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1. Introduction

Davydov and Martynova [12] formulated the following interesting property of polynomials
on a space with a Gaussian measure.

Theorem A. Let d ∈ N and let g be a non-constant polynomial of degree d on Rn. Then
there is a constant C(d, g) depending only on d and g such that for every polynomial f of degree
d one has

‖γ ◦ f−1 − γ ◦ g−1‖TV ≤ C(d, g)‖f − g‖1/d

L2(γ),

where γ is the standard Gaussian measure on Rn and γ ◦ f−1 and γ ◦ g−1 are the distributions
of random variables f and g, respectively.

Note that in [12] the assertion was formulated in terms of multiple stochastic integrals of
order d, but the claim above is equivalent to the original one. The cited paper contains no
technical details of the proof, which, however, can be found in Martynova’s PhD thesis. Never-
theless, since these details are still unpublished and hardly accessible (Martynova’s PhD thesis
can be only found in some libraries in Saint Petersburg and Moscow), there have been several
attempts to give a full proof of the above result. First, Nourdin and Poly [22] obtained the
following theorem.

Theorem B. Let d ∈ N, a > 0, b > 0. Then there exists a number C(d, a, b) > 0 such that
for every pair of polynomials f, g of degree d on Rn one has

‖γ ◦ f−1 − γ ◦ g−1‖TV ≤ C(d, a, b)‖f − g‖1/(2d)

L2(γ) ,

provided that the variance of g is in [a, b].
The above theorem clarifies some dependence of C(d, g) on g: it depends only on the bounds

for the variance. However, the power of the L2-norm in the theorem is worse than in Theorem A.
Next, in [9] an intermediate result between Theorem A and Theorem B was obtained. The
constant there was worse than in the Nourdin–Poly estimate, but the dependence on the L2-
norm differed from the one in [12] by only a logarithmic factor. Finally, in [23] the following
theorem was proved.

Theorem C. Let d ∈ N. There is a constant c(d) depending only on d such that, for every
pair of polynomials f, g of degree d ≥ 2 on Rn, one has

‖γ ◦ f−1 − γ ◦ g−1‖TV ≤ c(d)
(
‖∇g‖−1/(d−1)

∗ + 1
)
‖f − g‖1/d

2 ,

where

‖∇g‖2
∗ := sup

|e|=1

∫
|∂eg|2 dγ.
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Note that while Theorem C coincides with the Davydov–Martynove estimate, the constant
there is still worse than in the Nourdin–Poly estimate.

This paper generalizes the Davydov–Martynova bound to the case of an arbitrary log-concave
measure in place of a Gaussian measure. Recall that a Borel probability measure µ on Rn is
called logarithmically concave (log-concave or convex) if

µ(tA+ (1− t)B) ≥ µ(A)tµ(B)1−t ∀ t ∈ [0, 1]

for all Borel sets A,B ⊂ Rn (see [10] and the discussion in [8, Section 3.10(vi)] and [7, Section
4.3]). This is equivalent to the fact that the measure µ has a density of the form e−V with
respect to Lebesgue measure on some affine subspace L, where V : L→ (−∞,+∞] is a convex
function. We also recall that the total variation norm of a (signed) measure ν on Rn is defined
by the equality

‖ν‖TV := sup

{∫
ϕdν, ϕ ∈ C∞

0 (Rn), ‖ϕ‖∞ ≤ 1

}
,

where ‖ϕ‖∞ := sup |ϕ(x)|. The distribution µ◦F−1 of a measurable function F on a measurable
space equipped with a measure µ is the measure on the real line defined by µ◦F−1(A) := µ(F ∈
A) for all Borel sets A.

The main result of the present paper asserts that, for any n, d ∈ N with d ≥ 2, there is a
constant C(d) such that, for every log-concave measure µ and every pair of polynomials f, g of
degree d on Rn, one has

σ1/d
g ‖µ ◦ f−1 − µ ◦ g−1‖TV ≤ C(d)‖f − g‖1/d

2 ,

where σ2
g := Dg is the variance of g. We note that even in the case of a Gaussian measure

the obtained result improves the dependence of the constant in comparison to Theorem C. We
also note that due to independence of the constant in the inequality of the dimension the same
estimate remains valid in the infinite-dimensional case. The proof of the announced inequality
develops some ideas from [18], [22], and [23].

2. Preliminaries

This section contains necessary definitions, notation, and several known results which are
used further. We mainly consider the finite-dimensional space Rn equipped with the Borel
σ-field and with the standard Euclidian inner product (x, y), x, y ∈ Rn. Let | · | be the standard

norm |x| :=
√

(x, x), x ∈ Rn. Let C∞
0 (Rn) denote the space of all infinitely differentiable

functions with compact support.
A log-concave measure µ on Rn is called isotropic if it is absolutely continuous with respect

to Lebesgue measure and∫
Rn

(x, θ)µ(dx) = 0,

∫
Rn

(x, θ)2 µ(dx) = |θ|2 ∀ θ ∈ Rn.

The Skorohod derivative Deµ of a Borel measure µ along a vector e ∈ Rn is a bounded signed
Borel measure on Rn such that ∫

Rn

∂eϕdµ = −
∫

Rn

ϕd(Deµ)

for every ϕ ∈ C∞
0 (Rn) (see [7]). It was proved by Krugova [19] (see also [7, Section 4.3]) that

every log-concave measure µ with density ρ is Skorohod differentiable along every vector e ∈ Rn

and for every unit vector e one has

‖Deµ‖TV = 2

∫
〈e〉⊥

max
t
ρ(x+ te)dx,

where 〈e〉⊥ is the orthogonal complement of e.
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If the measure µ is fixed, for a µ-measurable function f we set

‖f‖r :=
(∫

Rn

|f |r dµ
)1/r

for r > 0, ‖f‖0 := exp
(∫

Rn

ln |f | dµ
)

= lim
r→0

‖f‖r.

An important feature of the 0-“norm” is its multiplicative property, i.e., ‖f · g‖0 = ‖f‖0 · ‖g‖0.
We also denote the expectation and the variance of the random variable f by the symbols Ef
and σ2

f respectively, i.e.,

Ef :=

∫
Rn

f dµ σ2
f := Df =

∫
Rn

(f − Ef)2 dµ.

Throughout the paper the symbols c, C, c1, C1, . . . denote positive universal constants, the sym-
bols c(d), C(d), c1(d), C1(d), . . . denote positive constants that depend only on one parameter d,
and c(d, n), C(d, n), c1(d, n), C1(d, n), . . . denote positive constants that depend only on two
parameters d and n. The values of these constants are not necessarily the same in different
appearances. Throughout the paper we omit the indication of Rn in all integrations over the
whole space.

We now formulate some key known results which will be applied in the proofs.
The first result is the so-called Carbery–Wright inequality for polynomials on a space with a

log-concave measure.

Theorem 2.1 ([11], [21]). There is an absolute constant c such that for every log-concave
measure µ on Rn and every polynomial f of degree d the following inequality holds true:

µ(|f | ≤ t)

(∫
|f |dµ

)1/d

≤ cd t1/d.

The next result shows that for a log-concave measure all Lp-“norms” on the space of poly-
nomials of a fixed degree are equivalent. These “norms” estimate each other with constants
depending only on the degree of polynomials.

Theorem 2.2 ([4], [5]). There is an absolute constant c such that, whenever µ is a log-concave
measure on Rn, q ≥ 1, for every polynomial f of degree d the following inequalities hold:

‖f‖q ≤ (cqd)d‖f‖0, ‖f‖q ≤ (cq)d‖f‖1.

We also need the following results on the structure of the density of a log-concave measure.
The next theorem can be found in [3, Proposition 4.1].

Theorem 2.3 ([3]). Let µ be a log-concave measure on R with density ρ. Then

‖ρ‖2
∞

∫ (
t−

∫
τµ(dτ)

)2

µ(dt) ≥ 12−1.

Theorem 2.4 ([15], [2]). For every n ∈ N, there is a constant C(n) depending only on n such
that for every isotropic log-concave measure µ on Rn with density ρ one has

(max ρ)1/n ≤ C(n).

There is a conjecture (the so-called hyperplane conjecture) that the constant above can be
chosen independent of n, but the best known constant so far is Cn ∼ n1/4, which is due to
Klartag [15].

The following result is Corollary 2.4 in [16].

Theorem 2.5 ([16]). For every n ∈ N, there are universal constants C, c > 0 such that for
every isotropic log-concave measure µ on Rn with density ρ the following inequality holds:

ρ(x) ≤ ρ(0)eCn−c|x|.

The next property is a combination of Corollary 5.3 and Lemma 5.4 in [17].
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Theorem 2.6 ([17]). Let n ∈ N, n ≥ 2 and let µ be an isotropic log-concave measure on Rn

with density ρ. Let K = {x ∈ Rn : ρ(x) ≥ e−20nρ(0)}. Then

B 1
10
⊂ K.

The following theorem states the Poincaré inequality for log-concave measures.

Theorem 2.7 ([3, 14]). There is an absolute constant M such that for every log-concave mea-
sure µ on Rn and every locally Lipschitz function f one has∫ (

f −
∫
fdµ

)2

dµ ≤M

∫
|x− x0|2dµ

∫
|∇f |2dµ,

where x0 =
∫
xdµ.

The following so-called localization lemma from [13] (see also [14] and [20]) plays a crucial
role in our proof.

Theorem 2.8 (Localization lemma with p constraints, see [13]). Let K be a compact convex
set in Rn, Fi : K → R, 1 ≤ i ≤ p. Assume that all functions Fi are upper semi-continuous. Let
PF1,...,Fp be the set of all log-concave measures with support in K such that∫

Fi dµ ≥ 0, i = 1, . . . , p.

Let Φ: P (K) → R be a convex upper semi-continuous function, where P (K) is the space of all
Borel probability measures supported in K equipped with the weak topology. Then sup

µ∈PF1,...,Fp

Φ(µ)

is attained on log-concave measures µ such that the smallest affine subspace containing the
support of µ is of dimension at most p.

3. Total variation distance estimate

We start with the following reverse Poincaré inequality for polynomials on a space with a log-
concave measure. Such estimates are well known for Gaussian measures due to the equivalence
of all Sobolev norms on the space of all polynomials of a fixed degree (see [6]).

Theorem 3.1. Let n, d ∈ N. There is a constant C(d), which depends only on the degree d,
such that, for each log-concave measure µ on Rn, each polynomial f of degree d, and each
vector e of unit length, one has

‖∂ef‖2 ≤ C(d)‖Deµ‖TV‖f‖2.

Proof. We first consider the one-dimensional case. By homogeneity we can assume that the
polynomial f is of the form

f(t) =
d∏

i=1

(t− ti).

Moreover, without loss of generality we can assume that∫
t µ(dt) = 0.
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Using Theorem 2.2 we get∫
t2 µ(dt)

∫
(f ′(t))2 µ(dt) ≤ d

d∑
i=1

∫
t2 µ(dt)

∫ ∣∣∣∏
j 6=i

(t− tj)
∣∣∣2 µ(dt)

≤ d(2cd)2d

d∑
i=1

∫
t2 µ(dt)

∏
j 6=i

∫
|t− tj|2 µ(dt) = d(2cd)2d

d∑
i=1

∫
t2 µ(dt)

∏
j 6=i

(∫
t2 µ(dt) + |tj|2

)

≤ d2(2cd)2d

d∏
i=1

(∫
t2 µ(dt) + |ti|2

)
= d2(2cd)2d

d∏
i=1

∫
|t− ti|2 µ(dt) ≤ d2(4c2d)2d

∫
f 2 µ(dt).

Thus,

σ(µ)‖f ′‖2 ≤ (Cd)d‖f‖2,

where σ2(µ) is the variance of µ. The last bound combined with Theorem 2.3 implies that

‖f ′‖2 ≤ (Cd)d‖ρ‖∞‖f‖2,

which is equivalent to the inequality

‖f ′‖1 ≤ (Cd)d‖ρ‖∞‖f‖1

due to Theorem 2.2.
We now proceed to the general case. Without loss of generality we can assume that e = e1

is the first basis vector. Set x̃ := (x2, . . . , xn) and

ρ̃(x1, x2, . . . , xn) :=
ρ(x1, x2, . . . , xn)∫
ρ(τ, x2, . . . , xn) dτ

.

Applying the obtained one-dimensional bound and Theorem 2.2 we get

‖∂e1f‖
1/2
1 ≤ c(d)

∫
|∂e1f |1/2ρ dx

= c(d)

∫ (∫
ρ(τ, x̃) dτ

) ∫
|∂e1f |1/2ρ̃(x1, x̃) dx1dx̃

≤ c(d)

∫ (∫
ρ(τ, x̃) dτ

)(∫
|∂e1f |ρ̃(x1, x̃)dx1

)1/2

dx̃

≤ c1(d)

∫ (∫
ρ(τ, x̃) dτ

)(
max

t
ρ̃(t, x̃)

∫
|f |ρ̃(x1, x̃)dx1

)1/2

dx̃

≤ c1(d)

(∫
max

t
ρ(t, x̃) dx̃

)1/2(∫
|f |ρ dx

)1/2

= c2(d)‖De1µ‖
1/2
TV‖f‖

1/2
1 .

The theorem is proved. �

We also need the following technical lemma.

Lemma 3.2. Let n, d ∈ N, n ≥ 2. There is a constant c(d, n), depending only on d and n,
such that, for every isotropic log-concave measure µ on Rn with density ρ, every polynomial h
of degree d, and every unit vector e ∈ Rn, the following bound holds:∫

〈e〉⊥
max

s

[
|h(x+ se)|ρ(x+ se)

]
dx ≤ c(d, n)

∫
Rn

|h| dµ.
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Proof. By Theorem 2.5 there is a bound ρ(x) ≤ ρ(0)eCn−c|x| implying∫
〈e〉⊥

max
s

[
|h(x+ se)|ρ(x+ se)

]
dx ≤ ρ(0)

∫
〈e〉⊥

max
s

[
|h(x+ se)|eCn−c|x+se|] dx

≤ ρ(0)eCn

∫
〈e〉⊥

e−c1|x| max
s

[
|h(x+ se)|e−c1|s|

]
dx.

We now note that the function s 7→ h(x+se) is a polynomial. Thus, h(x+se) = ads
d+ad−1s

d−1+
. . . + a1s + a0, where a0, . . . ad are some functions of variable x. Using this representation we
can write

max
s

[
|h(x+ se)|e−c1|s|

]
≤

d∑
j=0

|aj|max
s

[|s|je−c1|s|] =
d∑

j=0

|aj|
( j
c1

)j

e−j ≤ c1(d)
d∑

j=0

|aj|.

Since all norms on the space of polynomials of a fixed degree on the real line are equivalent,
there is a constant c2(d) such that

d∑
j=0

|aj| ≤ c2(d)

∫
R
|h(x+ se)|e−c1|s| ds.

Thus,∫
〈e〉⊥

max
s

[
|h(x+ se)|ρ(x+ se)

]
dx ≤ ρ(0)eCnc3(d)

∫
〈e〉⊥

e−c1|x|
∫

R
|h(x+ se)|e−c1|s| ds dx

≤ ρ(0)eCnc3(d)

∫
Rn

|h(y)|e−c1|y| dy.

Again, since all norms on the space of polynomials of a fixed degree on Rn are equivalent, there
is a constant c4(d, n) such that∫

Rn

|h(y)|e−c1|y| dy ≤ c4(d, n)

∫
B 1

10

|h(y)| dy.

By Theorem 2.6
B 1

10
⊂ K,

where K = {y ∈ Rn : ρ(y) ≥ e−20nρ(0)}, which implies that∫
B 1

10

|h(y)| dy ≤
∫

K

|h(y)| dy ≤ e20n(ρ(0))−1

∫
K

|h(y)|ρ(y) dy ≤ e20n(ρ(0))−1

∫
Rn

|h(y)|ρ(y) dy.

Thus, combining the obtained bounds, we get the announced estimate. �

The following technical lemma provides an estimate similar to the one stated in the intro-
duction, but is not dimension free. However, it is the main step in the proof of the general
result.

Lemma 3.3. Let n, d ∈ N, d ≥ 2. There is a constant c(d, n), which depends only on d and
n, such that, for any isotropic log-concave measure µ on Rn, any polynomials f, g of degree d,
any function ϕ ∈ C∞

0 (Rn) with ‖ϕ‖∞ ≤ 1, and any vector e of unit length, one has

‖∂eg‖1/d
2

∫
ϕ(f)− ϕ(g) dµ ≤ c(d, n)‖f − g‖1/d

1 .

Proof. Let ρ = e−V be the density of µ, where V is a convex function. We first consider the
case ρ ∈ C∞(Rn), ρ > 0, and n ≥ 2. Let

Φ(t) :=

∫ t

−∞
ϕ(τ)dτ.
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As in [22], [9], and [23], we use the equality

∂eg(ϕ(f)− ϕ(g)) = ∂e(Φ(f)− Φ(g))− (∂ef − ∂eg)ϕ(f).

Thus,∫ (
ϕ(f)− ϕ(g)

)
dµ =

∫
(∂eg)

2(ϕ(f)− ϕ(g))

(∂eg)2 + ε
dµ+ ε

∫
ϕ(f)− ϕ(g)

(∂eg)2 + ε
dµ

=

∫
∂eg∂e(Φ(f)− Φ(g))

(∂eg)2 + ε
dµ−

∫
∂eg(∂ef − ∂eg)ϕ(f)

(∂eg)2 + ε
dµ+ ε

∫
ϕ(f)− ϕ(g)

(∂eg)2 + ε
dµ.

We now estimate each term separately starting with the last term. By the Carbery–Wright
inequality (Theorem 2.1) one has (see the proof of Lemma 3.1 in [18] or expression (4.4) in [9])

ε

∫
ϕ(f)− ϕ(g)

(∂eg)2 + ε
dµ ≤ 2c1d

(∫ ∞

0

(s+ 1)−2s1/(2d−2) ds
)
‖∂eg‖−1/(d−1)

2 ε1/(2d−2)

= C1(d)‖∂eg‖−1/(d−1)
2 ε1/(2d−2).

For the second term we have

−
∫
∂eg(∂ef − ∂eg)ϕ(f)

(∂eg)2 + ε
dµ ≤ 2−1ε−1/2

∫
|∂ef − ∂eg|dµ ≤ C2(d)ε

−1/2‖Deµ‖TV‖f − g‖1.

Recall that

‖Deµ‖TV = 2

∫
〈e〉⊥

max
s
ρ(x+ se) dx.

Thus, by Theorem 2.5,

(3.1) ‖Deµ‖TV ≤ 2ρ(0)eCn

∫
〈e〉⊥

max
s
e−c|x+se| dx ≤ c1(n)ρ(0) ≤ c2(n),

where Theorem 2.4 was applied in the last inequality. Therefore,

−
∫
∂eg(∂ef − ∂eg)ϕ(f)

(∂eg)2 + ε
dµ ≤ c3(d, n)ε−1/2‖f − g‖1.

Now, integrating by parts in the first term, we get∫
∂eg∂e(Φ(f)− Φ(g))

(∂eg)2 + ε
dµ

= −
∫

(Φ(f)− Φ(g))
[ ∂2

eg

(∂eg)2 + ε
− 2

(∂eg)
2∂2

eg

((∂eg)2 + ε)2

]
dµ−

∫
(Φ(f)− Φ(g))

∂eg

(∂eg)2 + ε
d(Deµ)

Up to the factor 3, the first integral above is estimated by∫ ∣∣∣ ∂2
eg

(∂eg)2 + ε

∣∣∣|f − g| dµ =

∫
〈e〉⊥

∫
R

∣∣∣∣ ∂2
eg(x+ te)

(∂eg(x+ te))2 + ε

∣∣∣∣ |f(x+ te)− g(x+ te)|ρ(x+ te) dtdx

≤ dε−1/2

∫
〈e〉⊥

(∫
R

∣∣∣ 1

τ 2 + 1

∣∣∣ dτ) max
s

[
|f(x+ se)− g(x+ se)|ρ(x+ se)

]
dx

= πdε−1/2

∫
〈e〉⊥

max
s

[
|f(x+ se)− g(x+ se)|ρ(x+ se)

]
dx ≤ c4(d, n)ε−1/2

∫
|f − g| dµ,

where Lemma 3.2 was applied in the last inequality. The second integral is not greater than

ε−1/2

∫
|f − g| d|Deµ| ≤ ε−1/2

√
‖Deµ‖TV

(∫
|f − g|2 d|Deµ|

)1/2

≤ ε−1/2
√
c2(n)

(∫
|f − g|2 d|Deµ|

)1/2

.
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Since ρ = e−V , we have Deµ = −V ′
ee

−V dx and |Deµ| = |V ′
e |e−V . For a point x ∈ 〈e〉⊥ let T (x)

be such that V ′
e (x + T (x)e) = 0. Then V ′

e (x + te) ≤ 0 for t < T (x) and V ′
e (x + te) ≥ 0 for

t > T (x) by the convexity of the function t 7→ V (x+ te). Thus,∫
R
|f(x+ te)− g(x+ te)|2|V ′

e (x+ te)|e−V (x+te) dt

= −
∫ T (x)

−∞
|f(x+ te)− g(x+ te)|2V ′

e (x+ te)e−V (x+te) dt

+

∫ ∞

T (x)

|f(x+ te)− g(x+ te)|2V ′
e (x+ te)e−V (x+te) dt

= 2|f(x+ T (x)e)− g(x+ T (x)e)|2ρ(x+ T (x)e)

− 2

∫ T (x)

−∞
(∂ef(x+ te)− ∂eg(x+ te))(f(x+ te)− g(x+ te))ρ(x+ te) dt

+ 2

∫ ∞

T (x)

(∂ef(x+ te)− ∂eg(x+ te))(f(x+ te)− g(x+ te))ρ(x+ te) dt

≤ 2 max
s

[
|f(x+ se)− g(x+ se)|2ρ(x+ se)

]
+ 4

∫
R
|∂ef(x+ te)− ∂eg(x+ te)||f(x+ te)− g(x+ te)|ρ(x+ te) dt.

Therefore, we have∫
|f − g|2 d|Deµ| =

∫
〈e〉⊥

∫
R
|f(x+ te)− g(x+ te)|2|V ′

e (x+ te)|e−V (x+te) dt dx

≤ 2

∫
〈e〉⊥

max
s

[
|f(x+ se)− g(x+ se)|2ρ(x+ se)

]
dx+ 4

∫
|∂ef − ∂eg||f − g| dµ

≤ c5(d, n)
(∫

|f − g| dµ
)2

,

where Lemma 3.2, Theorems 2.2 and 3.1, and estimate (3.1) were applied in the last inequality.
Combining the above estimates, we get the bound∫

ϕ(f)− ϕ(g) dµ ≤ c6(d, n)
[
‖∂eg‖−1/(d−1)

2 ε1/(2d−2) + ε−1/2‖f − g‖1

]
.

Taking ε =
[
‖∂eg‖1/(d−1)

2 ‖f − g‖1

](2d−2)/d
, we obtain∫

ϕ(f)− ϕ(g) dµ ≤ 2c6(d, n)‖∂eg‖−1/d
2 ‖f − g‖1/d

1 .

In the case of an arbitrary (isotropic log-concave) density ρ on Rn with n ≥ 2, the estimate
follows from the approximation by the measures with densities ρε, where

ρε(x) := ρ ∗ ψε

(
(1 + ε2)

1
n+2 · x

)
,

ψ is the density of the standard Gaussian measure on Rn and ψε(x) = ε−nψ(ε−1x).
Finally, the one-dimensional case follows from the case n = 2 by consideration of the product

measure µ⊗µ and polynomials depending only on the first argument. The lemma is proved. �

Corollary 3.4. Let n, d ∈ N. Then there is a constant c(d, n) depending only on d and n such
that, for any isotropic log-concave measure µ on Rn, any pair of polynomials f and g of degree
d on Rn, and any function ϕ ∈ C∞

0 (R) with ‖ϕ‖∞ ≤ 1 one has(∫
|g − Eg|1/ddµ

) ∫ (
ϕ(f)− ϕ(g)

)
dµ ≤ c(d, n)

∫
|f − g|1/d dµ.
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Proof. We note that∫
|(∇g, e)|1/d dµ ≤

(∫
|(∇g, e)|2 dµ

)1/2d

= ‖∂eg‖1/d
2 .

Hence, by Lemma 3.3(∫
|(∇g, e)|1/d dµ

) ∫ (
ϕ(f)− ϕ(g)

)
dµ ≤ c(d, n)‖f − g‖1/d

1 .

Integrating in the above inequality with respect to the normalized surface measure σn on the
unite sphere, we get(∫

Sn−1

∫
|(∇g, e)|1/d dµ σn(de)

) ∫ (
ϕ(f)− ϕ(f)

)
dµ ≤ c(d, n)‖f − g‖1/d

1 .

By Fubini’s theorem∫
Sn−1

∫
|(∇g, e)|1/d dµ σn(de) =

∫ ∫
Sn−1

|(∇g, e)|1/d σn(de) dµ

=

∫
|∇g|1/d

∫
Sn−1

|(e, e1)|1/d σn(de) dµ = c1(d, n)

∫
|∇g|1/d dµ.

So, by the above equality and Theorem 2.2, we have(∫
|∇g|1/d dµ

) ∫ (
ϕ(f)− ϕ(g)

)
dµ ≤ c2(d, n)

∫
|f − g|1/d dµ.

Applying Theorem 2.2 again, we get

‖|∇g|‖1/d
2 ≤ C(d)

∫
|∇g|1/d dµ.

Thus, by Theorem 2.7 we get the desired bound. The corollary is proved. �

We are now ready to prove the main result of the paper. The key part of the proof is the
application of the localization lemma, which enables us to reduce considerations to a space of
dimension at most 4.

Theorem 3.5. Let d, n ∈ N, d ≥ 2. Then, there is a constant C(d) depending only on d such
that, for any log-concave measure µ on Rn and any pair of polynomials f and g of degree d on
Rn, one has

σ1/d
g ‖µ ◦ f−1 − µ ◦ g−1‖TV ≤ C(d)‖f − g‖1/d

2 ,

where σ2
g := Dg =

∫
(g − Eg)2 dµ, Eg :=

∫
g dµ.

Proof. Set R(d) := max
n=1,2,3,4

c(d, n), where c(d, n) is the constant from Corollary 3.4. Due to

Theorem 2.2 it is sufficient to prove that, for any function ϕ ∈ C∞
0 (R) with ‖ϕ‖∞ ≤ 1, one has

(3.2)
(∫

|g − Eg|1/ddµ
) ∫ (

ϕ(f)− ϕ(g)
)
dµ ≤ R(d)

∫
|f − g|1/d dµ.

First we consider the case n ∈ {1, 2, 3, 4}. Recall that for an arbitrary log-concave measure
µ on Rn there is a nondegenerate linear mapping T : Rn → Rn such that measure µ ◦ T−1 is
isotropic. By Corollary 3.4, for every pair f, g of polynomials of degree d, we have(∫

|g ◦ T−1 − E(g ◦ T−1)|1/d d(µ ◦ T−1)
) ∫ (

ϕ(f ◦ T−1)− ϕ(g ◦ T−1)
)
d(µ ◦ T−1)

≤ R(d)

∫
|f ◦ T−1 − g ◦ T−1|1/d d(µ ◦ T−1)
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as the functions f ◦T−1 and g◦T−1 are also polynomials of degree d. This implies estimate (3.2)
for log-concave measures on Rn with n ∈ {1, 2, 3, 4}.

Now let n be an arbitrary positive integer. Fix a convex compact set K, numbers a, b > 0,
and polynomials f, g of degree d. Let

F1 = g, F2 = −g, F3 = |g|1/d − a, F4 = b− |f − g|1/d

and let PF1,...,F4 be the set of all log-concave measures supported in K such that∫
Fi dµ ≥ 0, i = 1, . . . , 4.

We note that the above conditions are equivalent to the following one:∫
g dµ = 0,

∫
|g|1/d dµ ≥ a,

∫
|f − g|1/d dµ ≤ b,

Consider the functional

Φf,g(µ) :=

∫ (
ϕ(f)− ϕ(g)

)
dµ.

Note that the restriction of a polynomial to a linear subspace will be again a polynomial (of the
same degree) on this subspace. Thus, Φf,g(µ) ≤ R(d)ba−1 for an arbitrary measure µ ∈ PF1,...,F4

such that the smallest affine subspace containing the support of µ is of dimension not greater
than 4. By Theorem 2.8 we have

Φf,g(µ) ≤ R(d)ba−1

for any measure µ ∈ PF1,...,F4 , which implies bound (3.2) for an arbitrary log-concave measure
on Rn with compact support. The general case follows by approximation. The theorem is
proved. �

We now briefly discuss the infinite-dimensional case. Let E be a locally convex space equipped
with the Borel σ-field and let E∗ be the topological dual space to E. A Radon probability
measure µ on E is called log-concave (or convex) if µ ◦A−1 is a log-concave measure on Rn for
every continuous linear operator A : E → Rn. For a Radon probability measure µ on E, denote
by Pd(µ) the closure in L2(µ) of the set of all functions of the form f(`1, . . . , `n), where n is
an arbitrary positive integer, `j ∈ E∗ are arbitrary continuous linear functionals, and f is an
arbitrary polynomial on Rn of degree d. It is shown in [1] that every function from Pd(µ) has
a version that is a polynomial of degree d in the usual algebraic sense, i.e., this version is of the
form

b0 + b1(x) + b2(x, x) + . . .+ bd(x, . . . , x),

where each bj(x1, . . . , xj) is a multilinear function on Ej.

Corollary 3.6. Let d, n ∈ N, d ≥ 2. Then, there is a constant C(d) depending only on d such
that, for any log-concave measure µ on a locally convex space E and any functions f, g ∈ Pd(µ),
one has

σ1/d
g ‖µ ◦ f−1 − µ ◦ g−1‖TV ≤ C(d)‖f − g‖1/d

2 ,

where σ2
g := Dg =

∫
(g − Eg)2 dµ, Eg :=

∫
g dµ.
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