NONLOCAL OPERATORS WITH SINGULAR ANISOTROPIC KERNELS

JAMIL CHAKER AND MORITZ KASSMANN

ABSTRACT. We study nonlocal operators acting on functions in the Euclidean space. The
operators under consideration generate anisotropic jump processes, e.g., a jump process that
behaves like a stable process in each direction but with a different index of stability. Its
generator is the sum of one-dimensional fractional Laplace operators with different orders of
differentiability. We study such operators in the general framework of bounded measurable
coefficients. We prove a weak Harnack inequality and Holder regularity results for solutions
to corresponding integro-differential equations.

1. INTRODUCTION

In this article we study regularity estimates of weak solutions to integro-differential equations
driven by nonlocal operators with anisotropic singular kernels. Since the formulation of the
main results involves various technical definitions, let us first look at a simple case.

For a € (0,2), the fractional Laplace operator —(—A)*/2? can be represented as an integro-
differential operator L : C2°(R%) — C(R?) in the following form

Lo(z) = /}R (o(x + ) — 20(2) + o(@ — 1)) 7(dh)  (z € RY, (1.1)

where the Borel measure 7(dh) on R?\ {0} is defined by 7(dh) = Cd’o‘lhld% and ¢gqo is an
appropriate positive constant. Due to its behavior with respect to integration and scaling,
7 is a stable Lévy measure. The fractional Laplace operator generates a strongly continuous
contraction semigroup, which corresponds to a stochastic jump process (X¢)i>0 in R¢. Given
A C RY the quantity 7(A) describes the expected number of jumps (X; — X; ) € A within
the interval 0 < ¢ < 1. A second representation of —(—A)a/ 2 is given with the help of Fourier
analysis because —F((—A)*2u)(€) = |€]*F(u)(€). The function & — (€) = |€]|* is called
multiplier of the fractional Laplace operator or symbol of the corresponding stable Lévy process.

In this article we study a rather general class of anisotropic nonlocal operators, which contains
as a simple example an operator L21:2 : C°(R?) — C(R) as in (1.1) with the measure 7 being
a singular measure defined by

2 (dh) = Cl,q ’hl ‘_1_a1dh15{0} (dhg) + C1,a9 ’hg‘_l_QQ dhgé{o} (dhl) , (1.2)

where h = (h1, hg) and ay,az € (0,2). Note that F(L*2u)(§) = (|&]* + [€2]*2) F(u)(€) for
smooth functions u and ¢ € R2. Since the multiplier equals |£1]* + [£2]%2, one can identify the
operator L**? with —(—011)* — (—022)*%. The aim of this article is to study such operators
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with bounded measurable coefficients and to establish local regularity results such as Holder
regularity results. Our main auxiliary result is a weak Harnack inequality.

Let us briefly explain why the weak Harnack inequality is a suitable tool. The (strong) Harnack
inequality states that there is a positive constant ¢ such that for every positive function w :
R? — R satisfying Lu = 0 in By the estimate u(x) < cu(y) holds true for all 2,35 € B;. The
Harnack inequality is known to hold true for L = —(—A)a/ 2 the proof follows from the explicit
computations in [21]. It is known to fail in the case of L% : C°(R?) — C(R) as in (1.1) with
the measure 7 being a singular measure defined by (1.2) with a; = a2 = «, cf. [3| for a proof
using techniques from Analysis and [1] for a proof using the corresponding jump process. As a
consequence of the main result in [12], the weak Harnack inequality holds true in this setting.
The main aim of the present work implies that it holds true even in the case a; # ao.

We study regularity of solutions u : 2 — R to nonlocal equations of the form —Lu = f in (),
where L is a nonlocal operator of the form

Lu(z) = lim (u(y) — u(x)) p(, dy) (1.3)
e—0 R\ B, (z)

and Q € R? is an open and bounded set. The operator is determined by a family of measures
(u(z,+))pera, which play the role of variable coefficients. Note that we will not assume any
further regularity of u(x,dy) in the first variable than measurability and boundedness. Before
discussing the precise assumptions on p(z,dy), let us define a family of reference measures
Haxes(Z,dy). Given ai,...,aq € (0,2), we consider a family of measures (faxes(,-))zera On
RY defined by

d
,U/axes x dy Z (Oék 2 — Qg ‘xk - yk’ e dyk Hd{z dyz)) (1'4)
k=1 i#k

The family (ftaxes(,+))zcra is stationary in the sense that there is a measure vaxes(dh) with
Paxes(T, A) = Vaxes(A — {z}) for every z € R? and every measurable set A C R?. In other
words, if one defines an operator £ as in (1.3) with x being replaced by piaxes, then the operator
is translation invariant. The measure paxes(z, ) charges only those sets that intersect one of
the lines {z + tex |t € R}, where k € {1,...,d}. In order to compensate for the anisotropy of
the jumping measures, we replace the Euclidean metric by a new metric. Squares are replaced
by rectangles defined as follows. Set amax = max{a;|i € {1,...,d}}.

Definition 1.1. For r > 0 and z € R? we define

d amax amax
M,(x) = X (:ck—r U X+ T %k ) and M, = M,.(0).
k=1
Moreover, we define a metric on R? by
ol
d(z,y) = ) {Slup . {!xk = Y| omax Lyjp, g, <1y (@, ) + ]1{\xryk|>1}($7y)} : (1.5)
e{1,...,

For 0 < r < 1, the rectangle M, () equals the ball {y € R d(z,y) < r} in the metric space
(R?, d). Note that for every 2 € R? and r > 0

/ Maxes ('Ia dy) = ¢ Omax

RA\M;(z)
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Ymax

for some constant ¢ > 0. In the definition of M, (z) we could replace r °» by any term of the

form rex with an arbitrary choice of a > apax in order to guarantee that d is a metric. Our
choice of a = aax has the nice effect that for o = ... = g the rectangles M, (x) become
squares.

With regard to (1.3), let us formulate and explain our main assumptions on (u(z,)),cgd -

Assumption 1. We assume

sup / (I — y[2 A Dl dy) < oo, (Al-a)
zeMs J R4

and for all measurable sets A, B C R?

/A/Bﬂ(xady)dxsz/Au(x,dy)dx. (A1-b)

Note that (Al-a) is nothing but an uniform Lévy-integrability condition. It allows u(x, A) to
have a singularity for z € A. We do not impose any condition on u(z,dy) for z € R\ M3
because we study nonlocal equations only in the set M;. Condition (A1l-b) requires symmetry
of the family (u(z,-)),era. Examples of p(z, dy) satisfying these two conditions are given by
laxes as in (1.4) and by

(e, dy) = alz,y)le -y~ dy,
where a € (0,2) and a(z,y) € [1,2] is a measurable symmetric function.

The following assumption is our main assumption. It relates u(z,dy) to the reference family
taxes(Z, dy). The easiest way to do this would be to assume that there is a constant A > 1 such
that for every z € R? and every nonnegative measurable function f : R x R? - R

A / F (@) a2, dy) < / f( ) dy) < A / F @ s dy) . (L6)

We will work under a weaker condition, which appears naturally in our framework. For u,v €
L2 (R%) and © C R? open and bounded, we define

&) = [ [ (ul) = @) w(o) = (@) (. dy) da
and EM(u,v) = 5&; (u,v) whenever the quantities are finite.

Assumption 2. There is a constant A > 1 such that for0 < p < 1, zg € My and w € L? (Rd)

loc

A_lgm’(ego)(w,w) < Eﬁp(wo)(w,w) < Agm’(ego)(w,w). (A2)
Let us briefly discuss this assumption. Assume a(z,y) € [1,2] is symmetric and fiaxes is de-
fined as in (1.4) with respect to some aq,...,aq € (0,2). If we define ps by po(z,A) =
J 4 a(x,y) ptaxes (2, dy), then py obviously satisfies Assumption 2. If a1 = az = ... = aq = a,
then it is proved in [12] that u; satisfies (A2). Note that comparability of the quadratic forms
EHaxes (w, w) and EM (w, w) follows from comparability of the respective multipliers.

In general, studying Assumption 2 is a research project in itself. Let us mention one curiosity.
Given z € RY, Assumption 2 does not require u(z,dy) to be singular with respect to the
Lebesgue measure. One can construct an absolutely continuous measure veysp on R? such that
for ps given by ps(z, A) = veusp(A — {x}), Assumption 2 is satisfied. Since computations are
rather lengthy, they will be carried out elsewhere.



NONLOCAL OPERATORS WITH SINGULAR ANISOTROPIC KERNELS 4

We need one more assumption related to cut-off functions, Assumption 3 resp. (A3). Since
this assumption is not restrictive at all but rather technical, we provide it in Subsection 2.1.

The quadratic forms introduced above relate to integro-differential operators in the following
way. Given a sufficiently nice family of measures p (any of 14, i1, 12, would do) and sufficiently
regular functions u,v : R? — R, one has £*(u,v) = =2 [p, Lu(z)v(z)dz with £ as in (1.3).
That is why we will study solutions u to —Lu = f with the help of bilinear forms like £¥. In
order to do this, we need to define appropriate Sobolev-type function spaces.

Definition 1.2. Let Q € R¢ open. We define the function spaces
VH(QIRY) = {u : RY — R meas. |u|Q € L*(Q), (u, W)y (ord) < oo} , (1.7)
HE(RY) = {u - R~ R meas. |u =0 on R\ Q, ull ey < oo}, (1.8)
where

(wolvmomn = | [ (ula) = u(w)(0(a) = o) e, dy) o

2 _ 2 2
gy = Ny + [ [ () = ) Pto.dy) da

The space V#(Q|R?) is a nonlocal analog of the space H'(f2). Fractional regularity is required
inside of  whereas inside of R? \ Q integrability suffices. The space HS(Rd) can be seen as a
nonlocal analog of H}(2). See [14] and [11] for further studies of these spaces.

We are now in a position to formulate our main results:

Theorem 1.3. Assume (Al-a), (Al-b), (A2) and (A3). Let f € L4(M;) for some q >
max{2, Zizl o%k} Assume u € VA(M;|RY), uw > 0 in My satisfies

EM(u,p) > (f,p)  for every non-negative p € Hy (RY). (1.9)
Then there exist py € (0,1), ¢1 > 0, independent of u, such that

1/po

infu>c¢ ][ u(x)P° dzx — sup 2/ u” (2)pu(w,dz) — || fllLa(arys)-
My M, z€M15  JRAM,; 16
2 16

Note that, throughout this article, sup resp. inf denote the essential supremum resp. the

essential infimum. In the case @ = oy = ... = ay, the condition ¢ > max{2, Zzzl 1k} becomes

ay
g > max{2,d/a}, which is natural. As is well known, the weak Harnack inequality implies a
decay of oscillation-result and Holder regularity estimates for weak solutions:

Theorem 1.4. Assume (Al-a), (Al-b), (A2) and (A3). Let f € L1(My) for some q >
max{2, >¢_, a—lk} Assume u € V*(M;|R?) satisfies

EM(u, ) = (f,¢) for every non-negative ¢ € H&I(Rd).

Then there are ¢y > 1 and 6 € (0,1), independent of u, such that for almost every x,y € M1
2

u(e) — uly)] < crla — yl? (nunoo T ufHLq(Mm)) . (1.10)

16
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Let us discuss selected related results in the literature.

The research questions of this article are strongly influenced by the fundamental contributions
of [9, 20, 19| on Hélder estimates for weak solutions u to second order equations of the form

div(A(z)Vu(z)) = f (1.11)

for uniformly positive definite and measurable coefficients A(-). [19] establishes the Harnack
inequality as an important tool for weak solutions to this equation. Similarly to the present
work, (1.11) is interpreted in the weak sense, i.e., instead of (1.11) one considers

glocal (y, v) = /A(:U)Vu(x)Vv(x)dx =0

for every test function v. Analogous results for integro-differential equations in variational form
resp. for nonlocal bilinear forms with differentiability order a € (0,2) have been studied by
several authors with different methods. Important contributions include [2, 6, 16, 10, 4, 13, 12,
7, 8, 25, 26]. These articles include operators of the form (1.3) with g = pu1 where no further
regularity assumption of a(z, y) apart from boundedness is imposed. Formally speaking, Holder
regularity estimates for fractional equations are stronger than the ones for local equations if the
results are robust with respect to o — 2— as in [16, 8]. Holder regularity results have also been
obtained for linear and nonlinear nonlocal equations in non-divergence form, i.e., for operators
not generating quadratic forms. We do not discuss these results here.

We comment on related regularity results if the measures are singular with respect to the
Lebesgue measure. [1] and [27] study regularity of solutions to systems of stochastic differen-
tial equations which lead to nonlocal operators in nondivergence form with singular measures
including versions of L™ with continuous bounded coefficients. These results have been ex-
tended to the case of operators with possibly different values for «; in [5]. Assuming that the
systems studied in [1] are diagonal, [18| establishes sharp two-sided heat kernel estimates. It is
very interesting that operators of the form L“1*? appear also in the study of random walks on

groups driven by anisotropic measures. Results on the potential theory can be found in [22],
(23], [24].

The closest to our article are [12] where from we borrow several ideas. [12]| establishes results
similar to Theorem 1.3 and Theorem 1.4 in a general framework which includes operators (1.3)
with fiaxes and po. The assumption o = ag = ... = g is essential for the main results in [12].
The main aim of the present work is to remove this restriction. This makes it necessary to study
the anisotropic setting in detail and to develop new functional inequalities resp. embedding
results. Luckily, the John-Nirenberg embedding has been established in the context of general
metric measure spaces. Another related article is [17], which deals with nonlocal parabolic
equations involving singular jumping measures. Note that, different from [17, 12|, we allow the
functions u to be (super-)solutions for inhomogeneous equations.

The article is organized as follows. Section 2 contains auxiliary results like functional inequal-
ities, embedding results, and technical results regarding cut-off functions. In Section 3 we
establish several intermediate results for functions u satisfying (1.9) and prove Theorem 1.3.
In Section 4 we deduce Theorem 1.4.
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2. AUXILIARY RESULTS

The aim of this section is to provide more or less technical results needed later. In particular,
we introduce appropriate cut-off functions, establish Sobolev-type embeddings and prove a
Poincaré inequality in our anisotropic setting.

2.1. Cut-off functions. As mentioned above, we need to impose one condition further to
Assumption 1 and Assumption 2. We need to make sure that the nonlocal operator £ resp.
the corresponding quadratic form behaves nicely with respect to cut-off functions. Let us first
explain a simple example. If »r > 0 and 7 € Cf (Bigr) with 7 = 1 on B, and 7 linear on By, \ By,
then |V7| < ¢~ in R? with a constant ¢ > 0 independent of 7. As we shall explain below,
there is a similar relation in our nonlocal anisotropic setting. Note that, in general, the nonlocal
analog of |V7(z)|? is given by 3 Jra(T(y) = 7(x))*p(z,dy). In the framework of Dirichlet forms,
both objects are the corresponding carré du champ operator of 7.

We make the following assumption on the family (u(z,-)), cra.
Assumption 3. There is a constant C' > 1 such that for every x € Ms and r > 0
(@, R\ My()) < Cigges(w, R\ M, (). (A3)

One can easily show that for any » > 0 and = € R
Maxes(l‘a ]Rd \ Mr(l‘)) = T_amax, (21)

where the implicit constant depends only on aupin, max and d. Assumption 3 implies bounds
on pu(x, R\ M, (x)) for r — 0 as well as for » — co. Note that one could relax the assumption
further by imposing a weaker bound for » > 1. Theorem 1.4 remains true if one assumes some
polynomial decay as r — oo.

We show that Assumption 3 implies a nice behavior of the family p with respect to cut-off
functions. We say that 7 = (74,r1)z0,r) is an admissable family of cut-off functions 7, .\ €
COL(RY) if for some constant ¢ > 1 the following is true for all zp € R, 0 < r < 1 and
1< A<2:

supp(7) C My (x0), [|T]|loo <1, 7=1o0n M,(xp),

= for all k€ {1,...,d}. (22)
A

||a]€THOO S Qmax £
A %% —1)r
The existence of such a family is standard.

Lemma 2.1. Assume p satisfies Assumption 1 and Assumption 3. There is c1 > 1 such that
forall xg € My, r € (0,1],1 < XA <2 and every admissible cut-off function in the sense of (2.2)
the following is true:

d
sup [ () = (@) P, dy) < o [ SOOHT -1y )
zeMs3 JRE E—1

The constant c1 can be chosen independently of aq, ..., aq.

Proof. As explained above, for every r > 0 and € R? we have fayes(r, RY\ M,.(z)) < 4dr—%max,
Note that the assertion of Lemma 2.1 can be proved directly in the case where pu equals fraxes-
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FIGURE 1. Example of 7 for xg =0, a3 = %, g = %, r= %, A= %

Given z € Mz and y € R?, let £ = ({o(z,9),...,La(x,y)) € RUHD be a polygonal chain
connecting x and y with

Ce(z,y) = (IF, ... 15, h y . -
k(@,y) = (I q), where {lj =z, ifj>k.

k
Then x = EO(‘/an)a Yy = ‘gd($ay) and |€k—1($7y) —Ek(l‘,y” = |$k _yk| for all k € {]-a s 7d} We
observe

d 2
| e =r)utean) = [ (Zwk_l(m,y» - ka(as,y)))) (i, dy)

k=1

d d
<Y [ (o) 7l ) Plendy) = 43 T
k=17 R k=1

Qmax XL

For k € {1,...,d}, set g = (A — 1)omax. Then

I = / (7 (ks (20, ) — (8 (2, )P pa(e, dy)
Mnkr(x)

+ (r(thr(2,9)) — 7(Ca(, ), dy) = A+ B.
RA\My,.r(x)

Using Assumption 3, (2.1) and the definition of 7y,
B < p(2, R\ My, (2)) < ca(A o — 1)~y amax,

By the mean value theorem, Assumption 3 and the definition 7,

A< 0| / 2k — y 20z, dy)

Mnkr(w)
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o0

~ - [ i — v, dy)
n=0 nkr2*"($)\MnkT27nfl($)
o0

—n 2 &max
<larlz > [ (2 5 ()
n=0 Mnkr2*"($)\MnkT27nfl($)

o0

L\ 29max
<Ok D (mer2™™)™ % pu(, R\ My pp-n1(x))
n=0

oo
< 4d||0pT 1% Z(nm’?_”) S (gL oma
n=0

oo
C3 2 Ymax

S Smax Qmax Z(nkr2in) “k (nkTQ*nfl)famax
(>‘ = 1)27“2 % p=0

o0
<e (Z 2n(amax72 e )) (A or — 1)~k p—amax
n=0

Amax

=c5(A ok — 1) VkpTmax,

Summing up over all k leads to the claim. ([

For future purposes, let us deduce a helpful observation.

Corollary 2.2. Assume p satisfies Assumption 1 and Assumption 3. Let zog € My, r € (0,1],
1 <A<2and 7t e CHRY). Assume T satisfies (2.2). There is a constant c; > 0, independent
of u, o, \, 7y Q1,...,0q, such that for every u € V“(M,\T(xo)‘]Rd)

d

u(z)?7(2)? p, dy) da < eyr e (SO0 _1)%) 22 0, oy
/MM(IO) /1Rd\MM(x0) Z L2(Mxr(20)

k=1

2.2. Sobolev-type inequalities. One important tool in our studies are Sobolev-type inequal-
ities. We begin with a comparability result, which gives a representation of (u, )y paxes (R4|RY)
in terms of the Fourier transform of u.

Lemma 2.3. There is a constant C > 1 such that for every u € V“““S(Rd‘]}{d)

o)

Proof. By Fubini’s and Plancherel’s theorem,

i€xhp 2
Haxes o 2 (1 —€ ) dh d
& (u,u) E a(2 — oy, /IR [u(§)] /]R’hk|1+ak k d&.

Furthermore, there is a constant ¢; > 1, independent of «j,...,qaq, such that for any k €

1,....d}

L2(Rd) < &t fu,u) < C’Hﬂ (Z ‘gk‘ak)

L2 R%)

B 1 — e¥rhr)2
e Ml < a2 — ag) /]R ( ) dhy < c1]&]**.

Hence the assertion follows. O
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A crucial tool in our approach is the following Sobolev-type inequality. We define the quantity

4
5:25. (2.3)
j=1"

Theorem 2.4. There is a constant ¢ = ¢1(d,28/(8 — 1)) > 0 such that for every compactly
supported u € V“‘“"@S(Rd|Rd)

P s, < ([ 00 =000 ) )

We thank A. Schikorra for discussing this result and its proof with us. We believe that this result
has been established several times in the literature but we were not able to find a reference.
Note that the case oy = -+ = ag = a € (0,2) implies = d/a and
2 2d
O = 28 =
-1 d—a«a

in Theorem 2.4. Hence, in this case, Theorem 2.4 is a direct application of the Sobolev embed-
ding H*/2(R%) ¢ LO(RY).

Proof. Let © :=23/(8 —1). We denote the Holder conjugate of © by ©’. Note

[ull Lo (ray = llullLo.oray < callull o2 ray < esllull Lor2(ray

. ) . :
<o (Z\fmk) wamk) ae| . Y
k=1

Lzel/@’@/)"x’(Rd) (kl

LZ(R9)
Our aim is to show )
d -3
K(§) = <Z |§k|°"“> € 129//(2-6).00(Rd)
k=1
which implies the assertion by Lemma 2.3.
Let £ € RY. Then there is obviously an index i € {1,...,d} such that
6l > g1 for all j £ 1.
Thus there is a ¢4 > 1, depending only on d, such that
4 —1/2 —-1/2
1y —a . (91 —ai
&l < [ DD 11 =Gl [ 1+ 2 < cql&| /2.
Hence
d —-1/2
{IK (&) =t} = (Z\fk\ak) >t
k=1

IN

M ——

{1725/ = ) A (117 > 1¢51°9) for all j # i}

=1

I
M=~

d
‘{(‘§z| <t A (J€] < |&|*/9) for all j # ’L}’ =: 042772‘.
i=1

1

-.
Il
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For each i € {1,...,d}, we have

t—2/a; t—2/a; Z
nz—Qd/ H/ dj d£Z:2d/ é. J;ﬁza] dgz
0

JFu

d 71 d _ d 1
o 2 ; (ZH&ZQ +1) < 2 . 2(Zj=1 Qj) _ C5t_2ﬂ.

ajta; _
Z]#Z Clj : d 1

Hence, we have K € L?%> if

20’ 2 -0 1 1 1 1 1 —1 2
2—96’:%(:) 9:B<:> = —:2<ﬂ ><:>@:”B,

from which the assertion follows. O

Theorem 2.5. Assume p satisfies Assumption 1 and Assumption 3. Let xg € My, r € (0, 1]
and 1 < X < 2. Then there is a constant ¢ = c1(d,28/(8 — 1)) > 0, independent of
o, A\, Ty, . .., Qq, such that for u € V““”ES(MM(:J:O)‘IRd)

[l 25 (/ / —u(y))? pages(x, dy) dz
LB=1(My(z0)) M- (z0) J My, (z0)
(2.5)
+r —CQmax <Z()\‘lk — 1)0%) ||u||%2(M/\T(IO))> .
k=1

Proof. Let 7 : RY — R be as in (2.2). For simplicity of notation we write M, = M,(xq). Let
v € L?(R%) such that v = u on My, and £#(v,v) < .

By Theorem 2.4 there is a ¢ca = c2(d, ©) > 0 such that

[o7[I70 (gay < CQ( / (v(2)7(2) — 0(2)7(y))? praxes(x, dy) da
My, J My

- Q/MM /M)\'r o ’U(:U)T(y))Q ,U/axes(x,dy) d$>
(Il + 2[2
We have
1
=1 </MM /MM = v(@))(7(2) + 7())]? Haxes(z, dy) dz

- /MM /MAT 2[(U(x) + U(y))(T(x) - T(y))]2 Naxes(x, dy) d$>

1
= §(J1 + Ja),
Using (7(z) + 7(y)) < 2 for all z,y € M), leads to

J < 4/ / (2))? paxes(, dy) dz.
My, J My
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By (v(z) +v(y))?(7(z) — 7(2))? < 2v(z)?(7(z) — 7(x))? +2v(y)?(7(z) — 7(z))? and Lemma 2.1,

we have

J2 < 4”””%2(M/\T) Sup / (T(y) - T(x))2ﬂaxes(xady)
cMs3 JRE

d
< qp—cmax (Z()‘ g — 1)‘0"“) HUH%Z(MM)'

k=1

Moreover, by Corollary 2.2

d
12 S C4r—amax (E(A [ S — 1)_ak> ||u||%2(M)\7-)

k=1

Hence there is a constant c¢1, independent of xg, A\, r, a1, ..., ag and u, such that

||U”%®(MT) = ||UH%®(MT) = ||U7'H%® (M) = ||UT||%9 (R9)

d
</ / >) Haxes (@, dy) da 47~ ome (Z - 1)ak> Hu”%2(M>\r)> .
M)\T‘ M)\’f’ 1
O
We deduce the following corollary.

Corollary 2.6. Assume i satisfies Assumption 1, Assumption 2 and Assumption 3. Let xg €
Mi and r € (0,1). Let 1 < X\ < min(r=1,2). Let © = 28/(8 —1). Then there is ¢c; > 1,
independent of xg, \,r,a1,...,aq, but depending on d,©, such that for u € V'U'(MAT(.IQ)‘Rd).

ol / /‘ ~ u(y))? ule, dy) da
LA=1(My(xo)) M, (z0) J Mxr(20)

_’_7_ Omax (Z()\ K — 1)ak> ||u”%2(MA1"(IO))>

k=1

Proof. Since by assumption p := Ar < 1, the assertion follows immediately by Theorem 2.5
and Assumption 2. O

2.3. Poincaré inequality. Finally, we establish a Poincaré inequality in our setting. Let
Q c RY be an open and bounded set. For f € L'(Q), set

Q‘ff “_uw/f

Lemma 2.7. Assume p satisfies Assumption 1 and Assumptwn 2. There exists a constant
c1 > 1 such that for every r € (0,1], g € My and v € VF*(M,(xo |Rd

Qmax gu

v — [U]MT(IO)HB(MT(QUO)) s ar M, (mo)(vav)'

Proof. To simplify notation, we assume zo = 0. Via translation, the assertion follows for general
d
zg € R?. Let

v =max {(ar(2 - ag)) Mk € {1,....d}}.
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By Jensen’s inequality
1 2
HU'_[UMWTH%%ALJ::l/“ (Jﬂi ’ AL(U(x)__U(yD dy) dz

|M|/T/T (y))? dy da = J.

Let £ = (Yo(x,y),...,Lq(z,y)) be a polygonal chain connecting x and y with

b=y ifj<k
l =(F,... % h 7 o
k(@y) = (1., lg), where {lé€ =xj, ifj>k.

Then

V(-1 (z,y)) — v(li(2,y)))? dy da == |M P ka

Weﬁxke{l,...,d} andsethék_l(x,y):(yl,...,yk_l,xk,...,md). Letz::x—i—y—w:

(1, s Th=1,Yk>---»Yd).- Then ly(x,y) = w + ex(zr — wr) = (Y1, Yk Tht1,- - -5 Tq). By
Fubini’s Theorem

Amax

amax/a Tumax/al T‘&max/ad r %k
H/ / / / amax (V(W) — v(w + ex (2 — wg)))?
_pamax/oj _pomax/oq _pamax/ag J_p o
dzp dwg - - - dw
amax 1+ M+a
ol+ak, ay max
< 2d 1 Z];ékamnx/a]/ / o — - 2 d d
| oma v(w + ek (zx — wg))) |2, — 2 LT Zk AW
1
< 42d amaxﬁ an’nx/ / o — — 2—d d
. ?.?,j" v(w + ex(zx — wg))) |z — 2g|1Fo Zk AW
4,’«-04max 2 Oék(2 )
_ - MY g, 4
< oZ—on T’/T/ramdx v(w + ep(zx — wy))) |2, — 2| T ke AW
Olmax
2 — ay)
Olmax M — — 20%<—kd d .
7 |/r/_ramx v(w + ex(zx — wy))) |2 — 25 1Tk 2 AW

Hence there are c1,cy > 0, independent of p, v and xg, but depending on d and -, such that

Il = []az, 122 as

Oérnax

92—
< czrama"Z/ / M w) — v(w + e (2 _wk)))2u dzg dw

|z — 2|tk
= 027"0‘“‘&"8“““(1) v) < clro‘maxé’“ (v v),

where we used Assumption 2 in the last inequality. O
3. PROPERTIES OF WEAK SUPERSOLUTIONS
In this section we prove our main auxiliary result, that is a weak Harnack inequality for weak

supersolutions using the Moser iteration technique. For this purpose we establish a Poincaré
inequality and show that the logarithm of weak supersolutions are functions of bounded mean
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oscillation. Note, that throughout this section we assume Assumption 1, Assumption 2 and
Assumption 3.

Let A > 0, Q C R? be open, u € V#axes(QRY) and ¥ : RY — R? be a diffeomorphism defined
by

ay O
V(z) = 0 |z
0 0 Xoea

Then by change of variables, the energy form E5*** behaves as follows

El™ (w0 W uo W) = Ao ome gl (u, u).

The next lemma provides a key estimate for logu.

Lemma 3.1. Let g € M, r € (0,1] and 1 < X\ < 2. Assume f € LI(My (o)) for some
q > 2. Assume u € V#(My,(z0)|RY) is nonnegative in RY and satisfies

EM(u,p) > (f,p) for any nonnegative p € HY (RY),

M, (z0) (3_1)
u(z) > € for almost all x € My, (zo) and some € > 0.
There exists a constant ¢ > 1, independent of g, A\, 7, 1, ...,caq and u, such that

= (log u(y) — logu(x))*

k=1

-1

d
Qmax —Q —a _ a—1
SC(Z (A o —1) )r x| My (20)] + €| Il (g, (ao)) [ Mar (z0)| 7

Proof. We follow the lines of [12, Lemma 4.4].
Let 7: R? = R be as in (2.2). Then by Lemma 2.1 and (A3), there is ¢o > 0, such that

d ASmax
sup /Mwy) — (@) 2u(x, dy) < ez (Z(w - 1)%) .

z€R4 k=1



NONLOCAL OPERATORS WITH SINGULAR ANISOTROPIC KERNELS 14

For brevity, we write My,(z9) = My, and M,(z¢) = M, within this proof. By definition of 7
and (Al-b),

/]Rd/Rd w(z, dy) dz
:/ / (t(y) — 7(z))" p(z,dy) dx+2/ / p(x,dy) dx
My, J My,
<2/ / w(x,dy) dx
My, JR4

< 21y sup /R () = 7(@))? )

d
<3 <Z(,\ o — 1)—%) pomax | My,

k=1

(3.2)

Let —p(x) = —7%(x)u"t(z) < 0. By (3.1), we deduce as in the proof of [16, Lemma 3.3]

[/ 2) (F2@)u (@) - 2 (y)u ) ple, dy) da
Jou Lo, R e R e ) JICRLE
wf / —u(@)) (@) @) - P2 () plr.dy)da
/ / < (log uly 2,3;“@))%) u(z, dy) de

/MM /MM (+(x) (2, dy) do
wof () (@) - 2()u () pla,dy) de,

Using the nonnegativity of u in R¢, the third term on the right-hand side can be estimated as
follows:

2 /MA / (u(y) — u(@)) (@) (@) — 2@ @) plz, dy) da
_2/MA / 2(;1c)u_1(:v)) p(z,dy) dx

- Q/MM /M <( >) wle,dy) do - 2/% / ule, dy) d

2 [ [ ) = @) o) e,

v
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Therefore, by the Holder inequality and [u=!| < ¢!

/ / (22 (log u(y logu( ))”‘?) u(a, dy) da

= /MM /]Rd (rl@) = T(y))2 p(z, dy) de + (f, —>u™")

& (3.3)
<a (Z <)\ k= 1) ) r 2 My, | + HfHLq(M,\T)HU_IHL‘I/(‘I—U(MM)
k=1
d amax —Qp _9 1 (q—l)/q
< (30 1) ) M+ lzaan, ) | M|
k=1
O

The following corollary is a direct consequence of Lemma 2.7 for v = log(u) and Lemma 3.1.

Corollary 3.2. Let zg € My, r € (0,1] and 2 < X < 2. Let f € LI(Ms,(20)) for some q > 2.
Assume u € V“(MAT(xo)’Rd) is nonnegative in R and satisfies

EM(u, ) > (f, ) for any nonnegative ¢ € H]‘\L/[M(xo)(]Rd),

(3.4)
u(z) > e for almost all x € My, and € > ro‘ma"(q_ﬁ)/qHfHLq(MM(xO))-

Then there exists a constant ¢ > 1, independent of xo,r and u, such that

11og w — [log ], (o) 1 72(at, (o)) < €1 Mr(20)]- (3.5)
Proof. Set M, = M,(xo) and M)y, = M), (z¢). Note
d
|M>\T| — (H 2()\7«) oy, ) — /\amaxBeroémax/B — )\amax5|Mr|_ (36)
k=1

By Lemma 2.7 for v := log(u), Lemma 3.1 and (3.6), we observe

amax I
5M @

00 2%k
< 90y / / (Z (log u(y logu( ) )H(x’ &y) do
v Mr \ 2y
d Oémax
§261r0““a"< (Z(

k=1

2k)!
) 'f)
Qmax — QO
S 2clramax ( ( < g — 1) > r_amax’M)\r’ + T—amax(q_ﬁ)/Q‘M)\T‘(q_l)/Q>
k=1
—ag
— QClT.Oémax ( ( << > _ 1) ) T*amax’MAT| + 2d)\amax(q1)/qramax+amaxﬁ>
k=1

< 2¢1 (escad| My, | + 4| M)
= 2¢y (CgC4d22B|M | + 4| M, |) = c1(d, B)| M, |.

log u — [log ulas, |22y, < ¢  (log u, log u)

e | My, | + E_IHfHLq(MM)|M>\r|(q_1)/q>

M‘“

Otmax

M&
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Here we have used the fact, that there is a ¢4 = c4(Qmax) > 0 such that max{(5/4)%max/T —
1)~z € (0, vmax)} < ca. O
A consequence of the foregoing results is the following theorem.

Theorem 3.3. Assume xg € My, r € (0,1] and f € Lq(MgT(xo)) for some g > 2. Assume

u € V“(M;r(ﬂ])‘IRd) is nonnegative in R and satisfies
4

E¥(u, ) > (f, ) for any nonnegative p € Hﬁ& (xo)(Rd),
z"'

u(zx) > € for almost all x € M%T and some € > 7"0‘“”"(‘1_5)/‘1||f||Lq(M5 (20))-
ar

Then there exist p € (0,1) and ¢ > 1, independent of xo,r,u and €, such that

1/p -1/p
<][ u(z)P daf) dz <c <][ u(x)P dw) . (3.7)
My (x0) My (zo)

Proof. This proof follows the proof of |12, Lemma 4.5].

The main idea is to prove logu € BMO(M,(x¢)) and use the John-Nirenberg inequality for
doubling metric measure spaces. Let xg € M; and r € (0,1]. Endowed with the Lebesgue
measure, the metric measure space (M,(xo),d,dz) is a doubling space. Let zp € M, (zo) and

p > 0 such that Ms,(z0) C M,(zo). Note that by (3.6) ]Mgp\q%l < 248+d| )|, Corollary 3.2
and the Hoélder inequality imply
[, . 1)~ Bogla | e < oz Boma e a1V
plZ0

< 02’Mp’-

This proves logu € BMO(M,(xg)). The John-Nirenberg inequality [15, Theorem 19.5] states,
that logu € BMO(M,(z0)), iff for each M, € M,(x¢) and x > 0

{z € Mp|[logu(z) — [logular,| > K} < cze™™"[M,, (3.8)

where the positive constants c3, ¢4 and the BMO norm depend only on each other, the dimension
d and the doubling constant.
By Cavalieri’s principle, we have for h : Mpg(xg) — [0, 0], using the change of variable t = e”,

that
][ M) dz =
M, (370)

1 1
T (/ iz € My(z0)] @ > 1] dt
T 0
+/ {z € M, ()| "™ > t}| dt)
1

1
| M|
Let p € (0,1) be chosen such that p < ¢4. The application of (3.8) implies

<1+ /Oooe“]{xeMr(xo)]h(x) > Kk} dk.

][M exp (p|log u(y) — [log u]as, (z0)]) dy
r{(Z0

<1y [Tolize i) |10gu<ﬁ4 - log el > WP
0 T
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S —c4k/P
c3e | M, (x0)]
<1 +/ e” dk
0 | M, |

<1+ 03/ e(1=ea/P)r g
0

€3 c4—Dp+c3p

ca/p—1  cu—p

(][ u@)pdy) (][ u<y>-pdy>

M'r(xO) MT(Q?U)

_ ][ (Pllogu(y)~logular,) ][ ¢~Plogu)~ogulan) gy | < 2 = ;.
M’I‘(IU) MT(xO)

3.1. The weak Harnack inequality. In this subsection we prove the weak Harnack inequality
Theorem 1.3, using the Moser iteration technique for negative exponents.

=1+

=:c5 < OQ.

Hence

]

s
Let Q € R? be open and bounded. Let ¢ > 3 and f € L71(Q). Then Lyapunov’s inequality
implies for any a > 0

1 e gy < 2l s+ T . 3.9)

Lemma 3.4. There exist positive constants ci,ca > 0 such that for every a,b > 0, p > 1 and
0 < 711,70 <1 the following is true:

_ _ 2
(b—a)(ria” = 3b7) 2 e1 (ma™% — b ™) — =P ),

A proof of Lemma 3.4 can be found in the published version of [12].

Lemma 3.5. Assume xg € My and v € [0,1). Moreover, let 1 < A < min(r—!,v/2) and
f € LMy, (0)) for some q > max{2,8}. Assume u € V*(My(z0)|RY) satisfies

EM(u, ) > (f,¢) for any nonnegative ¢ € H]’\L/[M(xo)(Rd),

u(z) > € for a.a. © € My, (xo) and some € > ||f||Lq(MM(mO))rama"(q_ﬁ)/q.
Then for any p > 1, there is a ¢ > 1 independent of u,xqg, 7, p, 1, ...,0q and €, such that
d
—1 p Smax —« —a -1
< >\ ap 1 k max
H HL<p 1 Bi (M (z0)) Cp_ 1 (;( ) ) ‘ HLP (M, (z0))

Proof. Let 7: RY — R be as in (2.2). We follow the idea of the proof of [12, Lemma 4.6].

For brevity let M, = M,(xg). Since E*(u,¢) > (f, ) for any nonnegative ¢ € Hyy, (RY) we
get
g'u‘(u7 _7—2”71)) < (f7 _T2u7p)'

Furthermore

/ / (u(y) — u(@)) (r(2)u(z)? — ~(y)?u(y)?) ple, dy) d
Rd Rd
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- / / (u(y) - u($)> (T(w)Qu(x)_p — T(y)Qu(y)_P) ,U(-T,dy) dz
M/\T‘ M)\r
b)) (F(2)2u(z) P — () 2u(w)"P) ulz .
”ka [ () = ulo) (rlaPu(e) ™ = ) ue) ) plady)d

=:J1 +2J.

We first study Jo. By Lemma 2.1 and (A3),

Jo = / / wu(z, dy) dx—/ / Py (e, dy) de
M/\ M/\
/ / Pz, dy) da
My

> p“uLl(MM) sup / (r(y) — 7(2)) 2z, dy)
rzeR4 J R4

d
_ _ dmax — QO
> —|lu 1||Lp 1(My,) €27 e (Z ()‘ e 1) ) '
k=1

Applying Lemma 3.4 for a = u(z),b = u(y), 1 = 7(x), 72 = 7(y) on Ji, there exist ¢3,cq4 > 0
such that

h= [ ) - @) (e Pule) = ) Pul) ) plady) da
My J My

= /M /M (T(x)“(l") 5 - T(x)U(w)ﬁl)Qu(x,dy) da
- 4pfl /M /M (7(y) — 7(2))*(u(y) P + u(z) ) p(e, dy) da.

Hence

/M /M (T(I)u(x) R T(z)u(z) 7p2+1>2 iz, dy) d

< 013J1 + e . 1 /MA /M/\ (r(y) = 7(2))* (w(y) """ +w(@) ") p(r, dy) dz

= Clg/le /Rd (u(y) — u(x)) (T(x)2u($)—1" _ T(y)Zu(y)_p) iz, dy) dz — 623J2

+ ¢ fl/Mk /MA m(y) — 7(2))*(u(y) P + u(z) P p(z, dy) da (3.10)
<[] (e Pule) ™ — (9) uly) ) pla, dy) da
d
EHu*erlHLl My, )T <Z( ak" B 1) k)
k=1
+cq _1/M /M — 7(2))*(u(y) P+ w(z) P p(z, dy) da.

We derive the assertion from (3.10).
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The first expression of the right-hand-side of (3.10) can be estimated with the help of (3.9) as
follows:

| o) = u(e) (r@Pute) ™ = ) u(s) ) ptasdy) do = £ (=)
(f —72P) < €Y (f, =P = Y (rf, ru Pt

“HITFll oy ru Y|

LaT (RY)
-1 B —p+1 9-B & —p+1
< Ml (Salr P+ TP e gy
<Al T | + LB
>¢€ Lq(M/\r) qa TU L%(Rd) a TU Ll(]Rd)

< pomax(8-0)/q (BQHTU—:DHH ra + 4=
q L?

—B
aa8 ||y~ PH! d>
5 ey . | 21 (ray ) s

where a > 0 can be chosen arbitrarily. Set

a = ramax( )/qw

for some w > 0. Since A < /2, for all k € {1,...,d}

A< (21/0% + 1)0%/2 — ()\2/0% — 1) >

N

Qmax

Using (A @& — 1) > (A2/% — 1)=% leads to

)"
d
(AOmax/% _ 1)=% | > 1,
(=)
Altogether, we obtain

/ / (u(y) — ul@)) (r(2)?u(z) ™ — r(y)?u(y)?) ple, dy) de
R2 JRE

5 . q— ﬁ _ =B _
< —wllu P+ P Omaxya=F ||t Pl
= | HL%(MM) B I (a1,

‘ 1 (3.11)
S wau IHP( 1)

q p— 5 1 (MA )

q _ /B d amax 7/8
—|— T’r_amax (Z()\ U — 1)_ak) meU IHLP 1 M)\ )
k=1

The third expression of the right-hand-side of (3.10) can be estimated as follows:

/ / (r(y) — 7(@)2(u(y) " + u(z) (e, dy) de
My J My

-7 /MM /MM (r(y) — 7(2))*(u(z) ") (e, dy) do

< 2Ju P s, SUD / (r(y) — 7(2))2ulz, dy)
zeRe JRE

d
ax Qg
< cyram <Z( w-1) >| =TT

k=1
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By Corollary 2.6, we can estimate the left-hand-side of (3.10) from below

/M /M . <T(m)u(a;)%+l — 7(x)u(z) _p2+1>2 pu(z, dy) da

M=

> CGHTU%-HH2 28 — T Qmax (
)

fmay _ —p+l o
LB (M S ak) e 122y,

d
—p+1 “Sma, —p+1
> cgllu2 || s _ p—Omax (ZO‘ on 1)-%) w2 ||2LQ(MM)
LB-1(M,)

k=1
d «
—1p—1 —a o —a —1p—1
= cg||u — 7 %max Aok —1)7% | u - .
6” ||L(p71>%(Mr) (;( ) ) H HLp 1(My,)
Combining these estimates there exists a constant ¢; > 0, independent of g, r, A, a1, ...,a and
u, but depending on d and 23/(8 — 1), such that
d
_ _1 =B p Amax _ _ ; -1 p—l
[ < c(we? + ) (A ek = 1)7% prmomea|lu ||,
L(p_l)%(Mr) p—1 ; Lr=H (M)
1 -1
+—wlu ] oy s
C2C4 L B=1 (M)
Choosing w small enough proves the assertion. O

Lemma 3.6. Assume vg € My and r € [0,1). Let 1 < A < min(r—!,v/2). Assume f €
LY( My, (z0)) for some ¢ > max{2, 8} and let u € V“(M)\r(l‘o)“ﬁd) satisfy

EM(u, ) > (f,¢) for any nonnegative ¢ € Hf\L/IM (]Rd),
u(x) > € for almost all x € My, and some € > HfHLq(MM(xO))Tamax(qfﬁ)/q.

Then for any po > 0, there is a constant ¢y > 0, independent of w,xg, \,r,€ and aq,...,qq,
such that

—1/po
inf  u(x) >¢ ][ u(z) P dx . (3.12)
€My (x0) Moar(z0)

Proof. We set M, = M,(xy). For n € Ny we define the sequences

_(n+2 od B B \"
n=\ )T md pe=p( gy )

Then ro = 27, ri, > rieq for all k € Ng and r, N\ r as n — co. Note

(n+2)?
n = mrnﬂ = AnTnt1-

Moreover pg = po, pr < pra1 for all k € Ny and p, 7 +00 as n — 0.
Using

~Qmax Qmax 3 _ —Qmax 3

Pn Pnti Pn
we have
r;—fTaX/pn B 9d/(Bpn) )\%maxﬁ/pn

| My, | VPt | M, |V
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Moreover, by Lemma 3.5, we have for p = p, + 1

—1 _ —1
[l HLP"“(MTnH)_Hu HLp"ﬁ[il(MrnH)
1/pn d amax l/pn
1 n + ]‘ @ — —Omax n —
< (p"p ) (} O = 1) ) Py P [0 o )
n k=1

This yields

(

1/pn+1
<u—1>pn+1>
Tn+4+1

I\/Pn [ 4 emax L/pn 1/pn
S 2d/(ﬁpn)>\zmax6/pnc;/pn <pn + ) (Z(}\no‘k _ 1)0‘76) <][ (ul)pn> .
My,

which is equivalent to

_l/pn ]_/ "
][ u*pn < Qd/(ﬂpn))\%maxﬁ/pncé/pn (pn + 1) P
M, o Pn
d  omax 1/pn —1/pnt1 (3.13)
X Z(Anak — 1)_0”“) <][ u_p"“> .
<k:1 My
Iterating (3.13) leads to
—1/po n n n n 1/p;
(][ U_p0> < H 2d/(,3pj) H )\?maxﬁ/pj H C;/pj H (pj + ].> j
My, §=0 §=0 j=0 Jj=0 pi
nofd apas 1/p; —1/pni1
X H Z()\j - 1)_0’“) <][ u_p"“) :
§=0 <k:1 M1
(3.14)

One can easily show that the expressions on the right-hand-side of (3.14) are bounded for

n — 00. Since
_l/pn
lim ( up"> = inf u(z),
n—oo

][M €M,
taking the limit n — oo in (3.14), proves the assertion. O

™n

From Lemma 3.6 and Theorem 3.3 we immediately conclude the following result.

Corollary 3.7. Let f € Li(My) for some q > max{2,5}. There are py,c > 0 such that for
every u € V#(M|R?) with u > 0 in R? and

EM(u, ) > (f, )  for every nonnegative ¢ € H&I(Rd),
the following holds
1/po
i > Po _ .
}\I}fu >c ][Ml u(z)P0 dz ||f||LQ(M%%,)

1

4 bj
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Proof. This proof follows the lines of [12, Theorem 4.1]. Define v = u + || f||zs(as,5)- Then for
16

any nonnegative ¢ € H JA\LA (R%), one obviously has

EF(u, ) = E(v, ).
By Theorem 3.3 there are a ¢y > 0, py € (0, 1) such that
1/po —1/po
][ v(x)P° dx dz < ¢ ][ v(z)7P dz . (3.15)
My My

Moreover, by Lemma 3.6 there is a ¢z > 0 such that for r = % and pg as in (3.15)

—1/po 1/po
inf v(z) > c3 ][ v(z) P de >3 ][ u(z)P de
zEM M+ €2 My
4 5 5
which is equivalent to
1/po
fuze | fow@Pde] =l
My M1 16
U
Given g : R — R, let g*(z) := max{g(z),0}, ¢~ () := — min{g(x),0}.
We have all ingredients in order to prove Theorem 1.3.
Proof of Theorem 1.3. For any nonnegative ¢ € H]‘\‘/[1 (R
EMut, @) = EM(u, ) + EM(u, ) = (f,9) +E"(u, ). (3.16)

Since ¢ € Hf&l(Rd) and u~ =0 on M; , we have

(ro)= [ f@ee)de = [ f@ypla)da

f
My

and

e'umg) = [ [ () = @)e) - pla) o dy) da

—=2 [ [ w @)l ue.dy) da.
My (Ml)c
Hence, we get from (3.16)

EMuT, ) > /M o(z) (f(fw - 2/(M . u” (y) u(rc,dy)> dz.

Therefore, u™ satisfies all assumptions of Corollary 3.7 with ¢ = +o00 and f: M, — R, defined
by

fo = s =2 [ () utedy)
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If sup fle\Ml u” (2)p(x,dz) = oo, then the assertion of the theorem is obviously true. Thus
reM 5
1%

we can assume this quantity to be finite. Applying Corollary 3.7 and Hoélder’s inequality

1/po
infu > e ][ w@Pde | Pl
M% Ml 16
2
1/po
— o ][ W@ de | 1l — 2 / () e, dy)
M% 16 IRd\M1 Lq(M15)
16
1/po
o | f o u@rds) gy - sw 2 [ w @)y
M% 1 xEM% ]Rd\Ml

An immediate consequence of Theorem 1.3 is the following result, which follows via scaling and
translation.

Corollary 3.8. Let zg € My, r € (0,1]. Let f € LI(M;(x0)) for some g > max{2, f}. Assume
u € VI(M,(z0)|R?) satisfies u > 0 in M, (o) and E*(u, ) > (f, @) for every ¢ € Hx/[T(m)(IRd).
Then there exists py € (0,1), ¢ > 0, independent of u,zy and r, such that

1/po
inf wu>c ][ u(x)P0 dz — rémax gup 2/ u” (2)p(x,dz)
M%T(Z‘O) M%r(mo) l‘EM%T(ﬂzo) Rd\Mr(.’EO)

Qmax i
— r 0D £ o (Mas (o).

1
4. HOLDER REGULARITY ESTIMATES FOR WEAK SOLUTIONS

In this section we prove the main result of this article, i.e., an a priori Holder estimate for weak

solutions to Lu = f in M. For this purpose, we first prove a decay of oscillation result. Given

a real-valued function f, ogc f denotes the essential oscillation on S| i.e., ogc f=supf— igf fs
S

where sup resp. inf denote the essential supremum resp. infimum. We extend the scheme
for the derivation of a priori Holder estimates developed in [12]. We adapt the proof of [12,
Theorem 1.4| to the anisotropic setting. We also include a right-hand side function f.

Theorem 4.1. Assume Assumption 1, Assumption 2 and Assumption 3. Let xo € R%, g €
(0,1]. Letcg > 1, p>0and © > X >0 > 1. Let f € LY(M;(x)) for some ¢ > max{2,5}.
We assume that the weak Harnack inequality holds true in M,(x¢), i.e.,

For every 0 < r < 19 and u € V”(Mr(xo)}Rd) satisfying w > 0 in M,(xo) and
E1(u,0) = (f, ) for every p € Hy . (R,

(4

1/p
u(z)? de <cq| inf wrome sup / u (2)pu(x,dz)
% (zo) M% (o) mGMg (zo) Rd

(4.1)
Qmax -8
el quHmM;m») -
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Then there exists & € (0,1), ¢ > 1 such that for v € (0,7q], u € V*#(M,(x0)|R?) satisfying
E'(u, ) = (f. ) for every p € Hy; (,(RY),

é 5 B8
ose <26l (£) +¢0 (2) Dl pagur, @y 0<p=r). (42)

»(w0)

Proof. The strategy of the proof is well-known and can be traced back to G. A. Harnack himself.
In the following, we write M, instead of M, (z¢) for r > 0.

2
Let ¢, and p be the constants from (4.1). Set k = (2¢,2"/P)~ and § = lolg()i?_*)“), which implies
K

1—5594. (4.3)

This estimate appears to be important later. Note that the inequality remains true if we choose
d even smaller.

Assume 0 < 7 < 1o and u € VH(M;(zo)|R?) satisfies £/(u,) = (f, ) for every ¢ €
H" (R%). Set
)

M (zo)
Set by = [|tls0, ao = inf{u(z)|x € R} and b_,, = bg,a_n = ag for n € N. Our aim is to
construct an increasing sequence (ap)nez and a decreasing sequence (b, )nez such that for all
neZz

Qmax -8
() = u(@) | fulloo + 200D f agar

Qls

{%gmagm (4.4)

by, — ap < 20770

for almost all 2 € M,g-n». Before we prove (4.4), we show that (4.4) implies the assertion. Let
p € (0,7]. There is j € Ny such that rO©~I71 < p < rO®7J. Note, that this implies in particular
©77 < pO/r. From (4.4), we deduce

. 6
oscu < osc u<bj—a; < 2079 < 20° (B) 7
' T

Mp Mr(—)77
where from the assertion follows. It remains to show (4.4).

Assume there is k € IN and there are by, a,, such that (4.4) holds true for n < k — 1. We need
to choose by, ay such that (4.4) still holds for n = k. For z € R? set

v(z) = (fl(z) _ e tonn ; ak_l) k-1

Then |v(z)] < 1 for almost every z € M,g-—1) and EF(v,p) = (f,¢) for every function
v e HY, (R%), where

o—(k—1)

@(kfl)é

flz) = f (). (4.5)

maxlfﬁ
lulloe + 2r*> U2 £l oo

Let z € R? be such that z ¢ M,g 1. Choose j € N such that z € M,g-k+;+1 \ M,g-r+,. For
such z and j, we conclude
v(2) br—1 + ag—1

Q15 = H-i1 T T
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> —(bp—j—1 — agp—j—1) + bk_ﬁ%
> op-(ki-bs Bl e
Thus
v(z) > 1—207° (4.6)
and similarly
v(z) <207 —1 (4.7)
for z € M,g—r+j+1 \ M,g-r+;. We will distinguish two cases.
(1) First assume
o € Mogpn [0(2) < 0} 2 5|M 0msenl, (48)
Our aim is to show that in this case
v(z) <1—k for almost every z € M, g«. (4.9)

We will first show that this implies (4.4). Recall, that (4.4) holds true for n < k — 1.
Hence we need to find ay, by, satisfying (4.4). Assume (4.9) holds.

Then for almost any z € M,g-#

- 1 bp—1 + ax—1
u(z) = 76%_1)61)(2) + — 5
1 br—1 + ag—1
e A
K
< Kk —(k—=1)5
<api+ (1 2) 20

<ap_1+ 207k,

Here, we have used (4.3). If we now set ap = aj_; and by = by + 207 then by

the induction hypothesis u(z) > ax_1 = a; and by the previous calculation u(z) < by.

Hence (4.4) follows.

It remains to prove (4.9), i.e., v(z) < 1 — k for almost every z € M,g—. Consider w =

1—wvand note w > 0in M, g -1 and E*(w, ) = (f, ¢) for every ¢ € HY, ) (RY),
reO—\FT

where f is defined as in (4.5). We apply the weak Harnack inequality (4.1) to the
function w for r; = r@~*+1 € (0,7]. Then

1/p
][ w(z)P dz < | infw +r{™> sup / w (2)p(x,dz)
Mry Mry z€Mry JRA

By
Omax (1*

%)
1 Nl pacarn )

@(kfl)zS
Qmax -8 >
lulloo + 2ro=C= || fl| pagar,.)

+

We assume 0 < apax(1 — g) Then
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max E—1)(6—amax (1= 2
&1 HfHLq M71 ®(k s ||f||Lq(M,n1)@( ) ( q)) . o
fulloo + 20240 Flgagary ) el lzaary 2

Using assumption (4.8) the left hand side can be estimated as follows

1/p 1/p
<][ w(z)? dm) > <][ w ()P 1y (2) <0 dx)
M o—(k—1) M o—(k—1)
re=(k71) ro 770

(HCU € M@M(m) < 0}|>1/p

’MT(-)*’“JFI ‘
A
%‘M7\@—>\k+l ‘ 1/p 1
> = .
N ’Mr®7k+1 ‘ 21/p
A
Moreover by (4.7)
(1—w(z)” <(1-207°41)" =207 — 2, (4.10)

Consequently

inf w > 2k — v (r@~ (k=1 yamax sup / w™ (2)p(x,dz)
2 Rd

Mr@fk JTGMT(_)_(k_l)
e -

Let us show that the last term depends continuously on § and can be made arbitrarily
small. Note, that w > 0in Mg 1. Let x € M o 1) and j € N. From (4.10) we

deduce,

[ o @utaan = [ o

= w™ (2)p(x,dz) (207° — / p(x,dz).
Z/ Z RANM, o —k+;

=17 M o—k+j+1\M, g—k+j j=1
Since
r@ ki TL > N R ——
R%\ M,o-k+i(o—1)/o(T). Applying Assumption 3 anti (2.1) leads to
(&), R M)
< (ro~kmyamay(z REN Moo -kii(o1)/0(2))
< ey (ro~ e (2, R\ Myg-rti(o1) /()
< 14d(r@~ *F1)omex (p@ TR (5 — 1) /) TOmax
= c14d(o /(0 — 1))ama"(®_j+1)o‘m‘"‘ .

we know M,,,kaqtj(o-_l)/o.(x) C Mr@qcﬂ' (xo) = M Q@—k+j and thus ]Rd \ M,’,.@—kJrj C
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Thus for every [ € N,

j=1 j=l+1

with a positive constant cy depending only on ¢ and d. From now on, we assume
6 < §. First, we choose [ € IN sufficiently large in dependence of cpax such that
I < &, Second, we choose § sufficiently small such that Iy < £. Since these choices

1 1
are independent of x and k, we have proved
K
rime sup / w™ (2)p(x,dz) < -
-Z’GMQ R4 2
Thus
w> inf w>kKk on Mg,
Mr@_k
or equivalently v <1 — x on M, g-«.
(2) Next, we assume
1
|{:L‘ eEM, okt ‘ ’U(LL’) > 0}| > §’Mrefk+1 ‘ (4.11)
A A

Our aim is to show that in this case
v(z) > =1+ &k for almost every M,g-&.
Similar to the first case, this estimate together with (4.4) and (4.3) implies for almost
every z € M,g—«
U(z) > bp_y — 2075,

Choosing by, = by_1 and a;, = ap_1 — 20% then by the induction hypothesis u(z) <
br—1 = by and by the previous calculation u(z) > ai. Hence (4.4) follows.

It remains to show in this case v(z) < —1 + & for almost every z € M, g-&.

Consider w = 1+v and note £#(v, ) = (f, ¢) for every ¢ € Hx/[re—(k—l) (R%) and w > 0
in M,g--1). Then the desired statement follows analogously to the first case 1.

O

Finally, we can prove our main result concerning Holder regularity estimates.

Proof of Theorem 1.4. If d(x,y) > %, then (1.10) follows from the observation

A
(]j , = { — Qmax } < _ O‘min/amax , c M .
(,y) = max qlox = il <z —yl (z,y € M)
Let p € (0,%). We cover M;_4, by a countable family of balls (M?); with respect to the metric
space (R, d) with radii p. Denote by 2M7 the ball with the same center as M7 but with radius
2p. By Theorem 4.1 there is a §; € (0,1) and c2 > 0, independent of p, such that

o
osc u < o™ ([uloe + [ l1aaryg))-

5
16
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Given p € (0, i), almost every pair (z,y) € M1 x M1 satisfying £ < d(z,y) < p, has the
2 2

property |u(z) — u(y)| < osc u for some j and therefore satisfies
2MJ

u(z) — u(y)| < oscu < cgla —y| /w2 (|lul| oo + (| Il La(arys))-
2M7 16

Altogether, there are d2 € (0,1) and ¢4 > 0 such that for almost every pair (z,y) € M1 x M1
2 2
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