

�
jIrj

�Z T

r

��� 1

T � r
�t(X

�;s
t ;L

X
�;s
t
)�1v

�;s
t

���2dt�
1
2
�
ds; f 2 C1

b (R
d):

By the argument extending (4.6) from f 2 C1
b (R

d) to f 2 Bb(R
d), we conclude from this

that for any r 2 (0; T ),

lim
"#0

sup
kfk1�1

��E[Irff(X�;"
T )� f(XT )g]

��
� lim

"#0

Z "

0

E

�
jIrj

�Z T

r

��� 1

T � r
�t(X

�;s
t ;L

X
�;s
t
)�1v

�;s
t

���2dt�
1
2
�
ds = 0:

Therefore,

lim sup
"#0

sup
kfk1�1

����E
�
ff(X�;"

T )� f(XT )g
Z T

0



g0t�t(Xt;LXt)

�1v
�
t g; dWt

������
= lim sup

"#0
sup

kfk1�1

����E
�
ff(X�;"

T )� f(XT )g
Z T

r



g0t�t(Xt;LXt)

�1v
�
t g; dWt

������
� 2

�
E

Z T

r

jg0t�t(Xt;LXt)
�1v

�
t j2dt

� 1
2

(4.11)
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holds for r 2 (0; T ). By letting r " T we prove (4.10).
(b) For any f 2 Bb(R

d), we intend to �nd out 
 2 L2(Rd ! R
d; �) such that

(4.12) E

�
f(XT )

Z T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

��
= �(h�; 
i); � 2 L2(Rd ! R

d; �):

When f 2 Cb(R
d), in step (c) we will deduce from this and (2.3) that 
 = DLPTf(�). To

construct the desired 
, consider the SDE

dX�
t = bt(X

�
t ;LX

�
t
)dt+ �t(X

�
t ;LX

�
t
)dWt; X

�
0 = X0 + �(X0);

and let v�t solve (2.2). Since (2.2) is a linear equation for v�t with initial value �(X0) 2
L2(
! R

d;F0;P), the functional

L2(Rd ! R
d; �) 3 � 7! L� := E

�
f(XT )

Z T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

��

is linear, and by (H) and (2.1), there exists a constant C > 0 such that

jL�j2 � kfk21 sup
t2[0;T ]

jg0t�tj2E
Z T

0

jv�t j2dt � C Ej�(X0)j2 = C �(j�j2); � 2 L2(Rd ! R
d; �):

Then L is a bounded linear functional on the Hilbert space L2(Rd ! R
d; �). By Riesz's

representation theorem, there exists a unique 
 2 L2(Rd ! R
d; �) such that

L� = �(h
; �i); � 2 L2(Rd ! R
d; �):

Therefore, (4.12) holds.
(c) Now, for f 2 Bb(R

d), we intend to verify (4.3) for 
 in (4.12), so that PTf is L-
di�erentiable with DL(PTf)(�) = 
. By (4.8) for " = 1, we have

(PTf)(�
1)� (PTf)(�)

=

Z 1

0

E

�
f(X�;s

T )

Z T

0



g0t�t(X

�;s
t ;L

X
�;s
t
)�1v

�;s
t ; dWt

��
; f 2 Bb(R

d):
(4.13)

Combining this with (4.12) and noting that �1 = � � (Id + �)�1), we arrive at

(4.14)
j(PTf)(� � (Id + �)�1))� (PTf)(�)� �(h�; 
i)jp

�(j�j2) � "1(�) + "2(�) + "3(�);

where

"1(�) :=
1p

�(j�j2)

Z 1

0

E

�����f(X�;s
T )� f(XT )

� Z T

0

hg0t�t(X�;s
t ;L

X
�;s
t
)�1v

�;s
t ; dWti

����ds;
"2(�) :=

kfk1p
�(j�j2)

Z 1

0

E

����
Z T

0



g0tf�t(X�;s

t ;L
X
�;s
t
)�1 � �t(Xt;LXt)

�1
	
v
�
t ; dWt

�����ds;
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"3(�) :=
kfk1p
�(j�j2)

Z 1

0

E

����
Z T

0



g0tf�t(X�;s

t ;L
X
�;s
t
)�1(v�;st � v

�
t ); dWt

�����ds:
It is easy to deduce from (H) that for any p � 2 there exists a constant c(p) > 0 such that

(4.15) sup
t2[0;T ];s2[0;1]

E
�jX�;s

t �Xtjp + jv�;st jp��F0

� � c(p)j�(X0)jp:

Combining this with the continuity of �t(x; �) in x and �, we conclude that

(4.16) lim
�(j�j2)!0

"2(�) = 0:

Next, by the argument deducing (2.3) from (4.8), it is easy to see that (4.15) implies

(4.17) lim
�(j�j2)!0

"1(�) = 0:

Moreover, by the SDEs for v�;st and v�t we have

d(v�;st � v
�
t ) =

�
At(v

�;s
t � v

�
t ) + ~Atv

�;s
t

	
dt+

�
Bt(v

�;s
t � v

�
t ) + ~Btv

�
t

	
dWt;

where for a square integrable random variable v on Rd,

Atv := rvbt(�;LXt)(Xt) +
�
EhDLbt(y; �)(LXt)(Xt); vi

���
y=Xt

;

~Atv := rvbt(�;LX
�;s
t
)(X�;s

t ) +
�
EhDLbt(y; �)(LX

�;s
t
)(X�;s

t ); vi���
y=X�;s

t

�rvbt(�;LXt)(Xt)�
�
EhDLbt(y; �)(LXt)(Xt); vi

���
y=Xt

;

Btv := rv�t(�;LXt)(Xt) +
�
EhDL�t(y; �)(LXt)(Xt); v

�
t i
���
y=Xt

;

~Btv := rv

�
�t(�;LX

�;s
t
)(X�;s

t ) +
�
EhDL�t(y; �)(LX

�;s
t
)(X�;s

t ); vi���
y=X�;s

t

�rv�t(�;LXt)(Xt)�
�
EhDL�t(y; �)(LXt)(Xt); vi

���
y=Xt

:

Combining this with (4.15) and (H), there exists a constant c > 0 such that

(4.18) djv�;st �v�t j2 � cjv�;st �v�t j2dt+c
�k ~Atk2+k ~Btk2

��jv�;st j2+jv�t j2
�
dt+dMt; jv�;s0 �v�0 j = 0

holds for some martingale Mt, and that

(4.19) k ~Atk2 + k ~Btk2 � c; lim
�(j�j2)!0

�k ~Atk2 + k ~Btk2
�
= 0; t 2 [0; T ]; s 2 [0; 1]:

By (4.18) and (4.15) for p = 4, there exists a constant c0 > 0 such that

E(jv�;st � v
�
t j2jF0)

� c

Z t

0

E(jv�;sr � v�r j2jF0)dr + 2c

Z T

0

q
E(k ~Atk4 + k ~Btk4jF0) �

q
E(jv�;st j4 + jv�t j4jF0) dt
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� c

Z t

0

E(jv�;sr � v�r j2jF0)dr + c0"(�)j�(X0)j2; s 2 [0; 1]; t 2 [0; T ];

where

"(�) :=

Z T

0

q
E(k ~Atk4 + k ~Btk4jF0) dt:

Then Gronwall's lemma and (4.19) yield

sup
s2[0;T ]

E(jv�;st � v
�
t j2jF0) � c0ecT "(�)j�(X0)j2;

lim
�(j�j2)!0

E"(�) = 0:

Combining this with the de�nition of "3(�), (H), and Jensen's inequality for the conditional
expectation E(�jF0), we may �nd out constants C1; C2 > 0 depending on kfk1 and T such
that

lim
�(j�j2)!0

"3(�) � lim
�(j�j2)!0

C1p
�(j�j2)

Z 1

0

E

�Z T

0

jv�;st � v
�
t j2dt

� 1
2

ds

� lim
�(j�j2)!0

C1p
�(j�j2)

Z 1

0

E

�Z T

0

E(jv�;st � v
�
t j2jF0)dt

� 1
2

ds

� lim
�(j�j2)!0

C2p
�(j�j2)

Z 1

0

E
�j�(X0)j

p
"(�)

�
ds

� lim
�(j�j2)!0

C2

p
(Ej�(X0)j2)E"(�)p

�(j�j2) = lim
�(j�j2)!0

C2

p
E"(�) = 0:

This, together with (4.14), (4.16) and (4.17), implies (4.3). Therefore, PTf is L-di�erentiable
at � with DL(PTf)(�) = 
.

(d) Finally, (2.3) and (4.8) imply

���P �
T� � (Id + "�)�1 � P �

T�

"
(f)� ( P �

T�)(f)
���

=

����(PTf)(��;")� (PTf)(�)

"
� E

�
f(XT )

Z T

0

hg0t�t(Xt;LXt)
�1v

�
t ; dWti

�����
� kfk1

"

Z "

0

E

����
Z T

0

hg0tf�t(X�;s
t ;L

X
�;s
t
)�1v

�;s
t � �t(Xt;LXt)

�1v
�
t g; dWti

����ds
+

1

"

����E
�
ff(X�;"

T )� f(XT )g
Z T

0



g0t�t(Xt;LXt)

�1v
�
t g; dWt

������ds:
Combining this with (4.9) and (4.11) we prove (2.4).
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4.3 Proof of Corollary 2.2

Proof of (1). By (H) and (2.2), there exists a martingale Mt such that

(4.20) djv�t j2 � 4K(t)jv�t j(jv�t j+ Ejv�t j)dt+ dMt; jv�0 j2 = j�(X0)j2;

where K(t) is increasing in t � 0. Then

Ejv�t j2 � Ej�(X0)j2 + 4K(t)

Z t

0

�
Ejv�s j2 + (Ejv�s j)2

	
ds � �(j�j2) + 8K(t)

Z t

0

Ejv�s j2ds:

By Gronwall's inequality this implies

(4.21) Ejv�t j2 � e8K(t)t�(j�j2); t 2 [0; T ]:

Next, since E
R T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

�
= 0; (2.3) is equivalent to

DL
� (PTf)(�) = E

��
f(XT )� PTf(�)

	Z T

0



g0t�t(Xt;LXt)

�1v
�
t ; dWt

��
:

Combining this with (4.21) and using Jensen's inequality, when �(j�j2) � 1 we have

jDL
� (PTf)(�)j2 �

�
(PTf

2)(�)� (PTf(�))
2
	Z T

0

E
��g0t�t(Xt;LXt)

�1v
�
t

��2dt
� �

(PTf
2)(�)� (PTf(�))

2
	Z T

0

��g0tj2�2t e8tK(t)dt

for any g 2 C1([0; T ]) with g0 = 0 and gT = 1. Taking

gt =

R t

0
��2
r e�8rK(r)drR T

0
��2
r e�8rK(r)dr

; t 2 [0; T ];

we prove the estimate (2.5).

Proof of (2). Let f 2 Bb(R
d) with kfk1 � 1. By Theorem 2.1, PTf is L-di�erentiable.

Moreover, by Theorem 4.1, PTf is Lipschitz continuous onP2(R
d). Indeed, for any �1; �2 2

P2(R
d), let X1; X2 2 L2(
! R

d;F0;P) such that LXi
= �i; 1 � i � 2; and EjX1 �X2j2 =

W2(�1; �2)
2. Let Xs

t be the solution to (1.4) with X0 = X1 + s(X2 � X1); s 2 [0; 1]: Then
Theorem 4.1 implies

jPTf(�1)� PTf(�2)j2 = jEf(X0
T )� Ef(X1

T )j2 =
����
Z 1

0

d

ds
Ef(Xs

T ) ds

����
2

=

����
Z 1

0

Ehrf(Xs
T );rX2�X1X

s
T ids

����
2

� cEjX2 �X1j2 = cW2(�1; �2)
2

for some constant c > 0.
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To apply Proposition 3.1, we take f�n; �ngn�1 � P2(R
d) which have compact supports

and are absolutely continuous with respect to the Lebesgue measure, such that

(4.22) lim
n!1

�
W2(�; �n) +W2(�; �n)

	
= 0:

According to [4], see also [6, Theorem 5.8], for any n � 1 there exists a unique map �n 2
L2(Rd ! R

d; �) such that

(4.23) �n = �n � (Id + �n)
�1; W2(�n; �n)

2 = �n(j�nj2):
Let Xn 2 L2(
! R

d;F0;P) such that LXn = �n. By Proposition 3.1, (2.5) and (4.23), we
obtain

j(PTf)(�n)� (PTf)(�n)j2 =
����
Z 1

0

d

ds
(PTf)(LXn+s�n(Xn)) ds

����
2

=

����
Z 1

0

E


DL(PTf)(LXn+s�n(Xn))(Xn + s�n(Xn)); �n(Xn)

�
ds

����
2

� kfk21�n(j�nj2)R T

0
��2
t e�8tK(t)dt

=
kfk21W2(�n; �n)

2R T

0
��2
t e�8tK(t)dt

:

By the continuity of PTf and (4.22), by letting n!1 we prove

j(PTf)(�)� (PTf)(�)j2 � W2(�; �)
2R T

0
��2
t e�8tK(t)dt

; �; � 2P2(R
d); f 2 Bb(R

d); kfk1 � 1:

Therefore, (2.6) and (2.7) hold.

4.4 Proof of Theorem 2.3

Let T > r � 0; � 2P2(R
m+d) and let Xt solve (2.8) with LX0 = �. To realize the procedure

in the proof of Theorem 2.1 for the present degenerate setting, we �rst extend Theorem 4.1
using D�(h�r;�) to replace

R T

r
hg0t�t(Xt;LXt)

�1v
�
t ; dWti, where for a C1([r; T ]! R

m+d)-valued

random variable �� = (�
(1)
� ; �

(2)
� ),

(4.24) h�r;t :=

Z t

r^t

��1
s

n
r�sb

(2)
s (Xs;LXs)+

�
EhDLb(2)s (y; �)(LXs)(Xs); �si

���
y=Xs

�(�(2)
s )0

o
ds

for t 2 [0; T ]:

Theorem 4.2. Assume (H1). Let T > r � 0, � 2 L2(
 ! R
m+d;F0;P), and let Xt

solve (2.8) with LX0 = � 2 P2(R
m+d). If there exists a C1([r; T ] ! R

m+d)-valued random

variable �� = (�
(1)
� ; �

(2)
� ) such that �r = r�Xr; �T = 0;

(4.25) (�
(1)
t )0 = r�tb

(1)
t (Xt); t 2 [r; T ];

and h�r;� 2 D(D�); then for any f 2 C1
b (R

m+d);

(4.26) E
�hrf(XT );r�XT i

��Fr

�
= E

�
f(XT )D

�(h�r;�)
��Fr

�
:
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Proof. By Proposition 3.5, wt := Dh�r;�Xt satis�es

wt =

Z t

0

n
rwsbs(�;LXs)(Xs) +

�
0; �s(h

�
r;s)

0 +
�
EhDLb(2)s (y; �)(LXs)(Xs); wsi

���
y=Xs

�o
ds:

Since (h�r;�)
0(s) = 0 for s � r, this implies wt = 0 for t 2 [0; r] so that

wt =

Z t

t^r

n
rwsbs(�;LXs)(Xs) +

�
0; �s(h

�
r;s)

0 +
�
EhDLb(2)s (y; �)(LXs)(Xs); wsi

���
y=Xs

�o
ds:

Extending �t with �t := r�Xt for t 2 [0; r), and letting vt = wt + �t for any t 2 [0; T ], we
obtain

vt = �t +

Z t

t^r

n
rvsbs(�;LXs)(Xs) +

�
0;
�
EhDLb(2)s (y; �)(LXs)(Xs); vsi

���
y=Xs

�
+ (0; �s(h

�
s )
0 � �

EhDLb(2)s (y; �)(LXs)(Xs); �si
���
y=Xs

)�r�sbs(�;LXs)(Xs)
o
ds:

(4.27)

By (4.25), Z t

t^r

r�sb
(1)
s (�;LXs)(Xs) ds = 1ft>rg

�
�
(1)
t �r�X

(1)
r

�
;

while the de�nition of h�r;s impliesZ t

t^r

n
�s(h

�
s )
0 � �

EhDLb(2)s (y; �)(LXs)(Xs); �si
���
y=Xs

�r�sb
(2)
s (�;LXs)(Xs)

o
ds

= �
Z t

t^r

(�(2)
s )0ds = 1ft>rg

�r�X
(2)
r � �

(2)
t

�
:

Combining these with (4.27) and Proposition 3.2 leads to

vt = r�Xr +

Z t

t^r

n
rvsbs(�;LXs)(Xs) +

�
0;
�
EhDLb(2)s (y; �)(LXs)(Xs); vsi

���
y=Xs

�o
ds

= � +

Z t

0

n
rvsbs(�;LXs)(Xs) +

�
0;
�
EhDLb(2)s (y; �)(LXs)(Xs); vsi

���
y=Xs

�o
ds; t 2 [0; T ]:

That is, vt solves (3.11) so that by Proposition 3.2 we obtain vt := wt + �t = r�Xt: Since
�T = 0, this implies Dh�r;�XT = r�XT . Thus, for any bounded Fr-measurable G 2 D(D),

E
�
Ghrf(XT );r�XT i

�
= E

�
GDh�r;�f(XT )

�
= E

�
Dh�r;�fGf(XT )g � f(XT )Dh�r;�G

�
= E

�
Gf(XT )D

�(h�r;�)
�
;

(4.28)

where in the last step we have used the integration by parts formula (3.22) and Dh�r;�G = 0
since G is Fr-measurable but

Dh�r;�G =

Z T

0

(h�r;�)
0(s) � f(DG)�g0(s)ds = 0;

(h�r;�)
0(s) = 0 for s � r. Noting that the class of boundedFr-measurable functions G 2 D(D)

is dense in L2(
;Fr;P), (4.28) implies (4.26).
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Proof of Theorem 2.3. With Theorem 4.2 in hands, the proof is completely similar to that
of Theorem 2.1. Let

v
�
t = ((v�t )

(1); (v�t )
(2)) = (r�(X0)X

(1)
t ;r�(X0)X

(2)
t ) = r�(X0)Xt; t 2 [0; T ]:

For any 0 � r < T , let

�
(2)
r;t =

T � t

T � r
(v�t )

(2) � (t� r)(T � t)B�
tK

�
T;tR T

0
�2sds

Z T

t

�2sQ
�1
s KT;r(v

�
t )

(1)ds

� (t� r)(T � t)B�
tK

�
T;tQ

�1
T

Z T

0

T � s

T
KT;sr(2)b(1)s (Xs)�

(2)(X0)ds; t 2 [r; T ];

(4.29)

and

(4.30) �
(1)
r;t = Kt;r(v

�
t )

(1) +

Z t

r

Kt;sr(2)

�
(2)
s

b(1)s (Xs(x)) ds; t 2 [r; T ]:

Then �r;� := (�
(1)
r;t ; �

(2)
r;t ) satis�es

�r;r = r�(X0)Xr; �r;T = 0;

and by (2.9) and Duhamel's formula, (4.30) implies

(�(1)
r;� )

0(t) = r�r;tb
(1)
t (Xt); t 2 [r; T ]:

Moreover, let h
�r;�
r;� be de�ned in (4.24) for �r;� replacing �. Noting that (H1) and (H2)

imply [28, (H)] for l1 = l2 = 0, the proof of [28, Theorem 1.1] with �(s) := (s � r)(T � s)
for s 2 [r; T ] ensures that h

�r;�
r;� 2 D(D�) with D�(h

�r;�
r;� ) 2 Lp(P) for all p 2 (1;1): So, by

Theorem 2.3 with � = �(X0) we obtain

(4.31) E(hrf(XT );r�(X0)XT ijFr) = E(f(XT )D
�(h�r;�r;� )jFr); f 2 C1

b (R
d); r 2 [0; T ):

In particular, taking r = 0 we obtain D�(h) 2 Lp(P) for all p 2 (1;1) and

(4.32) DL
�PTf(�) = E(hrf(XT );r�(X0)XT i) = E(f(XT )D

�(h�)jFr); f 2 C1
b (R

d):

Basing on these two formulas, by repeating the proof of Theorem 2.1 with Ir := E(D�(h�)jFr),
we prove (2.16) and the L-di�erentiability of PTf for f 2 Bb(R

m+d). Finally, the estimates
(2.17) and (2.18) follows from (2.16) as in the proof of Theorem 2.1, together with the cor-
responding estimate on EjD�(h�)j2 as in the proof of [28, Theorem 1.1]. For instance, below
we outline the proof of (2.16).

Firstly, for s 2 (0; 1) let Xs
t solve (2.8) with X

�;s
0 = X0 + s�(X0), let �

�;s = L
X
�;s
0

=

� � (Id + �)�1; and let ��;sr;t be de�ned as �r;t with X
�;s
t replacing Xt. Then as in (4.4) and

(4.7), (4.32) implies

(PTf)(�
�;")� (PTf)(�) =

Z "

0

Eh(rf)(X�;s
T );r�(X0)X

�;s
T i ds

=

Z "

0

E
�
f(X�;s

T )D�(h�
�;s

)
�
; f 2 C1

b (R
m+d);

(4.33)
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where h�
�;s

:= h
�
�;s
0;�

0;� satis�es

(4.34) lim
s!0

EjD�(h�
�;s

)�D�(h)j2 = 0:

By the argument leading to (4.8), (4.33) yields

(PTf)(�
�;")� (PTf)(�)

"
=

1

"

Z "

0

E
�
f(X�;s

T )D�(h�
�;s

)
�
ds; f 2 Bb(R

m+d):

Combining this with (4.34), we prove (2.16) provided

(4.35) lim
"#0

1

"

Z "

0

E
�ff(X�;s

T )� f(XT )gD�(h�)
�
ds = 0:

For any r 2 (0; T ), let Ir = E(D�(h�)jFr). By (4.33) we obtain

E
�ff(X�;"

T )� f(XT )gIr
�
= E

�
IrE(f(X

�;"
T )� f(XT )jFr)

�
= E

�
Ir

Z "

0

E
�hrf(X�;s

T );rX�;s
T i��Fr

�
ds

�
= E

�
Ir

Z "

0

E
�
f(X�;s

T )D�(h�r;�r;� )
��Fr

�
ds

�

=

Z "

0

E
�
Irf(X

�;s
T )D�(h�r;�r;� )

�
ds; f 2 C1

b (R
d):

Combining this with the argument extending (4.8) from f 2 C1
b (R

d) to f 2 Bb(R
d), we

obtain

E
�ff(X�;"

T )� f(XT )gIr
�
=

Z "

0

E
�
Irf(X

�;s
T )D�(h�r;�r;� )

�
ds; f 2 Bb(R

d):

Consequently,

lim
"!0

E
�ff(X�;"

T )� f(XT )gIr
�
= 0; f 2 Bb(R

d); r 2 (0; T ):

Then for any r 2 (0; T ),

lim sup
"#0

����1"
Z "

0

E
�ff(X�;s

T )� f(XT )gD�(h�)
�
ds

����
= lim sup

"#0

����1"
Z "

0

E
�ff(X�;s

T )� f(XT )g � fD�(h�)� Irg
�
ds

����
� 2kfk1EjD�(h�)� E(D�(h�)jFr)j:

Letting r " T we derive (4.35), and hence prove (2.16) as explained above.
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