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Abstract

In this paper, we survey the recent progress about the SDEs with distributional drifts
and generalize some well-known results about the Brownian motion with singular
measure-valued drifts. In particular, we show the well-posedness of martingale prob-
lem or the existence and uniqueness of weak solutions, and obtain sharp two-sided
and gradient estimates of the heat kernel associated with the above SDE. Moreover,
we also study the ergodicity and global regularity of the invariant measures of the
associated semigroup under some dissipative assumptions.
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1 Introduction
Consider the following stochastic differential equation (abbreviated as SDE) in R4:

dX, = o,(X,)dW, + b,(X,)dt, Xo=x € R, (1.1)
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where W is a d-dimensional standard Brownian motion on some complete filtered
probability space (2, .7, (F);>0,P), o : Ry x RY - RY @ R? is ad x d-matrix-
valued measurable function, and b : Ry x RY — R is a time-dependent measurable
vector field. In the theory of SDEs, there are two notions about SDE (1.1): strong
solutions and weak solutions. Roughly to say, strong solution means that for given
Brownian motion W, let .%; := o {W; : s < 1} be the natural filtration associated with
W, one needs to find an .%;-adapted process X so that the following stochastic It6’s
integral equation holds:

t

t
X; =x+/ as(Xs)dWs+/ bs(Xy)ds, > 0.
0 0

In other words, strong solutions can be regarded as a functional of Brownian path.
While, weak solution means that we need to find a pair of processes (X, W) so that
W is a Brownian motion and the above stochastic integral equation holds. Clearly,
strong solution must be a weak solution. A weak solution is also simply called a
solution. Related to these two notions, there are automatically two uniqueness: strong
uniqueness and weak uniqueness. Strong uniqueness means that two strong solutions
have the same path. Weak uniqueness means that two weak solutions have the same
law in the space of continuous function spaces. It should be noticed that if two solutions
are defined on the same probability space and their path coincides, we call pathwise
uniqueness hold. The celebrated Yamada-Watanabe’s theorem [18] tells us that weak
existence plus pathwise uniqueness implies the existence and uniqueness of strong
solutions.

Itis a classical fact that when b, (x) and o; (x) are Lipschitz continuous with respect
to the spatial variable x and uniformly in #, by Picard’s iteration, there is a unique
strong solution to SDE (1.1). On the other hand, when o is bounded continuous and
uniformly non-degenerate, and b is bounded measurable, it is also well known that
there exists a unique weak solution, or equivalently, the martingale problem associated
with (1.1) is well-posed in the sense of Stroock and Varadahan [27]. Now let X be
a solution of SDE (1.1) and let f(¢, x) be a bounded space-time function so that
orf, Vyf, V% f are bounded. By It&’s formula, we have

t
f, X)) = f0,x) + / @y + L7 +bs - V) f (5, Xs)ds
0
t
+/ (07 - V) (5. Xo)dW,,
0

where the asterisk stands for the transpose of a matrix, .Z° is the time-dependent
second-order differential operator defined by

L) =3 (a}"a}") (x)9;9; f (x).

Here and below, we use the usual Einstein’s convention for summation: The same index
appearing in a product will be summed automatically. In particular, if we let u; be the
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probability distribution measure of X, then u, satisfies the following Fokker—Planck
equation in the distributional sense,

e = (L) e +diviy - ), po = bx,

where 8, is the Dirac measure concentrated at point x, and (£°)* is the adjoint
operator of .Z. Throughout this paper, we always assume that o satisfies that for
somec > 1and B € (0, 1),

cTHEP <o (g < clg, llor(x) — or ()] < clx — yIP. (HY)

Itis well known that under (Hg) and b being bounded measurable, operator 9; —.Z,° —
b; - V admits a fundamental solution (also called heat kernel) p; (x, y) satisfying (see

(7D:

O prs(x, )+ (L7 4+ b - VIpis(, y)(x) =0, 1,‘%‘3 prs(x,y) =8:(dy), (1.2)

and which enjoys the following estimates:

(i) (Two-sided estimate) For any T > 0, there are cq, ko = 1 such that

kglx—y[? ey
cgls — 11727 < pry(x,y) S eols — 1|7 2e b on DY, (1.3)
where D := {(t,x;5,y) :x,y e R, 5,1 > 0,0 <s —t < T}.

(i1) (Gradient estimate) For any 7" > 0, there are c1, k1 > 1 such that on ]D)g s

. . _ x—y[%
IV prs(e, V| < cpls — 1| 7@FD2eal=1 | j = 1,2, (1.4)

(iii) (Holder estimate in y) For any 7 > 0 and y € (0, B), there are c2, k3 > 1 such
that on ID)O ,

IV Prs (X, ¥) = Vi prs(x, Y

caly =y (—loh | ey
S @z \& e 2 )i =0.1 (1.5)

When o is uniformly non-degenerate and bounded Lipschitz continuous and b
is uniformly Holder continuous, Zvonkin [36] introduced a transformation of phase
space to kill the drift and obtain the existence and uniqueness of strong solutions to
SDE (1.1). The transformation of phase space used in [36] is now called “Zvonkin’s
transformation” in the literature and will be our corner stone. We will introduce it
below. When o = 1 and b is bounded measurable, Veretennikov [28] showed the
existence and uniqueness of strong solutions to SDE (1.1). When 0 = [ and b €
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quOC(R+; LP(Rd)) with % + % < 1, Krylov and Rockner [21] showed the strong
well-posedness to SDE (1.1) under the extra assumption

t
/ |bs(X)|2ds < 00, a.s.
0

This assumption is essential in [21] because Girsanov’s transformation is used therein.
Such an assumption was dropped in [32] and their result was also extended to the
multiplicative noise case by using Zvonkin’s transformation (see [29,31,32,34]). More
recent development about the strong uniqueness of SDEs with rough coefficients is
referred to [6]. In one word, noise has some regularization effect in the sense that an ill-
posed ODE becomes well-posed under some noise perturbations. It should be noticed
that there are a lot of works to study the further properties of the strong solutions to
SDE (1.1) with rough drifts such as: weak differentiability with respect to the initial
values, Malliavin differentiability with respect to the sample path, stochastic flows,
etc. (for examples, see [8,10,11,22,23,34]).

Now we consider SDE (1.1) with distributional drift b. Let & be the space of all
smooth functions on R? with compact supports, and &’ the dual space of Z called
distributional function space. If b € &', then the drift term b, (X,)dr in (1.1) does not
make any sense in general. We call a continuous .%;-adapted process X a solution of
SDE (1.1) if

t t
X,=x+/ oy (X;)dWs + AY with A? := lim / bn(X)ds, (1.6)
0 n—00 0

where (b™),,c is any mollifying approximation sequence of b, and the limit is taken
in the sense of u.c.p (uniformly on compact subsets of time variable in probability).

In one-dimensional case, Bass and Chen [2] showed the strong well-posedness
of SDE (1.6) in a special class of Dirichlet processes when o is %—order Holder
continuous and bounded below by a positive constant and b is the derivative of a
y-order Holder continuous function with y € (%, 1). Therein, they used the scaling
function s(x) = f(f exp ( foy 2b(z)/ O’Z(Z)dz) dy to remove the drift and then applied
Yamada-Watanabe’s pathwise uniqueness result about one-dimensional SDE to obtain
the strong well-posedness. More results about one-dimensional SDEs driven by Brow-
nian motion with distributional drifts are referred to [9,14—17,24]. However, in the
multi-dimensional case, solving SDE (1.1) with distributional drift b becomes quite
involved. Recently, when o = \/E]Idx 4 and

1 d d
belLy (Ry; H*P)ywitha € (0, = | and p € =), (1.7
2 l—o «

Flandoli, Issoglio and Russo [13] showed the existence and uniqueness of “virtual”
solutions (a class of special weak solutions) to SDE (1.1). More precisely, consider
the following backward PDE with distributional first order term:

oru+ (A —MNu+b;-Vu=>b;,, u(T)=0, (1.8)
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where L > 0. Under (1.7), they showed that for A large enough, there is a solution u
so that

|Vu,(x)| < 1/2, t€[0,T], xeR%

Inparticular, if we define ®; (x) := x+u;(x),thenx — ®,(x)isaC l—diffeomorphism
of R¥. Using It&’s formula formally, it is easy to see that ¥; = ®;(X,) solves the
following new SDE:

t t
Y, = ®o(x) +/ Ao d; 1 (Yy)ds + ﬁ/ Vg o d; ' (Y,)dW,
0 0

where CI>;1(x) is the inverse of x +— @, (x). Since this new SDE has continuous
and non-degenerate diffusion coefficients and the drift is Lipschitz continuous, it is
well known that the above SDE admits a unique weak solution (see [27]). In [13],
X =, ! (Y}) isin turn called “virtual” solution of SDE (1.1). The above ® is usually
called Zvonkin’s transformation in the literature. Unfortunately, it is not answered
whether the above constructed X really solves SDE (1.6). This question is completely
answered in a recent work [35]. We will summarize the main results of [35] in Sect. 3
below.

Nevertheless, the above distribution-valued drift does not allow the measure-valued
drift. In [3], Bass and Chen studied the weak well-posedness of Brownian motions
with singular measure-valued drifts. That is, when o = /21 and b belongs to some
generalized Kato’s class, they showed the well-posedness of SDE (1.6) in the class
of semimartingales. In other words, ¢ +— Aﬁ’ in (1.1) has finite variation in finite time
interval. In this work, we will extend Bass and Chen’s result to more general case:
multiplicative noise. For this aim, we introduce some new Kato’s class. Our approach
is still based on Zvonkin’s transformation and heat kernel estimates, and looks much
simpler compared with Bass and Chen’s proof [3].

Another aim of this paper is to show the existence and two-sided estimate of the
heat kernel and the ergodicity associated with SDE (1.6). As we shall see, Zvonkin’s
transformation provides a satisfactory answer. Indeed, under the homomorphism trans-
formation, if the transformed SDE admits a density and a unique invariant probability
measure, then the original SDE also admits a density and a unique invariant probability
measure. Such an idea was first used in [29]. It should be noticed that for the ergodicity
of SDE (1.1), we assume b = pD + b where bV is the dissipative part and »@
is a distribution. The key observation here is that the dissipativity is preserved under
Zvonkin’s transformation.

This paper is organized as follows: In Sect. 2, we present some preliminary results
used below. In Sect. 3, we give a short proof of Krylov and Rocker’s result so that one
can grasp the main points of Zvonkin’s argument. In fact, Kryov’s a priori estimate is
the key obstacle. In Sect. 4, we survey the main results obtained in [35] when the drift
is in the Bessel potential space H~!/%7 with p > 2d. In Sect. 5, we study SDE (1.6)
with b in some generalized Kato’s class. In particular, our results completely cover
Bass and Chen’s result [3].
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We close this section by mentioning some conventions used throughout this

paper: We use := as a way of definition. For a,b € R, a Vv b := max{a, b} and

. : 52 .
a Ab :=min{a, b}, V := (%, cees %) and A = Zle ;7 denotes the gradient

and Laplacian operators. The letter C with or without subscripts stands for an unim-
portant constant, whose value may change in different places. We use A < B to denote
that A and B are comparable up to a constant, and use A < B to denote A < CB for
some constant C.

2 Preliminary

In this section, we first introduce some notations and recall some basic results for later
use. Let o be a nonnegative smooth function in R? with compact support in the unit
ball and [ ¢ = 1. Define a family of mollifiers

on(x) =no(nx), neN.

For a distribution f € &/, if there is no further declaration, we always use f; to denote
the mollifying approximation of f, that is,

Jn(x) == f *0n(x),

where * denotes the convolution in the distributional sense. Let x be a nonnegative
smooth function with x (x) = 0 for [x| > 2 and x(x) = 1 for |[x] < 1. For R > 0, we
shall also use the following cut-off function

Xr(x) = x(x/R). 2.0

Definition 2.1 For @ € R and p € [1, c0), the Bessel potential space H*” is defined
by

HP := (I — A)~Y*(LP)
with norm
1 lap = 1A =AY £ 1],
where || - ||, is the usual L”-norm. We also denote by H;Z’cp the space of all the

distribution f € 2’ with fxg € H*P? for any R > 0, which is the local Bessel
potential space.

For @ € (0, 2) and p € (1, 00), by Mihlin’s multiplier theorem, we have
1 llep = 1A= A2 Fllp < If 1y + NAY2 F 1, (2.2)

where A%/? := —(—A)%/? is the usual fractional Laplacian, which has the following
alternative expression up to a multiplying constant,
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AY? f(x) =PV. wd)’
Rd |yldte
1 Ja+y+ flx—y) —2fx)
T2 g iyl @ @

where P.V. stands for Cauchy’s principle value. Notice that the following Sobolev’s
embedding holds:

Ngelp.dp/d— L, if pa <d,
P C{ g€lp.dp/(d—pa)] (2.4)

oA N (Ny=, LY, if pa > d,

where C*~4/P is the usual Holder space. Moreover, forany o € (0, 1]and p € (1, 00),
there is a constant C = C(«, p, d) > 0 such that for all f € H*? (see [1, Theorem
2.36)),

IFC+3) = FOlp < ClyI* 1A £, 2.5

and if pa > d, thenforall f € H*? and x, y € R4,

a_d

1fx+y) = FOOI S Cly* 7 1A% £l p, (2.6)

and the following Gagliardo—Nirenberg’s inequality holds: for p > 1 and 0 < @ <
B<l,andall f € HPP N L (see [1, Theorem 2.44]),

1_
1A% fllppra < Cllflloo /P IAP2 1P 2.7
For @ € (0,2] and d > 1, we introduce the following space-time function:

"2+ x)~%*, «e(0,2),

tid/zeflx‘z/t, o = 2‘ (2.8)

P (x) = {
We need the following simple lemma.
Lemma 2.2 Forany a € (0, 2), there is a constant C = C(a, d) > 0 such that
1A2pP ()] < Cp®(x), t>0,x R
Proof By scaling, we have
(A“/zp,(z)> (x) = t(—d—a)/Z(Aa/2p§2))(t—l/2x).
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Thus it suffices to prove the estimate for # = 1. Suppose |x| > 1. By definition (2.3),
we have

2
AP (x) <

2 2 2
1/ p}><x+y)+p§)<x—y)—2p{)(x>dy
2 Jiyigixl2 |y[te

2 2 2
+1/ p{)(x+y>+p§><x—y>—2p§)(x>dy
2 Jiyi>1x1/2 |y|d+e

= 11(x) + L(x).
Noticing that
V20 ()] < ce™ T,
by Taylor’s expansion, we have

212 ,2)
\% x+0
I1(x) < /‘ < bl |Z1|d+(a y)|dy < e_cllx‘2/4|x|2_a < e—c1|x|2/8, 0 €(0,1).
YIxIX

For I>(x), we have

d— 2 2
h(x) < x| / (0 (x + y) + o7 (x — y)dy
[yI>1x]/2
)
Py (x) —d—a
+/ ———dy < |x| .
ly|>xl/2 114+
The proof is complete. O

The following lemma about the product of two distributions is proved in [35].

Lemma 2.3 Let p € (1, 00) and a € (0, 1] be fixed.

1

5+ &, there is a constant C > 0

(i) Forany p1, p2 € [p, 00) With% < % + % <
such that for all f € H*P' and g € H* P2,

I fglle.p < Cllflla.pr gl pa- 2.9)

In particular, if p > d /o, then H*? is an algebra under pointwise product.

(ii) Forany py € [p, o0) and p; € [ﬁ, 00) with % < % + % < % + 4, there is

a constant C > 0 such that for all f € H=*P! and g € H* 2,

1f8ll-a.p < Clfll—a.pi 18 ]le. ps- (2.10)

Let DY, be the set of all C!-diffeomorphisms on R?:
DY = {0 R 5 R [ @lpy = [V®loe + VO oo < 00].
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Clearly, Dgo is closed under the inverse operation, thatis, ® € Dgo implies o1 e Dgo.
For B € (0, 1] and g € (d/B, o0), we also introduce a subclass of Dgo as follows:

DF = {cb € DY, ¢ 19l = I1@llpy, + = VOlp4 < oo}. 2.11)

We have the following result about the class Dg (see [35]).

Proposition2.4 (i) Let 8 € (0,1] and g € (d/B, 00). For any ® € D’g, we have
o 1e Dg and
| det(VP) — 1lig,q4. |l det(VCD_I) —lllg,qg < o0.

(ii) Let ® € Dgo be a C'-diffeomorphism. For any o € [0, 1] and p > 1, there is a
constant C = C(a, d, p, ||<I>||Dgc) > 0 such that for all f € H*?,

Ifo®@lap < Cllfllap- (2.12)

(iii) Let @ € Dg for some B € (0,1) and q € (d/B, o0). For any a € [0, B] and
p > 7%, there is a constant C = C(a, B, d, p, | @l pp) > O such that for all
q
feH™®P,

Il fo cD”*Ot,p < C||f||*0¢,p~ (2.13)

The following estimate is well known (for example, see [33]).

Lemma25 Letb € Wllo’c1 (RY). Then there exists a Lebesgue-null set A C R? such
that forall x,y ¢ A,

[x=yl [x=yl
|b(x) —b(y)| < Zd/ ][ |Vb|(x 4 z)dzds + Zd/ ][ [Vb|(y + z)dzds,
0 Bx 0 BS

where By := {x € RY : |x| < s}. In particular, for any R € (0, o0] and x, y ¢ A with
lx =yl <R,

|b(x) = b(y)] < 2%|x — y|(MR|Vb|(x) + (Mg|Vb|(y)), (2.14)

where Mg f(x) := sup,_p fBr f (x 4+ z)dz is the Hardy-Littlewood maximal function.
We also need the following simple lemma.

Lemma 2.6 Let (] be a family of locally integrable function and H : [0, 00) — R be
a continuous function so that for any T > 0,

t
/ Efds — Ht
0

=0.

lim sup
£=01e[0,7]
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Then for any 0 < ty < t1, it holds that

1
|H|}} < lim €2 |ds,

m—00 J 1y

where |H|§(1) stands for the variation of H on [ty, t1]. If in addition,

T
sup/ [€4'|ds < 00, VT >0,
0

meN

then for any bounded continuous f,

T T
/ fsﬁ"ds - / fsdH;| =
0 0
Proof Letty =s9 < s1 < --- < s, = t;. By the assumption we have
Sk+1
lim / 2t ds
m—00

1
lim Z/ |€"|dst = lim |em|ds,
Sk

m—00 J 1y

lim
m—00

n—1
Z |Hsk+1 - Hsk| =
k=0

which implies by taking supremum for partitions of [z, #1],

1

t .
|Hl|, < lim |5 |ds.
m—00 J 1
For the second conclusion, for n € N, letting sy = kT /n,k =0, ..., n, we have

k41
/ fotds — Z Fue / e'ds
- Sk1
+ Zf&‘k |:(H8‘k+1 - Hs‘k) _/ Kz‘ndsil
k=0 S

Sk

T n—1
+ / fvst - Z ka(HskH - Hsk) .
0 k=0

T T
‘/ fsei'ds —/ fsdHj
0 0

< sup
meN

(2.15)
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. . . T ..
Since f is continuous and sup,,y [, [€4'|ds < oo, it is easy to see that

T n—1 Skt
lim sup / fllds = fy / "ds| =0,
=0 ,,eN [J0 =0 Sk
T n—1
Jim /0 fedH, =Y fy(Hy — Hy)| = 0.
k=0
Moreover, for fixed n € N, by the condition we also have
n_l Sk+1
mlgnoo Z fsk I:(HSkJrl - HSk) - -/Yk Zg"ds] =0.
k=0 h

Hence, by first letting m — oo then n — oo in (2.15), we obtain the desired limit. O
The following lemma is easy.

Lemma 2.7 Let A, be a continuous nonnegative adapted process and t be any stopping
time. Suppose that there is a constant Coy > 0 such that for any stopping time T’ < 1,

EA; < Co.

Then for any q € (0, 1), it holds that

Cq
]E( sup A?) <0

re[0.7] l—q
Proof For A > 0, define
7, = inf{r > 0:|A;| > A}.
Noticing that

AP (15 < 7) SE(Arny) < Co,

we have
oo
E| sup Af :q/ AP sup A, > A ) da
1€[0,7] 0 1€[0,7]
o
gq/ )ﬂ_l(l/\]}”(rk’gr))d)\
0
00 C(I
< q/ xq—l(l A (co/x))d)\ =0
0 l—gq
The proof is complete. O
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The following stochastic Gronwall’s inequality for continuous martingales is proved
by Scheutzow [25]. For general discontinuous martingales, it is due to [29].

Lemma 2.8 (Stochastic Gronwall’s inequality) Let £(¢) and n(t) be two nonnegative
cadlag F;-adapted processes, A; a continuous nondecreasing F;-adapted process
with Ag = 0, M; a local martingale with My = 0. Suppose that

i
E@) < n() +/ E(s)dAs + M;, forallt > 0. (2.16)
0
Then forany 0 < g < p < land t > 0, we have

[EE @]V < (ﬁ)l/q (EepAf/“—m)(lfp)/pE(n(r)*), 2.17)

where £(t)* 1= supsefo,n(s).

Proof Without loss of generality, we may assume that the right hand side of (2.17)
is finite and 7(7) is nondecreasing. Otherwise, we may replace 1(z) with 1_7(t)* =
Supsefo.) M(s). Let &£ (¢) be the right hand side of (2.16) and A, := fot E(s)/E(s)dA;.
Then

t -
E(1) <E@) =n() +/0 E(s)dA; + M.

By It6’s formula, one has

_ 1 _ ! _
e_A’é?(f)=7)(0)+/e_A“'d77(s)+/c—“:_AA'dMs.
0 0

Let (t,),en be the localization sequence of stopping times of local martingale M. In
other words, for eachn € N,

t = M; .y, is a martingale.
Using e’AS < 1, we have
B(e A nE e A tr) < B(n(z A Te) <E(n(D).
Since limp_, o, Tg = 00 a.s., by Fatou’s lemma, we get
E(e™*5(@) <E(n(0),
which yields by Holder’s inequality, £ () < S(t) and A, < A, that for any p € (0, 1),
Eé (1) < Eé(1)” < (EepAr/G—p))”’ [E(n(x)]".
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Now by Lemma 2.7, we obtain (2.17). O

3 Strong Well-Posedness of SDEs with Integrable Drifts

In this section, we prove the strong well-posedness of the following SDE by using
Zvonkin’s method:

dX, = V2dW, + b(X,)dt, X = x, (3.1

where b € L?(R?) for some p > d Vv 2. More precisely, we shall prove that

Theorem 3.1 Assume b € LP'(R?) for some p; > d V 2. Then, for each x € R?,
there is a unique strong solution X; to SDE (3.1) in the sense that

t t
/ |b(X;)|ds < 0o a.s.and X; = x +~2W, +/ b(X,)ds.
0 0
Remark 3.2 1t should be noticed that in the original statement of Krylov and Rockner
[21], they require fot |b(X,)|>ds < oo, in order to apply the Girsanov transformation.

Before proving this theorem, we need to first solve the following elliptic equation:
(A—=MNu+b-Vu=f, (3.2)

where A > 0 and f € L?(R?). We have

Theorem 3.3 Assume b € LP'(R?) for some py > d. For any p € (d/2V 1, p1],
there is a o = ho(d, p, p1, 1bllp,) = 1 such that for any f € LP(RY) and 1 > Ao,
there is a unique solution u € H>? to Eq. (3.2) so that

d

2—a+4—4) 2
lullz,p < Cllfllp, )»( T ’)/ lulle,r < Cllfllps (3.3)

where o € [0,2) and p’ € [1, 0o] with % <2—-—o+ %. Here, the constant C is
independent of ).

Proof We divide the proof into two steps.
(i) First of all, we assume » = 0 and show that for all A > 0,

_ 2—aq+4d_d) _
I — A fllap < Cill £l ps <1vx)< s IA=2)"" flla.y < Call I,
(3.4)

where the constant C»> does not depend on A. The first estimate follows by Fourier’s
multiplier theorem (cf. [26]). We prove the second one in (3.4). Noticing that

u(x) = (= A7 f(x) = (@4m) 42 / T e s faydr,
0
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where ,ol(z) is defined by (2.8), we have
*© 2
A2y (x) = (4;1)—’1/2/0 e M(AY2pPy % f(x)dr.

Letr =1/(1 —1/p+1/p’). By Lemma 2.2 and Young’s inequality we have

o
2 —At
18°Puly 5 [ e |
0

o0
= ( / e“z“’/r“”/zdt) oA Il S A@Hd=am2=ty gy,
0

o
p,(“)*pr, dts/o e o 1,1 1l pdt

Moreover, we also have

0
< —At
lullpr S e
0

o0
_ - 2 - -
_ (/ eyl "”2‘”> 1PNy S @021 £
0

o0
2 — 2
o2 f] s [ e I

Combining the above two estimates, we obtain the second estimate in (3.4).
(i1) We use Picard’s iteration to solve Eq. (3.2). Let ug = 0 and define forn € N,

up = (A =07 Nf —=b-Vu,_1). (3.5)

Let py == p1p/(p1 — p),a € [0,2) and p’ € [1, oo] with % <2—a+ Fi By (3.4)
and Holder’s inequality, we have

Cgad _d
(2 ot p)/z

(1va) Nunlle,pr SWf =0 NVup_illp <N fllp + 101 p VU1l p,
3.6)
and
2—a+4—-4) 2
(I'v ?»)( T ”)/ lun = umlla,pr S NBIp IVUn—1 — Vi1 p, - 3.7

In particular, due to p; > d, we can take p’ = py, @ = 1 and get

2
a V)»)( i)/ lunllt,p, < CILFIp 4+ Cllblp IVin—1llp,

1—4

and

-4 /2
(1 V)\)( /’1) lun — Mm”l,pz < C”b”p] Vup—1 — Vl'imfl”pz-
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d _
Choosing Ag > 1 be large enough so that CA(PI 1)/2||b||pl < 1/2forall A > Ag, we
get

d

(£-1) |
lunll1,p, < CANP I F1lp + 5 lun—1ll1, ps
and for alln > m,
1
lun — umll,p, < §||“n71 —um—1ll1,p,-

From these two estimates, by iteration, we derive that for all L > A,

d

1)/2
sup ”“n”l,pz < C)L(pl ) ”f”p,
n

and for alln > m,

1
|2ty _um”l,pz < ﬁllun—mnl,pz < 2%

Substituting them into (3.6) and (3.7), we obtain

2—at+4 42
k( 7%) lunlla,pr < ClIFIp,

and for alln > m,

el

27ot+i,fi)/2
)\< P lotyy — um”o{,p/ < it

Moreover, we also have

lunllz,p < Cllfllp + Clblpy IVUun—1llp, < ClILf Nl p-

Hence, there is a u € H*P such that (3.3) holds and

2—a+4 -4
)‘-( r p) [|u _um”a,p’ < 2%7

and u solves Eq. (3.2) by taking limits for (3.5). O
The following Krylov’s estimate will play a crucial role in the proof of Theorem 3.1.

Theorem 3.4 Leth € LP'(RY) forsome py > d. Forany p > d/2v1andT > 0, there
is a constant C > 0 such that for any solution X of SDE (3.1)and all0 < 1ty <t; < T,

n
E ( / | £(X,)|ds ffm) <Ct — )" fllp. (3.8)
10
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Proof (i) Let A > 1. First of all, for f € C°(R?), let
wi=(A—2""feCPRY,

and for R > 0, define

t
TR ::inf{t}O:/ |b(Xs)|ds>R}.
0

By It6’s formula, we have

IINATR

E(M(Xtmm) - M(XI()/\TR)> = E/ (Au+b - Vu)(Xs)ds

IONATR

IINATR
=E/ (f 4+ Au+ b - Vi) (X,)ds.
I

0NTR

Therefore, for p > d, by (3.4) with p’ = oo and o = 0, 1, we have

HNATR
E/ f(Xo)ds < Mlulloo(t1 — 10) + 2||ulloo
IONTR
HINATR

+ [ VullooE / Ib|(X,)ds
10ATR 3.9)
d d _
AW =) fl, + 27 AL,

HATR

d 1
4t ||f||pE/ 1b(Xs)ds.

IOATR

By a standard monotone class argument, the above estimate still holds for any f €
LP(R4). In particular, if we take p = p; and f = |b|, then

HATR L—l
E/ 1b1(Xs)ds < CA2r (A (1 — 1) ||l p, + DI p,
IONTR
4 1 1IATR
+ Cr2rn 2 ||b||mE/ |b|(Xs)ds.

IONTR

Letting A = k(] — 10) ! with k being large enough so that cad/pi=1/2 ol <1/2,
we obtain

IINATR
IE/ IBI(Xs)ds < C(tr — 10) PV b,
1

ONTR
Substituting this into (3.9) and letting R — 0o, we obtain that for any p > d,

1 d
E/ f(X)ds < Cltr —10)' "7 | £ -
0]
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(ii) Now let p > d/2 Vv 1. For f € C®(R?), letu € H*P! solve (3.2) and define
U (x) :=u * 0,(x). By Itd’s formula, we have

1
. </ (b - Viy — (b - Vi) % 0p + Mty + f,,)(XS)ds)ﬂ,o) .
0]

E(un(Xyy) — un(Xi)F1y)

t
=F </ 1 (Auy + b - uy)(X,)ds
0]

Letting
[0n, b+ V]u := 0% (b-Vu) —b-V(ux*on),

we have
1
E (/ fn(xs)ds(%o) < 2t = 1) oo + 2lulloo
fo
4
+]E(/ [gn,b-V]u(XS)ds‘ﬂtQ. (3.10)
0]

By (i) we have
h n—oo
E(/ I[Qn,b-V]ul(Xs)dS> < Clllon, b - Vullp, — 0.
0]

Thus, letting n — tcl>o in (3.10) and by (3.4) with p’ = p and o = 0, we obtain
E (/ f(ngs\%) <t = 10)lulloo + 2lulloo

(0]
<AV @y — 1) £l

+ (11— 1) 2D £,
Taking A = k() — 1)~ with large enough, we get (3.8). O
Below we give two easy applications of the above Krylov’s estimate.

Corollary 3.5 (Khasminskii’s estimate) Let p > d/2 Vv 1. For any f € LP(R?) and
m € N, we have

7 n "
%0 (/ |f(XX)|ds) < ml(C(ty — o))"=/ £,
1

0

In particular, forany T > 0 and A > 0,

T
E(exp {A/ |f(Xx)|ds}> < 00.
0
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Proof For m € N, noticing that

t m
(/lg(S)dS) =m!/~/ g(s1) - - g(sm)dsy - - - dsp,
1o AM

where

A™ :={(s1,...,sm):to<s1<s2<---<sm<t1},

by (3.8), we have

EZ0 (/ll f(XS)dS)
0]
— mEZ0 (// f(Xsl)"'f(Xsm)dsl"'dsm>
Am

= m‘]E%O (// ) f(Xsl) e f(Xsmfl)Egzsmfl
Am—

1
X ( f(Xsm)dsm> dsy--- dsm—l)

Sm—1
<mE70 (// LX) (X )
C(t = 10) P £l pdsy - ~dsm1)
<o <ml(C(t — 1) YO F )™
The proof is complete. O

Corollary 3.6 (Generalized 1to’s formula) Let X; solve SDE (3.1) and b € LP'(R?)
for some p1 > d. Forany f € leo’f with p > (d/2) Vv 1, it holds that

t t
FOXD) = £ + /O (Af +b-VF)(Xo)ds + /0 V£ (Xs)dW,.

Proof By standard localization technique, one may assume f € H>” and p € (d, p].
By Holder’s inequality and Sobolev’s embedding (2.4), we have

IAf+b-NVFlp SN fllzp + 161 p IV Fllpipsipi—p) S I Nl2,p-
The desired formula now follows by applying It6’s formula to f,, = f * o, and then

taking limits by Krylov’s estimate (3.8). For example, letting p’ = dp/(2(d — p)) and
by (2.4), we have
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2 t
_E / IV fa(Xy) — V£ (X,)Pds
0

ClIV = VPl < Cllfa = FIT oy
Clifu = £z, = 0.

t
E ‘/0 (V[ (Xs) = Vf(Xs))dWs

<
<

The proof is complete. O

Let b € LP'(R?) and u solve the following elliptic system
(A—MNu+b-Vu=—>b.

By Theorem 3.3, for any o € [0, 2), there are 19 > 1 and C > O such that for all
A)Aoandp’e[l,oo]with% <2—a+§,

2
/ llle, pr < ClIDI p, - (3.1

il < Cllp, 27477
Define
O(x) :=x +ulx).
It is easy to see that
AP +bH-VO = Au,
and by (3.11), there is a A large enough so that || Vu| s < 1/2 and
X = yI/2<|Px) =PI < 2|x -yl
In particular, ® : RY — R? is a C'-diffeomorphism and

[V®lloo <2, VO o < 2.

We have

Lemma 3.7 (Zvonkin’s transformation) X; solves SDE (1.1) ifand only if Y; := ®(X;)
solves

dY, = V20(Y)dW, + Au o @71 (¥)dt, Yy = D (x), (3.12)
where ©(y) := V& o d~1(y).
Proof By the generalized Itd’s formula in Corollary 3.6, we have

t t
d(X,) = ¢(x)+ﬁ/ Vo (X,)dW, +x/ u(Xy)ds.
0 0
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So Y; = ®(X;) solves (3.12). Similarly, one can show that if ¥; solves (3.12), then
X, := &~ 1(¥,) solves SDE (1.1) o

Now we are in the position to give

Proof of Theorem 3.1 By Lemma 3.7, it suffices to show the well-posedness of SDE
(3.12). Observe that

V(o @ Hlos < Vullool VO oo < 00
and
IVOIlpy, < IV, IV oo < 0.

In particular, the drift in SDE (3.12) is Lipschitz continuous, while the diffusion
coefficient ® belongs to H L.r1 | Since the coefficients are bounded and continuous,
the existence of weak solutions follows by a standard weak convergence argument.
By Yamada-Watanabe’s theorem, we only need to show the pathwise uniqueness. Let
Y; and Y/ be two solutions of SDE (3.12). By It6’s formula, we have

Y, = Y/I” = Yo — Y5I* + zfzfolm — Y, O(y) — O(Y))dW;)
T 2/(:(|@<Ys> — O+ MY — ¥, B(Yy) — BY))ds.
where b(y) := u o ®~1(y). Let
Ay = 2/()t(|®(YS) — QD>+ 21(Ys = Y], b(Ys) — b(Y)))/|Yy — Y!|*ds

and for R > 0,
g ;= inf{s > 0: A; > R}.

By stochastic Gronwall’s inequality (2.17) with ¢ = 1/2 and p = 3/4, we have

1/2 1/6
k < sup  [¥s — Y;|> <3 (IE)|Y0 - Y6|2) (EeaAmR>

se€[0,TAtR]

In particular, letting Yy = Y}, we get

E sup |Ys—Y/|]=0.
s€[0.T Atg]
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If we can show g — oo as R — o0, then the uniqueness is proven. Clearly, it suffices
to prove

Ay <00, a.s., forallt > 0.

By (2.14), we have
t
A < C/ (M|VOP(Yy) + M|VO[*(Y)) + M|Vb|(Y,) + M|Vb|(Y)))ds,
0

where M f(x) := sup,. fBr f(x+2z)dz. Since p; > d Vv 2, by Krylov’s estimate and
the LP-boundedness of the maximal operator, we have

t
E/ MIVOP (Yy)ds < C[MIVOP |y 2 < CIVO[3, < oo
0
and
t ~ ~ ~
E/ M|Vb|(Y)ds < C|M|Vb| ||oo < Cl|Vb]oo < 00.
0

Hence, EA; < oo. Thus the proof is complete. O

Remark 3.8 Let b, = b x o, be the smoothing approximation of b. Consider the
following approximating SDE:

dX" = V2dW, + b, (X")dr, X2 = x.

In fact, we can show that X" converges to the unique solution X (see [34]).

Remark 3.9 Although the above result is stated for time-independent b. The same
idea also works for time-dependent b so that we can completely cover Krylov and
Rockner’s result (see [34]).

Remark 3.10 Here an open question is the well-posedness of SDE (3.1) when b €
L4(R?). Notice that whend = 1 and b € L 110 . (R), it is well known there is a unique
local strong solution (see [9]). However, when d > 2, it seems to be a hard problem

(see [5] for some development about this problem).

4 SDEs with Distributional Drifts

In this section, we consider time-independent SDE (1.1) with driftb € H~ 1/2.P where
p > 2d. The main results of this section come from [35]. Let C be the space of all
continuous functions from Ry to R4, which is endowed with the usual Borel o -field
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B(C). All the probability measures over (C, B(C)) is denoted by Z(C). Let w, be
the coordinate process over C, that is,

wy(w) = w;,, weC.

For t > 0, let B;(C) be the natural filtration generated by {w; : s < ¢}. For given
R > 0, we shall use the following truncated B, (C)-stopping time

g ;= inf{t > 0 : |w,;| > R}. “4.1)
Notice that for each w € C, it automatically holds that

lim tx(w) = co. (4.2)
R—o00

For a probability measure P € &2 (C), the expectation with respect to P will be denoted
by EF or simply by E if there is no confusion.
We first introduce the following notion.

Definition 4.1 (Local Krylov’s estimate) Let o« € [0, 1] and p > 1. We call a proba-
bility measure P € &2 (C) satisfy local Krylov’s estimate with indices «, p if for any
T > 0and R > 1, there are positive constants C7 g and y such that for all f € C°°,
0<rg<t) <Tandt < 1R,

nAt
/ f(wg)ds
b

ONT

2

E < Crrlti — 10" 1 £ X112y p- 4.3)

If Cr g does not depend on R, then the above estimate will be called global Krylov’s
estimate. All the probability measure I’ with property (4.3) is denoted by %" (C).

From this definition, it is easy to see that

Proposition4.2 Leta € [0,1], p > 1 and P € %"‘((C). Forany f € Hl;g’p, there is

a continuous B;(C)-adapted process A‘,f such that for any mollifying approximation
fo=f*onandany T > 0,

t
lim ]E( sup / fu(ws)ds — AL | A 1) —0. (4.4)
0

n—>00 t€[0,T]

Moreover, for each R > 1, the mapping H=%? > f Al € LZ((C, P; C(0,T]))
is a bounded linear operator, where tg is defined in (4.1), and forall0 < tg <t; < T,

2
B[4 rp = Alpeg| < Crorttr =101 fxr12 45)

IIATR

where the constants Ct g and y are the same as in (4.3).
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Remark 4.3 (i) Estimate (4.5) implies that ¢ +— Af is a locally zero energy process,
that is, for any R > 1,

lim sup IE|A _aAf |2 _
6011, :mesh(T1; )<8} iz Z li+1ATR 1 ATR

where l'[t := {0, 11, ..., ty} denotes any partition of [0, #].
) If felL [ oc (RY) with q = pd/(d + pa), thent — Af is absolutely continuous
and

t
A,fz/ f(ws)ds.
0

C H, *7.

loc loc

Indeed, it follows by Sobolev’s embedding L/
Now we introduce the notion of martingale solutions.

Definition 4.4 (Martingale Problem) Let o € [0, 1] and p > 1. We call a probability
measure P € 7 (C) a martingale solution of SDE (1.1) with starting point x € R?
if for any f € C°°,

t
Mf:=f0m)—f1w—1£(imfxwads—A?Vf (4.6)

is a continuous local B; (C)-martingale with Mg = O under P, provided thatb - V f €
Hy, &P, where 2° f := o'*a/%0;9; f /2. All the martingale solution P € . (C) of

loc

SDE (1.1) with coefficients o, b and starting point x is denoted by .# (‘: ’bp (x).
As a direct consequence of martingale solutions and Lemma 2.3, we have

Lemma 4.5 (Generalized It6’s formula) Ler o € (0, 2] p>1yandpela,l],q e
(%, 00). Suppose o € H;Z’Cq andb € Hloc P Forany f Hloc P andP e (//l:)bp(x),
: Lo+b-V)f
M = faw) = foo) — A7

is a continuous local B;(C)-martingale under P.

Using this lemma and Proposition 2.4, we have the following Zvonkin’s transfor-
mation as in Lemma 3.7.

Lemma4.6 Let o € (O, é] p > ﬁ and B € [a, 1], q € (%,oo). Suppose that
oeHlOC,beH apand@eDl ~“. Define
5:= (VP -0)o® ', b:=(L°D+b-VI)od . 4.7

Then we have
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() beH," and& € H' for p':= B A (1 — ) and

L Lv(f-22), pelot-al .
T liv (i), pea—an,
and also q¢' > d/B’.
(ii) For any x € R4, it holds that
Pe sy (x) & Pod™ € 7] (®(x)). (4.9)

Here P o ®~ ! means that for A € B(C), Po ® 1(A) =P ({w : (w.(w)) € A}).

Remark 4.7 The importance of (4.9) lies in the fact that if there is one and only one
element in ///55 (®(x)), then there is automatically one and only one element in

M, (‘: ’bp (x). Moreover, the heat kernel estimates and ergodicity can also be derived by
(4.9).

Next we introduce the notion of weak solutions and discuss the relationship between
martingale solutions and weak solutions.

Definition 4.8 (Weak solutions) Leto be locally boundedand b € H,, . forsome o €
[0, 17and p > 1.Let (X, W) be two R-valued continuous adapted processes on some
filtered probability space (2, 7, (Z1);>0, P). We call (2, F, (Z1)i>0,P; X, W) a
weak solution of SDE (1.1) with starting point x € R? if W is an Z:-Brownian motion
and

t
X, =x +/ o (Xs)dWs +Af, forallt >0, P—a.s., (4.10)
0

where Af’ = lim, f(; b, (X)ds in the sense of u.c.p., and b, € C2(R%) is any
approximation sequence of b so that for each R > 0,

lim ”(bn - b)XR”—ot,p =0.
n— 00

Here Ai’ does not depend on the choice of approximation sequence b, € C*(R?) of
b.

We have the following equivalence.

Proposition 4.9 Let P € &2 (C) satisfy that for any T,R > O and s,t € [0, T],
Elwinry — Wsnrg|” < Cr gt — 5. (4.11)

Leta € [0, 1] and p > 1. Assume that b € leg’p and 0,01 are locally bounded.

ThenP € ///;f’f (x) if and only if there is a weak solution (2, %, (%;)i>0, P; X, W)
in the sense of Definition 4.8 so thatPo X~ =P € A5 (C).
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To state the main results, we make the following assumptions about o and b:
(Hg’q) ||Aﬁ/20’||q < ooforsome g € (0,1]and g € (%, 00), and there is a constant
co = 1 such that
g 1E < lo*(0)E1* < colél?, forallx, & e RY. (4.12)

(Hgyp) b =bWD + p@ where bV satisfies that for some ¢ > 0 and Ko, K1, k3 > 0,

x, bW (x
GO ol 4, V@] < a1+ ), @.13)
e

and b® € H~%P for some « € (0, %] and p € (%, 00).

The following theorem is the main result in [35].

Theorem4.10 Let o € (0, %], p € (14, 00) and B € [o, 1], q € (%,oo). Under
(Hg‘ q) and (HZ’ p), for any x € RY, there exists a unique martingale solution
P, € ///;};p (x) to SDE (1.1). Moreover, letting E, = EP*, we have the following
conclusions:

(i) For any T > 0 and m € N, there is a constant Ct > 0 such that for all
0<rm<t <T,

E|wy, — wyy|*™ < Cr(t — o)™, (4.14)

and forall f € H*P,

2m

E (A} — AL <crn— ) 0" 112, (4.15)

(i) If 9 = 0 in (4.13), then for any ¢ € H> %P u(t,x) := P,p(x) := Ecp(w;) €
Ll’;C (Ry; H>~%P) uniguely solves the following Cauchy problem in H=%?,

hu = (L% +b-Viu, u) =e. (4.16)

Moreover, P; admits a density p;(x,y) enjoying the following two-sided esti-
mate: for some c1,cy > landallt > 0,x,y € R4,

clflfd/zefcz\xfyﬁ/t < pilx, y) < eyt e Wyl 4.17)
and gradient estimate: for some c3,c4 > Oand allt > 0, x,y € R,
IV pr (x, ¥)| < ezt @FD2calx=y /1, (4.18)

(iii) If © > 0 in (4.13), then P; admits a unique invariant probability measure
u(dx) = o(x)dx witho € H”"",wherey € (0, BA(1—a)]andr € (1, d+dﬁ)'
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Proof We sketch the proof. By Lemma 2.3 and suitable freezing coefficient argument,
one can show that there exists a constant Ao > 0 such that for all A > A, there is a
unique u = u;, : R? — R? belonging to H>~%" so that
(L =2 +b? Vyu=-b? in H 7.

By Sobolev’s embedding (2.4), we can choose A large enough so that

[Vulloo < 1/2. (4.19)
Now, define

O(x) :=x+ux): R — RY,

It is easy to see that

Ix =yl < @) — P < 20x — yl,
IL—V®@li—a,p = IVill1—a,p < CIIEPD || _q,p- (4.20)

Hence, ® € D},_“ (see (2.11) for a definition) and
LD+ b?D . VD =ru in H %P, 4.21)
Define
5:=@0* V) o®d !, b:=0u+bV.Vd)od L (4.22)
One can verify that for A large enough, there are kg, kK1, k2 > Osuch thatforall y € R,

(v, b(y))

V1+Iyl?

where ¥ is the same as in (4.13). Moreover, & satisfies (H?, q,) with 8’ = BA (1 —a)
and ¢’ being defined by (4.8).

< —kolyl” +#1 and |b(y)| < k(14 1y]"), (4.23)

(i) By Lemma 4.6, it suffices to show that there is one and only one element in
///6 ’ g (®(x)). Since ¢ is uniformly non-degenerate and bounded continuous, by
(4.23), it is well known that there is a unique element in //l(jf (®(x)), and (i)

follows.

(i1) Since (4.17) and (4.18) are invariant under C l-diffeomorphism transformation
®, it follows by (1.3) and (1.4).

(iii) It follows by (4.23) and the classical Bogoliubov-Krylov’s argument. More
details are referred to [35]. O

As an easy corollary of Theorem 4.10 and Proposition 4.9, we have
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Corollary 4.11 Under the same assumptions of Theorem 5.16, there exists a unique
weak solution (2, 7, (F;)i>0, P; X, W) for SDE (1.1) so that P o X! € K, (©).

In the above corollary, we require that the law of weak solution satisfies the local
Krylov estimate, that is, P o X -1 ¢ %" (C). This is crucial when we use Zvonkin’s
transformation to show the uniqueness. Nevertheless, under an extra assumption, we
can directly prove such a priori estimate for any weak solutions.

Theorem 4.12 Leta € (0, 3), p € (I/QL_Q, oo)and B € [a, 1], q € (%, 00). Under
(H%’q) and (Hz’p),for any x € RY, there exists a unique weak solution to SDE (1.1)
in the sense of Definition 4.8 so that for each T, R > 0 and s, t € [0, T],

d
2(2—0{—;)7

E|AY, — AP 1t < Crglt -] (4.24)

IANR SANR

where ng := inf{t > 0 : |X,| > R}. Moreover,Po X~! € Jé/p“ and the conclusions
in Theorem 4.10 still hold.

5 SDEs with Measure-Valued Drifts

In this section, we study SDE (1.1) with drifts in some generalized Kato’s class. In
particular, some singular measure-valued drift is allowed, which extends the well-
known results in [3]. Our proof looks much simpler than [3]. We believe that it should
also work for the SDE driven by «-stable type noises.

5.1 Generalized Kato’s Class of Radon Measures

In this section we introduce some generalized Kato’s class of Radon measures. Let
Z be the set of signed Radon measures over R?, which is endowed with the vague
convergence topology. For u € %, we use |u| to denote the total variation measure
of . Let f be a nonnegative real-valued function and € % a nonnegative Radon
measure. We define

wH fx) = f*pukx) = /Rd fx —y)udy),

and for a measurable family of Radon measures us : R — % and 8, > > 0,

t
m{) (8) ;= sup / e M o) s | () ds
(t,x)eRd+1 J1—=6

$
= sup /e*“pé”*mt_ﬂ(x)ds,
0

(t,x)eR‘Hl
where ,o,(“) is defined by (2.8). If & = 0, we simply write

m(® (8) = m") (6).
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Below we list some important properties about m(“) (8) for later use.

Proposition 5.1 Let « € (0,2) and u: R — Z be a measurable family of Radon
measures.

(1) For any p,q € [1,00] with % + % < 2 — «, there is a constant C =

C(d, p,q,a) > 0 such that for any ug(dy) = f(s,y)dy with f JL?, =
L9(R; L”(RY)),

m{) (8) < c( s i=i aa(prites 2)/2) 1 £l
(i) Foranyy > 0, there is a constant C = C(y, a,d) > 0 such that
2% (x) < € (1), 1> 0,x e R 5.1

(iii)) For any » > 0,6 — m&ai (8) is increasing on (0, 00), and for any bounded
measurable f,

m 0) <[ flloom &) (0), m{) ., (6) <m),(6).

(iv) For any d > 2 — «a, there is a constant C = C(«,d) > 1 such that for any
time-independent Radon measure u and 5, A > 0,

e @ 812 <mi®) (6) < C® (872, (5.2)

where

m(* () == sup / o lx — 127l (dy).
x—y

xeRd

(v) Forany 0 < B < a < 2, there is a constant C = C(«, B, d) > 0 such that for
any § > 0,

mP) §) < C8 PP (5). (5.3)

Proof (i) Let p’ = ﬁ, q = qul and y = d + o. By Holder’s inequality we have

%)
/ 08 ks (x)ds
0

5 5 Lo\ Ve
< / e 1ol fi-sllpds < ( / ||e—“p§“>||’§,,ds) 1l
0 0

@ Springer



Singular Brownian Diffusion Processes

5 d g/
—iq's —LE —yp
<o [Fers (s [ wrran) as| sy
0 |x|>s1/2 ’

d_2 2,
gc(&z‘”pq A,\( +gte 2)/2) £l

(i) It follows by

t—(d+a)/2e—\x|2/(yl)(t1/2 + x4 < sup(l +r)d+ae—r2/y_

r>0

(iii) The increasing of § m(a) (8) and m&a)fﬂ(é) < ||f||oom(a) (8) are direct by

definition. Moreover, by the deﬁmtlon of convolution, it follows that
—A b A
”/0 ol s | |ds ’Qn / e M 0! s |y —ylds

H/ 5 5@ g |ds

(iv) Since e M L e ™™ L 1fors € [0,8], without loss of generality we assume
A = 0. Notice that

o0

ee]

s 5 8t )
/ p@ (x)ds = x>~ / ("2 4+ 177 ds = [xP* g5 (|x)).

0 0

Since gs(r) < goo(1) < coforr? < § and gs(r) < gy () <y forr? > §/y, we have

/ P s [l (r)ds < / I — ¥ g5 (1x — yD(dy)
0 R4

gs(lx — yD
:/ y|dta— — 1(dy)

x—yP<s X —
o0

gs(lx — yI)
2 eyt @)

k8<|x—y|2<2k+15 |.X -

k=0
< oo (DM (8177
o
k=0 2k§<|x—y|2 L2k H1s

For the annulus C§ = {y: 2ks < [x — y|2 < 2k+18}, there are at most N2%4/2 balls
with radius /8 and centers {xiyi=1,..., N2kd/2}, where N = N(d) € N, such that

Nzkd/Z
clc | iy —xF<a).

i=1
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Hence,
N2kd/2
pCH< Y pu(dy) < N2MP2sUHe D20 51/2),
i=1 |y_xi|2<3
Thus we get

o
m@(8) < C@ (8'%) + Y " 27RO (@ (5112) < Cm( (8177,
k=0

On the other hand, we clearly have

§/r? ) J
lp2<s) </0 "2+ D7 ds [g1(0),
which implies that
m(® (612 < Cm{®(5).

(v) Clearly, by definition,

8
/ / e o (x — Yy (dy)ds < 28) PP 8).  (5.4)
0J|x—y?<s

We now estimate

s
/ / e M plP (x — y)pi—s(dy)ds
0J|x—y?>6

o0

S
=> / / e M pP) (x — y)ps—g(dy)ds
k=00 2k§ <|x—y|2L2k+15

o )
<Yy nr [ | - (dy)ds.
k=0 0 2k§<|x—y|2 L2k H1s

As above, we have

)
/ e / [i—s (dy)ds
0 2§ <|x—y[2 <2+ s

N2Kkd/2

1)
< e / [i—5 (dy)ds
Z /o ly—xi2<8 o

i=0
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N2kd/2 s
< §@+0/2 Z e Ml (x; — y)pi—s(dy)ds
= JoJiy-ur<s
< 5(d+a)/2N2kd/2mf\o,{,)L(5)'

Hence,

S o
/ / e o) (x — y)y—s(dy)ds < 8PN 272 ) (),
0J|x—y|?>8 k=0

which together with (5.4) yields (5.3). O

Definition 5.2 For o € (0, 2], the generalized Kato’s class of Radon measures is
defined by

Ky := {u 'R — Z satisfies gig%mff‘)(S) = 0} )
Moreover, we also introduce
K/, := {,u : R — 4 satisfies mff‘)(S) < oo for some § > O}
and
K := {u e K, satisfies Ali)n;o miofl)L((S) = 0 for some § > O} )
Clearly,
K, cKy CK,.

Examples of singular measures in K,, are referred to [3]. The following lemma is easy.

Lemma 5.3 Let u € K, be time-independent and j1,(x) = [t * 0, (x). Then for any
m € N, it holds that

IV tnlloo < 2941V 0nlloom P (1).

Proof By definition, we have

V7 () </ V7 0u(x — )] [11l(dy)
]Rd

(@) _
=/ 92 n e = 1 2T ay)
Rd ps (x —y)

<244 VT 0,10 /R P (x = ) Iuldy), s € (0, 1).
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Integrating both sides with respect to s from O to 1, we obtain the desired estimate. O

5.2 Solvability of PDEs with Measure-Valued Datas

In the following, we always assume that o and b are time-independent. For a Radon
measure @ and A > 0, we define

Plu(x) == /R ) e M p(x, y)(dy), (5.5)

where p;(x, y) is the fundamental solution of operator £ (see (1.2)). The following
lemma plays a crucial role in solving the PDE:

Lemma 5.4 For any u € K|, there is a constant C = C (o, d) > 0 such that for any
At 20,

|vul ], < cm o, (5.6)

where
t
uh (t, x) :=/0 P} jus(x)ds.

Fora € [1,2)and n € K(’x, there is a constant C = C(a, d, o) > 0 such that for all
t,6,.>20andx,y e RY,

|Vul, (&, x) — Vul, (1, y)|

<C ((5 AD T m@ (G AD) +|x — G AT m® (t)) 6
B i A

Proof (i) By (1.4) and (5.1), we have

t t
|Vag, (1.x)| = ‘ /O VPl s (x)ds| < ‘ /0 e, gl yds| . (5.8)
Thus (5.6) follows by definition.
(ii) First of all, if # < §, then by (5.6) and (5.3),
\Vul (t, x) — Vuly (1, )|
v pr "o ph )) ezl () (.9
= ; VP! jus(x)ds — ; VP us(ds| Sm; (1) St7my, (1),
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Suppose now § < t. We write

‘/ VP)‘ ~oMs(x)ds —/ VP)‘ ~oMs(y)ds

t
< / VPA s (y)ds (5.10)
t—§

t
/ VP ~oMs(x)ds | +
i—s

t—8
+ ‘/ VPI)‘_‘Y;/.S(x)ds —/ VPt}”_S,ux(y)ds .
0 0
Asin (5.8), by (1.4), (5.1) and (5.3), we have

a—1
mg”u(a) < angﬁ‘L(a)
(5.11)

t
— 1
/ Hr=9) 5D s g (x)ds | <
—68

t
/ VP s (x)ds| S
t—38

and

=8 )
‘/ VPIA_SMS(x)ds —/ VP,)”_SMs(y)dS
0 0

t—8
<lx -yl ”v/ VP! jusds
0

o0

-8
A 2
<|x—y|”/0 e M= —5)” 110152)(1 o * lislds

eo]

I_
Slx—yl8°T H/ e M@ e uglds | < Jx — y|8°T m<‘*) ). (5.12)
0

o0
Combining (5.9)-(5.12), we obtain (5.7). O
For b, f € Kj, we consider the following PDE:
u= (%" —NDu+b-Vu+ f, u(0) =0, (5.13)

where b - Vu is understood as the measure Z?zl 9;u(x)b' (dx). We introduce the
following Banach space of continuous functions

C(;’l :={f, Vf are continuous on [0, 7] x R? — Rd},
which is endowed with the uniform norm:
IIfIIC(;l = 1fllLge + 1V fllege,
where for a space-time function f,

I fll == sup sup |f(z,x)l.
t€[0,T] xeRd
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We call a function u € C(%’l a mild solution of PDE (5.13) if u satisfies

t

t
u(t,x):/ P}_S(b.Vu)(s,x)der/ P f(s,x)ds, ¥(t,x) €[0,T]x RY,
0 0
(5.14)

where P,A is defined by (5.5). We now establish the following main result of this
section.

Theorem 5.5 Under (Hg) and b € Ky being time-independent, for any f € K| and

A >0, thereareT =T(o,d, m(l)) small enough and a unique mild solution u € CO !
to (5.14) with

lullo. < Cmyl (T, (5.15)

where C = C(o,d) > 0 is independent of ., T. Moreover, we have the following
conclusions:

(a) ThereisaconstantC = C(o,d, mbl)(T) m(l)(T)) > Osuchthatforallt € [0, T]
and x,y € R,

Vut, ) = Vutt, )| < € (mi = y) +mi Gx = 3D+ 1x = y13).
(5.16)

(b) let by, and f, be the mollifying approximation of b and f respectively. We have

lim fuy — ull o1 = 0. (5.17)
n—o0 T

(¢c) There is a constant C = C(o,d, mlgl)(T)) > 0 such that for all n € N and
5 €(0,7),

lug, —usllcor < € (my;(a) + n_Va—V/Zmil’)f(T)) , (5.18)

where u g stands for the solution of (5.14) with nonhomogeneous term f.

Proof 1t suffices to prove (5.15)—(5.17) since the existence and uniqueness are easily
derived from the above a priori estimates. Let 7 > 0 be fixed and whose value will
be determined below.

(i) By (5.6) we have for all ¢t € [0, T,

1 1 1
1Vu(@lloo < Co (m1} 5, (T +m (1)) < Coll Vullgem{l3(T) + Com (1)
Since b € Kj, we can choose T small enough so that

Com{) ) (T) < 1/2 (5.19)
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and
IVullLse < 2Com{(T).
Thus we obtain (5.15).

(i) By (5.7) witha = 1 and § = |x — y|, thereisa C = C(o, d) > 0 such that for
allt € [0, T]and x, y € RY,

[Vu(t, x) = Vult, )1 < € (0 g Ux = yD 41 = y12m0 g, (D).

Notice that

M) v 8 < IVulleem ) 8) +m,8). 8 > 0.

The estimate (5.16) now follows by (5.15).
(iii) Let u,, satisfy the following integral equation

t

t
uy(t,x) = /0 Pl)Ls(bn -Vu,)(s, x)ds +/0 P,{an(s,x)ds.
We have

t
Vin (1) = Vu(®)]loo < H/ VP (by - V(y — u))(s)ds
0

1
+ H/ VP[)LS((bn - b) . VM)(S)dS
0 oo
t
+ H/ VP! (fu— f))ds| =5+ 5L+ L.
0 00

For I, by (5.6) we obviously have
< Com), (M)[Vity — Vullee < Coml) (T)[|Vity — Viuze.
Next we treat I>. For § € (0, t), we make the following decomposition:
t . .
/ V P} (B — b - d;u)(s, x)ds
0
t
= / VP (b — by - 0;u)(s, x)ds
l‘_
t—38 N .
(O Taimste ) = Vs s, ety = 3y ) o @

,1_5 . .
+/ (e_’\(’_‘) /R Vi pr—s(x, 2)(Qju(s, y) — dju(s, 2))on(y — Z)dy> b' (dz)ds
0

= I @) + I ) + ) @ ).
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For J;\), by (1.4) and (5.1), we have

1
150 ®)lloo S IVullLee

t
/ e 5D g (b, ] + [b])ds
t—6

1
< IVullzzem;') 6).

o0

For J 2)

s,n’

noticing that by (1.5) and (5.1),

/Rd IV Drs (52 3) = Ve prs (5, )] [V, ¥)lon(y — 2)dy

ST =) Vus) oo /IR 02 =) + o (= 2)en(y = )y,
we have

=3

2 —yo— —A(— 1 1
15 lloo < IVullzn™7 6777 / e (pfL % 00 % 1012 % 1b])ds
0

—y o— 1
< 2|\ Vullpen™? 87 mil o).

9]

For J 3(3}1), we have

3
15 Olloo S sup — sup  [Vuls, y) — Vuls. 2)| - mj') (1),

s€[0,T] |y—z|<1/n

Combining the above calculations, we obtain

h < [Vullgs (m;{;@s) +n*V5*V/2)

+ sup sup  [Vuls,y) — Vuls, 2)| -m{)(T).

s€[0,T] |y—z|<1/n
For I3, we similarly have

L<C (mﬁ)f(a) + n—ya—y/zmg{}(T)) .
Hence, by (5.19),

1Vun = Vallge S (@) + 07787 2m 1, (1)
+ [Vallege (') +n7757772)

+ sup sup  |Vu(s,y) — Vu(s, 2)| -mil’L(T),
s€[0,T] |y—zI<1/n
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which gives (5.17) by first letting n — oo and then § — 0. Moreover, it is easier to
show

lim |lu, — ullpe = 0.
n— 00 T

(iv) Finally, for (5.18), it is similar. O

Remark 5.6 If we assume b, f € K/, with ¢ € (1, 2), then by using (5.7) with § =
|x — y|?, we can improve the estimate (5.16) as

Vu(t, x) = Vu(t, )] < Cle =y~ Jx =y < 1. (5.20)
We also have the following solvability of elliptic equation.

Theorem 5.7 Under (H$) and b € CL(R?) N K| there is a o = o(o.d, my) > 1
large enough such that for all A > Lo and [ € Cg RY) N Ky, there is a unique
u € C(RY) such that

(L7 —r+b-Vu=f, (5.21)
and
lullcy < CmiD(T), (5.22)

where C = C(o,d) > 0andT =T (o, d, m}()l)) > 0 are independent of .. Moreover,
[Vu(x) = Vu(y)| < £(|x — yD, (5.23)

where £ : Ry — R4 with£(0) = 0is a continuous increasing function only depending

oni,o,d, mili, mil)f

Proof Since b, f € Cg (R?) and (Hg) is satisfied, for any A > 0, the existence and
uniqueness of u € Ci (Rd) to PDE (5.21) is classical. We only need to prove estimates
(5.22) and (5.23). Let T > 0 and ¢ : R — R be a nonzero smooth function with
compact support in (0, 7). Let u € Cg(Rd) solve (5.21). Then u(t, x) := u(x)¢p(¢)
satisfies the following parabolic equation in [0, T'],

u=(L° —A+b-V)ii— f¢+ug'.

Since b € Ky, by (5.15), there are T = T (o, d, mzl)) > 0 small enough and C =
C(o,d) > 0 such that for all . > 0,

- 1 1 1
I lloe = lallgor < Cm sy (1) < C(Iblloom (T + Nulloom'y (1))
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Since lim)_, o mili,,(T) = 0, one may choose A large enough so that Cmilz),(T) =

%. Thus, we obtain the desired estimate (5.22). On the other hand, by (5.16) we
have

lp O] Vu(x) — Vu(y)| = [Vu(t, x) — Vu(t, y)|
1
<C (= 3D+ m g (x = ¥D +1x = 317),
which implies (5.23). O

Remark 5.8 1f we assume b, f € C[} (R N K/, for some & € (1, 2), then by (5.20)
we have

IVu(x) — Vu)| < Clx —y[*7!, |y —y[ < L. (5.24)

5.3 SDE with Measure-Valued Drifts

Now we consider SDE (1.1) with b € K; being a Radon measure. We first introduce
the following definition of martingale solutions.

Definition 5.9 (Martingale solution) Given x € R?, we call a probability measure
P, € &(C) a martingale solution of SDE (1.1) with starting point x € RY if

(i) There is a continuous finite variation process A defined on C such that for any

t >0,
/\1):0,

where b, = b x g, is any mollifying approximation of b.
(ii) For any function f € C 2(R%), it holds that

s
/ by (w,)dr — Ay
0

lim E, | sup
n—0o0 s€[0,1]

. t t
M = f(wz)—f(X)—/O faf(ws)ds—/o V f(wy)dAg (5.25)

is a continuous local martingale under P, with P, (M(')f =0)=1.
All the martingale solutions PP, of SDE (1.1) with starting point x will be denoted by
o
We also introduce the following notion of weak solutions.

Definition 5.10 (Weak solution) Let (2, F, (%) >0, P) be a complete filtration prob-
ability space. Let (X, W) be a pair of continuous .%;-adapted process. We call
(2, %, (%)i>0, P; X, W) a weak solution of SDE (1.1) with starting point x if

(i) W is a standard d-dimensional .%;-Brownian motion.
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@i1) A; :=lim,_ fot b, (Xy)ds is a finite variation process, where b, = b % g, is
any mollifying approximation of b and the limit is taken in the sense of u.c.p.
(iii) P(Xo = x) = 1 and it holds that

t
Xt =X +/ O'(XS)de + At, t> 0, a.s.
0

The following lemma is standard (see [27]). For the reader’s convenience, we pro-
vide a detailed proof here.

Proposition 5.11 Suppose that ¢ and o~ are locally bounded. For fixed x € R?,
there is a martingale solution Py € A ;‘yb if and only if there is a weak solution
(2, F, (Z1)ix0, P; X, W) with starting point x in the sense of Definition 5.10 so that
P, =Pox L

Proof (i)Let (2, #, (%)i>0, P; X, W) be a weak solution of SDE (1.1) with starting
point x in the sense of Definition 5.10. By Itd’s formula, it follows that P, = Po X!
is a martingale solution of SDE (1.1) in the sense of Definition 5.9.

(ii) Suppose that P € E///o’f’b. By choosing f(x) = x; in (5.25), one sees that M,i =
w! — x* — Al is a continuous local martingale under P. By It&’s formula, we have

wiw] — x'x’ =/ (wjdM! + w'dM}) +/ (wydA! + widA)) +[M', M/],.
0 0
On the other hand, forany i, j =1, ..., d, if we choose f(x) = x;x; in (5.25), then
w!w] — x'x’ —/ wjdA! —/ w'dA] —/ (o * a7y (wy)ds
0 0 0
is also a continuous local martingale. Hence,
' w7, = [ (@) ).
0

Now we define

t
w, :=/ o Nws)dM,, t>0.
0

Since o1 is locally bounded, W is a continuous B; (C)-local martingale under [P and
by definition,

(W, Wil =8¢, i,j=1,....d.
By Lévy’s characterization, W is a B, (C)-Brownian motion under P. Moreover,

t
w;:x+A,+/ o(wg)dW,, P —a.s.
0
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Thus (C, B(C), (B,(C));>0, P; w, W) is a weak solution in the sense of Definition 4.8.
O

Lemma 5.12 (Krylov type estimate) Under (Hg) and b € Ky, there are T,C > 0

only depending on o, d, mlgl) such that for any x € R? and P Mgy, | € Cll (RY)
andall0 <ty < < T,

A
E ( / |f<ws>|ds]ﬁ,o) <Cm (0 —10).
I{

0

Proof LetT > 0be fixed, whose value will be determined below. Fix0 <19 <1 < T.
Let f e C g (RY) and u € C(,)l’2 solve the following backward PDE:

ou+L°u=f, u()=0.
Without loss of generality we assume IE|A|§(1) < o00. Otherwise, one just needs to

replace wy below by wgar,, where 7, = {s > 19 : |A|fo > n}, and then let n — oo.
By (ii) of Definition 5.9 and the optional stopping theorem, we have

1
Eu(t, wy)|Fiy) = ulto, wy,) + E ( / f(wx)ds’%o)
10

13
+E (/ Vu(s, wg)dAg L%O> .
0]

Hence,

151
E (/ f(ws)ds‘a%o) < 2lulloe.n) + IVulledo.m E (1Al 1-%5)
10 (5.26)
< Clmgc])(fl — 1) + szgrl)(tl —10)E (Al | Z,) -

Taking f = |b,|, we obtain

1
E ( / |bg|(ws)ds\%o) <emy (11— 1o) + comy) (1 — 1) E (Al F4) -
1

0

By Lemma 2.6 and Fatou’s lemma, we get
E (IAl3 %) < cimY (11 — 19) + com (11 — 10)E (1AIA [ F) -
Letting 7' be small enough so that
eom(T) < 1/2.
Thus we obtain

E (IAI} 7)) < 2e1my (11 — 10).
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Substituting this into (5.26) yields the desired estimate. O

Remark 5.13 As a corollary of the above Krylov type estimate (see Corollary 3.5), for
any f € Kj we have

supE (e)‘foT |f'1(w~‘)‘ds> <00, VA>0.
n

Theorem 5.14 Under (Hg) and b € Ky, for any x € RY, there is a unique martingale
solutionlP € A ; p» equivalently, a unique weak solution in the sense of Definition 5.10.

Proof We first show the existence and uniqueness of weak solutions (22, .7, (%;):>0,

P; X, W) with starting point x in a short time 7 > 0, where T is independent of

x, whose value will be determined below, and in fact only depends on o, d, m[gl) as

above.

(Uniqueness) Let (2, #, (Z);>0, P; X, W) be a weak solution defined on the
time interval [0, T']. For n € N, let b, := b % g, be the mollifying approximation
of b. Since b, € C;° (R?) by Lemma 5.3, it is well known that there is a unique

u, [0, T] x RY - RY in C(}’z(Rd) solving the following backward PDE
Oy + L°u, + b, - Vu, = —b,, u,(T)=0.

By Theorem 5.5, there are T = T (o, d, mzl)) > ( small enough such that for all
neN,

lnll o1 < 1/2, (5.27)

and for some C > 0 independent of n,

Vit (2, %) = Vun(t, )| < Cm{l), (Ix — y) < Cm{')(1x = y)) (5.28)
and

lim Jlu, — ull01 =0,
n—0o0 T

where u € C%:' is the unique mild solution of PDE (5.14) with f = b.
Define

DY (x) :=x +un(t,x), Di(x) :=x+u(t,x).
Then we have
0, "+ ZL°®d" + b, - VO" =0.

By It6’s formula, we have for each n € N,
t t
@106 = @4 + [ el - b,xoss| + [ @ venaaw.
0 0
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By BDG’s inequality and the dominated convergence theorem, we clearly have

)

'
/ (0" - VOI — o™ - V&) (X;)dW,
0

n—>00 t€[0,T]

lim IE( sup

t
<4llolse lim E (/0 Vo — V<I>s|2<xs>ds)

<40l lim [V, — Vul? o = 0.
n—oo t

Moreover, for each t € [0, T'], by Lemma 5.12, we also have

n—oo

t
lim E‘/ (VO (X,) — VQS(XS))[dAs —bn(Xs)ds]
0

t
< lim [Vu, — Voo llLeE (IAIf) +/ |bn(Xs)|dS) =0.
n—0oo 0
On the other hand, dueto V& =1+ Vu € C(%, by Lemmas 2.6 and 5.12, we get

=0.

n—oo

1
lim E ‘ / VQS(XS)(dAS - bn(XS)ds>
0

Combining the above limits, we arrive at

t
Q;(X1) = Polx) +/ (0" - V&) (X;)dW;.
0

By (5.27), one sees that
3l =y <1Pr(x) — Dy (p)] < 20x — yl,

and x — ®,(x)isaC 1—diffeomorphism. Let d>,_1 be the inverse of ®; and define
Y; := ®,(X;). Then Y; solves the following SDE

t
Y, = do(x) + / &y (V) dW,, (529)
0

where
G (y) i=[o* - V] o 0 ().
Clearly, by definition and (5.28) we have

lim  sup |55(y) —6,(y) =0,
[y=y'1=0s¢[0,T]
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which, together with 6 being bounded and uniformly non-degenerate, yields that SDE
(5.29) admits a unique weak solution (cf. [27]). Thus, the uniqueness of the original
SDE follows.

(Existence) Next, we show the existence. For each n € N and x € RY, since
b, =bxp, €C g (R%), it is well known that there is a unique martingale solution
Pt e 47, sothat (PY),cge forms a family of strong Markov processes. For any
stopping time T < T, by the strong Markov property and Lemma 5.12, we have

T+4 S
E! ( / |bn<ws>|ds> < sup B! ( / |bn<ws>|ds) < Cm ) < Cmy 6),
T yeRd 0

where E denotes the expectation with respect to the probability measure P!, and C
is independent of x, n. Hence, by Lemma 2.7, we have

148 1/2 "
E; s{gp]( / |bn<ws)|ds> < 2(Cmy ()2
tel0,T t

In particular, since b € K1, by Chebyschev’s inequality, for any ¢ > 0,

t
lim sup P} sup / by(wg)ds| > ¢ | =0. (5.30)
§—0 n 0<[/<[<T t
lr—1"|<8

Moreover, it is easy to see that

=0. (5.31)

t
/o(wx)dWx > &
t/

lim sup P} sup
§=0 n 0K’ <t<T
lt—1'|<8

On the other hand, by the equivalence between martingale solutions and weak
solutions, there exists a weak solution (2", #", (%#/");>0,P"; X", W") so that
P" o (X")~! = P" and

t 1
X7 =x+/ a(X;’)deJr/ by (XM)ds(=: A), 1 € [0, T]. (5.32)
0 0

Let Q" be the law of (X", W", A") in C x C x C. By (5.30) and (5.31), one sees
that (Q"),en is tight. Hence, there is a subsequence still denoted by n so that Q"
weakly converges to some probability measure Q. By Skorokhod’s representation
theorem, there are probability space (Q, Z, P) and random variables (X", W", A™)
and (X, W, A) defined on it such that

(X", W", A" - (X, W, A), P—a.s. (5.33)
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and
Po (X", W', AH ' =Q", Po(X,W,A) '=0Q. (5.34)

Define j‘,” = O(W;l; s < t). Notice that

PUW — W e |70 =P (W — W €)
=S POW) — W' e | F) =BW = W' e 1).

In other words, W” is an ﬁil"-Brownian motion. Thus, by (5.32) and (5.34) we have

t

t
X" = x+ / o (RMAW! + AT, A" = / by (R™)ds.
0 0
By taking limits n — oo and (5.33),
~ t ~ ~ ~
X, =x +/ o (Xs)dWs + Ay,
0
where A is a finite variation process. Indeed, by Lemmas 2.6 and 5.12,

T
EM%<E@1W%<hmE@%=hmM<AﬂMwmQ<w.

n—o0 n—oo n—o00

To complete the proof, it suffices to show that

t
m—/mmm
0

A 1) =0. (5.35)

n—00 t€[0,T]

lim E ( sup
Below we drop the tilde for simplicity. For n, k € N, let u, x solve the following PDE

3tun,k + gaun,k + by - VMn,k = by, un,k(T) =0.

By Itd’s formula, we have

t t
/ be(X)ds = up i (t, X;') — un k (0, x) + / (0" - Viun k) (s, X{)dWs.
0 0
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Hence, for any stopping time t < 7,

2

E '/r(bk — by)(X™)ds
0

T 2
< Al — n 12 + 2 ‘ / (@ - (Vity k= Vit ) (X )AW,
0

2 2
S Hlun ke — tnilligee + 2T 10 ool Vitn ke — Vit il

which implies by Lemma 2.7 that

E sup
t€[0,7T]

where C is independent of n, k, [. By (5.18) we get

/ (b — b)(R™)ds

) S Cllun e = untllor

t
lim supE [ sup /(bk(X?)—bz(X?))dS
0

Lk—oo pn (te[(),T]

) =0. (5.36)
On the other hand, for fixed / € N, by the dominated convergence theorem, we have

T
lim E ( / |bi(X") — bl(f(s)|ds> =0. (5.37)
0

n— oo

Since A" = [ b,(X")ds converges to A a.s., by (5.36) and (5.37) we obtain (5.35).
Finally, we need to extend the solution from the short time 7' to the arbitrary time
T’. This can be done by a standard patching up technique. We left it to the readers. O

We have the following easy corollary (see [4]).

Corollary 5.15 Suppose d = 1 and b € K3/. Under (Hl/z) for any x € R, SDE
(1.6) has a unique strong solution.

Proof Choosing & = 3/2 in Remark 5.6, by (5.3), we get
lollciz < IV®liciz - llollciz < oo.

By Yamada-Watanabe’s theorem, one sees that (5.29) has a unique strong solution.
Hence, the pathwise uniqueness holds for the original SDE. O

To state the ergodicity, we make the following assumption on b:

(ﬁb) b =bWD 4+ p® where b® ¢ K/ for some « € (1,2) and bW satisfies that
for some ¥ > 0 and «g, k1, k2 > 0,

(x, b<1>(x)>

V14 |x?

—wolx|” +xr, 1BV @] < 21+ [x[7). (5.38)

@ Springer



X.Zhang, G. Zhao

We have the following ergodicity result.

Theorem 5.16 Under (Hg) and (H?), forany x € R, there exists a unique martingale

solution P, € ///(ib to SDE (1.1). Moreover, letting E, = EPx, we have the following
conclusions:

@) If v = 0in (5.38), then IP’;1 o w; admits a density p;(x, y) and for fixed T > 0,
p:(x, y) enjoys the following two-sided estimate: for some c1,cy; > 1 and all
1€ (0,7 x yeR,

o114 (e, y) < e e P (539)

and gradient estimate: for some c3,c4 > 0and allt € (0,T],x,y € R4,

Ve pi(x, p)| < 3t~ @D 2mcalemy P/ (5.40)

(1) Ifv > 0in(5.38), then Py (x) := Eyx@(w;) admits a unique invariant probability
measure p(dx) = o(x)dx with o € HY'", where y € (0,8 A (0« — 1)] and
re, 7).

Proof The proof is essentially the same as in [35, Theorem 5.1]. We sketch the key

point: global Zvonkin’s transformation. For n € N, let b,(,z) = b® % g, be the

mollifying approximation of »®. For 1 > 0, let u, € C7(R?) solve the following
elliptic PDE

(L% = Wy +b2 - Vu, = —b?.

By Theorem 5.5, thereare Ao, T, C > Odependingonlyono, d, ng) and a continuous
function £ : Ry — R, with £(0) = 0 such that for alln € Nand A > Ao,

1
lunllcy < CmSD o) (T) < Cmi o, (T) (5.41)

A,b2
and
[Vuy (x) = Vu ()| < £(1x — yD. (5.42)

Now by Ascolli-Arzela’s lemma, there is a subsequence still denoted by n and u €
C,l (R?) such that

luller < €m® (1), lim sup [V/u,(x) — V/u(x)| =0, VR >0, j =0, 1.
b Ab n—00 |\ I<R
(5.43)

Define
O,(x) i=x +uy(x), Px):=x+ulx).
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Let (2, F, (Z1)i>0, P; X, W) be the unique weak solution of (1.1), i.e.,

t t t
X, =x+ A, + / bV (X,)ds + / o (X;)dWs, A; = lim / b (X)ds.
By It6’s formula, we have for each n € N,

t
D, (X;) = D,(x) +/ VQH(XS)[dAs - b’(12)(XS)ds + b(l)(Xs)dS]
0

t t
+ )\/ uy (Xys)ds +/ (0" - V&,)(X;)dW;.
0 0

As in the proof of Theorem 5.14, by standard stopping technique and taking limits,
we obtain

t 1
d(X,) =CI>(x)+/ (b(l)-Vd>+Au)(Xs)ds+/ (0™ - V) (X,)dWs.
0 0

Since b®@ ¢ Kg for some « € (1,2), by (5.43), letting A be large enough, one sees
that

Sx =yl < @) — @(y)| < 2|x — vl
and by (5.24),
VO (x) — VO ()| < Clx — y* .

So, x —» ®d(x)isa C 1-diffemorphism. Let ®~! be the inverse of ® and define
Y; := ®(X;). Then Y; solves the following SDE

t t
Y, =<I>(x)+/ E(Ys)ds+/ & (Ys)dWs, (5.44)
0 0

where
b(y) =Y -V 4+ au) o @7 (y), G(y) i=[0* - Vo d ().

Since b still satisfies (5.38) for large A (see [35, Lemma 5.9]) and & is Holder contin-
uous, we can use Theorem 4.10 to conclude the desired results. O

Remark 5.177 When o = I and b € K, Kim and Song in [19] proved estimates (5.39)
and (5.40) by direct perturbation argument.
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