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Abstract
In this paper, we prove multilevel concentration inequalities for bounded functionals
f = f (X1, . . . , Xn) of random variables X1, . . . , Xn that are either independent
or satisfy certain logarithmic Sobolev inequalities. The constants in the tail esti-
mates depend on the operator norms of k-tensors of higher order differences of f .
We provide applications for both dependent and independent random variables. This
includes deviation inequalities for empirical processes f (X) = supg∈F |g(X)| and
suprema of homogeneous chaos in bounded randomvariables in the Banach space case
f (X) = supt ‖

∑
i1 �=... �=id ti1...id Xi1 · · · Xid‖B. The latter application is comparable to

earlier results of Boucheron, Bousquet, Lugosi, and Massart and provides the upper
tail bounds of Talagrand. In the case of Rademacher random variables, we give an
interpretation of the results in terms of quantities familiar in Boolean analysis. Further
applications are concentration inequalities forU -statistics with bounded kernels h and
for the number of triangles in an exponential random graph model.
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1 Introduction

During the last forty years, the concentration of measure phenomenon has become
an established part of probability theory with applications in numerous fields, as is
witnessed by the monographs [18,38,42,45,54]. One way to prove concentration of
measure is by using functional inequalities, more specifically the entropy method.
It has emerged as a way to prove several groundbreaking concentration inequalities
in product spaces by Talagrand [51,52], mainly in the works [11,37], and further
developed in [41].

To convey the idea, let us recall that the logarithmic Sobolev inequality for the
standard Gaussian measure ν in R

n (see [29]) states that for any f ∈ C∞
c (Rn) we

have

Entν
(
f 2
) ≤ 2

∫

|∇ f |2dν, (1)

where Entν( f 2) = ∫
f 2 log f 2dν − ∫ f 2dν log

∫
f 2dν is the entropy functional.

Informally, it bounds the disorder of a function f (under ν) by its average local
fluctuations, measured in terms of the length of the gradient. It is by now standard
that (1) implies subgaussian tail decay for Lipschitz functions (e. g. by means of the
Herbst argument). In particular, if f : Rn → R is a C1 function such that |∇ f | ≤ L
a.s., we have ν(| f − ∫ f dν| ≥ t) ≤ 2 exp(−t2/(2L2)) for any t ≥ 0.

Ifμ is a probability measure on a discrete setX (or a more abstract set not allowing
for an immediate replacement for |∇ f |), then there are several ways to reformu-
late Eq. (1), see e. g. [12,26]. We continue these ideas by working in the framework
of difference operators. Given a probability space (Y,A, μ), we call any operator
� : L∞(μ) → L∞(μ) satisfying |�(a f + b)| = a |� f | for all a > 0, b ∈ R a dif-
ference operator. Accordingly, we say that μ satisfies a �-LSI(σ 2), if for all bounded
measurable functions f we have

Entμ
(
f 2
) ≤ 2σ 2

∫

�( f )2dμ. (2)

Apart from the domain of �, it is clear that (2) can be seen as generalization of (1) by
defining �( f ) = |∇ f | on Rn .

Another route to obtain concentration inequalities is to modify the entropy method,
which was done in the framework of so-called ϕ-entropies. The idea is to replace the
function ϕ0(x) := x log x in the definition of the entropy Entϕ0μ ( f ) = Eμ ϕ0( f ) −
ϕ0(Eμ f ) by other functions ϕ. This has been studied in [17,22,36]. In the seminal
work [16] the authors proved inequalities for ϕ-entropies for power functions ϕ(x) =
|x |α, α ∈ (1, 2], leading to moment inequalities for independent random variables.

Originally, the entropy method was primarily used to prove sub-Gaussian concen-
tration inequalities for Lipschitz-type functions. However, there are many situations of
interest in which the functions under consideration are not Lipschitz or have Lipschitz
constants which grow as the dimension increases even after a renormalization which
asymptotically stabilizes the variance. Among the simplest examples are polynomial-
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type functions. Here, the boundedness of the gradient typically has to be replaced by
more elaborate conditions on higher order derivatives (up to some order d). Moreover,
we cannot have subgaussian tail decay anymore. This is already obvious if we con-
sider the product of two independent standard normal random variables, which leads
to subexponential tails. We refer to this topic as higher order concentration.

The earliest higher order concentration results date back to the late 1960s. Already
in [13,14,43], the growth of L p norms and hypercontractive estimates of polynomial-
type functions in Rademacher or Gaussian random variables, respectively, have been
studied. The question of estimating the growth of L p norms ofmultilinear polynomials
in Gaussian random variables was considered in [8,15,35]. In the context of Erdös–
Rényi graphs and the triangle problem, concentration inequalities for polynomials
functions gained considerable attention, in papers such as [33].

More recently, multilevel concentration inequalities have been proven in [1,5,56]
for many classes of functions. These included U -statistics in independent random
variables, functions of random vectors satisfying Sobolev-type inequalities and poly-
nomials in sub-Gaussian random variables, respectively. We refer to inequalities of
the type

P

(
| f (X) − E f (X)| ≥ t

)
≤ 2 exp

(
− 1

C
min

k=1,...,d
fk(t)

)
(3)

as multilevel or higher order (d-th order) concentration inequalities. This means that
the tails might have different decay properties in some regimes of [0,∞). Usually,
we have fk(t) = (t/Ck)

2/k for some constant Ck which typically depends on the k-th
order derivatives.

To convey the basic idea of multilevel concentration inequalities, let us once again
consider the case d = 2, e. g. a quadratic form of independent, say, Gaussian random
variables. As sketched above, in this case the tails decay subexponentially in gen-
eral. By means of a multilevel concentration inequality (the so-called Hanson–Wright
inequality, which we address in more detail at a later point), we can show that while for
t large, subexponential tail decay holds, for small t we even get subgaussian decay. In
this sense, multilevel concentration inequalities provide refined tail estimates which
do not only cover the behavior for large t .

Our own work started with a second-order concentration inequality on the sphere
in [9] and was continued in [10] for bounded functionals of various classes of random
variables (e. g. independent random variables or in presence of a logarithmic Sobolev
inequality (1)), and in [28] for weakly dependent random variables (e. g. the Ising
model). In these papers, we studied higher order concentration, arriving at multi-level
tail inequalities of type (3). If the underlyingmeasureμ satisfies a logarithmic Sobolev
inequality, [10, Corollary 1.11] yields fk(t) = (t/Ck)

2/k withCk = (
∫ | f (k)|2opdμ)1/2

for k = 1, . . . , d − 1 and Cd = sup | f (d)|op, where | f (k)|op denotes the operator
norm of the respective tensors of k-th order partial derivatives. A downside in both
[10,28] is that for functions of independent or weakly dependent random variables,
comparable estimates involve Hilbert–Schmidt instead of operator norms, leading to
weaker estimates in general.
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A central aspect of the present article is to fix this drawback by a slightly more
elaborate approach. Here, we consider both independent and dependent random vari-
ables. In either case, we prove multilevel concentration inequalities of the same type,
and apply them to different forms of functionals. We provide improvements of ear-
lier higher order concentration results like [10, Theorem 1.1] or [28, Theorem 1.5],
replacing the Hilbert–Schmidt norms appearing therein by operator norms. This leads
to sharper bounds and a wider range of applicability.

A special emphasis is placed on providing uniform versions of the higher order
concentration inequalities. By this, wemean that we consider functionals of supremum
type f (X) = sup f ∈F | f (X)|, which includes suprema of polynomial chaoses, or
empirical processes. Two more applications are given by U -statistics in independent
and weakly dependent random variables as well as a triangle counting statistic in some
models of random graphs, for which we prove concentration inequalities.

Notations Throughout this note, X = (X1, . . . , Xn) is a random vector taking
values in some product space Y = ⊗n

i=1Xi (equipped with the product σ -algebra)
with law μ, defined on a probability space (�,A,P). By abuse of language, we say
that X satisfies a �-LSI(σ 2), if its distribution does. In any finite-dimensional vector
space, we let |·| be the Euclidean norm, and for brevity, we write [q] := {1, . . . , q} for
any q ∈ N. Given a vector x = (x j ) j=1,...,n wewrite xic = (x j ) j �=i . To any d-tensor A
we define the Hilbert–Schmidt norm |A|HS := (

∑
i1,...,id A2

i1...id
)1/2 and the operator

norm

|A|op := sup
v1,...,vd∈Rn

|v j |≤1

〈v1 · · · vd , A〉 = sup
v1,...,vd

|v j |≤1

∑

i1,...,id

v1i1 · · · vdid Ai1...id ,

using the outer product (v1 · · · vd)i1...id = ∏d
j=1 v

j
i j
. For brevity, for any random k-

tensor A and any p ∈ (0,∞] we abbreviate ‖A‖HS,p = (E |A|pHS)1/p as well as
‖A‖op,p = (E |A|pop)1/p. Lastly, we ignore any measurability issues that may arise.
Thus, we assume that all the suprema used in this work are either countable or defined
as supt∈T = supF⊂T :F finite supt∈F .

1.1 Main Results

To formulate our main results, we introduce a difference operator labeled |h f | which
is frequently used in the method of bounded differences. Let X ′ = (X ′

1, . . . , X
′
n) be an

independent copy of X , defined on the same probability space. Given f (X) ∈ L∞(P),
define for each i ∈ [n]

Ti f := Ti f (X) := f (Xic , X
′
i ) = f (X1, . . . , Xi−1, X

′
i , [2]Xi+1, . . . , Xn)

and

hi f (X) = ‖ f (X) − Ti f (X)‖i,∞, h f (X) = (h1 f (X), . . . , hn f (X)),
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where ‖·‖i,∞ denotes the L∞-norm with respect to (Xi , X ′
i ). The difference operator|h f | is given as the Euclidean norm of the vector h f .

We shall also need higher order versions of h, denoted by h(d) f . They can be
thought of as analogues of the d-tensors of all partial derivatives of order d in an
abstract setting. To define the d-tensor h(d) f , we specify it on its “coordinates”. That
is, given distinct indices i1, . . . , id , we set

hi1...id f (X) =
∥
∥
∥

d∏

s=1

(Id − Tis ) f (X)

∥
∥
∥
i1,...,id ,∞

=
∥
∥
∥ f (X) +

d∑

k=1

(−1)k
∑

1≤s1<...<sk≤d

Tis1 ...isk
f (X)

∥
∥
∥
i1,...,id ,∞

(4)

where Ti1...id = Ti1 ◦ . . . ◦ Tid exchanges the random variables Xi1 , . . . , Xid by
X ′
i1
, . . . , X ′

id
, and ‖·‖i1,...,id ,∞ denotes the L∞-norm with respect to the random vari-

ables Xi1 , . . . , Xid and X ′
i1
, . . . , X ′

id
. For instance, for i �= j ,

hi j f (X) = ‖ f (X) − Ti f (X) − Tj f (X) + Ti j f (X)‖i, j,∞.

Using the definition (4), we define tensors of d-th order differences as follows:

(
h(d) f (X)

)
i1...id

=
{
hi1...id f (X), if i1, . . . , id are distinct,

0, else.

Whenever no confusion is possible, we omit writing the random vector X , i. e. we
freely write f instead of f (X) and h(d) f instead of h(d) f (X).

Our first main theorem is a concentration inequality for general, bounded function-
als of independent random variables X1, . . . , Xn .

Theorem 1 Let X be a random vector with independent components, f : Y → R a
measurable function satisfying f = f (X) ∈ L∞(P), d ∈ N and define C := 217d2.
We have for any t ≥ 0

P (| f − E f | ≥ t) ≤ 2 exp

⎛

⎝− 1

C
min

k=1,...,d−1

(
t

‖h(k) f ‖op,1

)2/k

∧
(

t

‖h(d) f ‖op,∞

)2/d
⎞

⎠ . (5)

For the sake of illustration, let us consider the case of d = 2. Assuming that
X1, . . . , Xn satisfy EXi = 0, EX2

i = 1 and |Xi | ≤ M a.s., let f (X) be the quadratic
form f (X) = ∑

i< j ai j Xi X j = XT AX . Here, ai j ∈ R for all i < j , and A is the
symmetric matrix with zero diagonal and entries Ai j = ai j/2 if i < j . In this case, it is
easy to see that ‖h f ‖op,1 ≤ ‖h f ‖op,2 ≤ 4M |A|HS and ‖h(2) f ‖op,∞ ≤ 8M2|Aabs|op,
where Aabs is the matrix given by (Aabs)i j = |ai j |. As a result,

P (| f − E f | ≥ t) ≤ 2 exp

(

− 1

CM2 min

(
t2

|A|2HS
,

t

|Aabs|op

))

.
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This is a version of the famous Hanson–Wright inequality. For the various forms of
the Hanson–Wright inequality we refer to [2,4,30,32,47,55,57].

Note that by a modification of our proofs (using arguments especially adapted to
polynomials), it is possible to replace |Aabs|op by |A|op, thus avoiding the drawback
of switching to a matrix with a possibly larger operator norm. See Sects. 2.1 and 2.4
for details. On the other hand, Theorem 1 allows for any function f , not just quadratic
forms, and the case of d = 2 can in this sense be considered as generalization of the
Hanson–Wright inequality.

For a certain class of weakly dependent random variables X1, . . . , Xn , we can
prove similar estimates as in Theorem 1. To this end, we introduce another difference
operator, which is more familiar in the context of logarithmic Sobolev inequalities
for Markov chains as developed in [26]. Assume that Y = ⊗n

i=1Xi for some finite
sets X1, . . . ,Xn , equipped with a probability measure μ and let μ(· | xic ) denote the
conditional measure (interpreted as ameasure onXi ) andμi c themarginal on⊗ j �=iX j .
Finally, set

|d f |2(x) :=
n∑

i=1

(
di f (x)

)2 :=
n∑

i=1

Var
μ
(
·|xic
)( f
(
xic , ·

))

=
n∑

i=1

1

2

∫∫
(
f
(
xic , y

)− f
(
xic , y

′))2dμ
(
y | xic

)
dμ
(
y′ | xic

)
.

This difference operator appears naturally in the Dirichlet form associated to the
Glauber dynamic of μ, given by

E( f , f ) :=
n∑

i=1

∫

Varμ(·|xic )( f (xic , ·))dμi c (xic ) =
∫

|d f |2dμ.

In the next theorem, we require a d–LSI for the underlying random variables
X1, . . . , Xn . A number of models which satisfy this assumption will be discussed
below.

Theorem 2 Let X = (X1, . . . , Xn) be a random vector satisfying a d-LSI(σ 2) and
f : Y → R a measurable function with f = f (X) ∈ L∞(P). With the constant
C = 15σ 2d2 > 0 we have for any t ≥ 0

P (| f − E f | ≥ t) ≤ 2 exp

⎛

⎝− 1

C
min

k=1,...,d−1

(
t

‖h(k) f ‖op,1

)2/k

∧
(

t

‖h(d) f ‖op,∞

)2/d
⎞

⎠ . (6)

Again, if d = 2, assuming that EXi = 0, EX2
i = 1, |Xi | ≤ M a.s. and EXi X j = 0

if i �= j , we arrive at a Hanson–Wright type inequality, this time including dependent
situations. Similar results still hold if we remove the uncorrelatedness condition.

Let us discuss the d–LSI condition in more detail. First, any collection of random
independent variables X1, . . . , Xn with finitelymany values satisfies a d-LSI(σ 2)with
σ 2 depending on the minimal nonzero probability of the Xi (cf. Proposition 6). In this
situation, Theorems 1 and 2 only differ by constants.
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However, the d–LSI conditions also gives rise to numerous models of dependent
random variables as in [28, Proposition 1.1] (the Ising model) or [48, Theorem 3.1]
(various different models). Let us recall some of them. The Ising model is the prob-
ability measure on {±1}n defined by normalizing π(σ) = exp( 12

∑
i, j Ji jσiσ j +

∑n
i=1 hiσi ) for a symmetric matrix J = (Ji j ) with zero diagonal and some h ∈ R

n .
In [28, Proposition 1.1], we have shown that if maxi=1,...,n

∑n
j=1 |Ji j | ≤ 1 − α and

maxi∈[n] |hi | ≤ α̃, the Ising model satisfies a d-LSI(σ 2) with σ 2 depending on α

and α̃ only. For the special case of h = 0 and Ji j = β for all i �= j , we obtain the
Curie–Weiss model. Here, the two conditions required above reduce to β < 1.

Another simple model in which a d–LSI holds is the random coloring model. If
G = (V , E) is a finite graph and C = {1, . . . , k} is a set of colors, we denote
by �0 ⊂ CV the set of all proper coloring, i. e. the set of all ω ∈ CV such that
{v,w} ∈ E ⇒ ωv �= ωw. In [48, Theorem 3.1], we have shown that the uniform
distribution on�0 satisfies ad–LSI if themaximumdegree� is uniformly bounded and
k ≥ 2�+1 (strictly speaking, we consider sequences of graphs here). In [48, Theorem
3.1], we moreover prove d–LSIs for the (vertex-weighted) exponential random graph
model and the hard-core model. We will further discuss the exponential random graph
model in Sect. 2.4.

The common feature in all these models is that the dependencies which appear can
be controlled (e. g. by means of a coupling matrix which measures the interactions
between the particles of the system under consideration, cf. [28, Theorem 4.2]) in
such a way that the model is not “too far” from a product measure. For instance, in
the Curie–Weiss model, this just translates to β < 1.

As a final remark, we discuss the LSI property with respect to various difference
operators in Sect. 5. In particular, we show that the restriction to finite spaces which
is implicit in Theorem 2 is natural since the d-LSI property requires the underlying
space to be finite. By contrast, we prove that any set of independent random variables
X1, . . . , Xn satisfies an h–LSI(1). However, it seems that it is not possible to use the
entropy method based on h–LSIs.

The upper bound in Theorem 2 admits a “uniform version”, i. e. we can prove
deviation inequalities for suprema of functions, in the following sense. Let F be a
family of uniformly bounded, real-valued, measurable functions and set

g(X) := gF (X) := sup
f ∈F

| f (X)|. (7)

For any d ∈ N and j = 1, . . . , d let Wj = Wj (X) := sup f ∈F |h( j) f (X)|op.

Theorem 3 Assume that either X1, . . . , Xn are independent or X satisfies a d-LSI(σ 2)

and let g = g(X) be as in (7). With the same constant C as in Theorems 1 or 2,
respectively, we have for any t ≥ 0 the deviation inequality

P(g − E g ≥ t) ≤ 2 exp

(

− 1

C
min

(

min
j=1,...,d−1

(
t

EWj

)2/k
,

t2/d

‖Wd‖∞

))
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As mentioned before, Theorem 3 yields bounds for the upper tail only. The back-
ground is that the entropy method has certain limitations when it is applied to suprema
of functions, cf. also Proposition 1 or Theorem 4 below. Roughly sketched, the reason
is that when evaluating difference operators of suprema, if a positive part is involved
we may typically choose a coordinate-independent maximizer of the terms involved.
Without a positive part, this is no longer possible. See in particular the proof of The-
orem 4, where we provide some further details.

Functionals of the form (7) have been considered in various works, starting from
the first results in [52, Theorem 1.4], and continued in [41, Theorem 3], [46, Théorème
1.1] and [19, Theorem 2.3] in the special case of

g(X) := sup
f ∈F

∣
∣
∣

n∑

j=1

f (X j )

∣
∣
∣. (8)

Further research has been done in [34], [49, Sect. 3] and more recently [39, Propo-
sition 5.4]. In these works, Bennett-type inequalities have been proven for general
independent random variables. Furthermore, [16, Theorem 10] treats the case g(X) =
supt∈T

∑n
i=1 ti Xi for Rademacher random variables Xi and a compact set of vectors

T ⊂ R
n . As a byproduct of our method, we prove a deviation inequality for g which

can be regarded as a uniform bounded differences inequality.

Proposition 1 Assume that X = (X1, . . . , Xn) satisfies a d-LSI(σ 2), let g = g(X) be
as in (8), and let c( f ) be such that | f (x) − f (y)| ≤ c( f ). For any t ≥ 0 we have

P

(
g ≥ E g + t

)
≤ 2 exp

(

− t2

15σ 2n sup f ∈F c( f )2

)

.

Let us put Proposition 1 into context. In the above-mentioned works, the authors
derive Bennett-type inequalities for independent random variables X1, . . . , Xn ,
whereas in our case the concentration inequalities have sub-Gaussian tails. It might
be compared to the sub-Gaussian tail estimates for Bernoulli processes, see e. g. [53,
Theorem 5.3.2]. However, the d-LSI(σ 2) property is both more and less general. On
the one hand, it is possible to include possibly dependent random vectors, but on the
other hand for independent random variables it is only applicable if the Xi take finitely
many values.

1.2 Outline

In Sect. 2, we present a number of applications and refinements of our main results.
Section 3 contains the proofs of our main theorems. The proofs of the results from
Sect. 2 is deferred to Sect. 4. We close out the paper by discussing different forms
of logarithmic Sobolev inequalities with respect to various difference operators in the
last Sect. 5.
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2 Applications

In the sequel, we consider various situations in which our results can be applied. Some
of them can be regarded as sharpenings of our main theorems for functions which have
a special structure.

2.1 Uniform Bounds

If the functions under consideration are of polynomial type, we may somewhat refine
the results from the previous section. Here, we focus on uniform bounds as discussed
in Theorem 3.

Let In,d denote the family of subsets of [n] with d elements, fix a Banach space
(B, ‖·‖) with its dual space (B∗, ‖·‖∗), a compact subset T ⊂ BIn,d and let B∗

1 be
the 1-ball in B∗ with respect to ‖·‖∗. Let X = (X1, . . . , Xn) be a random vector with
support in [a, b]n for some real numbers a < b and define

f (X) := fT (X) := sup
t∈T

∥
∥
∥
∑

I∈In,d

X I tI
∥
∥
∥, (9)

where XI :=∏i∈I Xi . For any k ∈ [d] we let

Wk := sup
t∈T

sup
v∗∈B∗

1

sup
α1,...,αk∈Rn

|αi |≤1

v∗

⎛

⎜
⎜
⎝

∑

i1,...,ik
distinct

α1
i1 · · · αk

ik

∑

I∈In,d−k
i1,...,ik /∈I

X I tI∪{i1,...,ik }

⎞

⎟
⎟
⎠

= sup
t∈T

sup
α1,...,αk∈Rn

|αi |≤1

∥
∥
∥
∥
∥
∥
∥
∥

∑

i1,...,ik
distinct

α1
i1 · · · αk

ik

∑

I∈In,d−k
i1,...,ik /∈I

X I tI∪{i1,...,ik }

∥
∥
∥
∥
∥
∥
∥
∥

,

(10)

where for k = d we use the convention In,0 = {∅} and X∅ := 1.
One can interpret the quantities Wk as follows: If ft (x) = ∑

I∈In,d
xI tI is the

corresponding polynomial in n variables, and ∇(k) ft (x) is the k-tensor of all partial
derivatives of order k, then Wk = supt∈T |∇(k) ft (X)|op. In this sense, we are con-
sidering the same quantities as in Theorem 3 but replace the difference operator h by
formal derivatives of the polynomial under consideration.

Furthermore, the concentration inequalities are phrased with the help of the quan-
tities

W̃k := sup
α1,...,αk∈Rn

|αi |≤1

∑

i1,...,ik
distinct

α1
i1 · · ·αk

ik sup
t∈T

sup
v∗∈B∗

1

v∗

⎛

⎜
⎜
⎝

∑

I∈In,d−k
i1,...,ik /∈I

X I tI∪{i1,...,ik }

⎞

⎟
⎟
⎠
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= sup
α1,...,αk∈Rn

|αi |≤1

∑

i1,...,ik
distinct

α1
i1 · · · αk

ik sup
t∈T

∥
∥
∥
∥
∥
∥
∥
∥

∑

I∈In,d−k
i1,...,ik /∈I

X I tI∪{i1,...,ik }

∥
∥
∥
∥
∥
∥
∥
∥

.

Clearly W̃k ≥ Wk holds for all k ∈ [d].
Concentration properties for functionals as in (9) have been studied for independent

Rademacher variables X1, . . . , Xn (i. e. P(Xi = +1) = P(Xi = −1) = 1/2) and
B = R in [16, Theorem 14] for all d ≥ 2, and under certain technical assumptions in
[2]. We prove deviation inequalities in the weakly dependent setting, and afterwards
discuss how these compare to the particular result in [16]. It is easily possible to
derive a similar result for functions of independent random variables (in the spirit of
Theorem 1). As the corresponding proof is easily done by generalizing the proof of
[16, Theorem 14], we omit it.

Theorem 4 Let X = (X1, . . . , Xn) be a random vector in R
n with support in [a, b]n

satisfying a d-LSI(σ 2). For f = f (X) as in (9) and all p ≥ 2 we have

‖( f − E f )+‖p ≤
d∑

j=1

(
2σ 2(b − a)2(p − 3/2)

) j/2
EWj , (11)

‖ f − E f ‖p ≤
d∑

j=1

(
2(b − a)2 p

) j/2
E W̃ j . (12)

Consequently, for any t ≥ 0

P ( f − E f ≥ t) ≤ 2 exp

(

− 1

2σ 2(b − a)2
min

k=1,...,d

(
t

deEWk

)2/k
)

≤ 2 exp

(

− 1

2e2σ 2(b − a)2d2
min

k=1,...,d

(
t

EWk

)2/k
), (13)

and the same concentration inequalities hold with EWk replaced by E W̃k .

Note that independent Rademacher random variables satisfy a d-LSI(1) (see e. g.
[26, Example 3.1] or [29, Theorem 3]). Therefore, we get back [16, Theorem 14]
from Theorem 4 (with slightly different constants). However, Theorem 4 moreover
includes many models with dependencies like those discussed in the introduction.
Therefore, it may be considered as a extension of [16, Theorem 14] to dependent
situations and moreover to coefficients from any Banach space B. For instance, we
may consider an Ising chaos as a natural generalization of a Rademacher chaos to a
dependent situation. In this case, Theorem 4 yields that that we still obtain basically
the same concentration properties if the dependencies are sufficiently weak (which is
guaranteed by the conditions outlined in the introduction).
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To illustrate our results further, let us consider the case of d = 2 separately. Here
we write

T1 := EW1 = E sup
t∈T

sup
v∗∈B∗

1

⎛

⎜
⎝

n∑

i=1

⎛

⎝
n∑

j=1

X jv
∗(ti j )

⎞

⎠

2
⎞

⎟
⎠

1/2

T2 := EW2 = sup
t∈T

sup
v∗∈B∗

1

‖(v∗(ti j ))i, j‖op.

The following corollary follows directly from Theorem 4.

Corollary 1 Assume that X = (X1, . . . , Xn) satisfies a d-LSI(σ 2) and is supported in
[a, b]n and let fT = fT (X) be as in (9) with d = 2. We have for all t ≥ 0

P ( fT (X) − E fT (X) ≥ t) ≤ 2 exp

(

− 1

60(b − a)2σ 2 min

(
t2

T 2
1

,
t

T2

))

.

For the case of independent Rademacher variables, this recovers the upper tail in a
famous result by Talagrand [52, Theorem 1.2] on concentration properties of quadratic
forms in Banach spaces, which has also been done in [16]. Note that for B = R, we
have

T1 = E sup
t∈T

⎛

⎜
⎝

n∑

i=1

⎛

⎝
n∑

j=1

ti j X j

⎞

⎠

2
⎞

⎟
⎠

1/2

, T2 = sup
t∈T

|T |op,

where T is the symmetric matrix with zero diagonal and entries Ti j = ti j if i < j . If
T consists of a single element only, we have T1 ≤ |T |HS. Hence, Corollary 1 can be
regarded as a generalized Hanson–Wright inequality.

2.2 The Boolean Hypercube

The case of independent Rademacher random variables above can be interpreted in
terms of quantities from Boolean analysis. Recall that any function f : {−1,+1}n →
R can be decomposed using the orthonormal Fourier–Walsh basis given by (xS)S⊆[n]
for xS :=∏i∈S xi . More precisely, we have

f (x) =
∑

S⊂[n]
f̂S xS =

∑

j∈[n]

∑

S⊆[n]:|S|= j

f̂S xS,

where the ( f̂S)S⊂[n] are given by f̂ S = ∫
xS f dμ and are called the Fourier coeffi-

cients of f . For any j ∈ [n] we define the Fourier weight of order j as Wj ( f ) :=
∑

S⊆[n]:|S|= j f̂ 2S . It is clear that ‖ f ‖22 =∑n
j=0 Wj ( f ). The following multilevel con-

centration inequality can now be easily deduced.
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Proposition 2 Let X1, . . . , Xn be independent Rademacher random variables and
let f : {1,+1}n → R be a function given in the Fourier–Walsh basis as f (x) =∑d

j=0 f̂ S xS for some d ∈ N, d ≤ n. For any t > 0 we have

P(| f (X) − E f (X)| ≥ t) ≤ exp

(

1 − min
j=1,...,d

(
t

deW j ( f )1/2

)2/ j
)

.

In other words, the event | f (X) − E f (X)| ≤ demax j=1,...,d(Wj ( f )t j )1/2 holds with
probability at least 1 − exp(1 − t).

The literature on Boolean functions is vast, and a modern overview is given in [44].
Particularly for concentration results we may highlight [5, Theorem 1.4] (which in
particular holds for Boolean functions), which we discuss further and partially gen-
eralize to dependent models in Sect. 2.4. Proposition 2 may be of interest due to the
direct use of quantities from Fourier analysis. Finally, we should add that while many
concentration results for Boolean functions like [5, Theorem 1.4] or also Proposi-
tion 2 are valid for functions whose Fourier–Walsh decomposition stops at some order
d, Theorem 1 or Theorem 2 work for functions with Fourier–Walsh decomposition
possibly up to order n.

2.3 Concentration Properties of U-Statistics

Another application of Theorems 1 and 2 are concentration properties of so-called
U -statistics which frequently arise in statistical theory. We refer to [24] for an excel-
lent monograph. More recently, concentration inequalities for U -statistics have been
considered in [1], [5, Sect. 3.1.2] and [10, Corollary 1.3].

Let Y = X n and assume that X1, . . . , Xn are either independent random variables,
or the vector X = (X1, . . . , Xn) satisfies a d-LSI(σ 2). Let h : X d → R be a mea-
surable, symmetric function with h(Xi1 , . . . , Xid ) ∈ L∞(P) for any i1, . . . , id , and
define B := maxi1 �=... �=id ‖h(Xi1 , . . . , Xid )‖L∞(P). We are interested in the concentra-
tion properties of the U -statistic with kernel h, i. e. of

f (X) =
∑

i1 �=... �=id

h(Xi1 , . . . , Xid ). (14)

Proposition 3 Let X = (X1, . . . , Xn) be as above and f = f (X) be as in (14). There
exists a constant C > 0 (the same as in Theorems 1 and 2) such that for any t ≥ 0

P

(
| f − E f | ≥ Bt

)
≤ 2 exp

⎛

⎝− 1

C
min

k=1,...,d

(
t

(d
k

)
2knd−k/2

)2/k
⎞

⎠

and for some C = C(d)

P
(
n1/2−d | f − E f | ≥ Bt

) ≤ 2 exp

(

− 1

4C
min

(
t2, n1−1/d t2/d

))

. (15)
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The normalization n1/2−d in (15) is of the right order for U -statistics generated
by a non-degenerate kernel h, i. e. Var(EX1 h(X1, . . . , Xd)) > 0, see [24, Remarks
4.2.5]. In the case of i.i.d. random variables X1, . . . , Xn it states that

1

nd−1/2

∑

i1<...<id

h(Xi1 , . . . , Xid ) ⇒ N (0, d2 Var(EX1 h(X1, . . . , Xd)))

whenever E h(X1, . . . , Xd)
2 < ∞. Actually, (15) shows that for t ≤ n1/2 we have

sub-Gaussian tails for any finite n ∈ N for bounded kernels h.
Proposition 3 improves upon our old result [10, Corollary 1.3] by providing mul-

tilevel tail bounds, thus yielding much finer estimates than the exponential moment
bound given in the earlier paper. Moreover, it does not only address independent ran-
dom variables but also weakly dependent models. As compared to the results from
[1] and [5, Sect. 3.1.2], Proposition 3 covers different types of measures, since in [1]
independent random variables were considered, while in [5] a Sobolev-type inequality
was required, which does not include the various discrete models for which a d–LSI
holds.

2.4 Polynomials and Subgraph Counts in Exponential RandomGraphModels

Lastly, let us once again consider polynomial functions. The case of independent
random variables has been treated in [5, Theorem 1.4] under more general conditions,
so we omit it and concentrate on weakly dependent random variables.

Let fd : Rn → R be a multilinear (also called tetrahedral) polynomial of degree
d, i. e. of the form

fd(x) :=
d∑

k=1

∑

1≤i1 �=... �=ik≤n

aki1...ik xi1 · · · xik (16)

for symmetric k-tensors ak with vanishing diagonal. Here, a k-tensor ak is called
symmetric, if aki1...ik = akσ(i1)...σ (ik )

for any permutation σ ∈ Sk , and the (generalized)

diagonal is defined as �k := {(i1, . . . , ik) : |{i1, . . . , ik}| < k}. Denote by ∇(k) f the
k-tensor of all partial derivatives of order k of f .

For the next result, given some d ∈ N, we recall a family of norms ‖·‖I on the
space of d-tensors for each partition I = {I1, . . . , Ik} of {1, . . . , d}. The family ‖·‖I
has been first introduced in [35], where it was used to prove two-sided estimates for
L p norms of Gaussian chaos, and the definitions given below agree with the ones
from [35] as well as [3] and [5]. For brevity, write Pd for the set of all partitions of
{1, . . . , d}. For each l = 1, . . . , k we denote by x (l) a vector inRnIl , and for a d-tensor
A = (ai1,...,id ) set

‖A‖I := sup

⎧
⎨

⎩

∑

i1...id

ai1...id

k∏

l=1

x (l)
i Il

:
∑

i Il

(x (l)
i Il

)2 ≤ 1 for all l = 1, . . . , k

⎫
⎬

⎭
.
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We can regard the ‖A‖I as a family of operator-type norms. In particular, it is easy to
see that ‖A‖{1,...,d} = |A|HS and ‖A‖{{1},...,{d}} = |A|op.

The following result has been proven in the context of Ising models (in the
Dobrushin uniqueness regime) in [3], and can easily be extended to any vector X
satisfying a d-LSI(σ 2). By invoking the family of norms ‖·‖I , it provides a refine-
ment of our general result for the special case of multilinear polynomials.

Theorem 5 Let X be a random vector supported in [−1,+1]n and satisfying a
d-LSI(σ 2), and fd = fd(X) be as in (16). There exists a constant C > 0 depending
on d only such that for all t ≥ 0

P (|∗| fd − E fd ≥ t) ≤ 2 exp

(

− 1

C
min

k=1,...,d
min
I∈Pk

(
t

σ k‖E∇(k) fd‖I

)2/|I|)
. (17)

For illustration, let us once again consider the case of d = 2. In the notation of
(16), we take a1 = 0 and a2 = A, i. e. f2(x) = xT Ax for a symmetric matrix A with
vanishing diagonal. In this case, assuming the components of X to be centered (so the
k = 1 term vanishes), Theorem 5 reads

P (|∗| f2 − E f2 ≥ t) ≤ 2 exp

(

− 1

C
min

(
t2

σ 4|A|2HS
,

t

σ 2|A|op

))

,

i. e.we obtain aHanson–Wright inequality in this situation. For higher orders,we arrive
at similar bounds. Altogether, for the class of multilinear polynomials, Theorem 5
yields finer bounds than Theorem 2 (by virtue of the large class of norms involved),
though for d ≥ 3 explicit calculations of the norms involved can be difficult.

To point out one possible application, Theorem 5 can be used in the context of
the exponential random graph model (ERGM). Let us briefly recall the definitions.
Given s ∈ N real numbers β1, . . . , βs and simple graphsG1, . . . ,Gs (withG1 being a
single edge by convention), the ERGMwith parameter fi = (β1, . . . , βs,G1, . . . ,Gs)

is a probability measure on the space of all graphs on n ∈ N vertices given by the
weight function exp

(∑s
i=1 βi n−|Vi |+2NGi (x)

)
, where NGi (x) is the number of copies

of Gi in the graph x and |Vi | is the number of vertices of Gi = (Vi , Ei ). For details,
see [23,48]. One can think of the ERGM as an extension of the famous Erdös–Rényi
model (which corresponds to the choice s = 1) to account for dependencies between
the edges.

By way of example we show concentration properties of the number of tri-
angles T3(X) = ∑

{e, f ,g}∈T3 XeX f Xg (where T3 denotes the set of all three
edges forming a triangle). To formulate our results, we need to recall the function
�β(x) = ∑s

i=1 βi |Ei |x |Ei |−1 which frequently appears in the discussion of the
ERGM. Moreover, we set |β| := (|β1|, . . . , |βs |). In the following corollary, the
condition 1

2�
′
|β|(1) < 1 ensures weak dependence in the sense that a d–LSI holds. As

outlined above, in comparison to earlier results like [48, Theorem 3.2], using Theo-
rem 5 yields sharper tail estimates.
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Corollary 2 Let X be an exponential random graph model with parameter β =
(β1, . . . , βs,G1, . . . ,Gs) such that 1

2�
′
|β|(1) < 1. There is a constant C(β) such

that for all t ≥ 0

P (|T3 − E T3| ≥ t)

≤ 2 exp

(

− 1

C(β)
min

(
t2

max(CS2n
4,CEn3, n3)

,
t

max(
√
2n, 2CEn)

,
t2/3

2

))

.

3 Concentration Inequalities Under Logarithmic Sobolev Inequalities:
Proofs

In this section, we give the proofs of our main results. All of them work by first
establishing a growth rate on the L p norms of f −E f which will then be iterated. For
technical reasons, we need to introduce some auxiliary difference operators which are
closely related to h. For i ∈ [n] let

h+
i f (X) = ‖( f (X) − Ti f (X))+‖X ′

i ,∞, h+ f = (h+
1 f , . . . , h+

n f ),

h−
i f (X) = ‖( f (X) − Ti f (X))−‖X ′

i ,∞, h− f = (h−
1 f , . . . , h−

n f ),

where ‖ f ‖X ′
i ,∞ shall denote the L∞ norm with respect to X ′

i .
The L p norm inequalities which form the core of our proofs can be found in [10,

Theorem 2.3, Corollary 2.6] (building upon the earlier results in [16]). Note that as
compared to [10], a different choice of normalization for h± leads to slightly different
constants.

Theorem 6 If X1, . . . , Xn are independent random variables and f = f (X) ∈
L∞(P), with the constant κ =

√
e

2 (
√
e−1)

, we have for any p ≥ 2,

‖( f − E f )+‖p ≤ (2κ p)1/2 ‖h+ f ‖p and ‖( f − E f )−‖p ≤ (2κ p)1/2 ‖h− f ‖p.

Consequently, this leads to

‖ f − E f ‖p ≤ (8κ p)1/2‖h f ‖p.

Furthermore, we need an auxiliary statement relating differences of consecutive
order. In [10], we have proven that |h|h(d) f |HS| ≤ |h(d+1) f |HS. Moreover, we
explained that a similar estimate with the Hilbert–Schmidt replaced by operator norms
cannot be true. As we will see next, the key step in order to be able to invoke operator
norms nevertheless is to work with h+.

Here, we need the following simple but crucial observation: if A is a d-tensor, the
supremum in the definition of |A|op is attained, and if A is a non-negative tensor (i. e.
Ai1...id ≥ 0 for all i1, . . . , id ), the maximizing vectors ṽ1, . . . , ṽd can be chosen to
have all positive entries. Indeed, since ṽ1i1 · · · ṽdid ≤ |̃v1i1 · · · ṽdid |, we can define |̃v| j by
taking the absolute value element-wise.
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Lemma 1 For any d ≥ 2

|h+|h(d−1) f (X)|op| ≤ |h(d) f (X)|op.

Proof We have

|h+|h(d−1) f |op|2 =
n∑

i=1

∥
∥
∥
∥

(
|h(d−1) f |op − |h(d−1)Ti f |op

)

+

∥
∥
∥
∥

2

i,∞

=
n∑

i=1

∥
∥
∥
∥

(

sup
v j

〈v1 · · · vd−1, h(d−1) f 〉 − sup
v j

〈v1 · · · vd−1, h(d−1)Ti f 〉
)

+

∥
∥
∥
∥

2

i,∞

≤
n∑

i=1

∥
∥
∥
∥

(

〈̃v1 · · · ṽd−1, h(d−1) f − h(d−1)Ti f 〉
)

+

∥
∥
∥
∥

2

i,∞

≤
n∑

i=1

∥
∥
∥
∥

∑

i1,...,id−1

ṽ1i1 · · · ṽd−1
id−1

∥
∥
∥
∥(Id−Ti )

d−1∏

j=1

(Id−Tis ) f

∥
∥
∥
∥
i1···id−1,∞

∥
∥
∥
∥

2

i,∞

≤
n∑

i=1

( ∑

i1,...,id−1

ṽ1i1 · · · ṽd−1
i1

hi i1···id−1 f

)2

=
(

sup
vd :|vd |≤1

n∑

id=1

∑

i1,...,id−1

ṽ1i1 · · · ṽd−1
id−1

vdidhi1···id f
)2

≤
(

sup
v1,...,vd :|v j |≤1

∑

i1,...,id

v1i1 · · · vdidhi1···id f
)2

= |h(d) f |2op
Here, in the first inequality we insert the vectors ṽ1, . . . , ṽd−1 maximizing the supre-
mum and use the monotonicity of x �→ x+, and the second and third inequality follow
from the triangle inequality. Taking the square root yields the claim. ��

As a final step, we need to establish a connection between L p norm estimates
and multilevel concentration inequalities. This is given by the following proposition,
which was proven in [1, Theorem 7] and [5, Theorem 3.3]. We state it in the form
given in [48, Proof of Theorem 3.6] with slight modifications.

Proposition 4 Assume that a random variable f satisfies for any p ≥ 2 and some
constants C1, . . . ,Cd ≥ 0 ‖ f − E f ‖p ≤ ∑d

k=1 Ck(p − s)k/2 for some s ∈ [0, 2),
and let L := |{l : Cl > 0}|. For any t ≥ 0 we have

P(| f − E f | ≥ t) ≤ 2 exp
(

− min
( log(2)

2 − s
, 1
)

min
k=1,...,d

( t

LeCk

)2/k)
.

We will not give a proof of Proposition 4 and refer to the aforementioned works.
However, the proof is almost identical to the proof of Proposition 2. The two important
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cases will be s = 0 (for independent random variables) as well as s = 3/2 (in the
weakly dependent setting).

The proof of Theorem 1 is now easily completed.

Proof of Theorem 1 Since X1, . . . , Xn are independent, Theorem 6 yields

‖ f − E f ‖p ≤ (8κ p)1/2‖h f ‖p ≤ (8κ p)1/2‖h f ‖op,1 + (8κ p)1/2‖(|h f | − E |h f |)+‖p

where we have used that for any positive random variable W

‖W‖p ≤ EW + ‖(W − EW )+‖p. (18)

The second term on the right hand side can now be estimated using Theorem 6 again,
which in combination with Lemma 1 gives

‖(|h f | − E |h f |)+‖p ≤ √2κ p‖h+|h f |‖p ≤ √2κ p‖h(2) f ‖op,p.

This can be easily iterated to obtain for any d ∈ N

‖ f − E f ‖p ≤
d−1∑

j=1

(8κ p) j/2‖h( j) f ‖op,1 + (8κ p)d/2‖h(d) f ‖op,∞.

Now it remains to apply Proposition 4. ��

To prove Theorem 2, we shall require the following proposition, which is proven
in [28, Proposition 2.4], building upon arguments established in [6]. (Note that the
definition of h there differed by a factor of

√
2.) The estimate (20) does not appear

therein, but is an easy modification of the proof.

Proposition 5 Letμ be ameasure on a product of Polish spaces satisfying a d-LSI(σ 2).
Then, for any f ∈ L∞(μ) and any p ≥ 2 we have

‖ f − E f ‖p ≤ (2σ 2(p − 3/2))1/2‖d f ‖p ≤ (σ 2(p − 3/2)/2)1/2‖h f ‖p (19)

and

‖( f − E f )+‖p ≤ (2σ 2(p − 3/2))1/2‖h+ f ‖p. (20)

Proof of Theorem 2 The proof is very similar to the proof of Theorem 1. In the first
step, using (19) leads to

‖ f − E f ‖p ≤ (2σ 2(p − 3/2))1/2‖h f ‖op,1 + (2σ 2(p − 3/2))1/2‖(|h f | − E |h f |)+‖p.
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Equation (20) can be used to estimate the second term on the right-hand side. So, for
any d ∈ N we have by an iteration

‖ f − E f ‖p ≤
d−1∑

j=1

(2σ 2(p − 3/2)) j/2‖h( j) f ‖op,1 + (2σ 2(p − 3/2))d/2‖h(d) f ‖op,∞

Again we can apply Proposition 4 to obtain the concentration inequality. ��
To prove Theorem 3 we shall need the following lemma.

Lemma 2 Let (B, ‖·‖) be a Banach space andF a family of uniformly norm-bounded,
B-valued, measurable functions and set g(X) = sup f ∈F ‖ f (X)‖. We have

|h+g(X)| ≤ sup
f ∈F

|h+‖ f ‖(X)|.

Proof Fix an X ∈ Y and choose for any ε > 0 a function fε such that ‖ fε(X)‖ ≥
sup f ∈F ‖ f (X)‖ − ε. This yields

h+
i g(X) = sup

x ′
i

( sup
f ∈F

‖ f (X)‖ − sup
f ∈F

‖ f (Xic , x
′
i )‖)+ ≤ sup

x ′
i

(‖ fε(X)‖ + ε − ‖ fε(Xic , x
′
i )‖
)
+

≤ sup
x ′
i

(‖ fε(X)‖ − ‖ fε(Xic , x
′
i )‖
)
+ + ε = h+

i ‖ fε‖(X) + ε,

where the first inequality follows by monotonicity of x �→ x+ and the second one is
a consequence of (a + b − c)+ ≤ (a − c)+ + b for a, b, c ≥ 0. Thus, we have

|h+g(X)| =
⎛

⎝
n∑

i=1

h+
i g(X)2

⎞

⎠

1/2

≤
⎛

⎝
n∑

i=1

(h+
i ‖ fε‖(X) + ε)2

⎞

⎠

1/2

= |h+‖ fε‖(X) + ε(1, . . . , 1)|

≤ |h+‖ fε‖(X)| + √
nε ≤ sup

f ∈F
|h+‖ f ‖(X)| + √

nε.

Taking the limit ε → 0 yields the claim. ��
Proof of Theorem 3 Note that in the real-valued case, the estimate h+

i | f | ≤ hi f holds.
For brevity, let s = 3/2. Using this in combination with Proposition 5 and Lemma 2
yields

‖(g − E g)+‖p ≤ (2σ 2(p − s)
)1/2‖h+g‖p ≤ (2σ 2(p − s)

)1/2‖ sup
f ∈F

|h f |‖
p

≤ (2σ 2(p − s)
)1/2

EW1 + (2σ 2(p − s)
)1/2‖(W1 − EW1)+‖p.

We can apply Proposition 5 again on the right hand side, which gives

‖(g − E g)+‖p ≤ (2σ 2(p − s)
)1/2

EW1 + (2σ 2(p − s)
)‖h+W1‖p.
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A combination of Lemmas 1 and 2 shows that |h+Wj | ≤ Wj+1, and so by an iteration
we obtain

‖(g − E g)+‖p ≤
d−1∑

j=1

(
2σ 2(p − s)

) j/2
EWj + (2σ 2(p − s)

)d/2‖Wd‖∞.the

In the case of independent random variables, we replace the first step using Theorem 6.
Here, 2σ 2 = 2κ and s = 0. ��
Proof of Proposition 1 The proof shares some similarities with the proof of Lemma 2.
Since X satisfies a d-LSI(σ 2), we have for any p ≥ 2

‖(g − E g)+‖p ≤ (2σ 2(p − 3/2)
)1/2‖h+g‖p.

Moreover, for any i ∈ [n] and x ∈ Y , if a maximizer f̃ of sup f ∈F |∑n
j=1 f (x j )|

exists, we obtain

h+
i g(x)

2 = sup
x ′
i

(
sup
f ∈F

| f (X)| − sup
f ∈F

| f (Xic , x
′
i )|
)2

+

≤ sup
x ′
i

(
| f̃ (X)| − | f̃ (Xic , x

′
i )|
)2

+ ≤ c( f̃ )2 ≤ sup
f ∈F

c( f )2.

If a maximizer f̃ does not exist, these estimates remain valid by an approximation
argument as in the proof of Lemma 2. Consequently, we have ‖(g − E g)+‖p ≤
(2σ 2(p − 3/2)n sup f ∈F c( f )2)1/2. The claim now follows from Proposition 4. ��

4 Suprema of Chaos, U-statistics and Polynomials: Proofs

Proof of Theorem 4 Let us first consider the case that X satisfies a d-LSI(σ 2). Recall
that we have by (20)

‖( f − E f )+‖p ≤ (2σ 2(p − 3/2))1/2‖h+ f ‖p.

We shall make use of the pointwise inequality |h+ f | ≤ (b − a)W1. To see this, let
(̃t, ṽ∗)be the tuple satisfying supt∈T supv∗∈B∗

1
v∗(
∑

I∈In,d
X I tI ) = ṽ∗(

∑
I∈In,d

X I t̃I )
. We have

|h+ f (X)|2 =
n∑

i=1

sup
x ′
i

(
sup
t,v∗

v∗( ∑

I∈In,d

X I tI
)

− sup
t,v∗

v∗( ∑

I∈In,d

(Xic , x
′
i )I tI

))2

+

≤
n∑

i=1

sup
x ′
i

(
(Xi − x ′

i )
∑

I∈In,d−1
i /∈I

ṽ∗(XI t̃I∪{i})
)2
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≤ (b − a)2
n∑

i=1

(
ṽ∗( ∑

I∈In,d−1
i /∈I

X I t̃I∪{i}
))2

= (b − a)2 sup
α(1):‖α(1)‖≤1

(
ṽ∗(

n∑

i=1

α
(1)
i

∑

I∈In,d−1:i /∈I
X I t̃I∪{i}

))2

≤ (b − a)2
(
sup
t,v∗

sup
α(1):‖α(1)‖≤1

v∗(
n∑

i=1

α
(1)
i

∑

I∈In,d :i /∈I
X I tI∪{i}

))2

= (b − a)2W 2
1 ,

proving the first part. Consequently,

‖( f − E f )+‖p ≤ (2σ 2(b − a)2(p − 3/2))1/2
(
EW1 + ‖(W1 − EW1)+‖p

)
.

As in [16], this can now be iterated, i. e. we have for any k ∈ {1, . . . , d −1} |h+Wk | ≤
(b − a)Wk+1. Here, we may argue as above, where the only difference is to choose
(̃t, ṽ∗) and α̃(1), . . . , α̃(k) which maximize Wk . This finally leads to

‖ f − E f ‖p ≤
d∑

j=1

(
2σ 2(b − a)2(p − 3/2)

) j/2
EWj ,

using thatWd is constant. This proves (11). The same arguments are also valid without
a d-LSI(σ 2) property, if one considers ‖( f − E f )+‖p and applies Theorem 6 instead.

Lastly, to prove (12), let us first consider why we cannot argue as before. Note that
the argument heavily relies on the positive part of the difference operator h+, which
allows us to choose the maximizers t1, . . . , tn independent of i ∈ [n]. This is no longer
possible for the concentration inequality. Here, Theorem 6 yields

‖ f − E f ‖p ≤ (σ 2 p
)1/2‖h f ‖p

‖( f − E f )+‖p ≤ (σ 2 p
)1/2‖h+ f ‖p.

Thus, this argument fails if we try to use these inequalities. However, we can rewrite
hi f (x) = supx ′

i ,x
′′
i
( f (xic , x ′

i ) − f (xic , x ′′
i ))+ = supx ′

i
h+
i f (xic , x ′

i ), where the sup is

to be understood with respect to the support of X ′
i . As a consequence, we have for

each fixed i ∈ [n] (again choosing t̃ by maximizing the first summand in the brackets)

hi f (x)
2 = sup

x ′
i

sup
x ′′
i

(
sup
t∈T

∥
∥
∥
∥

∑

I∈In,d

(Xic , x
′
i )I tI

∥
∥
∥
∥− sup

t∈T

∥
∥
∥
∥

∑

I∈In,d

(Xic , x
′′
i )I tI

∥
∥
∥
∥

)2

+

≤ sup
x ′
i

sup
x ′′
i

∥
∥
∥
∥(x

′
i − x ′′

i )
∑

I∈In,d−1:i /∈I
X I t̃I∪{i}

∥
∥
∥
∥

2
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≤ sup
x ′
i ,x

′′
i

|x ′
i − x ′′

i |2 sup
t∈T

∥
∥
∥
∥

∑

I∈In,d−1:i /∈I
X I tI∪{i}

∥
∥
∥
∥

2

≤ (b − a)2 sup
t∈T

∥
∥
∥
∥

∑

I∈In,d−1:i /∈I
X I tI∪{i}

∥
∥
∥
∥

2

.

This implies

|h f |2(x) ≤ (b − a)2 sup
α1∈Rn

|α1|≤1

n∑

i=1

α1
i sup
t∈T

∥
∥
∥
∥

∑

I∈In,d−1
i /∈I

X I tI∪{i}
∥
∥
∥
∥ = (b − a)2W̃ 2

1 .

The proof is now completed as using the same arguments as in the first part, with Wk

replaced by W̃k . The same argument is valid for X satisfying a d-LSI(σ 2). ��
Proof of Proposition 2 The proposition can be proven using a similar technique as
before, since the Hilbert–Schmidt norms of higher order difference act as Fourier
projections.We choose to take an alternate route as follows. The proof of [44, Theorem
9.21] shows that for any f with degree at most d and any p ≥ 2

‖ f (X) − E f (X)‖p ≤
d∑

j=1

(p − 1) j/2Wj ( f )
1/2. (21)

First off, by Chebyshev’s inequality we have for any p ≥ 1

P(| f (X) − E f (X)| ≥ e‖ f (X) − E f (X)‖p) ≤ exp(−p).

We want to apply this to a t-dependent parameter p given by the function

η f (t) := 1 + min
j=1,...,d

( t

deW j ( f )1/2

)2/ j
.

If η f (t) ≥ 2, (21) yields e‖ f (X) − E f (X)‖η f (t) ≤ t , which combined with the
trivial estimate P(·) ≤ 1 gives

P(| f (X) − E f (X)| ≥ t) ≤ e2 exp(−η f (t)) = exp
(
1 − min

j=1,...,d

( t

deW j ( f )1/2

)2/ j)

as claimed. ��
Proof of Proposition 3 We apply Theorems 1 and 2 in the respective cases. To this end,
we make use of the general bound ‖h(k) f ‖op,1 ≤ ‖h(k) f ‖HS,∞ for k ∈ [d]. For any
distinct j1, . . . , jk write ‖·‖ = ‖·‖ j1,..., jk ,∞, so that

h j1..., jk f =
∥
∥
∥ f +

k∑

l=1

(−1)l
∑

1≤s1<...<sl≤k

Tjs1 ... jsl
f
∥
∥
∥
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=
∥
∥
∥
∑

i1 �=... �=id

(
h(Xi1 , . . . , Xid ) +

k∑

l=1

(−1)l
∑

s1<...<sl

Tjs1 ... jsl
h(Xi1 , . . . , Xid )

)∥∥
∥

=:
∥
∥
∥
∑

i1 �=... �=id

Si1,...,id (h, X)

∥
∥
∥.

Now it is easy to see that Si1,...,id (h, X) = 0 unless { j1, . . . , jk} ⊂ {i1, . . . , id} (for
example, this follows if one writes the sum inside the norm as

∏k
i=1(Id− Tji ) f ), and

in these cases one can upper bound the supremum by 2k B, from which we infer

h j1..., jk f ≤
(
d

k

)

2k B(n − k) · · · (n − d + 1) ≤
(
d

k

)

2k Bnd−k .

Consequently, this leads to

‖h(k) f ‖HS,∞ ≤
(
d

k

)

2k Bnd−knk/2 =
(
d

k

)

2k Bnd−k/2.

Thus, an application of Theorems 1 or 2, respectively, yields for any t ≥ 0 and for
C as given therein

P

(
| f − E f | ≥ t

)
≤ 2 exp

(
− 1

C
min

k=1,...,d

( t

B
(d
k

)
2knd−k/2

)2/k)
.

For the second part, choose t = Bnd−1/2̃t for t̃ > 0 to obtain

P

(
n1/2−d B−1| f (X) − E f (X)| ≥ t

)
≤ 2 exp

(
− 1

4Cd
min

k=1,...,d
n

k−1
k t2/k

)
.

A short calculation shows that the minimum is attained for k = 1 in the range t ≤ n1/2

and for k = d otherwise, i. e.

P
(
n1/2−d B−1| f (X) − E f (X)| ≥ t

) ≤ 2 exp

(

− 1

4Cd
min

(
t2, n1−1/d t2/d

)
)

.

(22)

��
Proof of Theorem 5 Wegive a sketch of the proof only and refer to [3, Proof of Theorem
2.2] for details. Recall that by (19) we have the inequality

‖ fd(X) − E fd(X)‖p ≤ (4σ 2 p
)1/2‖∇ fd(X)‖p.

Using the arguments and notations from [3, Proof of Theorem 2.2] leads to

‖ fd(X) − E fd(X)‖p ≤
d∑

k=1

(
4σ 2M2)k/2‖〈EX ∇(k) fd(X),G1 ⊗ . . . ⊗ Gk〉‖p,
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whereM is an absolute constant andGi is a sequence of independent standardGaussian
random variables, independent of X . Furthermore, a result by Latała [35] yields

‖ fd(X) − E fd(X)‖p ≤
d∑

k=1

∑

I∈Pk

(
4σ 2M2 p

)k/2‖E∇(k) f (X)‖I

≤
d∑

k=1

∑

I∈Pk

(
Cσ 2 p

)k/2‖E∇(k) f (X)‖I .

The rest now follows as in the previous proofs. ��
Proof of Corollary 2 In [48] the authors have proven that 1

2�
′
|β|(1) < 1 implies a

d-LSI(σ 2) forμβ with a constant depending on the parameter β only. Thus, it remains
to bound the norms in (17). Note that due to the structure of the exponential random
graph model, the expectations of E XG and E XH are equal whenever G and H are
isomorphic. Thus, we define CS2 := E XS2 (where S2 is a 2-star) and CE = E Xe.

The Euclidean norms can be easily bounded:

|E∇ f (X)| =
⎛

⎝
∑

e∈In
((n − 2)CS2)

2

⎞

⎠

1/2

≤ CS2n
2

|E∇(2) f (X)| =
⎛

⎝
∑

e, f :e∩ f �=∅
(CE )2

⎞

⎠

1/2

≤ CEn
3/2

|E∇(3) f (X)| =
⎛

⎝
∑

{e, f ,g}∈T3
1

⎞

⎠

1/2

= n3/2,

and it remains to estimate the three remaining norms. However, in [5, Sect. 5.1], the
authors given estimates for such norms in the Erdös–Rényi case, and it is easy to adapt
these to any model with the property that E XG depends only on the isomorphism
class of G (in the complete graph). Particularly, due to the structure of the exponential
random graph models, this is true in this setting as well. This gives

|E∇(3) f (X)|op ≤ 23/2, |E∇(3) f (X)|{1,2}{3} ≤ √
2n, |E∇(2) f (X)|op ≤ 2CEn.

Inserting these estimates into (17) finishes the proof. ��

5 Logarithmic Sobolev Inequalities and Difference Operators

To conclude this paper, we discuss the LSI property (2) for different choices of differ-
enceoperators�.Here,we always assume that the probabilitymeasureμ is definedon a
product of Polish spacesY = ⊗n

i=1Xi with product Borel σ -algebraA = B(⊗n
i=1Xi ).
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In this situation, we can make use of the disintegration theorem on Polish spaces
(see [7, Theorem 5.3.1] and [25, Chapter III]): If μ is a measure on Y , then for
each i ∈ {1, . . . , n} we can decompose μ using the marginal measure μi c (as a
measure on ⊗ j �=iXi ) and a conditional measure onXi , which we denote by μ(· | xic ).
More precisely, for any A ∈ A we have μ(A) = ∫

⊗ j �=iXi

∫
Xi

1A(xic , xi )dμ(xi |
xic )dμi c (xic ).

For finite spaces, μ(· | xic ) is just the ordinary conditional measure as used in the
definition of the difference operator d. Note that the definition of d can in principle be
rewritten for products of arbitrary Polish spaces. However, our first result shows that
the d-LSI property in fact requires the underlying space to be finite. More precisely,
we say thatμ has finite support if there is no sequence of sets An ∈ Awithμ(An) > 0
for any n and μ(An) → 0.

Proposition 6 Let Y = ⊗n
i=1Xi be a product of Polish spaces, and let μ be a proba-

bility measure on Y . If μ satisfies a d-LSI, then μ has finite support. Moreover, if μ is
a product probability measure, then μ satisfies a d-LSI iff μ has finite support.

Proof First assume μ does not have finite support, i. e. there is a sequence An ∈ A
with μ(An) → 0. Choosing fn := 1An ∈ L∞(μ) and assuming a d-LSI(σ 2) holds,
we obtain

μ(An) log(1/μ(An)) = Entμ( f 2n ) ≤ 2σ 2
∫

(d fn)
2dμ = 2σ 2μ(An)(1 − μ(An)). (23)

This easily leads to a contradiction.
On the other hand, let μ be a product probability measure with finite support. By

tensorization, it suffices to consider n = 1, and we may moreover assume Y to have
finitely many elements only. Then, by [12, Remark 6.6], μ satisfies a d-LSI(σ 2) with
σ 2 ≤ C log(1/miny:μ(y)>0 μ(y)), which finishes the proof. ��

In fact, Proposition 6 can be adapted to the difference operator h+ as well. To see
this, note that that (23) can easily be rewritten for the difference operator h+ (with
only minor changes) and

∫ |d f |2dμ ≤ ∫ |h+ f |2dμ. In particular, the d- and h+-LSI
properties are not essentially different.

The situation drastically changes if we consider h-LSIs instead. Here, a sufficient
condition for the h-LSI property to hold is that the measure μ satisfies an approxi-
mate tensorization (AT) property. As a consequence, for product probability measures,
satisfying an h-LSI is in fact a universal property.

Theorem 7 Let Y = ⊗n
i=1Xi be a product of Polish spaces, and let μ be a probability

measure on Y . If μ satisfies an approximate tensorization property

Entμ( f 2) ≤ C
n∑

i=1

∫

Entμ(·|xic )( f
2(xic , ·))dμi c (xic ), (24)

then μ also satisfies an h-LSI(C). In particular, any product probability measure
satisfies an h-LSI(1).

123



Journal of Theoretical Probability

To the best of our knowledge, Theorem 7 is new. For product measures, it might
be compared to the Efron–Stein inequality (see e. g. [27,50]) which establishes the
tensorization property for the variance, and can be regarded as a universal Poincaré
inequalitywith respect to d (see e. g. [10] for such an interpretation).However, note that
Theorem 7 (i. e. more precisely the h-LSI(1) for product measures) does not imply the
Efron–Stein inequality, as the difference operator is h instead of d. Unfortunately, as
Proposition 6 demonstrates, there is no “entropy version” of the Efron–Stein inequality
of the form Entμ( f 2) ≤ C Eμ |d f |2 (for any product probability measureμ and some
universal constant C).

As by Theorem 7, any set of independent random variables X1, . . . , Xn satisfies an
h-LSI(1), itmight be tempting to regardTheorem1 as anh-LSI analogue ofTheorem2.
However, it seems that it is not possible to use the entropy method based on h-LSIs,
so that this interpretation is not fully accurate. More precisely, Theorem 7 cannot be
used to estimate the growth of L p norms as in the setting of a d-LSI(σ 2). Indeed, it is
impossible to prove the required moment inequalities

‖ f − E f ‖q ≤ (σ 2q)1/2‖h f ‖q (25)

under an h-LSI(σ 2). For example, the measure μp = pδ1 + (1 − p)δ0 satisfies
h-LSI(σ 2

p) with σ 2
p ∼ p(1 − p) log(1/p) (for p → 0), so that (25) would imply for

f (x) = x an upper bound on the Orlicz norm associated to �2(x) = ex
2 − 1

‖ f − E f ‖�2
≤ 2e sup

q≥1

‖ f − E f ‖q
q1/2

≤ 4eσp.

However, a simple calculation shows that E exp
( ( f −E f )2

16e2σ 2
p

)→ ∞ as p → 0.

The approximate tensorization property in Theorem 7 is interesting in its own right,
but it is not yet well-studied. For finite spaces [40] gives sufficient conditions for a
measure μ to satisfy an approximate tensorization property. Similar results have been
derived in [21], which can be applied in discrete and continuous settings. For example,
if one considers a measure of the form

μ(x) = Z−1
n∏

i=1

μ0,i (xi ) exp

⎛

⎝
∑

i, j

Ji jwi j (xi , x j )

⎞

⎠

for some countable spaces �i , xi ∈ �i , measures μ0,i on �i and bounded functions
wi j , under certain technical conditions μ satisfies an approximate tensorization prop-
erty. This does not require any functional inequality for μ0,i . Very recently, in [3,
Proposition 5.4] it has been shown that the AT(C) property implies dimension-free
concentration inequalities for convex functions.

Note that the AT(C) property requires a certain weak dependence assumption in
general. For example, the push-forward of a random permutation π of [n] to N

n

cannot satisfy an approximate tensorization property. It is an interesting question to
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find necessary and sufficient conditions for the approximate tensorization property to
hold.

Proof of Theorem 7 Let X = (X1, . . . , Xn) be a Y-valued random vector with law μ.
First we consider the case n = 1. By homogeneity of both sides, we may assume∫

f 2(X)d P = 1. Since f is bounded, we have 0 ≤ a ≤ | f (X)| ≤ b < ∞ P-a.s.,
where b is the essential supremum of | f (X)| and a the essential infimum. Due to the
constraints on the integral this leads to a2 ≤ 1 ≤ b2. (Actually the cases b = 1 or
a = 1 are trivial, since then f 2(X) = 1 P-a.s., but we will not make this distinction.)
Let F(u) := P( f 2(X) ≥ u). In particular

F(u) =
{
1 u ≤ a2,

0 u > b2.

Using the partial integration formula (see e. g. [31, Theorem 21.67 andRemark 21.68])
in connection with [20, Theorem 7.7.1] yields

Ent( f 2(X)) =
∫ ∞

0
u log ud(−F(u)) =

∫ b2

0
(log u + 1)F(u)du

=
∫ a2

0
(log u + 1)F(u)du +

∫ b2

a2
(log u + 1)F(u)du

=
∫ a2

0
(log u + 1)F(u)du +

∫ b2

a2
log uF(u)du + (1 − a2).

The first integral can be calculated explicitly

∫ a2

0
(log u + 1)F(u)du = u(log u − 1) |a20 = a2 log a2,

and moreover we have due to log(u) ≤ log(b2) on [a2, b2]
∫ b2

a2
log uF(u)du ≤ log

(
b2
)(
1 − a2

)
.

Plugging in these two estimates yields

Ent
(
f 2(X)

) ≤ a2 log a2 + (1 − a2
)+ log b2

(
1 − a2

) =: f (a, b).

Next, if we show that

f (a, b) ≤ 2(b − a)2 on G := {(a, b) ∈ R
2 : 0 ≤ a ≤ 1, 1 ≤ b < ∞}, (26)

we can further estimate (as |h f |2 is a deterministic quantity in the case n = 1)

Ent
(
f 2(X)

) ≤ 2(b − a)2 = 2E |h f |2.
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To prove (26), define

g(a, b) := a2 log a2 + (1 − a2
)+ log b2

(
1 − a2

)− 2(b − a)2.

Now it is easy to see that g(a, 1) = a2 log a2 + (1 − a2) − 2(1 − a)2 ≤ 0, since
∂ag(a, 1) ≥ 0 for a ∈ [0, 1] and g(1, 1) = 0. Moreover

∂bg(a, b) = −2

b

(
b2 − 1 + (a − b)2

)
≤ 0,

so that g is decreasing on every strip {a0} × [1,∞), and thus g(a, b) ≤ 0 for all
a, b ∈ G. This finishes the proof for n = 1.

For arbitrary n, the proof is now easily completed. Assume that f ∈ L∞(μ), i. e.
μi c (xic )-a.s. we have f (xic , ·) ∈ L∞(μ(· | xic )). For these xic , by the n = 1 case we
therefore obtain

Entμ(·|xic )
(
f 2(xic , ·)

) ≤ 2 sup
y′
i ,y

′′
i

| f (xic , y′
i

)− f
(
xic , y

′′
i

)|2.

Plugging this into the assumption leads to

Entμ
(
f 2
) ≤ 2C

∫ n∑

i=1

sup
y′
i ,y

′′
i

| f (xic , y′
i

)− f
(
xic , y

′′
i

)|2dμi c (xic ) = 2C
∫

|h f |2dμ.

As for the second part, it is a classical fact that independent random variables satisfy
the tensorization property (i. e. AT(1)), see for example [38, Proposition 5.6], [16,
Theorem 4.10] or [54, Theorem 3.14]. In the case of independent random variables,
the assumption that Y is a product of Polish spaces can be dropped by simply defining
μ(· | xic ) := μi = P ◦Xi . ��
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