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Abstract. We consider the mutation-selection differential equation with pairwise interaction and es-
tablish the corresponding ancestral process, which is a specific random tree and a variant of the ancestral
selection graph. To make this object tractable, we prune the tree upon mutation, thus reducing it to
its informative parts. The hierarchies inherent in the tree are encoded systematically via ternary trees
with weighted leaves; this leads to the stratified ancestral selection graph. The latter is dual to the
mutation-selection equation and provides a stochastic representation of its solution. It also allows to
reveal the genealogical structures inherent in the bifurcations of the equilibria of the differential equa-
tion. Furthermore, we establish constructions, again based on the stratified ancestral selection graph,
that allow to trace back the ancestral lines into the distant past and obtain explicit results about the
ancestral population in the case of unidirectional mutation.

1. Introduction

Models of population genetics describe the evolution of biological populations under the interplay of vari-
ous processes such as mutation, selection, recombination, and migration. Traditionally, they come in two
categories, deterministic and stochastic. Deterministic approaches assume that the population is so large
that a law of large numbers applies so that random fluctuations may be neglected; the resulting models
are (ordinary or partial) differential equations or (discrete-time) dynamical systems, which describe the
evolution in the usual forward direction of time. This has led to an elaborate body of theory, which is
comprehensively surveyed in the monograph by Bürger [8]. In contrast, stochastic approaches take into
account the fluctuations due to finite population size; the resulting stochastic processes have a firm place
in probability theory. Here, the corresponding ancestral processes, which describe the ancestry of a sample
of individuals from a population at the present, play an eminent role. Their study gives rise to duality
relations and random genealogies, which yield deep insight and serve as versatile tools to investigate the
model in question. This area of research is comprehensively surveyed in the monograph by Durrett [15].

The deterministic models of population genetics are related to their stochastic counterparts via a dynam-
ical law of large numbers (also known as mean-field limit). Nevertheless, they have largely led separate
lives for many decades. Recently, however, a beginning has been made to build new bridges between them
by introducing the genealogical picture into the deterministic equations [3, 4, 6, 9]. The corresponding
ancestral processes remain random even in the deterministic limit, since they describe the history of a
finite sample of individuals. They lead to stochastic representations of the solutions of the deterministic
equations and shed new light on both their dynamics and asymptotic behaviour. For example, for the
so-called haploid mutation-selection equation with unidirectional mutation, the bifurcation structure of
the equilibria of the ordinary differential equation (ODE) was recovered in terms of the asymptotic prop-
erties of a variant of the ancestral selection graph (ASG); the latter is a central concept for the study of
genealogies with selection [21, 30]. Furthermore, by tracing back the ancestral lines, the corresponding
equilibria and bifurcations in the distant past could be elucidated, thus characterising the ancestors of
today’s equilibrium population [4, 6].

Our goal in this article is to extend these results to the case with interaction between individuals. In
the aforementioned haploid mutation-selection equation, individuals reproduce independently of each
other; we will now explore the case of pairwise interaction, where the reproduction rate of an individual
depends on the type of a partner chosen uniformly from the population. Biologically, this is a special case
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of what is known as frequency-dependent selection, which also occurs in evolutionary game theory (see,
e.g., [18]). The resulting equation is also equivalent to the so-called diploid mutation-selection equation,
which describes individuals that carry two copies of the genetic information rather than one as in the
haploid case.

The mutation-selection equation with interaction has a higher degree of nonlinearity than the haploid
one, and a richer bifurcation structure. In particular, one observes bistability in certain parameter
regions; this is absent in the haploid case. While this is well known in the forward direction of time,
the corresponding ancestral processes are largely unexplored territory. We will therefore first have to
establish appropriate concepts. Starting from ideas in [29], we will extend the ASG to the case with
pairwise interaction. In the deterministic limit, the resulting construction will be a specific random tree.
To make this object tractable, we will prune the tree upon mutation, thus reducing it to its informative
parts. The hierarchies inherent in the tree will play a crucial role and will be encoded systematically
via ternary trees with weighted leaves; this will lead to the stratified ASG. The latter will serve as dual
to the forward process and provide a stochastic representation of the solution of the mutation-selection
equation. It will also be our workhorse to reveal the genealogical structures inherent in the bifurcations of
the equilibria of the ODE. Indeed, it will turn out that the random genealogical trees have very different
properties in the various parameter regimes. Furthermore, we will establish constructions, again based
on the stratified ASG, that allow to trace back the ancestral lines into the distant past and obtain explicit
results about the ancestral population in the biologically relevant case of unidirectional mutation.

We would like to mention related work by Mach et al. [26], who study a large class of ODEs that arise as
mean-field limits of interacting particle systems on the complete graph. Their study relies crucially on
recursive tree processes. As an example, Mach et al. [26] (see also [25]) treat the cooperative branching
model with deaths, which corresponds to a special case of our mutation-selection model with interaction.
The analyses via recursive tree processes and the stratified ASG provide complementary insight into the
behaviour of the model. Mach et al. [26] compare their work with ours in detail in their Section 2.1. We
will spell out the similarities and differences as we go along.

The article is organised as follows. In Sect. 2, we recapitulate the two-type mutation-selection differential
equation with interaction, along with its equilibrium and bifurcation structure. We then (Sect. 3) turn
to its finite-population counterpart, namely the two-type Moran model with mutation, selection, and
pairwise interaction; it turns into the differential equation in the deterministic limit. The Moran model
has a graphical representation as an interacting particle system, which we use to recapitulate the ASG
with interaction for the finite system. In Sect. 4, the law of large numbers is applied to this ASG and
yields the ancestral process corresponding to the deterministic equation. The stratified ASG is introduced
in Sect. 5, and some of its fundamental properties are proved. The core of the results are found in Sect. 6
and 7. Sect. 6 establishes the connection between the stratified ASG and the deterministic model in
the form of a duality relation and provides a stochastic representation of the solution of the differential
equation. In this way, the bifurcation structure in the case of unidirectional mutation is recovered by
genealogical means. Finally, Sect. 7 establishes the constructions to trace back an ancestral line into
the distant past; these are the stratified ASG with immune line and the forest of stratified ASGs. We
use them to derive the ancestral type distribution under unidirectional mutation, both over time and at
stationarity.

2. The mutation-selection equation with interaction

We consider a deterministic model for the evolution of a population subject to mutation, selection, and
a special form of frequency-dependent selection that we call pairwise interaction. More precisely, the
population is composed of two types, type 0 and type 1. We will refer to type 0 as the fit or beneficial
type and to type 1 as the unfit or deleterious type. Both types reproduce at a so-called neutral (that
is, type-independent) rate of 1. On top of this, type 0 has a selective advantage, that is, an additional
reproduction rate. This has two contributions: one that is independent of the current type distribution
in the population and one that depends on it. We refer to the former as selection and to the latter



LINES OF DESCENT IN THE MUTATION-SELECTION MODEL WITH PAIRWISE INTERACTION 3

as frequency-dependent selection. The rate of selective reproduction is s > 0. The rate of frequency-
dependent selective reproduction is γ(1− y(t; y0)), where γ > 0 is the interaction parameter and y(t; y0)

denotes the proportion of type 1 at time t given that the proportion at time 0 was y0 ∈ [0, 1]. The
interaction is called pairwise because it depends on y in a linear way; this reflects the dependence on the
type of one randomly-chosen partner in the Moran model, as will become clear in Sect. 3. Both types
may mutate at rate u > 0, where with probability ν0 (or ν1) the resulting type is 0 (is 1). Throughout,
we assume ν0, ν1 > 0 and ν0 + ν1 = 1. It is implied throughout that the population is so large that
random fluctuations may be neglected. If the initial frequency of type 1 is y0 ∈ [0, 1], then y(t; y0) evolves
deterministically as the solution of the initial value problem (IVP)

dy

dt
(t) = −y(t)

(
1− y(t)

)[
s+ γ

(
1− y(t)

)]
+ uν1

(
1− y(t)

)
− uν0y(t) =: F (y(t)),

y(0) = y0, for y0 ∈ [0, 1].
(2.1)

We speak of the ODE as the mutation-selection equation with interaction. The form of the mutation
terms is obvious; the reproduction term describes that type-0 individuals selectively reproduce at overall
rate (1 − y(t))[s + γ(1 − y(t))] and thus reduce the relative frequency of type-1 individuals according
to their current proportion y(t). The neutral reproduction does not enter the equation since its net
contribution is −(1− y(t))y(t) + y(t)(1− y(t)) = 0; as a matter of fact, therefore, the same ODE results
for any neutral reproduction rate c > 0. In principle, the solution of (2.1) can be expressed explicitly in
terms of the roots of F by standard methods, but we refrain from doing this here.

Remark 2.1. We have introduced the interaction in terms of frequency-dependent selection, but an alter-
native interpretation corresponds to a diploid population with two allelic types subject to mutation and
selection; the ODE is then usually termed the diploid mutation-selection equation. The diploid genotypes
are then given by the pairs (i, j), i, j ∈ {0, 1}, and their reproduction rates wij are w00 = 1 + 2s + γ,
w01 = w10 = 1 + s, and w11 = 1. This choice of parameters corresponds to the case where allele 0 is
(partially) recessive, that is, it needs another 0 to fully play out its selective advantage (see also [5]).

Remark 2.2. The general form of the mutation-selection equation goes back to Wright [37] and is inten-
sively discussed by Crow and Kimura [11]. They understand it as a simplistic model for the evolution
of a population under the forces of mutation, (frequency-dependent) selection and migration; and note
that it is suited for an approximation of a large population with constant environmental factors [11]. We
consider a special case in which there is no migration, only two allelic types, and our special form of
frequency-dependent selection.

Remark 2.3. For a special choice of parameters, the ODE (2.1) corresponds to the mean-field limit (or
law of large numbers) of the cooperative branching model on the complete graph as investigated by Mach
et al. [26] (see also [25]). More precisely, our notation translates to their case by interchanging the roles
of type 0 and 1 and by setting γ = α, u = 1, ν0 = 0, ν1 = 1, and s = 0. This leads to the mean-field
equation [26, Eq. (1.36)].

Equilibria and bifurcation structure. To understand the asymptotic behaviour of the mutation-
selection equation, we analyse the equilibria ȳ, namely the (real) roots of F in (2.1), along with their
stability. Since F (0) > 0 and F (1) 6 0, the unit interval (which is the biologically relevant domain) is
positive invariant under the flow and there exists at least one root of F in [0, 1]. Let ŷ∞ and y̌∞ be the
smallest and largest root of F in [0, 1], respectively. The conditions on the boundary, together with the
fact that F is a polynomial, imply that ŷ∞ and y̌∞ are attracting from the left and right, respectively,
provided they are in (0, 1). We initially concentrate on the case ν0 = 0, in which expressions for the roots
simplify significantly. We first extend (2.1) to all of R and consider all equilibria and later specialise to
those that lie in the unit interval. We will consider the mutation rate as the bifurcation parameter; it
will be convenient to identify two specific threshold values for it.

Definition 2.4. For γ > 0 and s > 0, let

û := s and ǔ :=
1

γ

(
s+ γ

2

)2

. (2.2)
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Figure 1. The equilibria ȳ of (2.1) as a function of u/s for ν0 = 0 and s = 1/30. The left, middle, and right panels
correspond to γ = 0, γ = 1/40, and γ = 1/10, respectively. Black lines: stable. Grey lines: unstable.

In particular, û 6 ǔ.

If ν0 = 0, the right-hand side of (2.1) reduces to

F (y) = (y − 1)G(y) (2.3)

with G(y) = −γy2 + (s+ γ)y − u. Hence, the equilibria of (2.3) are

ȳ1 = 1 (2.4)

together with the real roots of G. Namely,

• for γ = 0 and u ∈ [0,∞),
ȳ2 =

u

s
(2.5)

(see Fig. 1, left);
• for γ > 0 and u ∈ [0, ǔ],

ȳ2 =
1

2

(
1 +

s

γ
−
√
σ

)
and ȳ3 =

1

2

(
1 +

s

γ
+
√
σ

)
, (2.6)

where

σ :=

(
1 +

s

γ

)2

− 4
u

γ
(2.7)

(see Fig. 1, middle and right).

Remark 2.5. Note that if γ > 0, then u 6 ǔ is equivalent to σ > 0. So, for γ > 0 and u ∈ (ǔ,∞), the
polynomial G has no real roots and ȳ1 is the only equilibrium.

In order to determine the stability (still for ν0 = 0), note that

F ′(y) = G(y) + (y − 1)G′(y),

where G′(y) = −2γy + s+ γ. Then,

• F ′(ȳ1) = G(1) = s− u, so ȳ1 is stable (unstable) for u < s (u > s).
• F ′(ȳ2) = (ȳ2 − 1)G′(ȳ2) = γ

√
σ(ȳ2 − 1), so ȳ2 is stable (unstable) if ȳ2 < 1 (ȳ2 > 1).

• F ′(ȳ3) = (ȳ3 − 1)G′(ȳ3) = −γ
√
σ(ȳ3 − 1), so ȳ3 is stable (unstable) if ȳ3 > 1 (ȳ3 < 1).

We summarise this analysis in the following result.

Proposition 2.6. Let ν0 = 0 and s, γ, u > 0. If σ > 0, the ODE (2.1) has equilibria ȳ1, ȳ2, and ȳ3 given
in (2.4)– (2.6). The corresponding stability is summarised in the following table (where bold indicates
equilibria that are stable in [0, 1]).

s > γ s = γ s < γ

σ = 0 σ > 0 σ = 0 σ > 0 σ = 0 σ > 0

u < û — 0 < ȳ2 < ȳ1 < ȳ3 — 0 < ȳ2 < ȳ1 < ȳ3 — 0 < ȳ2 < ȳ1 < ȳ3

u = û — ȳ1 = ȳ2 < ȳ3 = s/γ ȳ1 = ȳ2 = ȳ3 — — 0 < ȳ2 = s/γ < ȳ1 = ȳ3

u > û ȳ1 < ȳ2 = ȳ3 ȳ1 < ȳ2 < ȳ3 — — 1
2 < ȳ2 = ȳ3 < ȳ1 0 < ȳ2 < ȳ3 < ȳ1
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If σ < 0, ȳ1 is the only equilibrium and it is stable.

As described in [5], we can identify the following bifurcation phenomena with u as the bifurcation param-
eter. For all s, γ > 0, there is an exchange of stability (also known as transcritical bifurcation) at u = û

of ȳ1 and ȳ2. When u surpasses the critical value û, then ȳ1 (ȳ2) switches from unstable (stable) to
stable (unstable). For s < γ, there is an additional saddle-node bifurcation at u = ǔ. There, the equilib-
ria ȳ2 and ȳ3 (one stable, one unstable) collide and both vanish. If û = ǔ, we see a pitchfork bifurcation,
where the unstable ȳ1 passes through the collision point of ȳ2 and ȳ3 and becomes stable. (We refer
the interested reader to Guckenheimer and Holmes [17] for a general account of bifurcation theory for
equilibria of ODEs.)

The equilibria directly lead to the asymptotic behaviour, which we now consider for y0 ∈ [0, 1]. Let y(t; y0)

be the solution of (2.1) with ν0 = 0 and s, γ, u > 0. By the monotonicity of y( · ; y0), we infer that

y∞(y0) := lim
t→∞

y(t; y0) (2.8)

exists and is always an equilibrium. The asymptotic type frequencies are characterised in the following
corollary, which is a direct consequence of Remark 2.5 together with Proposition 2.6.

Corollary 2.7. Let y0 ∈ [0, 1], ν0 = 0, and s, γ > 0.
(i) If either u < û or (s < γ and u = û),

y∞(y0) =

{
ȳ2, if y0 ∈ [0, 1),

ȳ1, if y0 = ȳ1.

(ii) If s < γ and u ∈ (û, ǔ],

y∞(y0) =


ȳ2, if y0 ∈ [0, ȳ3),

ȳ3, if y0 = ȳ3,

ȳ1, if y0 ∈ (ȳ3, ȳ1].

(iii) If either u > ǔ or (s > γ and u ∈ [û, ǔ]), then for all y0 ∈ [0, 1],

y∞(y0) = ȳ1.

Remark 2.8. If s < γ and u = ǔ, we have ȳ2 = ȳ3 and

y∞(y0) =

{
ȳ2, if y0 ∈ [0, ȳ2],

ȳ1, if y0 ∈ (ȳ2, ȳ1].

Clearly, the equilibria ȳi = ȳi(s, γ, u, ν0) (i ∈ {1, 2, 3}) are functions of s, γ, u and ν0. The asymptotic
type frequency y∞(y0) = y∞(y0, s, γ, u, ν0) furthermore depends on y0. By a straightforward application
of L’Hôpital’s rule, we see that ȳ2 is continuous in γ at 0.

Corollary 2.9. For s, u > 0 and ν0 = 0,

lim
γ→0

ȳ2(s, γ, u, 0) =
u

s
.

In particular,

lim
γ→0

y∞(y0, s, γ, u, 0) =

{
min{us , 1}, if y0 ∈ [0, 1),

1, if y0 = 1.

Let us recapitulate from [5] the biological implications of Corollary 2.7. For γ 6 s, the fit type per-
sists in the population for u < û, but is lost for u > û; this happens for any positive initial value and
is an instance of the so-called error threshold [16]. For γ > s, one has again persistence for u < û

and loss for u > ǔ for any positive initial value. But in the bistable regime (û, ǔ), the fit type will
only persist if its initial frequency is at least 1 − ȳ3; otherwise it will be lost. In particular, a beneficial
mutant arising in small frequency in a population that is otherwise unfit will not be able to establish itself.
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Figure 2. Equilibria of (2.1) evaluated numerically as functions of u/s for ν0 = 1/100 and s = 1/30. The left,
middle, and right cases correspond to γ = 0, γ = 1/60, and γ = 4/15, respectively. Black lines: stable. Grey lines:
unstable.

Finally, let us briefly discuss the case ν0 ∈ (0, 1) (we do not explicitly consider the limiting case ν0 = 1; the
biologically reasonable regime is 0 < ν0 � 1, and ν0 = 0 is often a reasonable approximation). Since F
is then a cubic polynomial, explicit expressions for its roots are in principle available. In particular, a
stability analysis as in the case ν0 = 0 is possible. But due to the length of expressions and the many
case distinctions, we refrain from doing so. Nevertheless, by Budan’s theorem [7], we can deduce a bound
for the number of real roots in [0, 1].

Proposition 2.10. Let u, γ > 0 and ν0 ∈ (0, 1). If u < û or (γ < s and u > û), then F has exactly one
root in [0, 1].

Proof. Note first that if u, γ > 0 and ν0, ν1 ∈ (0, 1), then 0 and 1 are not roots of F . Recall that F (y) =

−γy3 + (2γ + s)y2 − (γ + s+ u)y + uν1. Define

F+(y) := F (y + 1) = −γy3 + (s− γ)y2 + (s− u)y − uν0.

Denote by oF and oF+ the number of sign changes of the coefficients of F and F+, respectively. Then,
oF = 3 and

oF+ =

{
2, if u < û or (γ < s and u > û),

0, if s < γ and u > û.
Denote by r the number of roots of F in (0, 1). Now, Budan’s theorem states that r 6 oF − oF+ . On the
other hand, we know from the discussion at the beginning of this section that there is at least one root
in [0, 1]. �

Remark 2.11. If (2.1) has three equilibria in [0, 1], then the equilibrium in the middle is unstable. To see
this, note that F is positive before ŷ and negative after y̌. Since there is an equilibrium in the middle, F
must have a positive derivative at this point.

In contrast to ν0 = 0, if ν0 ∈ (0, 1), neither y = 0 nor y = 1 are equilibria and so both types coexist
independently of y0, see also Fig. 2. Yet, the asymptotic behaviour may again depend on y0. After this
discussion of the deterministic mutation-selection equation, we now turn to its stochastic counterpart.

3. The Moran model with interaction

The 2-type Moran model with mutation, selection, and pairwise interaction describes the evolution of a
haploid population of a finite number N of individuals in continuous time. Each individual has a type,
which is either 0 or 1. As before, we refer to type 0 as the fit or beneficial type, whereas type 1 is unfit
or deleterious. When an individual reproduces, its single offspring inherits the parent’s type and replaces
a uniformly chosen individual, thereby keeping the population size constant. Individuals of type 1 repro-
duce at rate 1, whereas individuals of type 0 reproduce at rate 1 + s+ γ(N − k)/N with s, γ > 0 and k
the current number of type-1 individuals. The selective advantage of type 0 has two contributions: a
part that is independent of the current type distribution and occurs at rate s per fit individual; and a
part that depends on the frequency of the fit type and is encoded by the parameter γ. More precisely,
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a fit individual chooses uniformly at rate γ a partner from the population. If the partner is fit (unfit),
then the type-0 individual does (not) reproduce. Each individual mutates at rate u; the type after the
event is i with probability νi, i ∈ {0, 1}. We assume throughout that u > 0 and ν0, ν1 > 0 with ν0+ν1 = 1.

Let now Y
(N)
t be the (random) number of type-1 individuals at time t in a population of size N . The

process Y (N) = (Y
(N)
t )t>0 is a continuous-time Markov chain with transition rates

qY (N) (k, k + 1) = k
N − k
N

+ (N − k)uν1, qY (N) (k, k − 1) = k
N − k
N

(
1 + s+ γ

N − k
N

)
+ kuν0, (3.1)

where k ∈ {0, . . . , N}. There are no other transitions.

The Moran model with interaction has a well-known graphical representation as an interacting particle
system, see Fig. 3. Here, individuals are represented by pieces of horizontal lines. Time runs from left
to right in the figure. Reproduction events are depicted by arrows between the lines. If a parent (at the
tail of an arrow) places offspring via the arrow, the offspring inherits the parent’s type and replaces the
individual at the tip. We decompose reproduction events into neutral, selective, and interactive ones.
Neutral arrows appear at rate 1/N per ordered pair of lines; selective arrows appear at rate s/N per
ordered pair. Interactive arrows occur at rate γ/N per ordered pair of lines and are always accompanied
by a checking arrow whose tail shares the tail of the interactive arrow; but whose tip is connected to
a uniformly chosen line. That is, these arrow pairs occur at rate γ/N2 per triple of lines. All types of
arrows (including the interactive/checking pairs) are laid down via Poisson point processes independently
of each other. The rules for their use are as follows. Neutral arrows are used by all types; selective arrows
are used only by individuals of type 0. Interactive arrows are used by the individual at its tail if and only
if both this individual and the one at the tip of the checking arrow are of type 0.
Mutation events are depicted by crosses and circles on the lines. A circle (cross) indicates a mutation
to type 0 (type 1), which means that the type on the line is 0 (is 1) after the mutation. This occurs at
rate uν0 (at rate uν1) on every line, again by way of independent Poisson point processes. Note that it
is no restriction to describe mutation in this parent-independent way; indeed, in the two-type case, the
rates can always be parametrised in this way. Given a realisation of the particle system and an initial
type configuration (that is, a type assigned to each line at t = 0), we can read off the types on the lines at
all later times t > 0. The distribution of the initial types and the law of the graphical elements (arrows,
circles, and crosses) are independent of each other.

Remark 3.1. The Moran model with interaction can be translated into the cooperative branching process
on a complete graph [25, Ch. I.1.2.3, Ch. I.2.1] (see also [26]) by interchanging the roles of type 0 and 1

and by setting s = ν0 = 0 and u = 1. A deleterious mutation then corresponds to a death event and
an interactive arrow to a cooperative branching event. Other variants of such dynamics may be found
in [28, 31, 33].

Remark 3.2. Graphical representations are available for a comprehensive class of interacting particle
systems, see e.g. Sturm and Swart [34, Sect. 5.2].

The ancestral selection graph in the Moran model with interaction. The ancestral selection
graph (ASG) was introduced by Krone and Neuhauser [21] and Neuhauser and Krone [30] in order to
study genealogies in population models with selection. It was extended by Neuhauser [29] to a model
of minority advantage, a special case of interactive selection. Following these lines, we now describe the
ASG for the Moran model with interaction (cf. Fig. 3). Our starting point is a realisation of the graphical
representation of the Moran model in the time interval [0, t] for some time t > 0, to which we refer as
the present. We pick an untyped sample (that is, no types have been assigned to the individuals) at
present and trace back the lines of its potential influencers; backward time will be denoted by r, where
r = 0 corresponds to forward time t and r = t corresponds to forward time 0. We call individuals
potential influencers if their type has an influence on the type of the sampled individuals where, at this
stage, we only take into account the information contained in the reproduction events, and ignore the
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Figure 3. A realisation of the Moran interacting particle system (thin lines) for a population of size N = 5 and the
embedded ASG (bold lines) for a sample of size 1. Time runs forward in the Moran model (→) and backward in the
ASG (←). A bullet marks the joint tails of the interactive and the checking arrows.

additional information due to mutation. The arrows in the representation change the number of potential
influencers and their respective locations. The ASG is composed of the lines of these potential influencers.
Assume there are currently n lines in the ASG. When a neutral arrow joins two lines in the current set, a
coalescence event takes place, i.e. the two lines merge into the single one at the tail of the arrow and the
number of lines in the graph decreases by one (see Fig. 4). Since neutral arrows appear at rate 1/N per
ordered pair of lines, coalescence events occur at rate n(n−1)/N in our ASG of size n. When a line in the
current set is hit by an arrow that emanates from a line that is currently not in the graph, a relocation
event occurs; i.e. the ASG continues with the incoming branch (the line at the tail of the arrow) and the
number of lines in the graph does not change. Relocation events occur at rate n(N − n)/N .

Figure 4. Coalescence event (left) and relocation event (right).

When a selective arrow hits the current set of lines, the hit individual has two potential parents, namely
the individual at the incoming branch, and the one at the continuing branch (the one to the left of the
tip). Which of these is the true parent of the individual at the descendant branch (the one to the right of
the tip) depends on the type at the incoming branch, but for the moment we work without types. This
means that we must trace back both potential parents; we say the selective event remains unresolved.
These events can be of two types: a bifurcation∗ event if the selective arrow emanates from an line outside
the current set of lines, and a simple collision event if the selective arrow links two lines in the graph (see
Fig. 5). The former increases the number of lines in the graph by one and, since selective arrows appear
at rate s/N per ordered pair of lines, occurs at rate sn(N − n)/N in our ASG of size n. The latter does
not change the number of lines in the ASG and occurs at rate sn(n− 1)/N .

Figure 5. Bifurcation (left) and simple collision (right).

When an interactive arrow hits a line in the ASG, the individual that is hit has two influencers, the
individual at the incoming branch and the individual at the continuing branch. The true parent depends

∗That is a binary branching. Not to be confused with bifurcations in the context of dynamical systems, such as the
transcritical and saddle node bifurcations in Sect. 2.
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on the types of the individuals at the incoming and checking branches; but as before, we work without
types. The resulting additional unresolved reproduction events can now be of three types: a trifurcation
if both the incoming and the checking arrows emanate from lines currently not in the ASG; a collision-
bifurcation event if either the incoming or the checking line, but not both of them, emanate from outside
the current set of lines; and a double collision event if the incoming and the checking branches are
currently in the graph (see Fig. 6). Since interactive arrow pairs occur at rate γ/N2 per ordered triple of
lines, in our ASG of size n a trifurcation occurs at rate γn(N −n)(N −n− 1)/N2, a collision-bifurcation
at rate γn(n− 1)(N − n)/N2, and a double collision at rate γn(n− 1)(n− 2)/N2. Note that all arrows
can also point to their own tails. In contrast to the original ASG (that is, without interaction), not all
potential influencers are necessarily potential ancestors. Namely, the individual on the checking line is,
in general, not ancestral; but its type may have an influence on the type of the sampled individual. We
generally refer to bifurcations and trifurcations as branching events. The number of lines in the ASG
decreases by one in a coalescence event, increases by one in a bifurcation or collision-bifurcation event,
increases by two in a trifurcation event, and remains unchanged in simple collision, double collision and
relocation events. As in the Moran model, beneficial and deleterious mutations are superimposed on the
lines at rate uν0 and uν1, respectively. The resulting object is called the untyped ASG ; this refers to
the fact that the initial types have not yet been assigned and the consequences of mutations are still
unresolved.

Figure 6. From left to right: trifurcation, collision-bifurcation with incoming branch already in ASG, collision-
bifurcation with checking branch already in ASG, double collision.

Once the untyped ASG has been constructed, the true ancestry of the initial sample is obtained after
assigning types to all lines in the ASG at forward time 0, that is, backward time t, without replacement
from an exchangeable distribution at time 0 and propagating the types up to time t as follows. Mutation
circles and crosses on the ASG turn the type on that line to a type 0 or type 1, respectively (this also
includes the possibility of no type change, i.e. the mutations are silent). Now that the types are known,
the bifurcation and trifurcation events can be resolved. At every selective event, the individual at the
incoming branch is the ancestor if it is of type 0; otherwise the individual at the continuing branch is
the ancestor. This hierarchy will be called the pecking order. Note that the descendant is of type 1 if
and only if both the incoming and the continuing branch are of type 1. At every interactive event, the
individual at the incoming branch is the ancestor if it is of type 0 and if the individual at the checking
branch is also fit. Otherwise, the individual at the continuing line is the ancestor. Under these rules, the
types of the sampled individuals are recovered together with their ancestry.

4. Mutation-selection equation as a limit of the Moran model

Let us now relate the Moran model to the mutation-selection equation. To this end, we study the
asymptotic behaviour of Y (N)/N as N →∞ without rescaling of parameters or time. This corresponds
to the strong selection–strong interaction–strong mutation (sssism) limit. The following result provides
the asymptotic behaviour of the stochastic process Y (N)/N and its connection to the deterministic model
in the form of a dynamical law of large numbers.

Proposition 4.1. Assume that limN→∞ Y
(N)
0 /N = y0 ∈ [0, 1]. Then, for all ε > 0 and t <∞, we have

lim
N→∞

P

(
sup
ξ6t

∣∣∣∣∣Y NξN − y(ξ; y0)

∣∣∣∣∣ > ε

)
= 0,

where y( · ; y0) is the solution of the IVP (2.1), i.e. Y (N)/N converges to y( · ; y0) uniformly on compact
time intervals in probability.



10 ELLEN BAAKE, FERNANDO CORDERO, AND SEBASTIAN HUMMEL

0

0 0
D

C

I
1

0 0
D

C

I
0

1 0
D

C

I
1

1 1
D

C

I

Figure 7. Bifurcation of a descendant line (D) into the continuing line (C) and the incoming line (I) along with the
propagation of types according to the pecking order.

Proof. The function F of (2.1) is Lipschitz continuous in [0, 1]. We have F (0) = uν1 > 0 and F (1) =

−uν0 6 0. Hence, the initial value problem (2.1) has a unique solution y( · ; y0) from [0,∞) to [0, 1].
Note that we can rewrite the rates of Y (N) as q

Y (N)(k, k + `) = Nq
(
k
N , `

)
for ` ∈ Z \ {0}, where q :

[0, 1]× Z \ {0} → R is given by

q(y, 1) = y(1− y) + (1− y)uν0, q(y,−1) = y(1− y)
(
1 + s+ γ(1− y)

)
+ yuν1,

together with q(y, `) = 0 for |`| > 1. Since q is continuous, (Y (N))N>1 is a density-dependent family of
Markov chains. Thus,

sup
y∈[0,1]

∑
`

|`|q(y, `) <∞ and lim
d→∞

sup
y∈[0,1]

∑
|`|>d

|`|q(y, `) = 0. (4.1)

The desired result follows as an application of the law of large numbers for density-dependent families of
Markov chains by Kurtz [22, Thm. 3.1]. �

Remark 4.2. In the absence of interactions (γ = 0), the previous result coincides with Cordero [10,
Prop. 3.1].

The connection of the two forward processes provides a way to establish an ancestral picture for the
mutation-selection equation. We start with the ancestral picture of the stochastic model and consider
the same limit that connects the forward processes.

The ancestral selection graph in the strong selection–strong interaction–strong mutation
limit (sssism-limit). The connection between the Moran model and the mutation-selection equation
provided by Proposition 4.1 yields a way to construct the ASG in the deterministic model: We just
let N →∞ in the ASG of the Moran model. The resulting process will still be stochastic. Before we em-
bark on this, note first that, since we assign types to the ASG in an exchangeable manner, when tracing
back ancestries with the ASG in the Moran model, the relocation events do not affect the distribution of
types, and so we can ignore them. For the same reason, we can assign a particular order to the lines in the
ASG without changing the type distribution. Hence, we proceed as in [23] (see also [6, 9]) and construct
the ASG directly in a lookdown-like manner. This means that the lines are placed on consecutive levels,
starting at level 1, according to a hierarchy reminiscent of the lookdown construction [13, 14]. We do not
rely on this particular construction for the results that follow, but it helps the intuition and, in particular,
makes it easier to visualise the process. Since the rates of coalescence, simple collision, double-collision,
and collision-bifurcation events vanish as N tends to infinity (they are O(1/N) per ordered pair of lines),
these events will be absent in the asymptotic ASG, i.e. we will only see bifurcations, trifurcations, and
mutations. In particular, the ASG of an initial sample of n individuals is distributed as n independent
copies of an ASG started with a single individual. Thus, we can restrict ourselves to the evolution of an
ASG starting with a single line. Let us first explain the ordering of the lines used in the construction

0

?

0 0
D

J

C

I
?

0

? 0
D

J

C

I
0

1

1 1
D

J

C

I
1

1

0 1
D

J

C

I
1

1

1 1
D

J

C

I

Figure 8. Trifurcation of the descendant line (D) into the continuing line (C), the checking line (J), and the incoming
line (I) along with the associated pecking order (? stands for an arbitrary type.)
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Figure 9. Propagating types across mutation events (note the parent independence).

of the ASG. At backward time r = 0, we place the single initial individual at level 1. A bifurcation at
level i in the ASG is represented by a horizontal open arrowhead at level i (see Fig. 7). The incoming
branch emanates from the arrowhead and takes level i. All the lines at levels > i are shifted one level
upwards. This includes the descendant line, which then continues on level i+ 1 as the continuing line. A
trifurcation event at level i in the ASG is represented by an interactive arrowhead inscribed into an open
square at level i (see Fig. 8). The incoming line emanates from the square at level i, the checking line
emanates from the square and is placed at level i+ 1, and all the lines at levels > i are shifted two lev-
els upwards. Again, this includes the descendant line, which continues as the continuing line on level i+2.

Each line in the ASG independently bifurcates at rate s, thus increasing the number of lines by one. Each
line trifurcates at rate γ independently of the others and independently of bifurcations. A trifurcation
increases the number of lines by two. In addition, each line mutates to type 0 at rate uν0 and to type 1

at rate uν1 (see Fig. 9). Mutations occur independently on each line and independently of all the other
events.

To determine the true ancestry of the sample at present, we independently sample the type for each line
at forward time 0 according to (1− y0, y0) and propagate the types up to forward time t using the same
rules as in the finite Moran model. These rules are illustrated in Figs. 7– 9. A visualisation of the ASG
in some time interval [0, t] is depicted in Fig. 12.

Remark 4.3. We will often identify an ASG starting with n lines with the collection A = (A(i))i∈[n],
where A(i) denotes the ASG associated with the i-th line.

Consider now a realisation At of the ASG in the time interval [0, t]. For y0 ∈ [0, 1], we denote by H(At, y0)

the probability that all lineages at the present are unfit if the initial type distribution is given by (1−y0, y0).
A natural way of computing H(At, y0) is to determine first those assignments of types to the lines that
lead to an unfit descendant and then to evaluate the probability of observing these assignments if we
independently sample according to (1− y0, y0). The next lemma summarises some elementary properties
of the function H.

Lemma 4.4. Let At be a realisation of the ASG in [0, t] starting with n lines and, for i ∈ {1, ..., n},
let At(i) the ASG in [0, t] associated with the i-th line. Then, for all y0 ∈ [0, 1],

H(At, y0) =

n∏
i=1

H(At(i), y0).

Moreover, for n = 1, if T? is the time of the first event in At, then

(1) if the event at time T? is a deleterious mutation, then H(At, y0) = 1.
(2) if the event at time T? is a beneficial mutation, then H(At, y0) = 0.
(3) if the event at time T? is a selective branching, we denote by A1

T?,t
and A2

T?,t
the ASGs starting

from the continuing and incoming line, respectively, at time T? and ending at time t. Then

H(At, y0) = H(A1
T?,t, y0)H(A2

T?,t, y0).

(4) if the event at time T? is a trifurcation, we denote by A1
T?,t

, A2
T?,t

, and A3
T?,t

the ASGs starting
from the continuing, incoming, and checking line, respectively, at time T? and ending at time t.
Then,

H(At, y0) = H(A1
T?,t, y0)

[
H(A2

T?,t, y0) +H(A3
T?,t, y0)−H(A2

T?,t, y0)H(A3
T?,t, y0)

]
.
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Remark 4.5. Let us at this point make a connection to Mach et al. [26]. In their context, deleterious
mutations and trifurcations are captured by the local maps dth (’deaths’) and cob (’cooperative branch-
ings’), respectively. Hence, if s = ν0 = 0, H(At, y0) corresponds to the concatenation of their higher-level
maps d̂th and ĉob, respectively. In particular, (1) and (4) of our Lemma 4.4 agree with [26, Eq. (1.84)].

Proof of Lemma 4.4. The lines in the ASG do not interact, so the first result follows by independence.
Now fix n = 1. For (1) and (2), note that if the first event is a mutation, the type of the line at time r = 0

is independent of the type assignment at time r = t due to parent independence (cf. Fig. 9). If the first
event is a selective event, the individual at time 0 is of type 1 if and only if the two lines involved in
the event are of type 1. This leads to (3). If the first event is an interactive event, the individual at
time r = 0 is of type 1 if and only if the continuing line is unfit and either the checking or the incoming
line is unfit. This leads to (4). �

5. The stratified ASG

Quite generally there are two approaches to compute the function H. The natural way is to determine
first the type assignments to the lines in the ASG that lead to an unfit descendant and then to evaluate
the probability of observing these assignments if we independently sample according to (1− y0, y0). This
is the approach pursed by Mach [25], but the general idea is also present in the work of Dawson and
Greven [12]. In contrast, we aim at resolving for any positive initial value all information contained in
the tree on the spot. This leads to a reduction and pruning of the tree. A subsequent reorganization
leads to a stratification of the ASG into distinct regions. This is the topic of the current section.

5.1. Motivation: The case without interaction. In the absence of interaction and mutation, a
sampled individual is of type 1 if and only if all its potential ancestors are of type 1; this follows from
a simple generalisation of the pecking order and holds regardless of the tree structure. A mutation
determines the type of the line on which it occurs, so this line need not be traced back further and hence
can be pruned. Moreover, if a beneficial mutation occurs on a line that is not yet pruned, the type of
the descendant will be fit such that we can stop reading the ASG, and we send the process to a cemetery
point ∆. This reasoning gave rise to the killed ASG [6]. Its line-counting process R = (Rr)r>0 is a
Markov process on N0 ∪ {∆} with transition rates

qR(k, k + 1) = ks, qR(k, k − 1) = kuν1, qR(k,∆) = kuν0, k ∈ N0.

Absorption of R in 0 implies that all individuals in the sample are of type 1; whereas absorption of R
in ∆ implies that at least one individual in the sample is fit. The process R is in moment duality with
the mutation-selection model without interaction (see [6, Thm.2]), that is we have

y(t; y0)n = En
[
yRt0

]
. (5.1)

5.2. Reducing the interactive ASG. In the interactive case, a single fit line does not necessarily lead
to a fit sampled individual (see Fig. 8), and hence we cannot use the same reasoning as in the non-
interactive case. In particular, counting lines is not sufficient; rather, the tree structure plays an eminent
role. A first step to circumvent this problem is to get rid of the mutation events present in the ASG.
As in the non-interactive case, a mutation on a line in the ASG determines the effect of that line on
the type of the sampled individual, and, therefore, we need not trace back its ancestry any further. In
addition, the type assigned to the line by the mutation will propagate (forward in time), resolving on its
way some of the selective and/or interactive events it encounters, by following the local rules presented in
the previous section. A particularly interesting situation occurs when the first event after a trifurcation
is a deleterious mutation in the corresponding continuing line. In this case, the type of the descendant
line depends only on the type of the incoming and the checking lines. For this reason, we consider a new
type of event, which we call interactive bifurcation and which corresponds to an interactive event where
the continuing line is pruned due to a deleterious mutation. Moreover, we denote as generalised ASG
an ASG consisting of selective and interactive bifurcations, trifurcations, and mutations. The following
notions of reduction and pruning permit to resolve the local effects of mutations in a generalised ASG.
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Figure 10. 1-step pruning described by (1.a)-(1.d)

Definition 5.1 (Reduction and pruning). Let A be a generalised ASG. The reduced ASG of A, denoted
by

S
(A), is obtained by removing from A all the sub-ASGs arising to the left of mutation events. We refer

to Ā as a reduced ASG if there exists some generalised ASG A such that Ā =
S
(A). Assume that

S
(A)

contains at least one branching event and at least one mutation event. If m denotes a mutation event
in

S
(A), we call ρm(A) the 1-step pruning of

S
(A) at m and define it as follows (cf. Figs. 10 and 11).

(1) If m is a deleterious mutation and
(a) the event preceding m is a selective branching, we remove the arrow and the line segment

between the two events, and we connect the other line involved in the branching to the
descendant line.

(b) the event preceding m is a trifurcation and the line involved in the mutation is incoming
(resp. checking) to this event, we remove the line segment between the two events, the
sub-ASG arising from the checking (resp. incoming) line, and the interactive arrow.

(c) the event preceding m is a trifurcation and the line involved in the mutation is continuing
to this event, we remove the line segment between the two events, thus transforming the
trifurcation into an interactive bifurcation.

(d) the event preceding m is an interactive bifurcation, we remove the sub-ASG arising from the
interactive event and replace the interactive event by a deleterious mutation.

(2) If m is a beneficial mutation and
(a) the event precedingm is a selective branching and the line involved in the mutation is contin-

uing (resp. incoming), we remove the sub-ASG arising from the incoming (resp. continuing)
line and connect the remaining line to the descendant line.

(b) the event preceding m is a trifurcation and the line involved in the mutation is incoming
(resp. checking) to this event, we remove the sub-ASG arising from the incoming (resp.
checking) line and connect the checking (resp. incoming) line to the continuing line via a
selective arrow.

(c) the event preceding m is a trifurcation and the line involved in the mutation is continuing
to this event, we remove the sub-ASGs arising from the checking and incoming lines.

(d) the event preceding m is an interactive bifurcation and the line involved in the mutation is
incoming (resp. checking) to this event, we remove the line segment between the two events
and connect the checking (resp. incoming) line to the descendant line.

We call Â a pruning of A if Â =
S
(A) or if it is obtained by successive 1-step prunings of

S
(A). Moreover,

a pruning of A is called total if it is composed of a generalised ASG without mutations and/or a collection
of lines ending in mutation events. We write A ∼ ◦ if A consists of a single line ending in a beneficial
mutation. Similarly, we write A ∼ × if A consists of a single line ending in a deleterious mutation.

Remark 5.2. Note that a 1-step pruning reduces the number of events in a reduced ASG at least by one.
Therefore, a total pruning is obtained after a finite number of 1-step prunings.

Remark 5.3. If A is a generalised ASG, then
S
(A) is, by construction, embedded into A (in the obvious

way). Similarly, if Ā is a reduced ASG and ρm(Ā) is a 1-step pruning of it, then the lines of ρm(Ā)



14 ELLEN BAAKE, FERNANDO CORDERO, AND SEBASTIAN HUMMEL

can be embedded into Ā. However, the type of the connections between lines can differ between ρm(Ā)

and Ā (see Fig. 12). This identification of lines will be used implicitly all along in this section.

We extend the definition of H to generalised ASGs by adding the rule that in an interactive bifurcation
the descendant line is fit if and only if both checking and incoming lines are fit. For a reduced ASG
in [0, t], we assign types to the lines that are present at time r = t (the lines ending before time t get
their types from the corresponding mutation events). Next, we propagate types in the usual way. Hence,
we can also extend the definition of H to reduced ASGs.

Remark 5.4. The statement of Lemma 4.4 remains true if At is a reduced ASG or a generalised ASG
in [0, t]. Moreover, points (1), (2), (3) and (4) are complemented by

(5) if the event at time T? is an interactive bifurcation, we denote by A2
T?,t

and A3
T?,t

the ASGs
starting at time T? from the incoming and checking line, respectively. Then,

H(At, y0) = H(A2
T?,t, y0) +H(A3

T?,t, y0)−H(A2
T?,t, y0)H(A3

T?,t, y0).

The next lemma states that reduction and pruning do not change the value of H.

Lemma 5.5. The function H is invariant under reduction and 1-step prunings.

Proof. Let A be a generalised ASG in [0, t] consisting of n lines at time t, denoted by `1, ..., `n. Let I ⊂
{`1, . . . , `n} be the subset of lines that are also present in

S
(A) at time t. By Lemma 4.4, we can

without loss of generality assume that A starts with one line. For x := (xi)i∈[n] ∈ {0, 1}n, we denote
by v(x) ∈ {0, 1} the type of the single line present at time 0 in A if at time t, for each i ∈ [n], line `i
is assigned type xi. From construction, if y := (yi)i∈[n], z := (zi)i∈[n] ∈ {0, 1}n are such that yi = zi for
all i ∈ I, then v(y) = v(z). Therefore, H is invariant under reduction.

We prove that H is invariant under 1-step prunings by induction on the number of branching events
in the corresponding ASG. First, assume that At is a reduced ASG in [0, t] consisting of one branching
event and at least one mutation. We have to show that for every mutation event m on a line of At,
H(At, y0) = H(ρm(At), y0). We prove this in the case that the branching is a trifurcation,m is deleterious
and occurs in the continuing line, all the other cases are analogous. Using the notation of Lemma 4.4-(4),
A1
T?,t
∼ ×, and therefore H(A1

T?,t
, y0) = 1. Hence, using Lemma 4.4-(4) and Remark 5.4, we get

H(At, y0) = H(A2
T?,t, y0) +H(A3

T?,t, y0)−H(A2
T?,t, y0)H(A3

T?,t, y0) = H(ρm(At), y0).

Now, we assume that the result is true for reduced ASGs containing at most k branchings. Let At be a
reduced ASG in [0, t] consisting of k+ 1 branchings and at least one mutation. We have to show that, for
every mutation event m on a line of At, H(At, y0) = H(ρm(At), y0). Assume that the first event in At is
a trifurcation, m is beneficial and occurs in the region arising from the checking line. If A3

T?,t
∼ ◦, using

the notation of Lemma 4.4-(4), then H(A3
T?,t

, y0) = 0. Thus, using Lemma 4.4-(3,4), we obtain

H(At, y0) = H(A1
T?,t, y0)H(A2

T?,t, y0) = H(ρm(At), y0),

ρm

(2.a)

ρm

(2.b)

ρm

(2.c)

ρm

(2.d)

Figure 11. 1-step pruning described by (2.a)-(2.d)
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Figure 12. A realisation of the ASG At in the sssism-limit in the time interval [0, t] (grey and black, left and right),
its reduced ASG

S
(A) (black, left), and its total pruning Â (black, right).

which proves the result in this case. Now, assume that A3
T?,t

contains at least one branching. In this
case, ρm(At) is obtained by replacing A3

T?,t
by ρm(A3

T?,t
) in At. Moreover, since A3

T?,t
contains at

most k branchings, applying the induction hypothesis, we deduce that H(A3
T?,t

, y0) = H(ρm(A3
T?,t

), y0).
Therefore, Lemma 4.4-(4) yields

H(At, y0) = H(A1
T?,t, y0)

[
H(A2

T?,t, y0) +H(A3
T?,t, y0)−H(A2

T?,t, y0)H(A3
T?,t, y0)

]
= H(A1

T?,t, y0)
[
H(A2

T?,t, y0) +H(ρm(A3
T?,t), y0)−H(A2

T?,t, y0)H(ρm(A3
T?,t), y0)

]
= H(ρm(At), y0),

which proves the result in this case. The remaining cases are analogous. �

Remark 5.6. Two total prunings are not necessarily identical. See for example Fig. 13.

Lemma 5.7. Let At be a realisation of the ASG in [0, t], starting with one line. Two total prunings
of At are either identical or both consist of a single line ending in the same type of mutation.

Proof of Lemma 5.7. We proceed by induction on the number of events in the ASG. The statement is
trivially true for any ASG consisting of exactly one event. Let us assume that the statement holds true
for any ASG consisting of at most n events. Let At be an ASG consisting of exactly n + 1 events and
let T? be the time to the first event on At.
If the event at time T? is a mutation, then

S
(At) is a single line ending at the corresponding mutation at

time T?. Hence,
S
(At) is the unique total pruning of At. The result follows in this case.

For the remaining cases, we denote by ρ1(At) and ρ2(At) two total prunings of At. If the event at time T?
is a selective branching, we denote by A1

T?,t
and A2

T?,t
the ASGs arising at time T? from the continuing

and incoming line, respectively. For i, j ∈ {1, 2}, we denote by ρi(AjT?,t) the reduced ASG obtained
by pruning AjT?,t according to ρi ignoring the prunings associated with events that are not in AjT?,t.
If ρ1(A) ∼ ◦, then, by construction, there is i ∈ {1, 2} such that ρ1(AiT?,t) ∼ ◦. In particular, ρ1(AiT?,t) is
a total prunings of AiT?,t, and by the induction hypothesis, if Ā is a total pruning of AiT?,t, then Ā ∼ ◦.
Hence, if ρ2(AiT?,t) � ◦, then ρ

2(AiT?,t) can not be a total pruning and therefore has to contain at least
two lines and at least one mutation. Thus, ρ2(AjT?,t) ∼ ◦, for j ∈ {1, 2} \ {i}, such that ρ2(At) ∼ ◦, and

ρ1 ρ2

Figure 13. Resolving first the first (second) mutation from the left leads to the total pruning on the left (right).
Note the difference in length of the line segment to the beneficial mutation after pruning.
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the result follows in this case. On the other hand, if ρ2(AiT?,t) ∼ ◦, then ρ
2(At) ∼ ◦, and the result also

follows.
We assume now that ρ1(At) � ◦. In this case, ρ2(At) � ◦. Therefore, for i, j ∈ {1, 2}, ρi(AjT?,t) either
has no mutations or ρi(AjT?,t) ∼ ×. In particular, ρi(AjT?,t) is a total pruning of AiT?,t, for i, j ∈ {1, 2}.
The induction hypothesis yields that ρ1(AiT?,t) = ρ2(AiT?,t), for i ∈ {1, 2}. Thus, either ρ

1(At) = ρ2(At)
or ρ1(At) ∼ × ∼ ρ2(At). The result in the case of an interactive event at time T? follows in a similar
way. �

The previous result supports the following definition.

Definition 5.8 (Pruned ASG). Let At be a realisation of the ASG in the time interval [0, t] starting
with one line. The pruned ASG associated with At, denoted by ρ(At), is defined as follows. Let Āt be
a total pruning of At. If Āt ∼ ×, we set ρ(At) := ∅. If Āt ∼ ◦, we set ρ(At) := ∆, where ∆ denotes a
cemetery point. In the remaining case, we set ρ(At) := Āt. Moreover, if At := (At(i))i∈[n] is a realisation
of the ASG in the time interval [0, t] starting with n lines, then the pruned ASG associated with At is
given by

ρ(At) :=


∆, if ρ(At(i)) = ∆ for some i ∈ [n],

∅, if ρ(At(i)) = ∅ for all i ∈ [n],

(ρ(At(i)))i∈In , otherwise,

where In := {i ∈ [n] : ρ(At(i)) 6= ∅}.

We set H(∆, y0) := 0 and H(∅, y0) := 1, for y0 ∈ [0, 1].

Lemma 5.9. For any realisation A of the ASG in a finite interval, we have

H(A, y0) = H(ρ(A), y0), y0 ∈ [0, 1].

Proof. It follows by iterating Lemma 5.5. �

5.3. Stratifying the ASG. The pruned ASG permits to get rid of the mutation events in the ASG.
The next step is to partition or stratify the pruned ASG into sub-regions within which types propagate
as in the non-interactive case. To this end, we say that two lines in a generalised ASG belong to the same
region if they are connected only by means of selective arrows. A single trifurcation gives rise to two new
regions, which originate from the checking and incoming lines. Each region may give rise to subregions
due to subsequent trifurcations. In this way, the line at the origin of a given region is assigned type 1 if
and only if all the lines sharing this region are assigned type 1, and at any trifurcation point involving a
line in this region (where the affected line is by definition continuing) either the incoming or the checking
line is assigned type 1. Interactive bifurcations will be treated analogously. In this way, it will be enough
to keep track of the sizes of the regions and of the tree structure inherent to the connections between
them. In order to encode this information, we introduce the notion of weighted ternary trees.
In what follows, a rooted tree will be an undirected, acyclic, connected graph in which we identify a
special vertex that is called the root. A ternary tree is a rooted tree in which each vertex has either
no children or three distinguishable children that we call left, middle, and right child, respectively. We
denote by Ξ the set of all ternary trees. For a ternary tree τ ∈ Ξ, we denote by Vτ the set of its vertices
and by Lτ ⊆ Vτ the set of its leaves. A weighted ternary tree is a pair T = (τ,mτ ), where τ ∈ Ξ

and mτ : Lτ → N0. We denote by Υ the set of weighted ternary trees. We write n for the weighted
ternary tree that consists only of a root of weight n.
For a given realisation of the ASG, we will associate a weighted ternary tree such that: (1) the leaves of the
weighted ternary tree encode the different regions in the corresponding pruned ASG, (2) the underlying
tree structure provides the connections between the regions, and (3) the weight of a leaf corresponds to
the number of lines in the associated region.

Definition 5.10 (Stratified ASG). Let At be a generalised ASG in [0, t]. The stratified ASG associated
with At, denoted by S(At) ∈ Υ? := Υ ∪ {∆}, is defined as follows. If ρ(At) = ∅, we set S(At) := 0 .
If ρ(At) = ∆, we set S(At) := ∆. Assume now that ρ(At) /∈ {∅,∆}. If there are no interactive events
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×
S S S S S

0 ∆ 2

1 11 1 10

Figure 14. Building blocks of the pruned ASG and their associated stratified ASG.

in ρ(At), we set S(At) := m , where m is the number of lines present at time t in ρ(At). In the remaining
case, we denote by A2

T?,t
and A3

T?,t
the sub-ASGs arising at the first interactive event in ρ(At) from the

checking and incoming lines, respectively. Moreover, we denote by A1
t the generalised ASG obtained by

removing A2
T?,t

and A3
T?,t

from ρ(At). Thus, S(At) is defined recursively by joining the roots of S(A1
t ),

S(A2
T?,t

) and S(A3
T?,t

) to a new node ρ̂, so that they play the role of the left, middle, and right child of ρ̂,
respectively.

Remark 5.11. If At is a generalised ASG in [0, t] with ρ(At) /∈ {∅,∆}, there is a natural way to associate
with any line present at time t in ρ(At) a leaf in S(At). If there are no interactive events in ρ(At), all the
lines at time t in ρ(At) are associated with the root. Otherwise, using the notation in Definition 5.10,
we proceed recursively by associating, for i ∈ {1, 2, 3}, the lines of Ait present at time t with the leaves
of S(Ait). This construction will play an important role in Lemma 5.15.

It remains to explain how to compute the probability H(A, y0) on the basis of S(A).

Definition 5.12. We define H : Υ? × [0, 1]→ [0, 1] recursively. First, we set for y0 ∈ [0, 1],

H
(
n , y0

)
:= yn0 , n ∈ N0, and H(∆, y0) := 0.

For T = (τ,mτ ) ∈ Υ having at least three leaves, we denote by κ1, κ2, and κ3 the left, middle and right
child of the root of τ , and we define recursively

H(T , y0) := H(Tκ1 , y0) [H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)] . (5.2)

The next theorem shows that the stratified ASG together with the function H is the right object to
encode the probability that the initial lineages in an ASG are all unfit.

Theorem 5.13. For any realisation At of the ASG in [0, t], we have

H(At, y0) = H(S(At), y0), ∀y0 ∈ [0, 1].

Proof. From Lemma 5.9, it is enough to prove that for any realisation At of the ASG in [0, t], we have

H(ρ(At), y0) = H(S(At), y0), ∀y0 ∈ [0, 1]. (5.3)

If ρ(At) ∈ {∅,∆}, the result follows from the definition. Now we assume that ρ(At) /∈ {∅,∆}, and we
proceed by induction on the number m of interactive events present in ρ(At). For m = 0, iterating
Lemma 4.4-(1), we obtain that H(ρ(At), y0) = yn0 , where n is the number of lines present in ρ(At) at
time t. In addition, by definiton S(At) = n , and hence H(S(At), y0) = yn0 , and the result follows
in this case. Now we assume that (5.3) holds for any ASG such that the corresponding pruned ASG
consists of at most m interactive events. Assume that At is such that ρ(At) contains exactly m + 1

interactive events. As in Definition 5.10, we denote by A2
T?,t

and A3
T?,t

the sub-ASGs arising at the first
interactive event in ρ(At) from the checking and incoming line, respectively, and by A1

t the generalised
ASG obtained by removingA2

T?,t
andA3

T?,t
from ρ(At). By construction, A1

t andAiT?,t (i ∈ {2, 3}) contain
at most m interactive events, and therefore from the induction hypothesis H(ρ(A1

t ), y0) = H(S(A1
t ), y0)

and H(ρ(AiT?,t), y0) = H(S(AiT?,t), y0) (i ∈ {2, 3}). Hence, the result follows by using Lemma 4.4 (or
Remark 5.4 in the case of an interactive bifurcation) and the definition of S(At) and H. �
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`1τ

`1τv

κτ

av

v

κτ

av `1τv

v

`1v

v

Figure 15. From left to right: ternary tree τ with leftmost leaf `1τ and root κτ ; the tree τCav that arises if we remove
from τ all the descendants of av ; the restriction τv of τ to the subtree induced by v; the concatenation τCav ⊗av τv
of τCav with τv at leaf av . Note that the labels do not indicate the weights here.

5.4. The stratified ASG process. In what follows, A∞ denotes a random realisation of the ASG
in [0,∞) and, for r > 0, Ar denotes its restriction to [0, r]. In this section we aim to describe the evolution
of the process (S(Ar))r>0. We first introduce some notation and operations on weighted ternary trees,
which will serve as building blocks to describe the transitions of this process.

Fix T := (τ,mτ ) ∈ Υ. We denote by κτ and `1τ the root and the leftmost leaf of τ , respectively.
For v ∈ Vτ \ {κτ}, av is the the parent of v and a?v is either v if v is not the left child of its parent, or the
youngest ancestor of v that is not the left child of its parent. In particular, a?l1τ = κτ .

For v ∈ Vτ , τv ∈ Ξ is the subtree of τ that contains v and all its descendants such that v is the root of τv.
We write Tv = (τv,mτv ) ∈ Υ for the ternary tree τv with weights given by the restriction of mτ to Lτv ,
see also Fig. 15. Similarly, τCv is the tree that arises from τ by removing all the descendants of v. The
analogous weighted ternary tree is T Cv = (τCv ,mτCv

), where

mτCv
(l) =

{
mτ (l), if l 6= v,

0, if l = v.

For ` ∈ Lτ and τ̄ ∈ Ξ, we define τ⊗` τ̄ ∈ Ξ as the tree that arises by concatenating τ̄ to τ at the leaf `, see
Fig. 17. In particular, the corresponding set of leaves is Lτ⊗`τ̄ =

(
Lτ \ {`}

)
∪ Lτ̄ . For T̄ = (τ̄ ,mτ̄ ) ∈ Υ,

the concatenation of T̄ at a leaf ` of T is defined as T ⊗` T̄ = (τ ⊗` τ̄ ,mτ ⊗` mτ̄ ), where

mτ ⊗` mτ̄ =


mτ (l), if l ∈ Lτ \ {`},
mτ̄ (l), if l ∈ Lτ̄ \ {`1τ̄},
mτ (`) +mτ̄ (l), if l = `1τ̄ .

The total weight of T is
M(T ) :=

∑
v∈Lτ

mτ (v). (5.4)

1 1 2 3 9 7 4 1

10 2

1 2

5 1

0 1 2

4

1 1 2 3 9 7

Figure 16. The weighted ternary tree in the middle arises if we apply the ’◦’-operation at the dashed leaf in the
left tree. The weighted ternary tree of the right arises if we apply the ’×’-operation at the dotted leaf in the left tree.
The labels indicate the weights of the leaves.
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`1 `2 `3 ˜̀1 ˜̀2

˜̀3 ˜̀4 ˜̀5

`2 `3

˜̀1 ˜̀2

˜̀3 ˜̀4 ˜̀5

⊗
`1 =

Figure 17. Concatenation of two trees at a given leaf. Note that the labels do not indicate weights here. The weight
of leaf ˜̀1 in the right tree is the weight of `1 plus the weight of ˜̀1 in the middle tree.

We denote by b` the youngest ancestor of ` that is either the left child of its parent, or that is not the
left child of its parent but where the parent has left child b1` such that M(τ

b1`
) > 0, or which is the root.

Denote by
t
∈ Ξ the ternary tree with three leaves. Moreover, we set

t? = (
t
,mt) ∈ Υ as the ternary

tree
t
with left leaf of weight 0 and middle and right leaf of weight 1. The following transformations will

play the role of transitions of the process (S(Ar))r>0 (see Figs. 16–18).

Definition 5.14 (Transformations of weighted ternary trees). For T = (τ,mτ ) ∈ Υ and ` ∈ Lτ , we
define T `f, Tt̀ , T `×, T `◦ ∈ Υ? as follows.
• T `f:= (τ `f,mτ`f) with τ `f:= τ , mτ`f(`) := mτ (`) + 1 and mτ`f(l) := mτ (l) for l 6= `.
• Tt̀ := (τt̀,mτt̀) with τt̀ := τ ⊗`

t
and mτt̀ := mτ ⊗` mt? .

• T `× := (τ `×,mτ`×
) where

• if mτ (`) > 1 or ` is the left child of its parent, then τ `× := τ , mτ`×
(`) := mτ (`)− 1 and mτ`×

(l) :=

mτ (l) for l 6= `.
• if mτ (`) = 1, ` is not the left child of its parent, and b` is not the root, then we set T `× :=

T Cab` ⊗ab` Tb1` .
• if mτ (`) = 1, ` is not the left child of its parent, and b` is the root, then T `× := 0 .

• T `◦ := (τ `◦ ,mτ`◦
) where

• if ` 6= `1τ , denote by v and w the two children of aa?` other than a?` ordered from left to right.
Then we set, T `◦ :=

(
T Caa?

`

⊗aa?
`

Tv
)
⊗`1

(τv)
Tw.

• if ` = `1τ , we set T `◦ := ∆.

Lemma 5.15. Let At be a realisation of the ASG in [0, t]. Assume that ρ(Ar−) /∈ {∅,∆}, r ∈ (0, t], and
that at time r a line present in ρ(Ar−) is affected by an event in Ar. If the affected line is associated to
leaf ` ∈ S(Ar−) and the event corresponds to a

(1) branching, then S(Ar) = (S(Ar−))
`

f.
(2) trifurcation, then S(Ar) = (S(Ar−))t̀.
(3) deleterious mutation, then S(Ar) = (S(Ar−))

`
×.

(4) beneficial mutation, then S(Ar) = (S(Ar−))
`
◦.

Proof. We prove the lemma for case (3). For the other cases the proof works analogously. We proceed by
induction on the number k of interactive events present in ρ(Ar−). For k = 0, we have that S(Ar−) = n ,
where n denotes the number of lines present at time r− in ρ(Ar−). In particular, all the lines present at
time r− in ρ(Ar−) are associated with the root κ. Hence, (S(Ar−))

κ
× = j , where j := n−1. In addition,

ρ(Ar) does not contain interactive events and consists of j lines at time r. Therefore, S(Ar) = j , which
proves the result for k = 0. Now, we assume the result is true whenever ρ(Ar−) contains at most k
interactive events. If ρ(Ar−) contains exactly k+1 interactive events, we denote by A2

v and A3
v, for v = r

or v = r−, the sub-ASGs arising at the first interactive event in ρ(Av) from the checking and incoming
line, respectively. Moreover, we denote by A1

v the generalised ASG obtained by removing A2
v and A3

v
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1 f

→ 2
t

→

12 1

f

→

12 2

t

→

1 2

112

×→

12 1

◦→ ∆

Figure 18. Stratified ASG process. The dotted leaf is the leaf affected by the operation associated with the
subsequent transition arrow. Here, the labels in the leaves indicate their respective weight.

from ρ(Av). Let us assume that the line affected by the event is in A2
r− (the other cases follow in a

similar way). If ρ(A2
r) = ∅, then ρ(Ar) = ρ(A1

r). In particular, S(Ar) = S(A1
r) = S(A1

r−). In addition,
by the induction hypothesis S(A2

r−)`× = S(A2
r) = 0 , and hence S(Ar−)`× = S(A1

r−) = S(Ar). It
remains to prove the result in the case where ρ(A2

r) 6= ∅. In this case, S(Av), for v = r or v = r−, is the
weighted ternary tree obtained by joining from left to right S(A1

v), S(A2
v) and S(A3

v) to a new root κ.
By construction S(Air) = S(Air−) for i ∈ {1, 3}, and by the induction hypothesis, S(A2

r) = S(Ar−)`×.
The result follows by noting that S(Ar−)`× is obtained by replacing S(A2

r−) by S(Ar−)`×. �

Definition 5.16 (Stratified ASG process). The stratified ASG process T = (T (r))r>0 is the continuous-
time Markov chain with values in Υ? and, for any T = (τ,mτ ) ∈ Υ and ` ∈ Lτ , transition rates,

qT (T , T `f) := smτ (`), qT (T , Tt̀) := γmτ (`), qT (T , T `×) := uν1mτ (`), qT (T , T `◦ ) := uν0mτ (`).

The states 0 and ∆ are absorbing.

The infinitesimal generator of T is then given by

GT f(T ) = G ff(T ) + Gtf(T ) + G×f(T ) + G◦f(T ), (5.5)

where for T = (τ,mτ )

G ff(T ) :=
∑
`∈Lτ

mτ (`)
[
f(T `f)− f(T )

]
, Gtf(T ) :=

∑
`∈Lτ

mτ (`)
[
f(Tt̀)− f(T )

]
,

G×f(T ) :=
∑
`∈Lτ

mτ (`)
[
f(T `×)− f(T )

]
, G◦f(T ) :=

∑
`∈Lτ

mτ (`)
[
f(T `◦ )− f(T )

]
.

(5.6)

The following result implies that the stratified ASG process is, in distribution, equal to the stratified
ASG associated with a realisation of an ASG.

Theorem 5.17. If S(A0) = T (0), then we have

(S(Ar))r>0
(d)
= (T (r))r>0.

Proof. Note that by construction S(Ar) is only affected by the events happening to the lines in ρ(Ar) at
time r. Since the number of lines in ρ(Ar) that are associated with a given leaf ` ∈ S(Ar) =: (τr,mr)

is mr(`), the result follows as a direct application of Lemma 5.15. �

6. Type distribution via stratified ASG

In this section we aim to connect the solution of the deterministic mutation-selection equation (2.1) with
the stratified ASG, both over time and at stationarity. The formal relation will be given as a duality with
respect to the function H of Definition 5.12. In a first step, we study the effect of the generator of T

on H for a fixed initial frequency of unfit types y0 ∈ [0, 1].

Lemma 6.1. For every T ∈ Υ?, we have H(T , ·) ∈ C1([0, 1],R). Moreover, for any y0 ∈ [0, 1],

G fH(·, y0)(T ) = −sy0(1− y0)
∂H(T , y)

∂y
(y0), GtH(·, y0)(T ) = −γy0(1− y0)2 ∂H(T , y)

∂y
(y0),

G×H(·, y0)(T ) = (1− y0)uν1
∂H(T , y)

∂y
(y0), G◦H(·, y0)(T ) = y0uν0

∂H(T , y)

∂y
(y0).

(6.1)



LINES OF DESCENT IN THE MUTATION-SELECTION MODEL WITH PAIRWISE INTERACTION 21

Proof. See Appendix A. �

The next result establishes the aforementioned duality between the solution of the mutation-selection
equation and the stratified ASG.

Theorem 6.2. The stratified ASG (T (t))t>0 and the solution (y(t; y0))t>0 of the IVP (2.1) satisfy the
duality relation

H(T , y(t; y0)) = ET [H(T (t), y0)] for y0 ∈ [0, 1], T ∈ Υ?. (6.2)

In particular, for t > 0 and y0 ∈ [0, 1],

y(t; y0) = E 1 [H(T (t), y0)]. (6.3)

Remark 6.3. If s = ν0 = 0 and u = 1, our theorem resembles [25, Prop. I.2.1.4]. But, as mentioned in
the beginning of Sect. 5, the two processes dual to the ODE are conceptually different.

Proof of Theorem 6.2. We consider (y(t; y0))t>0 as a (deterministic) Markov process on [0, 1] with gen-
erator given by

GF g(ỹ) = F (ỹ)
∂g

∂y
(ỹ) (6.4)

for g ∈ C1([0, 1],R). Using Lemma 6.1, we deduce that

GTH(·, ỹ)(T ) = GFH(T , ·)(ỹ) for T ∈ Υ? and ỹ ∈ [0, 1].

Since H is continuous, the result follows from Liggett [24, Thm. 3.42] (or Jansen and Kurt [19, Prop.
1.2]). �

Eventually, we want to recover the asymptotic behaviour of the forward process in terms of the backward
process by taking t → ∞ in (6.3). Note that in the case γ = 0, the stratified ASG is equivalent to a
birth-death process with killing (which occurs at rate uν0). Since birth-death processes either absorb or
grow to ∞ (see Karlin and McGregor [20]), the same holds true for the stratified ASG in this parameter
regime; see also Baake et al. [6, Lem. 5]. For the general case, we denote the time of absorption in 0

and ∆ by
T 0 := inf

{
r > 0 : T (r) = 0

}
and T∆ := inf{r > 0 : T (r) = ∆},

respectively. Denote by
Tabs := min{T 0 , T∆}.

The next result generalises the previous idea to the case γ > 0.

Proposition 6.4. On {Tabs =∞}, we have that limr→∞M(T (r)) =∞.

Proof. If γ = 0,M(T (r))→∞ is only possible if ν0 = 0. In this case (T (r))r>0 is a classical birth-death
process and the result follows by standard theory; see [6, Lem. 5− (iii)] for details. Hence, assume γ > 0.
By Theorem 5.17, we can directly work on the basis of a random realisation of an ASG A∞ in [0,∞).
Denote by ā := P (Tabs = ∞ | S(A0) = 1 ). For any r > 0, we will construct on {Tabs = ∞} a
set Âr ⊆ ρ(Ar) with the following properties. All the lines in Âr end at time r and the restriction of Âr′
to [0, r] is Âr for any r 6 r′. Informally, this means that Âr consists of paths in ρ(Ar) that persist
indefinitely as r → ∞. Set Â0 = A0. If at time r there is a selective event in a line that is in Âr−, we
continue the paths that are not on the line of the selective event until time r. We extend the path on
the line with the selective event by the lines that persist indefinitely arising from the branching event.
On {Tabs = ∞}, there will be at least one such line. If at time r there is an interactive event on a line
that is in Âr−, we add the checking and the incoming line to Âr if they persist indefinitely, otherwise,
on {Tabs =∞}, there must be at least one line that persists indefinitely and we add this line to Âr. An
interactive event on each line in Ar occurs at rate γ. With probability ā2(1− d1) the incoming and the
checking line both persist indefinitely. In particular, a lower bound for the rate at which Âr increases by
one is

γ
(1− d1)ā2

1− (1− ā)3
.



22 ELLEN BAAKE, FERNANDO CORDERO, AND SEBASTIAN HUMMEL

Clearly, |Âr| → ∞ as r →∞. Since we are working on {Tabs =∞}, we have that |Âr| 6M(S(Ar)) and
the result follows. �

We now deduce the main properties of the process (H(T (r), y0))r>0.

Theorem 6.5. Let T1 < T2 < T3 < · · · < Tn+1 be the successive jump times of T . For y0 ∈ [0, 1],

E[H(T (Tn+1), y0) | T (Tn)] = H(T (Tn), y0) +
F (y0)

(s+ γ + u)M
(
T (Tn)

)H(T (Tn), y)

∂y
(y0), (6.5)

with F (·) from (2.1) and M(T (Tn)) from (5.4). Furthermore,

• If F (y0) > 0, then (H(T (r), y0))r>0 is a bounded submartingale.
• If F (y0) = 0, then (H(T (r), y0))r>0 is a bounded martingale.
• If F (y0) < 0, then (H(T (r), y0))r>0 is a bounded supermartingale.

In particular, H∞(y0) := limr→∞H(T (r), y0) ∈ [0, 1] exists almost surely.

Proof. We first prove (6.5). Fix n ∈ N and T = (τ,mτ ). Note that

E[H(T (Tn+1), y0)−H(T (Tn), y0) | T (Tn) = T ]

= E

[ ∑
`∈Lτ

∑
?∈{ f

,
t
,×,◦}

1{T (Tn+1)=T `? }
(
H(T (Tn+1), y0)−H(T (Tn), y0)

)
| T (Tn) = T

]

=
∑
`∈Lτ

∑
?∈{ f

,
t
,×,◦}

(
H(T `? , y0)−H(T , y0)

)
P
(
T (Tn+1) = T `? | T (Tn) = T

)
.

Then,

(s+ γ + u)M(T )P
(
T (Tn+1) = T `? | T (Tn) = T

)
=


mT (`)s, if ? =

f

,

mT (`)γ, if ? =
t
,

mT (`)uν1, if ? = ×,
mT (`)uν0, if ? = ◦.

In particular,∑
`∈Lτ

∑
?∈{ f

,
t
,×,◦}

(
H(T `? , y0)−H(T , y0)

)
P
(
T (Tn+1) = T `? | T (Tn) = T

)
=
GTH(·, y0)(T )

(s+ γ + u)M(T )
.

Recall that we consider y(t; y0) as the (deterministic) Markov process with generator GF (see (6.4)). By
Lemma 6.1,

GTH(·, y0)(T )

(s+ γ + u)M(T )
=
GFH(T , ·)(y0)

(s+ γ + u)M(T )
=

F (y0)

(s+ γ + u)M(T )

∂H(T , y)

∂y
(y0),

such that the first result follows. We proceed to prove the second statement. For r < t we denote the
number of jumps of H(T , y0) in the time interval [r, t) by Nr,t. If Nr,t = k, let T ki be the time of
the i-th jump (1 6 i 6 k) with T k0 = r. Then,

E[H(T (t), y0)−H(T (r), y0) | H(T (r), y0)]

=

∞∑
k=0

E
[
1{Nr,t=k}

(
H
(
T (t), y0

)
−H

(
T (r), y0

))
| H
(
T (r), y0

)]

=

∞∑
k=0

k∑
l=1

E
[
1{Nr,t=k}

(
H
(
T (T kl ), y0

)
−H

(
T (T kl−1), y0

))
| H
(
T (r), y0

)]

=

∞∑
k=0

k∑
l=1

E
[
1{Nr,t=k}E

[
H(T (T kl ), y0)−H(T (T kl−1), y0) | T (T kl−1)

]
| H(T (r), y0)

]
where in the last step we used the tower property for conditional expectations and the fact that

σ(H(T (r), y0)) ⊆ σ(T (T kl−1)),
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where σ(X) denotes the σ-algebra generated by X. But,

E[H(T (T kl ), y0)−H(T (T kl−1), y0) | T (T kl−1)] =
F (y0)

(s+ γ + u)M
(
T (T kl−1)

) ∂H(T (T kl−1), y)

∂y
(y0),

where (s+γ+u)M(T (T kl−1)) and (∂H(T (Tl−1), y)/∂y)(y0) are non-negative and F (y0) is either greater,
equal, or less than 0. The second statement follows. In particular, (H(T (r), y0))r>0 is a non-negative
bounded sub/super-martingale. Hence, an straightforward application of the Doob’s martingale conver-
gence theorem yields the last result. �

Note that H∞(y0) = 1 on {T 0 < ∞} for any y0 ∈ [0, 1]. Similarly, H∞(y0) = 0 on {T∆ < ∞} for
any y0 ∈ [0, 1]. In particular, conditionally on {Tabs < ∞}, H∞(y0) is a Bernoulli random variable.
If T is not absorbed, the analysis of H∞(y0) is more involved. But, unless y0 is an unstable equilibrium
of (2.1), the result is the same. This is the content of next proposition.

Proposition 6.6. If y0 is not an unstable equilibrium of (2.1), then H∞(y0) is a Bernoulli random
variable with parameter y∞(y0).

Remark 6.7. Let us make a link to [26] and endogeny (see [1, 27] for the notion of endogeny). It follows
from [26, Prop. 15] together with [27, Thm. 5] (alternatively, [26, Prop. 16]) that if y0 is an equilibrium
of (2.1), then H∞(y0) is Bernoulli if and only if the recursive tree process corresponding to y0 is endoge-
nous. In particular, Proposition 6.6 implies that in our setup, the recursive tree processes corresponding
to stable equilibria are always endogenous. An alternative way to recover Proposition 6.6 is via [26,
Prop. 19, see also Sect. 2.1] (alternatively, [1, Lem. 15]).

For s = ν0 = 0 and u = 1, Proposition 6.6 can be also recovered from [26, Theorem 17]. Moreover,
if y0 is an unstable equilibrium, Mach et al. [26, Lemma 18] determine the first and second moments
of H∞(y0). This permits to infer that H∞(y0) is not Bernoulli. Furthermore, they complement the result
by numerical evaluation of the distribution function [26, Figure 2].

Proof of Proposition 6.6. Fix y0 ∈ [0, 1] such that it is not an unstable equilibrium of (2.1). In particular,
y∞(y0) is then attracting (from at least on side) and, therefore, F ′(y∞(y0)) 6 0. Consider a realisation
of (T (r))r>0 of the stratified ASG process. Denote by T f, Tt, T◦, and T× the time of the first selective, in-
teractive, beneficial mutation, and deleterious mutation event, respectively. Let T = min{T f, Tt, T◦, T×}.
For sufficiently large r > 0,

H(T (r), y0) = 1{T=T×} + 1{T=T f}H(T 1(r − T ), y0)H(T 2(r − T ), y0) + 1{T=Tt}H(T 3(r − T ), y0)

×
[
H(T 4(r − T ), y0) +H(T 5(r − T ), y0)−H(T 4(r − T ), y0)H(T 5(r − T ), y0)

]
,

where T 1,T 2,T 3,T 4, and T 5 are independent stratified ASGs all of which are started with a single
line. Taking the limit r →∞ yields,

H∞(y0) = 1{T=T×} + 1{T=T f}H1
∞(y0)H2

∞(y0) + 1{T=Tt}H3
∞(y0)[H4

∞(y0) +H5
∞(y0)−H4

∞(y0)H5
∞(y0)].

In particular, for every G ∈ C([0, 1],R), we have

E[G(H∞(y0))] = P (T = T×)E
[
G(1)

]
+ P (T = T◦)E

[
G(0)

]
+ P (T = T f)E

[
G
(
H1
∞(y0)H2

∞(y0)
)]

+ P (T = Tt)E
[
G
(
H3
∞(y0)

[
H4
∞(y0) +H5

∞(y0)−H4
∞(y0)H5

∞(y0)
])]

.
(6.6)

Note that X is a Bernoulli random variable if and only if E[X(1 −X)] = 0. Choosing G(x) = x(1 − x)

in (6.6) and using independence, we obtain

E(y0)− V (y0) =
s

u+ s+ γ

(
E(y0)− V (y0)

)(
E(y0) + V (y0)

)
+

γ

u+ s+ γ

(
E(y0)− V (y0)

)(
V (y0)2 + V (y0)(2− 3E(y0)) + E(y0)(2− E(y0))

)
,
(6.7)
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where E(y0) := E[H∞(y0)] and V (y0) := E[H∞(y0)2]. By the duality, E(y0) = y∞(y0) and hence E(y0)

is an equilibrium of (2.1) for which, by assumption, we have F ′(E(y0)) 6 0. Furthermore, H∞(y0) ∈ [0, 1]

and hence
0 6 V (y0) = E

[
H∞(y0)2

]
6 E

[
H∞(y0)

]
= E(y0).

Equation (6.7) is equivalent to (
E(y0)− x

)
p
(
E(y0), x

)
= 0,

where

p
(
E(y0), x

)
= s
(
E(y0) + x

)
+ γ
(
x2 + x(2− 3E(y0)) + E(y0)(2− E(y0))

)
− (u+ s+ γ).

Note that
p(E(y0), 0) = s(E(y0)− 1) + γ(E(y0)(2− E(y0))− 1)− u 6 −u

and p(E(y0), E(y0)) = F ′(E(y0)). In particular, since p(E(y0), x) is a quadratic polynomial with positive
quadratic term in x, p(E(y0), x) 6= 0 for all x ∈ [0, E(y0)). Altogether, this implies V (y0) = E(y0). �

For n ∈ N ∪ {0}, we denote the probability of absorption in 0 of the stratified ASG started in n by

wn := P
(
T 0 <∞ | T (0) = n

)
,

and w∆ := 0. Similarly, we denote the probability of not getting absorbed in ∆ of the stratified ASG
process started in n by

dn := P
(
T∆ =∞ | T (0) = n

)
,

and d∆ := 0. By definition, we have wn 6 dn, for all n. Moreover, we define for y0 ∈ [0, 1],

p(y0) := E
[
1{T

0
=∞}H∞(y0) | T (0) = 1

]
.

Note that in the case in which y0 is not an unstable equilibrium, it follows by Proposition 6.6 that

p(y0) = P
(
H∞(y0) = 1, T 0 =∞ | T (0) = 1

)
.

If the stratified ASG process absorbs in 0 , then the descendant is of type 1. On the other hand, if the
stratified ASG process absorbs in ∆, then the descendant is of type 0. In both cases this is independent
of the sampling probability y0 at the leaves. There are parameter regions where w1 = d1, so these are the
only possibilities. If the stratified ASG grows to∞, which occurs if d1 > w1, the type depends on y0. We
will examine this in detail in what follows. Recall from Sect. 2 that we denote the smallest and largest
equilibrium of (2.1) in [0, 1] by ŷ∞ and y̌∞, respectively.

Theorem 6.8. For any y0 ∈ [0, 1], we have

y∞(y0) = w1 + p(y0). (6.8)

In particular, ŷ∞ = w1 and y̌∞ = d1. Furthermore, the two following statements are equivalent:

(i) P (Tabs <∞ | T (0) = 1 ) = 1,
(ii) ŷ∞ = w1 = d1 = y̌∞ is the unique equilibrium in [0, 1].

In both cases, w1 is stable.

Remark 6.9. Theorem 6.8 in combination with the facts collected at the beginning of Sect. 2 implies
that w1 is never unstable. Furthermore, if ν0 > 0, then d1 is not unstable.

Proof of Theorem 6.8. We decompose H(T (t), y) according to {T 0 < ∞} and {T 0 = ∞}. More pre-
cisely, starting from the duality,

y(t; y0) = E 1 [H(T (t), y0)1{T
0
<∞}] + E 1 [H(T (t), y0)1{T

0
=∞}]. (6.9)

Since H( 0 , y0) = 1, the first term in (6.9) converges to w1 as t→∞. By Theorem 6.5, the second term
of (6.9) converges to p(y0) as t → ∞, thus proving (6.8). Since H∞(0) = 0 on {T 0 = ∞}, H∞(1) = 1

on {T∆ =∞}, and H∞(1) = 0 on {T∆ <∞}, then

p(0) = 0 and p(1) = P (T 0 =∞, T∆ =∞) = d1 − w1.
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Since p is increasing, we deduce that ŷ∞ = w1 and y̌∞ = d1. Note that under (i), p(y0) = 0 for
all y0 ∈ [0, 1], and hence the stability of w1 follows in this case by taking the limit when t→∞ in (6.9).
Finally, the equivalence between (i) and (ii) follows using the identity

P (T
0

=∞, T∆ =∞) = d1 − w1.

�

We denote the domain of attraction of an equilibrium y∞ by

Attr(y∞) :=
{
y0 ∈ [0, 1] : lim

t→∞
y(t; y0) = y∞

}
and refine the statement of Proposition 6.6.

Corollary 6.10. If y0 ∈ Attr(w1), then a.s.

H∞(y0) =

{
0, if T 0 =∞,
1, if T 0 <∞.

If y0 ∈ Attr(d1), then a.s.

H∞(y0) =

{
0, if T∆ <∞,
1, if T∆ =∞.

Remark 6.11. For y0 ∈ {w1, d1}, Corollary 6.10 makes the endogeny of the underlying recursive tree
process corresponding to y0 explicit.

Remark 6.12. Note that Attr(w1) = Attr(d1) if and only if w1 = d1. By Theorem 6.8, w1 = d1 if and
only if P (T 0 =∞, T∆ =∞) = 0.

Proof of Corollary 6.10. If y0 ∈ Attr(w1), then by definition w1 = y∞(y0) and together with Theorem 6.8,

w1 = y∞(y0) = w1 + p(y0),

which implies that p(y0) = 0 and the first statement follows. Now assume that P (H∞(y0) = 1 | T∆ =

∞) < 1. In this case also E[H∞(y0) | T∆ = ∞] < 1. On the other hand, if y0 ∈ Attr(d1), then by
Theorem 6.8

d1 = y∞(y0) = w1 + p(y0) = E[1{T∆=∞}H∞(y0)] = d1E[H∞(y0) | T∆ =∞] < d1,

which is a contradiction. �

Proposition 6.13. If P (Tabs =∞ | T (0) = 1 ) > 0, we have that

yc := inf
{
y0 ∈ [0, 1] : P

(
H∞(y0) = 1 | Tabs =∞, T (0) = 1

)
= 1
}

= sup
{
y0 ∈ [0, 1] : P

(
H∞(y0) = 0 | Tabs =∞, T (0) = 1

)
= 1
}
.

Furthermore, yc ∈ [w1, d1].

Proof. Define y(1) := inf{y0 ∈ [0, 1] : P (H∞(y0) = 1 | Tabs =∞, T (0) = 1 ) = 1} and y(0) := sup{y0 ∈
[0, 1] : P (H∞(y0) = 0 | Tabs = ∞, T (0) = 1 ) = 1}. By the properties of sup and inf, y(0) 6 y(1).
By Theorem 6.8, w1 6 d1 are equilibria and y∞(y(0)), y∞(y(1)) ∈ [w1, d1]. By definition of sup and inf

and p(y0), we have that for all ε > 0 the inequalities w1 < y∞(y(0) + ε) and d1 > y∞(y(1) − ε) hold.
Assume y(0) < y(1). In particular, for y0 ∈ (y(0), y(1)), we have that w1 < y∞(y0) < d1. Since (2.1)
has at most three equilibria, for all y0 ∈ (y(0), y(1)) we have y∞(y0) ≡ c for some c in (w1, d1). But
then, c, which is enclosed by w1 and d1, is stable. This contradicts the findings from Remark 2.11. By
Corollary 6.10, it follows that yc ∈ [w1, d1]. �

Corollary 6.14. (1) If P (Tabs = ∞ | T (0) = 1 ) = 0, then w1 = d1 is the unique equilibrium
of (2.1) in [0, 1] and it is stable.

(2) If P (Tabs =∞ | T (0) = 1 ) > 0 and yc = d1, then w1 and d1 are the only equilibria of (2.1) [0, 1]

with Attr(w1) = [0, d1) and Attr(d1) = [d1, 1].
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(3) If P (Tabs = ∞ | T (0) = 1 ) > 0 and yc = w1, then w1 and d1 are the only equilibria of (2.1)
in [0, 1] with Attr(w1) = [0, w1] and Attr(d1) = (w1, 1].

(4) If P (Tabs = ∞ | T (0) = 1 ) > 0 and w1 < yc < d1, then w1 < y∞(yc) < d1 are the only
equilibria of (2.1) [0, 1] with w1 and d1 being stable and y∞(yc) being unstable.

Proof. The first claim is already part of Theorem 6.8. The second and third claims follow from Proposi-
tion 6.13 and Theorem 6.8. The last claim follows by Proposition 6.13, Theorem 6.8, and Remark 2.11. �

Let us discuss how Corollary 6.14 relates to the forward picture. In (1) the stratified ASG absorbs almost
surely such that the type of the descendant is independent of the sampling probability y0, which results
in a unique equilibrium in [0, 1]. Its (global) stability reflects the independence of the sampling step.
In (2) to (4), the stratified ASG may also grow to ∞ in which case the sampling probability y0 becomes
relevant. In (2) and (3), yc ∈ {w1, d1} such that [0, 1] = Attr(w1)∪̇Attr(d1), whereas in (4), yc ∈ (w1, d1)

such that [0, 1] = Attr(w1)∪̇{yc}∪̇Attr(d1). Corollary 6.10 describes the type of the descendant when the
leaves in an infinite stratified ASG are sampled according to y0 ∈ Attr(w1)∪Attr(d1): for y0 ∈ Attr(w1)

(y0 ∈ Attr(d1)) the descendant is of type 1 (of type 0) almost surely. For y0 = yc, the probability of
an unfit descendant on non-absorption of the stratified ASG is given by p(yc). In the remainder of this
section, we concentrate on the case ν0 = 0, where we can make more explicit statements.

Corollary 6.15. If ν0 = 0, then w1 = min{ȳ2, 1} and d1 = 1. In particular, w1 = d1 if and only if we
are in one of the following parameter regimes

(1) σ < 0, (2) σ = 0, u = s = γ, (3) σ > 0, u > û, and s > γ.

Proof. The corollary is a direct consequence of Theorem 6.8 together with Proposition 2.6. �

Let us now connect the genealogical backward picture in the case ν0 = 0 with the bifurcation structure
described in Sect. 2.
(i) By the analysis of the forward picture, if either u < û or (s < γ and u = û), y∞(y0) ∈ [0, 1)

unless y0 = 1. The genealogical picture in this case is as follows. Either the backward process
absorbs in a state in which all lines vanished due to deleterious mutations (probability w1 < 1); or,
by Proposition 6.4, the number of lines tends to ∞ and, as a consequence of Corollary 6.10, the
ordering of these lines is such that the sum of the sampling probabilities of valid type assignments
does not have positive mass.

(ii) If either u > ǔ or (s > γ and u ∈ [û, ǔ]), then y∞(y0) = 1 for all y0 ∈ [0, 1]. By Theorem 6.8, this
corresponds to the backward process absorbing in 0 almost surely and the sampled individual is
unfit regardless of y0.

(iii) If s < γ and u = ǔ, both w1 and 1 are attracting from the left, i.e. y∞(y0) = w1 for y0 ∈ [0, w1]

and y∞(y0) = 1 for y0 ∈ (w1, 1]. By the same arguments as in case (i), we have the following
backward picture. If the process does not absorb, which occurs with probability w1 < 1, the
number of lines tends to ∞. Whether or not the sum of the sampling probabilities of valid type
assignments has positive mass depends on the initial type frequency. If y0 6 ȳ2, the mass is zero
and if y0 > ȳ2 the mass is 1.

(iv) If s < γ and u ∈ (û, ǔ), there exist three equilibria in [0, 1]. By arguments similar to case (i),
the backward picture is as follows. If the process does not absorb, where absorption occurs with
probability w1 < 1, the number of lines tends to ∞. Whether or not the sum of the sampling
probabilities of valid type assignments has positive mass depends on the initial type frequency.
If y0 < ȳ3, the mass is zero and if y0 > ȳ3 the mass is 1.

In the cases (i), (ii), and (iii), where the outcome depends on y0, the question arises whether a more
detailed analysis of the stratified ASG can be made that explains the dependence on y0 in terms of the
tree structure. This can be done in the case u < ǔ, where w1 is the smallest solution of

− γy2 + (s+ γ)y − u = 0, (6.10)

i.e. w1 = (1 + s/γ −
√
σ)/2; see (2.3) and (2.6). Let us rederive this expression in terms of the stratified

ASG. To do so, we analyse 1− w1, which is the survival probability of the stratified ASG started in 1 .
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Define γ̃ := γ(1− w1) as well as

a := 1− u

s
and b =

u

s

γ

s+ γ̃ − u
.

Note that, by a straightforward calculation, we can rewrite (6.10) (with y = w1) as a quadratic equation
in 1− w1, namely

b(1− w1)2 − (1− w1) + a = 0. (6.11)

Using the solution formula and the series expansion of the square root at 1 leads to

1− w1 =
1−
√

1− 4ab

2b
=

1

2b

∞∑
n=1

(2n)!

(2n− 1)(n!)2
anbn.

A straightforward calculation then leads to the following result for which we will subsequently provide
an additional probabilistic proof.

Proposition 6.16. For u < û, we have

1− w1 =

∞∑
n=0

Cna
n+1bn, (6.12)

where Cn is the nth Catalan number.

Probabilistic proof. Note that the number of lines inside a continuing region (i.e. only the lines that are
connected to the initial line of the region by selective arrows) behaves like a simple birth-death process
with birth rate s and death rate u. Recall that this process dies out with probability u/s and grows to∞
with probability 1 − u/s (note that we consider here the parameter regime u < û = s, so u/s ∈ [0, 1)).
Hence, a is the probability that the leftmost leaf in the stratified ASG does not reach weight 0. On the
other hand, (6.10) is equivalent to

y =
u

s
− u

s

γ(1− y)

s+ γ(1− y)
.

Using the fact that w1 is a solution of the above, a straightforward calculation yields the survival proba-
bility of the entire tree as

1− w1 =
s+ γ̃ − u
s+ γ̃

. (6.13)

In what follows, we work on the basis of an ASG in the time interval [0,∞) that is started with one
line. Here, we refer to a region either as the entire ASG or as the ASG arising from the incoming or
checking line in a trifurcation. We call a trifurcation in an ASG successful if both the associated checking
and incoming lines give rise to ASGs that have non-absorbing stratified ASGs (note that, if one of them
absorbs, both lines will be pruned in the long run, see the argument in the proof of Proposition 6.4). We
say that a region survives without the help of trifurcations if the leftmost leaf of its associated stratified
ASG does not reach weight 0; otherwise we say that the region goes extinct without trifurcations. On
the other hand, we say that a region survives due to trifurcations if its stratified ASG does not absorb
but its leftmost leaf reaches weight 0. Denote by π the probability that, conditional on the ASG going
extinct without the help of trifurcations, the ASG goes extinct. We claim that π = s/(s + γ̃). Indeed,
conditional on the event that the ASG goes extinct without trifurcations, the weight of the leftmost leaf
evolves as a birth-death process with birth rate u and death rate s; see Lemma A.2. Hence, a first-step
decomposition of π leads to

(γ(1− w1)2 + s+ u)π = s+ uπ2.

In the parameter regime we consider here, the solution is unique in [0, 1] and is given by s/(s+ γ̃), which
proves the claim. In particular, the probability that the ASG survives due to trifurcations is

u

s
(1− π) =

u

s

γ(1− w1)2

s+ γ̃ − u
= b(1− w1)2,

where we used (6.13). The probability that the incoming and checking lines of a successful trifurcation
both survive without the help of trifurcations is a2/(1−w1)2. Hence, a2b is the probability that the ASG
survives due to trifurcations and the incoming and the checking line of the first successful trifurcation
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Figure 19. Ways of the stratified ASG process to survive (and then grow to infinite size) if ν0 = 0. The label ∞ in
a leaf means that the region survives without the help of trifurcations. For an ASG that survives without the help
of trifurcations, there is C0 = 1 binary tree (left). For n = 1 there is C1 = 1 binary tree (middle). For n = 2 there
are C2 = 2 binary trees (right). The solid lines correspond to the binary trees.

survive without the help of trifurcations.

We now partition the event of non-absorption of the stratified ASG according to the possible ways the
stratified ASG may survive. We do this by associating to every such stratified ASG a binary tree B.
We start with the binary tree with one leaf β. If the ASG survives without the help of trifurcations,
we set B = β. If not, we add two leaves β1 and β2 that are associated with the incoming and checking
region in the first successful trifurcation, respectively. If one of these regions survives without the help
of trifurcations, the corresponding leaf stops branching. Otherwise, we attach to it two new leaves and
continue this procedure in a recursive way. By construction, B is a binary Galton-Watson tree with
offspring distribution p2 = a/(1−w1) and p0 = 1− p2. A straightforward calculation, which uses (6.11),
shows that p0 > p2 and hence B is almost surely finite (on the event of non-absorption). Let N be the
random number of bifurcations. In the previous construction a branching corresponds to a successful
trifurcation in a region of the reduced ASG that goes extinct without trifurcations and a leaf corresponds
to a region that survives without the help of trifurcations; see Fig. 19. By a simple induction argument
on the number of bifurcations n in the binary tree, one can show that the probability that the ASG
corresponds to a given binary tree with n+ 1 leaves is an+1bn. Indeed, we have already proved that for
n = 0 this probability is a and for n = 1 it is a2b. By construction, computing the probability for a tree
with n+ 1 bifurcations amounts to replacing a leaf by a tree with one bifurcation, which entails replacing
a factor a by a factor a2b. Since there are Cn binary trees with n+ 1 leaves,

P (T 0 =∞, N = n) = Cna
n+1bn.

Summing over the possible values of N leads to (6.12). �

Assume that the binary tree associated with a realisation of the stratified ASG has n leaves. Each leaf
corresponds to a region that survives without trifurcations and therefore, the leftmost leaf in the corre-
sponding stratified ASG has infinite weight. Hence, if y0 < 1, the descendant is of type 0 almost surely.
If y0 = 1, the descendant is of type 1. We thus also have a purely genealogical proof of the first case in
Corollary 6.10.

If u > û, by a straightforward comparison with a simple birth-death process, each leaf in the stratified
ASG eventually reaches weight 0 almost surely. However, for u ∈ [û, ǔ] the stratified ASG can survive by
escaping via trifurcations the effects of absorbing leaves. The analysis of the underlying tree structures
is more difficult and we leave the details to future work.

7. Ancestral type distribution via stratified ASG

So far we have been concerned with a randomly chosen individual at present and determined its type
via the stratified ASG. Let us now change perspective and consider the type of the ancestor, at time r
before the present, of our current individual. It will turn out that this can also be tackled by means of a
construction that builds on the stratified ASG. Indeed the specific structure of our reduced and pruned
trees will be essential.



LINES OF DESCENT IN THE MUTATION-SELECTION MODEL WITH PAIRWISE INTERACTION 29

×

×

×

t 0

R1

R3

Immune

T1T2T3

Figure 20. A new perspective on the pLD-ASG: from the immune line emerge three independent killed ASGs. They
are R1 ( ), R2 ( ), and R3 ( ) at times T1, T2, and T3. Here, R2 has absorbed before backward time t, but R1

and R3 have not.

In the Moran model and its diffusion limit, all individuals at present originate from a single individual in
the distant past, see also [21, 29]. This individual is called the common ancestor. In the diffusion limit,
the ancestral type distribution can be characterised in terms of a solution of a boudary value problem,
see [35]. In the deterministic limit, the ancestries are all disjoint, so the notion of a common ancestor
does not make sense. In line with Cordero [9] (see also [6]), we call the type of the ancestor living at
backward time r of a generic individual from the population at present the ancestral type at backward
time r and denote it by Jr. We abbreviate the probability for Jr to be unfit, conditional on the type
distribution of the population at backward time r being (1− y0, y0), by gr(y0) := Py0(Jr = 1).

7.1. Ancestral type distribution without interaction. In the absence of interaction, a pruned ver-
sion of the ASG, which is called the pruned lookdown ASG (pLD-ASG), is a tool to determine the
ancestral type distribution (see [23] and [6] for details and [4] for a review). Let us recall this construc-
tion in the strong selection–strong mutation limit (without interaction), see Fig. 20. The pLD-ASG starts
from a single individual. The lines of the graph correspond to the potential ancestors and are assigned
consecutive levels, starting at level 1. If a line is hit by a selective arrow, its level is increased by one and
at the same time all lines above it are shifted up one level; thereby making space for the incoming line,
which then occupies the former level of the line it hit. If the first event on a line that does not occupy the
top level is a deleterious mutation, we can conclude that it will not be ancestral, since it will, at a later
time, play the role of an unsuccessful incoming line, for its type is 1 due to the mutation. We therefore
prune this line at the time of the mutation event. The line occupying the top level is exempt from the
pruning since, regardless of its type, this line will be ancestral if all lines below it are non-ancestral.
We call this line the immune line. If a line that is not the top line has a mutation to type 0, we can
cut away all lines above it, because this line will, at some stage, be incoming to all lines above it. It
will, due to the beneficial mutation, be successful in all these selection events. If the top line is hit by a
mutation to type 0, this does not have an effect. This reasoning gives rise to the line-counting process of
the pLD-ASG L = (Lr)r>0 as a continuous-time Markov chain on N with transition rates

qL(n, n+ 1) = ns, qL(n, n− 1) = (n− 1)uν1 + 1{n>1}uν0, qL(n, n− j) = uν0, n ∈ N,

where j ∈ {2, . . . , n− 1}. The convenient feature of the above construction is that the original individual
has an unfit ancestor if and only if all potential ancestors in the pLD-ASG are unfit. The above reasoning
leads to

gr(y0) =

∞∑
n=1

P (Lr = n | L0 = 1) yn0 . (7.1)

As a warm-up for the case with interaction, we introduce a different perspective on the pLD-ASG with-
out interaction and without beneficial mutation (ν0 = 0). In this case, we can separate the pLD-ASG
into two parts. The first part is the immune line, which gives rise to new lines at rate s. Since it is not
pruned upon deleterious mutations, it persists indefinitely. The lines that emerge from the immune line
evolve independently and each of them is the origin of a killed ASG (we have recalled its definiton in the
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beginning of Sect. 5.1). The collection of these mutually independent killed ASGs forms the second part.

Under this new perspective, an ancestor is unfit if and only if 1) at the time of sampling, an unfit type
is associated with the immune line, and 2) all killed ASGs emerging from it are unfit at the time of their
origin. We will see that the independence of the killed ASGs, the duality (5.1), and standard properties
of Poisson processes permit to derive the following generalisation of [6, Thm.23] to finite time horizons.

Proposition 7.1. Let ν0 = 0 and γ = 0. Then

gr(y0) = y0 exp

(
− s

∫ r

0

(
1− y(ξ; y0)

)
dξ

)
, y0 ∈ [0, 1]. (7.2)

In particular,

gr(y0) =

{
y0

u−s y(r;y0)
u−sy0

, if y0 ∈ [0, 1) \ {us },
y0 exp(−rs(1− y0)), if y0 ∈ {us , 1}.

(7.3)

Furthermore, g∞(y0) = limr→∞ gr(y0) exists and is given as follows.
(i) If s = 0, g∞(y0) = y0 for all y0 ∈ [0, 1].

(ii) If u 6 û, g∞(y0) =

{
0, if y0 ∈ [0, 1),

1, if y0 = 1.

(iii) If u > û, g∞(y0) = y0
u−s
u−sy0

.

Proof. The proof of (7.2) is given in the next section in a more general setting (see proof of Theorem 7.9).
Given (7.2), (7.3) follows by standard integration techniques. To see this, consider y0 < u/s. Then y(r; y0)

increases and hence

−s
∫ r

0

(
1− y(ξ, y0)

)
dξ =

∫ y(r;y0)

y0

−s
u− sη

dη = ln

(
u− sy(r; y0)

u− sy0

)
,

where we substituted y(ξ; y0) = η. Together with (7.2) this leads to (7.3). We can proceed similarly
for y0 ∈ (u/s, 1). For y0 ∈ {u/s, 1}, one has y(r; y0) ≡ y0 and the result follows. (i)– (iii) are a
consequence of (7.3) together with the form of y∞(y0) from Corollary 2.7 if γ = 0. �

Let us use Proposition 7.1 to once more make the connection with the deterministic dynamics. Note
that s(1−y(t; y0)) is the mean reproduction rate per individual in the model underlying (2.1) if the neutral
reproduction rate is set to 0; so

∫ t
0
s(1− y(ξ; y0))dξ is the integrated growth intensity per individual up

to time t, and

f(t) = exp

(∫ t

0

s
(
1− y(ξ; y0)

)
dξ

)
is the size of the population at (forward) time t relative to its size at time 0 if absolute frequencies rather
than proportions are considered. More precisely, the absolute frequencies of type 0 and type 1 at time t
are y(t; y0)f(t) and (1 − y(t; y0))f(t) times the initial population size, respectively. This fact is well
known in deterministic population genetics because it allows to transform the nonlinear equation (2.1)
into a linear system, see Thompson and McBride [36]. In our context, the key is to think in terms of the
integrated offspring size. Since type-1 individuals neither reproduce nor mutate, their absolute frequency
remains constant at y0 times the initial population size, while the total population size grows by a factor
of f(t). It is therefore clear that the proportion of unfit ancestors in the population at time t is y0/f(t),
in line with (7.2).

7.2. Ancestral type distribution with interaction: stratified ASG with immune line (ν0 = 0).
In the remainder of this article, we assume that ν0 = 0 (hence ν1 = 1). The main argument that led to
the representation of the ancestral type distribution in the context of (7.1) was that, if γ = 0, the ancestor
is unfit if and only if all individuals in the pLD-ASG are unfit. Therefore, the line-counting process L
is sufficient, and the individual killed ASGs need not be considered. For γ > 0, we can not expect a
similar statement to hold. For example, already after a single trifurcation, the ancestor can be unfit, even
though the individual on the incoming line is fit (an unfit continuing or checking line suffices TODO:Why
or?). However, it is possible to generalise the new perspective mentioned before Proposition 7.1 and
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illustrated in Fig. 20. Namely, we add trifurcations to the picture as pairs of ASGs emerging from the
immune line and argue in the same way as before; that is, an ancestor is unfit if and only if 1) at the time
of sampling, an unfit type is associated with the immune line, 2) all ASGs emerging from it via selection
events are unfit at the time of their origin, and 3) at each interaction event on the immune line, at least
one of the origins of the ASGs arising from either the incoming or checking line is unfit. 2) and 3) are
satisfied if none of the selective and interactive arrows hitting the immune line is used. Using the results
from Sect. 6, we can validate 2) and 3) by means of stratified ASGs started with one (incoming) line and
stratified ASGs started in

t? (one checking and one incoming line). Let us start to make this precise.

Definition 7.2. Consider a realisation At of the ASG in the time interval [0, t] starting with a single line
at time 0. We call the immune line of At the line that is continuing to all the bifurcation and trifurcation
events. The stratified ASG with immune line associated with At is defined by S?(At) := S(A?t ), where A?t
is the ASG At after deletion of all the deleterious mutations on its immune line. By construction the
immune line is now always relevant and is associated with the leftmost leaf of the corresponding stratified
ASG. We define H?(At, y0) as the probability that the initial line has an unfit ancestor at backward
time t, given that the type distribution at backward time t is (1− y0, y0).

Proposition 7.3. For any realisation At of the ASG in [0, t] started with a single line, we have

H?(At, y0) = H(S?(At), y0), ∀y0 ∈ [0, 1], t > 0.

Proof. Note that a type assignment to the lines of At at time r = t corresponds to an unfit ancestor
at time t of the single individual at time 0 if and only if the same assignment of types on the lines
of A?t leads to an unfit individual at time 0. Hence, H?(At, y0) = H(A?t , y0). Moreover, Theorem 5.13
yields H(A?t , y0) = H(S(A?t ), y0) because A?t is a realisation of an ASG. Since by definition S?(At) =

S(A?t ), the result follows. �

We can also define the stratified ASG with immune line in a Poissonian manner without a realisation of
the ASG.

Definition 7.4. We define the stratified ASG process with immune line as the continuous-time Markov
chain T? = (T?(r))r>0 on Υ with transition rates

qT?(T , T `f) = smτ (`), qT?(T , Tt̀) = γmτ (`), qT?(T , T `×) = uν1

(
mτ (`)− 1`1τ (`)

)
.

The process T? has no absorbing states. As in the case without interaction, we do not insist on starting
the process with a single line, i.e. with state 1 , but one should keep in mind that if we start the process
in a state T ∈ Υ with M(T ) = n for some n > 1, the process does not describe the relation of potential
influencers of n individuals.

Lemma 7.5. Let ν0 = 0. For any r > 0 and y0 ∈ [0, 1], we have

gr(y0) = E 1 [H(T?(r), y0)].

Proof. Let Ar denote a random realisation of the ASG in [0, r] of a generic individual at time 0. From
the definition of gr and the tower property for conditional expectations, we obtain

gr(y0) = Py0
(Jr = 1) = E 1 [Ey0

[1{Jr=1} | Ar]] = E 1 [H?(Ar, y0)].

The result follows from Proposition 7.3 and the fact that by construction S?(Ar) and T?(r) have the
same distribution. �

Let us now try and understand the ancestral distribution from the perspective of the immune line (as in
Sect. 7.1). Consider a realisation At of the ASG in [0, t] starting with a single line at r = 0. Note that
the ancestor at time t of the single line at time 0 is unfit if and only if the ancestor is the immune line and
this is unfit at time t. The immune line is the ancestor if it succeeds at all the selective and interactive
events it encounters. We know from Sect. 5 that in order to decide if the immune line succeeds at a given
selective event it is enough to look at the stratified ASG arising from the corresponding incoming line.
Similarly, the immune line succeeds at a given interactive event if either the incoming or checking line is
unfit, and this can be decided by looking at the stratified ASG starting with

t? arising from these lines,
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Figure 21. From the immune line there emerge independent stratified ASGs started either in 1 or
t?.

Here, T
1
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1

2 and T
1
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t?
1 and T

t?
2 emerge at times T
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1 and T
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2 ,
respectively.

where the checking and incoming lines are assigned to the middle and right leaves of
t?, respectively.

This idea motivates the following definition.

Definition 7.6. Consider a realisation At of the ASG in the time interval [0, t] starting with a single
line at time 0. The forest of stratified ASGs associated with At is the collection

F(At) :=
((

T
1

i (t), T
1

i

)N
i=1

,
(
T

t?
i (t), T

t?
i

)M
i=1

)
,

where

(1) N is the number of selective events on the immune line of At and 0 6 T
1

1 < · · · < T
1

N 6 t are
the successive times at which they occur.

(2) For i ∈ {1, ..., N}, T
1

i (t) is the stratified ASG associated with the ASG (in the time inter-
val [T

1

i , t]) arising from the incoming line at the selective event occurring at time T 1

i .
(3) M is the number of interactive events on the immune line of At and 0 6 T

t?
1 < · · · < T

t?
M 6 t

are the successive times at which they occur.
(4) For i ∈ {1, ...,M}, T

t?
i (t) is the stratified ASG associated with the ASG (in the time inter-

val [T
t?
i , t]) arising from the checking and incoming lines at the interactive event occurring at

time T
t?
i , with checking and incoming lines being assigned to the middle and right leaves of

t?,
respectively.

See Fig. 21 for an illustration.

Proposition 7.7. Let ν0 = 0. Using the notation from Definition 7.6, we have

H?(At, y0) = y0

N∏
i=1

H
(
T

1

i (t), y0

) M∏
j=1

H
(
T

t?
j (t), y0

)
, y0 ∈ [0, 1]. (7.4)

Proof. We know that the ancestor at backward time t of the single lineage at time 0 is unfit if and only if
the ancestor is the immune line and this one is unfit at time t; the latter is the case with probability y0.
In addition, the immune line is the ancestor at time t if it succeeds at all the selective and interactive
events involved. The immune line succeeds at the selective event happening at time T 1

i if and only if
the corresponding incoming line is of type 1; this occurs with probability H(T

1

i (t), y0). The immune
line succeeds at the interactive event T

t?
j if and only if either the checking or the incoming line is of

type 1; this occurs with probability H(T
t?
j (t), y0). The result follows from the independence of the

corresponding stratified ASGs. �

We can also construct the forest of stratified ASGs in a Poissonian manner.

Definition 7.8. Let N := (Nr)r>0 and M := (Mr)r>0 be two independent homogeneous Poisson
processes with rate s and γ, respectively. Let (T

1

i )i∈N and (T
t?
i )i∈N be the successive arrival times of N

andM, respectively. Furthermore, we invoke two independent collections of independent stratified ASG
processes (T

1

i )i∈N and (T
t?
i )i∈N. In the first collection all the stratified ASGs start at 1 , and in the

second one all the stratified ASGs start at
t?. The forest of stratified ASGs process I = (I (r))r>0 is
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then defined by setting

I (r) :=
((

T
1

i (r − T 1

i ), T
1

i

)Nr
i=1

,
(
T

t?
i (r − T

t?
i ), T

t?
i

)Mr

i=1

)
, r > 0.

Theorem 7.9. Let ν0 = 0. Then,

gr(y0) = y0 exp

(
−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ

)
, y0 ∈ [0, 1]. (7.5)

Theorem 7.9 is connected to the deterministic dynamics in the same way as (7.2). This time, (1 −
y(t; y0))(s+γ(1−y(t; y0))) is the mean reproduction rate per individual (if the neutral reproduction rate
is 0), and

f(t) = exp

(∫ t

0

(
1− y(ξ; y0)

(
(s+ γ(1− y(ξ; y0))

))
dξ

)
is the size of the population at time t relative to its initial size in terms of absolute frequencies. This leads
to a simple generalisation of Thompson’s trick that allows to transform the mutation-selection equation
into a system with a lower degree of nonlinearity. We do not spell this out here but rather focus on the
integrated offspring size again. With the same argument as before, the proportion of unfit ancestors in
the population at time t is y0/f(t) = gr(y0), in line with the theorem.

Theorem 7.9 permits to derive explicit expressions for gr(y0) by means of classical integration techniques,
which results in the following corollary.

Corollary 7.10. Let ν0 = 0, γ > 0, and ȳ1, ȳ2, ȳ3, σ be given as in (2.4), (2.6) and (2.7). For y0 ∈
{ȳ1, ȳ2, ȳ3} ∩ [0, 1], we have

gr(y0) = y0 exp
(
− r(1− y0)

(
s+ γ(1− y0)

))
.

For y0 ∈ [0, 1] \ {ȳ1, ȳ2, ȳ3} and
(i) σ > 0,

gr(y0) = y0

(
ȳ2 − y(r; y0)

ȳ2 − y0

) ȳ3√
σ
(

ȳ3 − y0

ȳ3 − y(r; y0)

) ȳ2√
σ

, (7.6)

(ii) σ = 0,

gr(y0) = y0
y(r; y0)− ȳ2

y0 − ȳ2
exp

(
− ȳ2

y(r; y0)− y0

(y(r; y0)− ȳ2)(y0 − ȳ2)

)
, (7.7)

(iii) σ < 0,

gr(y0) = y0

√
u− y(r; y0)

(
s+ γ

(
1− y(r; y0)

))
u− y0

(
s+ γ(1− y0)

) exp

(
− 1√
−σ

(
1 +

s

γ

)
×

[
arctan

(
2
y(r; y0)− 1

2

(
1 + s

γ

)
√
−σ

)
− arctan

(
2
y0 − 1

2

(
1 + s

γ

)
√
−σ

)])
.

(7.8)

The proof of the corollary is postponed to the appendix.

Proof of Theorem 7.9. By Proposition 7.3, Lemma 7.5, Proposition 7.7 and the Poissonian construction
of the forest of stratified ASGs, we obtain

gr(y0) = y0E

[ Nr∏
i=1

H
(
T

1

i (r − T 1

i ), y0

)]
E

[Mr∏
j=1

H
(
T

t?
j (r − T

t?
j ), y0

)]
.

We begin by considering the first non-trivial factor. Then,

E

[ Nr∏
i=1

H
(
T

1

i (r − T 1

i ), y0

)]
=

∞∑
n=0

P (Nr = n)En

[
E

[ n∏
i=1

H(T
1

i (r − T 1

i ), y0) | (T 1

i )ni=1

]]
, (7.9)

where by En[·] we denote the expectation conditional on Nr = n. Now, we use the well-known connection
between Poisson processes and the uniform distribution. Conditional on Nr = n, the arrival times of N
have the same distribution as an ordered independent sample of size n from the uniform distribution
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on [0, r] [32, Thm. 2.4.6]. Since E[
∏n
i=1H(T

1

i (r− T 1

i ), y0) | (T 1

i )ni=1] is a function that is symmetric in
the arrival times of the Poisson process, we can deduce that

En

[
E

[ n∏
i=1

H(T
1

i (r − T 1

i ), y0) | (T 1

i )ni=1

]]
= E

[ n∏
i=1

H(T
1

i (Ui), y0)

]
, (7.10)

since r − Ui is again uniform on [0, r]. Moreover, (T
1

i (Ui))
n
i=1 are independent, and hence

E

[ n∏
i=1

H(T
1

i (Ui), y0)

]
= E

[
H(T

1

i (Ui), y0)
]n

=

(
1

r

∫ r

0

Eξ

[
H(T

1

i (ξ), y0)
]
dξ

)n
=

(
1

r

∫ r

0

y(ξ, y0)dξ

)n
,

(7.11)
where we used the duality result in Theorem 6.2. Combining (7.10) and (7.11) into (7.9) and using the
fact that Nr is Poisson distributed with parameter sr yields

E

[ Nr∏
i=1

H
(
T

1

i (r − T 1

i ), y0

)]
=

∞∑
n=0

(sr)n

n!
e−sr

(
1

r

∫ r

0

y(ξ, y0)dξ

)n
= exp

(
− s

∫ r

0

(1− y(ξ, y0))dξ

)
.

Next, we consider the second non-trivial factor. In a similar way, we obtain

Em

[ m∏
j=1

H
(
T

t?
j (r−T

t?
j ), y0

)]
= Em

[
H(T

t
?

1 (U1), y0)

]m
=
{

2E
[
H(T

1
(U), y0)

]
−E
[
H(T

1
(U), y0)2

]}m
.

Hence,

E

[Mr∏
j=1

H
(
T

t?
j (r − T ?j ), y0

)]
= exp

(
− γ

∫ r

0

(
1− y(ξ; y0)

)2
dξ

)
.

Altogether, we obtain (7.5). �

Taking the limit r →∞, we obtain the analogue to [6, Thm. 23] in the case with interaction and in the
absence of beneficial mutations.

Corollary 7.11. Let ν0 = 0 and γ > 0. Then we have g∞(1) = 1. For y0 ∈ [0, 1) and
(i) σ > 0, we have

g∞(y0) = 1{y0>ȳ3}y0

(
1− ȳ2

y0 − ȳ2

) ȳ3√
σ
(
y0 − ȳ3

1− ȳ3

) ȳ2√
σ

, (7.12)

(ii) σ = 0, we have

g∞(y0) = 1{y0>ȳ3}y0
1− ȳ2

y0 − ȳ2
exp

(
− ȳ2

1− y0

(1− ȳ2)(y0 − ȳ2)

)
, (7.13)

(iii) σ < 0, we have

g∞(y0) = y0

√
u− s
u− y0s

exp

(
− 1√
−σ

(
1 +

s

γ

)[
arctan

(
1− s

γ√
−σ

)
− arctan

(
2
y0 − 1

2

(
1 + s

γ

)
√
−σ

)])
. (7.14)

Proof. Combining Corollary 2.7 with Corollary 7.10 yields the result. �

At last, we consider the ancestral type distribution at equilibrium, i.e. (1 − g∞(y∞(y0)), g∞(y∞(y0))).
The following corollary extends the expression for g∞(y∞(y0)) from [6, Sect.6] to the case γ > 0.

Corollary 7.12. Let ν0 = 0 and s, γ > 0. Then we have g∞(y∞(1)) = 1. For all y0 ∈ [0, 1),
(i) if s > γ, then

g∞(y∞(y0)) =

{
0, if u < û,

1, if u > û.
(7.15)

(ii) if s < γ and u < û, then g∞(y∞(y0)) ≡ 0.
(iii) if s < γ and u ∈ [û, ǔ], then

g∞(y∞(y0)) =

{
0, if y0 6 ȳ3,

1, if y0 > ȳ3.
(7.16)

(iv) If s < γ and u > ǔ, then g∞(y∞(y0)) ≡ 1.



LINES OF DESCENT IN THE MUTATION-SELECTION MODEL WITH PAIRWISE INTERACTION 35

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

u/s

ȳ
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Figure 22. The ancestral type distribution at equilibrium for the parameter regimes from Fig. 1. Dotted lines:
equilibria ȳ. White background: (u/s, y0) s.t. g∞(y∞(y0)) = 0. Grey background: (u/s, y0) s.t. g∞(y∞(y0)) = 1.

Proof of Corollary 7.12. In the following, we throughout use Corollaries 2.7 and 7.11. For y0 = 1, we
have y∞(1) = 1 and hence g∞(y∞(1)) = 1. For the remainder, fix y0 ∈ [0, 1). If s > γ and u < û, we have
that y∞(y0) < 1 such that g∞(y∞(y0)) = 0. For s > γ and u > û, y∞(y0) = 1 and hence g∞(y∞(y0)) = 1.
This leads to (i). If s < γ and u < û, then y∞(y0) < 1 and hence g∞(y∞)(y0) ≡ 0. Similarly, s < γ

and u > ǔ, then y∞(y0) = 1 and hence g∞(y∞)(y0) ≡ 1. Altogether, (ii) and (iv) follow. For (iii), note
that when s < γ and u ∈ [û, ǔ], then y∞(y0) < 1 for y0 6 ȳ3 and y∞(y0) = 1 for y0 > ȳ3. In particular,
g∞(y∞(y0)) = 0 for y0 6 ȳ3 and g∞(y∞(y0)) = 1 for y0 > ȳ3. �

Let us explain the underlying genealogical picture. Assume y0 ∈ [0, 1). Note that, since the immune line
persists indefinitely, the number of lines does not absorb.

• If u < û, each stratified ASG that emerges from the immune line grows to ∞ with probabil-
ity 1 − w1 by Proposition 6.4. Note that, by the discussion at then end of Sect. 6, w1 < 1. By
Corollary 6.10, in this parameter regime a stratified ASG with infinite mass will always lead to
a fit descendant provided the potential ancestors are sampled from a population with a positive
frequency of fit types. In particular, one of the stratified ASGs emerging from the immune line
grows to ∞ and then leads to a fit ancestor.

• If u > ǔ or (u ∈ [û, ǔ] and s > γ), we have, by the discussion at the end of Sect. 6, that y∞(y0) ≡ 1.
In particular, all potential ancestors in the forest of stratified ASGs are unfit.

• If u ∈ [û, ǔ] and s < γ, the situation is different. Here, each stratified ASG that emerges from
the immune line may grow to ∞ with probability 1 − w1 by Proposition 6.4. Note that, by the
discussion at the end of Sect. 6, w1 < 1. But now the probability for an unfit ancestor depends
crucially on y0, and we recover the bistability from Sect. 2. The two equilibria of (2.1) lead to an
asymptotic frequency of unfit types that is either < 1 or 1. If y0 ∈ [0, ȳ3) (recall ȳ3 = ȳ3(u, s, γ) is
a function of the parameters) then y∞(y0) = w1, so that by Corollary 6.10 each of the stratified
ASGs with infinite mass leads to a fit descendant. One of these descendants then is the fit
ancestor. If y0 ∈ (ȳ3, 1], then y∞(y0) = 1 and all the potential ancestors are unfit. In particular,
the total mass of the stratified ASG is irrelevant. In the case y0 = ȳ3, we have E[H∞(y0)] < 1 by
Corollary 6.14 such that one of the infinite stratified ASGs leads to a fit descendant and hence
to a fit ancestor, see also Fig. 22 (right).

For y0 ∈ [0, 1), g∞(y∞(·)) is constant if s > γ or (s < γ and u /∈ [û, ǔ]). If s < γ and u ∈ [û, ǔ], ȳ3 is the
critical value above which g∞(y∞(y0)) jumps from 0 to 1.

Appendix A. Remaining proofs

The following identities will be useful in what follows.

Lemma A.1. Let T = (τ,m) ∈ Υ.
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(1) Let k ∈ N and m(k)
τ : Lτ → N ∪ {0} be defined by m(k)

τ (`) := mτ (`) + 1{`=`1τ}k. In addition, we
set T (k) := (τ,m

(k)
τ ). Then, we have

H(T (k), y0) = yk0H(T , y0), y0 ∈ [0, 1].

(2) For all T̃ ∈ Υ and y0 ∈ [0, 1], we have

H(T ⊗`1τ T̃ , y0) = H(T , y0)H(T̃ , y0).

Proof.
(1) We fix k ∈ N and proceed by induction on |Lτ |. If T = n , then T (k) = j with j = n + k,
and the assertion follows from the definition of H. Assume the assertion is true for all T̃ = (τ̃ ,mτ̃ )

with |Lτ̃ | < |Lτ |. We have to show that the assertion remains true for T . Let κ1, κ2, κ3 be the left,
middle, and right child of the root of T . Since the leftmost leaf of Tκ1 is `1τ , the induction hypothesis
implies that the assertion holds true for Tκ1 , i.e.

H(T (k)
κ1 , y) = ykH(Tκ1 , y).

The result then follows via Eq. (5.2).
(2) We fix T̃ = (τ̃ , m̃) ∈ Υ and proceed by induction on |Lτ |. If T = n , then T ⊗`1τ T̃ = T̃ (n), and the
result follows from assertion (1). Assume the result is true for all T̄ = (τ̄ ,mτ̄ ) with |Lτ̄ | < |Lτ |. We have
to show that the result remains true for T . Let κ1, κ2, κ3 be the left, middle, and right child of the root
of T . The induction hypothesis applied to Tκ1 yields

H(Tκ1 ⊗`1τ T̃ , y0) = H(Tκ1 , y0)H(T̃ , y0).

Moreover, since (T ⊗`1τ T̃ )κ1 = Tκ1 ⊗`1τ T̃ , (T ⊗`1τ T̃ )κ2 = Tκ2 and (T ⊗`1τ T̃ )κ3 = Tκ3 , the result follows
by Eq. (5.2).

�

Proof of Lemma 6.1. Fix T = (τ,m) ∈ Υ? and y0 ∈ [0, 1]. We want to show that

G fH(·, y0)(T ) = −sy0(1− y0)
∂H(T , y)

∂y
(y0), (A.1)

GtH(·, y0)(T ) = −γy0(1− y0)2 ∂H(T , y)

∂y
(y0), (A.2)

G×H(·, y0)(T ) = (1− y0)uν1
∂H(T , y)

∂y
(y0), (A.3)

G◦H(·, y0)(T ) = y0uν0
∂H(T , y)

∂y
(y0). (A.4)

We proceed by induction on the size of the underlying tree. First note that, since H( n , y0) = yn0 , we
have (∂H( n , ·)/∂y)(y0) = nyn−1

0 . In addition,

G fH(·, y0)( n ) = ns(yn+1
0 − yn0 ) = −sy0(1− y0)nyn−1

0 ,

GtH(·, y0)( n ) = nγ(yn0 (y0 + y0 − y2
0)− yn0 ) = −γy0(1− y0)2nyn−1

0 ,

G×H(·, y0)( n ) = nuν1(yn−1
0 − yn0 ) = (1− y0)uν1ny

n−1
0 ,

G◦H(·, y0)( n ) = nuν0(0− yn0 ) = −y0uν0ny
n−1
0 .

Hence (A.1), (A.2), (A.3), and (A.4) hold true for T = n . Now, we fix T = (τ,mτ ) ∈ Υ and we assume
that (A.1), (A.2), (A.3) and (A.4) hold true for all T̃ = (τ̃ , m̃τ̃ ) ∈ Υ with |Lτ̃ | < |Lτ |. We aim to prove
that they remain true for T . Let us denote by κ1, κ2, and κ3 the left, middle, and right child of the root
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of T . From Definition 5.12 and the chain rule,

∂H(T , y)

∂y
(y0) =

∂H(Tκ1 , y)

∂y
(y0)

[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]

+H(Tκ1 , y0)

[
∂H(Tκ2 , y)

∂y
(y0) (1−H(Tκ3 , y0)) +

∂H(Tκ3 , y)

∂y
(y0) (1−H(Tκ2 , y0))

]
.

(A.5)
We claim that for each ? ∈ { f,

t
,×, ◦}, we have

(1) for ` ∈ Lτκ1 ,

H(T `? , y0)−H(T , y0) =
(
H
(
(Tκ1)`?, y0

)
−H

(
Tκ1 , y0

))[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]
,

(2) for ` ∈ Lτκ2 ,

H(T `? , y0)−H(T , y0)=H(Tκ1 , y0)(1−H(Tκ3 , y0))
(
H
(
(Tκ2)`?, y0

)
−H(Tκ2 , y0)

)
,

(3) for ` ∈ Lτκ3 ,

H(T `? , y0)−H(T , y0) = H(Tκ1 , y0)(1−H(Tκ2 , y0))
(
H
(
(Tκ3)`?, y0

)
−H(Tκ3 , y0)

)
.

Assume that the claim is true. Denote by

q? = s1{?= f} + γ1{?=t
} + uν11{?=×} + uν11{?=◦}.

Since

G?H(·, y0)(T ) =
∑

i∈{1,2,3}

∑
`∈Lτ

κi

q?m(`)(H(T `? , y0)−H(T , y0)),

we infer that

G?H(·, y0)(T ) = G?H(·, y0)(Tκ1)
[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]
+H(Tκ1 , y0)

[(
1−H(Tκ3 , y0)

)
G?H(·, y0)(Tκ2) + (1−H(Tκ2 , y0))G?H(·, y0)(Tκ3)

]
.

Applying the induction hypothesis to Tκ1 , Tκ2 and Tκ3 , the previous identity together with (A.5) permit
to show that (A.1), (A.2), (A.3) and (A.4) hold true for T . It remains to prove the claim.
For ? ∈ { f,

t
}, the claim follows easily by Definition 5.12 and noting that for i ∈ {1, 2, 3} and ` ∈ Lτκi , T

`
?

is constructed from T by replacing Tκi with (Tκi)`?. But for the latter the induction hypothesis applies.
In the following cases, the tree changes only in one subtree of one of the children of the root and therefore
we can apply the same argument. We are in these cases if ? = × and

• if mτ (`) > 1 or ` is the left child of its parent,
• if mτ (`) = 1, ` is not the left child of its parent, and b` is the left child of its parent,
• if mτ (`) = 1, ` is not the left child of its parent, and b` is not the left child of its parent and it is

not the root,

or if ? = ◦ and

• if ` is not a middle or right child of the root,
• if ` is a left child and aa?` is not the root.

We treat the remaining cases separately. For ? = ×, mτ (`) = 1, ` is not the left child of its parent, and b`
is the root, we have that T `× = 0 . In particular, H(T `×, y0) = 1 for all y0 ∈ [0, 1]. Furthermore, since b`
is the root, ` ∈ Tκ2 or ` ∈ Tκ3 , because otherwise κ1 would be an ancestor of ` and it would be a left
child of the root. Furthermore, H(Tκ1 , y0) = 1, because

∑
v∈Lτ

(b1
`
)

mτ (v) = 0 (since otherwise b1` is not
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the root). Again, by Definition 5.12, we can deduce that for ` ∈ Tκ2 ,

H(T `×, y0)−H(T , y0) = 1−H(T , y0))

= 1− [H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]

= (1−H(Tκ3 , y0))[1−H(Tκ2 , y0)]

= H(Tκ1 , y0)(1−H(Tκ3 , y0))[H((Tκ2)`×, y0)−H(Tκ2 , y0)].

We can proceed in a similar way if ` ∈ Tκ3 . The last case is ? = ◦ and ` is a child of the root. If ` is the
middle child of the root, i.e. ` = κ2, then (T`)`◦ = ∆. By the definition of T `◦ , we have

T `◦ =
(
T Cκτ ⊗κτ Tκ1

)
⊗`1τ

κ1
Tκ3 .

By Lemma A.1, H
(

(T Cκτ ⊗κτ Tκ1)⊗`1τ
κ1
Tκ3 , y0

)
= H(Tκ1 , y0)H(Tκ3 , y0). Therefore, using Definition 5.12

H(T `◦ , y0)−H(T , y0) = H(Tκ1 , y0)H(Tκ3 , y0)−H(Tκ1 , y0)[H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]

= H(Tκ1 , y0)
(
1−H(Tκ3 , y0)

)
[−H(Tκ2 , y0)].

We can proceed in a similar way if ` ∈ Tκ3 . It remains to prove the case in which ` is the left child of its
parent and aa?` is the root. Assume a?` = κ2. Then, (Tκ2)`◦ = ∆. Again, T `◦ = (T Cκτ ⊗κτ Tκ1) ⊗`1τ

κ1
Tκ3 .

Once more, we apply Lemma A.1 and we use Definition 5.12, such that

H(T `◦ , y0)−H(T , y0) = H(Tκ1 , y0)H(Tκ3 , y0)−H(Tκ1 , y0)[H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]

= H(Tκ1 , y0)
(
1−H(Tκ3 , y0)

)
[−H(Tκ2 , y0)].

We can proceed in a similar way if a?` = κ3. Altogether, this proves the claim. �

Proof of Corollary 7.10. We apply classical integration theory. Recall that ȳ2 and ȳ3 are the roots of the
polynomial y 7→ u − y(s + γ(1 − y)). First, we consider the case σ > 0 in which ȳ2 and ȳ3 are both
real (recall from (2.6)). We want to treat u 6 s in which case ȳ2 < ȳ1 < ȳ2. For y0 < ȳ2, y(r; y0) is
increasing. By substituting η = y(ξ, y0) and partial fraction expansion, we obtain

−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ

= −
∫ y(r;y0)

y0

s+ γ(1− η)

u− η(s+ γ(1− η))
dη

= − 1

γ

s+ γ(1− ȳ2)

ȳ3 − ȳ2

∫ y(r;y0)

y0

1

ȳ2 − η
dη +

1

γ

s+ γ(1− ȳ3)

ȳ3 − ȳ2

∫ y(r;y0)

y0

1

ȳ3 − η
dη

=
1

γ

s+ γ(1− ȳ2)

ȳ3 − ȳ2
log

(
ȳ2 − y(r; y0)

ȳ2 − y0

)
− 1

γ

s+ γ(1− ȳ3)

ȳ3 − ȳ2
log

(
ȳ3 − y(r; y0)

ȳ3 − y0

)
.

Note that, s/γ+(1− ȳ2) = ȳ3, s/γ+(1− ȳ3) = ȳ2, and ȳ3− ȳ2 =
√
σ such that the claim follows. A similar

argument applies, if ȳ1 > y0 > ȳ2; only then y(r; y0) is decreasing. If y0 ∈ {ȳ1, ȳ2}, then y( · ; y0) ≡ y0

such that

−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ = −r(s+ γ(1− y0))y0.

If σ > 0 and γ > s, we can proceed similarly. The only subtlety lies in the monotonicity of y(r; y0)

depending on y0. For σ = 0, we have ȳ2 = ȳ3 and y(r; y0) is increasing for all y0 ∈ [0, 1]. Hence,

−
∫ y(r;y0)

y0

s+ γ(1− η)

u− η(s+ γ(1− η))
dη =

∫ y(r;y0)

y0

−s+ γ(1− ȳ2)

γ(η − ȳ2)2
+

1

η − ȳ2
dη

= ȳ2

(
1

y(r; y0)− ȳ2
− 1

y0 − ȳ2

)
+ log

(
y(r; y0)− ȳ2

y0 − ȳ2

)
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At last, we treat the case σ < 0. Again, y(r; y0) is increasing. Here,

−
∫ y(r;y0)

y0

s+ γ(1− η)

u− η(s+ γ(1− η))
dη

=
1

2

∫ y(r;y0)

y0

−(s+ γ) + 2γη

u− (s+ γ)η + γη2
− 1

2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2
dη

=
1

2
log

(
u− y(r; y0)

(
s+ γ

(
1− y(r; y0)

))
u− y0

(
s+ γ(1− y0)

) )
− 1

2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2
dη

In the last term, we substitute µ = ϕ(η) := 2(η − 1
2 (1 + s

γ ))/
√
−σ and we obtain

−1

2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2
dξ = − 1√

−σ

(
1 +

s

γ

)∫ ϕ(y(r;y0))

ϕ(y0)

1

1 + µ2
dµ

= − 1√
−σ

(
1 +

s

γ

)[
arctan

(
ϕ(y(r; y0))

)
− arctan

(
ϕ(y0)

)]
.

This ends the proof of Corollary 7.10. �

Lemma A.2. Let Z = (Zt)t>0 be a binary Galton-Watson process with birth rate λ and death rate µ
with µ < λ. Let Ẑ = (Ẑt)t>0 be the same Galton-Watson process but conditioned to not die out. Then
the transition rates of Ẑ are given by

qẐ(n, n− 1) = λn, qẐ(n, n+ 1) = µn

.

This is the continuous-time version of the classical discrete-time result (see Athreya and Ney [2, Thm. 3,
12.3]).

Proof. Consider a binary Galton-Watson process Z = (Zt)t>0 with birth rate λ and death rate µ. The
extinction probability of Z is given by h(n) := P (Z∞ = 0 | Z0 = n) = (µ/λ)n. By Doob’s h-transform
the rates of Ẑ are given by

qẐ(n, n− 1) = qZ(n, n− 1)
h(n− 1)

h(n)
= λn, qẐ(n, n+ 1) = qZ(n, n+ 1)

h(n+ 1)

h(n)
= µn.

�
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