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Abstract. We study the Cauchy problem for non-linear non-local operators
that may be degenerate. Our general framework includes cases where the

jump intensity is allowed to depend on the values of the solution itself, e.g.

the porous medium equation with the fractional Laplacian and the parabolic
fractional p-Laplacian. We show the existence, uniqueness of bounded solu-

tions and study their further properties. Several new examples of non-local,

non-linear operators are provided.

1. Introduction

One of the core ideas in describing many phenomena in natural sciences is the
notion of diffusion, whose mathematical description goes back to the beginning of
the 20th century. A comprehensive introduction to this concept from an analytical
perspective is given in the review article [45]. The most prominent diffusion is
the Brownian Motion with the Laplace operator −∆ as its infinitesimal generator.
The more general class of Lévy processes has been found to be important for the
modeling of diffusive and non-diffusive phenomena in natural and social sciences [28,
35, 38, 47, 48]. Here, the so called rotationally invariant α-stable jump process
can be seen as an important non-local counterpart of the Brownian Motion. Its
infinitesimal generator is the fractional Laplace operator (−∆)α/2, where α ∈ (0, 2).
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An introduction and overview of some the results related to non-local phenomena
in analysis can be found in [11].

In this paper we put forward a framework for non-local, non-linear “diffusion”.
The operators that we consider might be degenerate but still allow for the conserva-
tion of mass, the maximum principle, and the comparison principle. It encompasses
some of the known examples of equations which are used to describe behaviour of
non-local diffusive-type processes, like the linear heat equation with the fractional
Laplacian, the fractional porous medium equation or the parabolic equation with
the fractional p-Laplacian. The framework also allows for new examples to be
constructed and studied.

Statement of the problem. Consider the initial value problem

(1)

{
∂tu+ Luu = 0 on [0,∞)× RN ,

u(0) = u0 on RN ,

where the non-linear non-local operator L is defined by the formula

(2)
(
Lvu

)
(x) =

∫
RN

[
u(x)− u(y)

]
ρ
(
v(x), v(y);x, y

)
dy

for a given homogeneous jump kernel ρ.

Definition 1.1. We say a function ρ : (R×R)× (RN ×RN )→ R is a homogeneous
jump kernel if it satisfies conditions (A1)–(A6). For all a, b, c, d ∈ R and for almost
every (x, y) ∈ RN × RN we assume that

(A1): ρ is a non-negative Borel function;
(A2): ρ is symmetric, i.e. ρ(a, b;x, y) = ρ(b, a; y, x);
(A3): ρ is monotonous in the following sense:

(a− b)ρ(a, b;x, y) ≥ (c− d)ρ(c, d;x, y) whenever a ≥ c ≥ d ≥ b;

(A4): ρ is homogeneous

ρ(a, b;x, y) = ρ
(
a, b; |x− y|

)
;

(A5): for every R > 0 there exists a function mR : [0,∞)→ [0,∞) such that
sup−R≤a,b≤R ρ(a, b;x, y) ≤ mR

(
|x− y|

)
and∫

RN

(
1 ∧ |y|

)
mR

(
|y|
)
dy = KR <∞;

(A6): ρ is continuous with respect to the first two variables and it is locally
Lipschitz-continuous outside diagonals, i.e. for every ε > 0 and every R > ε
there exists a constant CR,ε such that∣∣ρ(a, b, x, y)− ρ(c, d, x, y)

∣∣ ≤ CR,ε(|a− c|+ |b− d|)mR

(
|x− y|

)
for every a, b, c, d ∈ [−R,R] such that |a− b| ≥ ε and |c− d| ≥ ε.

The name jump kernel comes from the probabilistic interpretation of the role
of the operator L in equation (1). The function ρ(a, b, x, y) describes the density
of jumps from x to y within a unit time interval. In our setup, this density is
moreover allowed to depend on the values u(x) and u(y) of the solution in place of
parameters a and b.

Remark 1.2. In the integrability condition (A5), one may simply define the function
mR as mR

(
|x − y|

)
= sup−R≤a,b≤R ρ(a, b;x, y). In some situations, however, it is

more convenient to consider a different majorant (cf. Proposition 5.10).
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Remark 1.3. If µ is a non-negative function and the integral
∫
RN
(
1 ∧ |y|

)
µ(y) dy

is finite, then we say that µ is the density of a Lévy measure with low singular-
ity. This corresponds to our assumption on the function mR in condition (A5)
in Definition 1.1. Note that, in case of a general Lévy measure µ, the integral∫
RN
(
1 ∧ |y|2

)
µ(dy) is assumed to be finite. We do not treat this general case here.

Note that in condition (A4) and in the sequel we allow for some ambiguity with
respect to the function ρ. Moreover, for clarity of presentation we abbreviate the
notation for the jump kernel and write

ρ
(
u(x), u(y);x, y

)
= ρu,x,y and ρ

(
u(x), u(y);x, y

)
dy dx = dρu.

Remark 1.4 (Maximum principle). An operator
(
A,D(A)

)
satisfies the positive

maximum principle if for every u ∈ D(A) the fact that u(x0) = supx∈RN u(x) ≥ 0
for some x0 ∈ RN implies Au(x0) ≤ 0. Because of formula (2), the operator −Lv
has this property for each v ∈ L∞(RN ) as long as it is supplemented with a suitable
domain (for example, the BV space, see Lemma 2.3 below).

Main results. Our goal is to prove the results gathered in Theorem 1.5 and Corol-
lary 1.6. We prove properties typical for solutions to diffusion equations.

Theorem 1.5. Let ρ be a homogeneous jump kernel in the sense of Definition 1.1.
For every initial condition u0 ∈ L∞(RN )∩BV (RN ), problem (1) has a unique very
weak solution u such that

u ∈ L∞
(
[0,∞), L∞(RN ) ∩BV (RN )

)
∩W 1,1

loc

(
[0,∞), L1(RN )

)
(see Definition 4.3). This solution has the following properties

• mass is conserved:
∫
RN u(t, x) dx =

∫
RN u0(x) dx for all t ≥ 0;

• Lp-norms are non-increasing: ‖u(t)‖p ≤ ‖u0‖p for all p ∈ [1,∞] and t ≥ 0;
• if u0(x) ≥ 0 for almost every x ∈ RN then u(t, x) ≥ 0 for almost every
x ∈ RN and t ≥ 0.

Moreover, for two solutions u and ũ corresponding to initial conditions u0 and ũ0,
respectively, we have

‖u(t)− ũ(t)‖1 ≤ ‖u0 − ũ0‖1 for every t ≥ 0

and if u0(x) ≥ ũ0(x) for almost every x ∈ RN then u(t, x) ≥ ũ(x, t) for almost
every x ∈ RN and t ≥ 0.

Corollary 1.6. Let ρ be a homogeneous jump kernel in the sense of Definition 1.1.
For every initial condition u0 ∈ L1(RN ) ∩ L∞(RN ), problem (1) has a very weak
solution u such that

u ∈ L∞
(
[0,∞), L1(RN ) ∩ L∞(RN )

)
∩ C

(
[0,∞), L1(RN )

)
.

This solution has the following properties

• mass is conserved:
∫
RN u(t, x) dx =

∫
RN u0(x) dx for all t ≥ 0;

• Lp-norms are non-increasing: ‖u(t)‖p ≤ ‖u0‖p for all p ∈ [1,∞] and t ≥ 0;
• if u0(x) ≥ 0 for almost every x ∈ RN then u(t, x) ≥ 0 for almost every
x ∈ RN and t ≥ 0.

Remark 1.7. Notice that in the statement of Corollary 1.6 we consider more general
initial data and consequently there is no claim of uniqueness of solutions nor a notion
of L1-contraction.

Remark 1.8. One could expect solutions to diffusion equations to be more regular
than their initial data (cf. the heat equation). In general, this is not the case in
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our framework and can easily be disproved by the trivial example ρ(a, b;x, y) = 0.
It satisfies Definition 1.1, but there is no smoothing effect in the Cauchy problem

∂tu = 0, u(0) = u0.

This example also shows that we cannot expect any decay of solutions.

Strategy of the proof of Theorem 1.5. Let us briefly describe the strategy to prove
Theorem 1.5 and thus also the general outline of the paper. In Section 3, Def-
inition 3.1, we introduce the notion of regular jump kernels in order to show in
Theorem 3.6 that in such cases there exist unique classical solutions to prob-
lem (1) for every initial condition u0 ∈ L1(RN ) ∩ L∞(RN ). Then, in Section 4,
we “regularize” homogeneous jump kernels (Lemma 4.7). In Theorem 4.8, we
show that if u0 ∈ BV (RN ) ∩ L∞(RN ) then the approximating sequence of so-
lutions uε to problems (14), with initial conditions u0, corresponding to a se-
quence of regularized jump kernels, has a convergent subsequence and its limit
u is a strong solution to problem (1) (see Definition 4.3). The solution satisfies
u ∈ L∞

(
[0,∞), BV (RN ) ∩ L∞(RN )

)
∩ C

(
[0,∞), L1

loc(RN )
)
. In Theorem 4.11 we

prove the L1-contraction property, which immediately implies uniqueness of solu-
tions (Corollary 4.12). The properties of solutions indicated in the statement of
Theorem 1.5 follow as side-effects in the process of this construction (see Corollar-
ies 4.13, 4.14 and 4.16).

Strategy of the proof of Corollary 1.6. As a consequence of Theorem 1.5, we obtain
Corollary 1.6. In Theorem 4.17 we consider general initial condition u0 ∈ L1(RN )∩
L∞(RN ) and a sequence of its approximations for which we may use Theorem 1.5
to construct unique strong solutions. We are able to verify Definition 4.1 of the
pointwise limit of these solutions and to deduce properties of this solution as a
consequence of the pointwise convergence of approximations (see Corollary 4.18).

Scope of the framework. Let us introduce our framework by presenting several
examples. Many of them have been discussed intensively in the literature but some
of them, to the best of our knowledge, are new. A more detailed description of
these examples follows also in Section 5.

Known models. As a simple example which could be written in the form (1) we
recall the linear fractional heat equation

(3) ∂tu+ (−∆)α/2u = 0 with the jump kernel ρ(a, b;x, y) =
Cα,N

|x− y|N+α
.

Because of the integrability constraint (A5), in this work we have to assume α ∈
(0, 1). We refer to [11] for a gentle introduction to the fractional Laplacian. Equa-
tion (3) has an explicit solution u(t) = pα(t) ∗ u0 with the α-stable density pα(t) ∈
C∞(RN ) ∩ L1(RN ) ∩ L∞(RN ) (see [29, 4]).

A more complicated case is the fractional porous medium equation

(4) ∂tu+ (−∆)α/2
(
|u|m−1u

)
= 0,

which is studied in depth in [36, 19, 20]. See also [8] for most recent results and
more references. In our case, we can write this equation as (1), using the following
jump kernel with α ∈ (0, 1) and m ≥ 1

ρ(a, b;x, y) =
|a|m−1a− |b|m−1b

a− b
· Cα,N
|x− y|N+α

.
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Let µ be a Lévy measure as defined in Remark 1.3. One can replace the operator
(−∆)α/2 in equation (4) by a more general Lévy operator

(5) Lµψ(x) =

∫
RN\{0}

(
ψ(x+ y)− ψ(x)− y · ∇ψ(x)1|y|≤1(y)

)
dµ(y),

and the function u 7→ |u|m−1u by u 7→ ϕ(u) which is (for example) a continuous,
increasing function with ϕ(0) = 0. Some modifications of equation (4) in this
fashion are described in [18, 46]. The general case is studied in [21, 22].

Assuming that ϕ is continuous and non-decreasing and µ is a general symmetric
Lévy measure, the authors establish a uniqueness result for bounded distributional
solutions and several estimates. In our framework we are able to prove some of
these results. Our approach is less general than the one in [22] because conditions
(A5) and (A6) limit its scope.

A different but related stream of research focuses on another type of non-linear
non-local operator, the s-fractional p-Laplacian (see [32, 33, 44] and the references
therein) in the context of the following evolution equation

(6) ∂tu+

∫
RN

Φ
(
u(x)− u(y)

)
|x− y|N+ps

dy = 0, Φ(z) = z|z|p−2.

Usually it is assumed that s ∈ (0, 1) and p ∈ (1,∞). The case p = 2 reduces to the
linear equation (3). For some pairs (s, p), but also other functions Φ, equation (6)
can be written in the form of equation (1), see Proposition 5.7.

Our results also apply to a regular version of equation (6) i.e. where the kernel
|x− y|−(N+ps) dy is replaced by a sufficiently regular, integrable and non-negative
function J

(
|x− y|

)
. This case was studied in [3, Chapter 6].

Results involving regular jump kernels (see Definition 3.1 and the entire Sec-
tion 3) can be directly applied to the following non-local equation studied in [39]

∂tu =

∫
RN

k
(
u(t, x), u(t, y)

)[
u(t, y)− u(t, x)

]
J(x− y) dy.

Here, the kernel J : RN → R is an integrable, non-negative function supported in
the unit ball. The function k : R2 → R is locally Lipschitz-continuous and non-
negative. We refer the reader to the work [39] for other properties of solutions such
as the strong maximum principle.

Models combining local counterparts of operators (6) and (4)1, namely

(7) ∂tu = (∆p)
(
u |u|m

)
, where ∆pv = div

(
|∇v|p−2∇v

)
,

have been studied as well [37, 43].

New models. Our results can be applied to non-linear, non-local evolution equations
which have not been previously studied. We may combine equations (4), (5) and (6)
and study the following non-local counterpart of equation (7)

∂tu+

∫
RN

Φ
[
f
(
u(x)

)
− f

(
u(y)

)]
µ
(
|x− y|

)
dy = 0.

Here f and Φ are non-decreasing functions and µ is a density of a Lévy measure
with low singularity. All assumptions are indicated in Proposition 5.9.

By considering what we call convex diffusion operator we introduce the following
evolution equation

∂tu+

∫
RN

[
u(x)− u(y)

][
f
(
(u(x)

)
+ f

(
u(y)

)]
µ
(
|x− y|

)
dy = 0

1We thank Félix del Teso for signalling this example and pointing us to the references.
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for a non-negative, convex function f and a density of a Lévy measure with low
singularity µ. We discuss this example in Proposition 5.5.

Next, we may study nonlocal operators, where the order of differentiability is
not fixed. Here is a possible example:

∂tu−
∫
RN

u(y)− u(x)

|y − x|N+ 1
2−

1
4 sin 1

|x−y|
= 0 .

We may even allow the order of differentiability to depend on u(x), u(y) as in the
following example:

∂tu−
∫
B1(x)

u(y)− u(x)

|x− y|N+ 1
2−

1
4 exp(−|u(y)−u(x)|)

dy = 0 .

The general case including precise assumptions is explained in Proposition 5.10.

Potential extensions. Our framework could be extended and adapted to cover the
following models which are not currently in its scope.

In the series of papers [1, 2, 15, 25] the properties of solutions to the following
conservation laws

∂tu+ div f(u) + Lu = g(x, t)

have been studied. The non-local operator L is given by formula (5).
One may also consider the following general fractional porous medium equation

with variable density

ρ(x)∂tu+ (−∆)s(um−1u) = 0,

which was considered in [27, 34].
We also mention the work [17], devoted to the inhomogeneous non-local diffusion

equation

∂tu(x, t) =

∫
R
J

(
x− y
g(y)

)
u(y, t)

g(y)
dy − u(x, t),

where J is a non-negative even function supported in the unit interval [−1, 1] and
such that

∫
R J(x) dx = 1 and the function g is continuous and positive.

The non-linear porous medium equation with fractional potential pressure has
the following form

(8) ∂tu = div
(
um1∇(−∆)−sum2

)
where m1,m2 ≥ 1 and s ∈ (0, 1). This equation was first studied in [7] in the
one dimensional case and for m1 = m2 = 1, and solutions to the corresponding
Cauchy problem were shown to exist and to be unique. Moreover, an explicit self-
similar compactly supported solution has been constructed for this equation for
N = 1 in [7] and for N ≥ 1 in [5, 6]. Independently, a theory of equation (8) has
been developed in [13, 12]. Recent results and several other references have been
obtained and gathered in [41, 42].

We conclude this overview by recalling the recent paper [16]2, in which the
authors prove existence, uniqueness and stability of weak solutions to a nonlinear,
nonlocal, vector-valued wave equation

(9)

{
∂2
t u(x, t) =

(
Ku( · , t)

)
(x), x ∈ RN , t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ RN ,

2We learned about this model thanks to a presentation of Giuseppe Maria Coclite at a workshop
at the Norwegian University of Science and Technology.
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with the operator

(10) (Ku)(x) =

∫
Bδ(x)

f
(
y − x, u(y)− u(x)

)
dy, for every x ∈ RN .

Here f ∈ C1(Ω;RN ) is defined on the set Ω := (RN \ {0})× RN and

f(−y,−u) = −f(y, u) for every (y, u) ∈ Ω× RN .

Some additional regularity and integrability properties of the function f are im-
posed, derived from the physical assumption of hyperelasticity. In particular, the
singular part of the operator on the (x, y) diagonal is assumed to be the s-fractional
p-Laplacian we discussed in equation (6). This model is based on the previous re-
sults gathered in e.g. [26], [23], [24] and it serves to study peridynamics, a nonlocal
elasticity theory, used to explain the formation of fractures in solids, defects, dis-
locations etc. While the wave equation (9) requires a separate set of methods to
study properties of solutions, the operator defined by formula (10) has a similar
structure to the one portrayed in Definition 1.1.

Outline. The paper is structured as follows. In Section 2 we discuss the properties
of the operator L. In Section 3 we solve equation (1) in a regular setting. In
Section 4 we prove our main results (see Theorem 1.5 and Corollary 1.6), namely
existence and uniqueness of solutions to equation (1) and we study their properties.
In Section 5 we give several examples of jump kernels.

2. Non-linear Lévy operator

We begin by introducing our notation. We use the Banach space

L[1,∞](RN ) = L1(RN ) ∩ L∞(RN )

supplemented with the usual norm ‖u‖[1,∞] = ‖u‖1 + ‖u‖∞ as well as standard

Sobolev spaces W 1,∞(RN ) and W 1,1
loc

(
[0,∞), L1(RN )

)
.

We employ the space of functions of bounded variation, following [31]. Let
u ∈ L1(RN ) and suppose for i = 1, . . . , d there exist finite signed Radon measures
λi such that∫

RN
u ∂xiφdx = −

∫
RN

φdλi for every φ ∈ C∞c (RN ).

We define

|Du|(RN ) =

N∑
i=1

sup

{∫
RN

Φi dλi : Φ ∈ C0(RN ,RN ), ‖Φ‖C0(RN ,RN ) < 1

}
.

Then we say u ∈ BV (RN ) if the value of the following norm

‖u‖BV = 2‖u‖1 + |Du|(RN )

is finite (caution: the number 2 in front of the L1-norm is added to simplify esti-
mates below). We also recall an alternative characterization of the BV -space which
is more useful for us.

Lemma 2.1. Let (e1, . . . , eN ) be the canonical basis of RN . Suppose u ∈ L1(RN )
and denote

|u|BV =

N∑
i=1

lim inf
h→0+

∫
RN

∣∣u(x)− u(x+ hei)
∣∣

h
dx.

Then u ∈ BV (RN ) if and only if |u|BV <∞. Moreover |u|BV = |Du|(RN ).

Proof. See [31, Theorem 13.48] and [31, Exercise 13.3]. �
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Lemma 2.2. If u ∈ BV (RN ) then

sup
y∈RN\{0}

∫
RN

∣∣u(x)− u(x− y)
∣∣

1 ∧ |y|
dx ≤ ‖u‖BV .

Proof. According to [31, Lemma 13.33] we have∫
RN

∣∣u(x)− u(x− y)
∣∣ dx ≤ |y| |Du|(RN ).

Thus

sup
y∈RN\{0}

∫
RN

∣∣u(x)− u(x− y)
∣∣

1 ∧ |y|
dx ≤ 2‖u‖1 + |Du|(RN ) = ‖u‖BV . �

Now we are ready to show that if v is a bounded function, the linear operator
Lv given by formula (2) is well-defined on the space of BV -functions.

Lemma 2.3. Let ρ : (R×R)× (RN ×RN )→ R be a function satisfying conditions
(A1), (A2) and (A5) in Definition 1.1. For every v ∈ L∞(RN ) such that ‖v‖∞ ≤ R
we have

Lv : BV (RN )→ L1(RN ) and ‖Lvu‖1 ≤ KR‖u‖BV ,

where KR is the constant in the integrability condition (A5) in Definition 1.1

Proof. We use condition (A5) and Lemma 2.2 to estimate

‖Lvu‖1 =

∫
RN

∣∣∣∣ ∫
RN

[
u(x)− u(y)

]
ρv,x,y dy

∣∣∣∣ dx
≤
∫∫

R2N

∣∣u(x)− u(x− y)
∣∣

1 ∧ |y|
(
1 ∧ |y|

)
mR

(
|y|
)
dx dy

≤ ‖u‖BV
∫
RN

(
1 ∧ |y|

)
mR

(
|y|
)
dy = ‖u‖BVKR. �

Let us now prove other properties of the operator Lv.

Lemma 2.4. Let ρ : (R×R)× (RN ×RN )→ R be a function satisfying conditions
(A1), (A2) and (A5) in Definition 1.1. For every v ∈ L∞(RN ) the operator Lv :
C∞c (RN )→ L[1,∞](RN ) is L2-symmetric and positive-definite. If u ∈ BV (RN ) and
φ ∈ C∞c (RN ) then

∫
RN Lvuφ dx =

∫
RN Lvφu dx.

Proof. Let φ, ψ ∈ C∞c (RN ). We have

sup
x∈RN

∣∣∣∣ ∫
RN

[
φ(x)− φ(y)

]
ρv,x,y dy

∣∣∣∣ ≤ 2‖φ‖W 1,∞KR,

which combined with Lemma 2.3 gives us Lvφ ∈ L[1,∞](RN ) ⊂ L2(RN ). Thanks
to condition (A2) in Definition 1.1 we may “symmetrize” the double integral and
obtain (see Remark 2.5 below)∫

RN
ψ(x)

(
Lvφ

)
(x) dx =

∫
RN

ψ(x)

∫
RN

[
φ(x)− φ(y)

]
ρv,x,y dy dx

=
1

2

∫∫
R2N

[
ψ(x)− ψ(y)

][
φ(x)− φ(y)

]
dρv =

∫
RN

(
Lvψ(x)

)
φ(x) dx.

The same observation holds if we exchange ψ by u ∈ BV (RN ) ⊂ L1(RN ) (all the
integrals are well-defined because of Lemma 2.3). Finally∫

RN
φ(x)

(
Lvφ

)
(x) dx =

∫∫
R2N

[
φ(x)− φ(y)

]2
dρv ≥ 0. �
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Remark 2.5. The “symmetrization argument” that we use in the proof of Lemma 2.4
is going the be used extensively throughout this paper. In every instance it looks
like the following identity∫∫

R2N

[
f(x)− f(y)

]
g(x)ρv,x,y dy dx =

∫∫
R2N

[
f(y)− f(x)

]
g(y)ρv,y,x dx dy

=
1

2

∫∫
R2N

[
f(x)− f(y)

][
g(x)− g(y)

]
dρv,x,y dy dx,

for a suitable pair of functions f and g (notably we may take g ≡ 1 and the integral
vanishes). The first equality requires no effort, it is simply renaming the variables.
In the second equality we use the Fubini-Tonelli theorem to exchange dx and dy,
use the symmetry property (A2) of the jump kernel introduced in Definition 1.1,
which states that ρv,y,x = ρv,x,y, and take the average of both integrals.

In the next theorem, we prove a result which is reminiscent of the famous Kato
inequality [30, 10]. In a way, it is central to our entire work and a source of
some of its limitations. In particular, it is the reason behind the monotonicity
condition (A3) in Definition 1.1 as well as the introduction of the BV space. Indeed,
in Lemma 3.8 we show that the solution u(t) belongs to BV (RN ) for all t > 0 if
the initial condition does too. Then we have Luu ∈ L1(RN ) (cf. Lemma 2.3) and
we may use the theorem.

Theorem 2.6. Let ρ : (R×R)×(RN×RN )→ R be a function satisfying conditions
(A1), (A2) and (A3) in Definition 1.1. If u, v ∈ L∞(RN ) are such that Luu,Lvv ∈
L1(RN ) then∫

RN
(Luu− Lvv) sgn(u− v) dx ≥ 0.

Proof. Let

η(x) = sgn
(
u(x)− v(x)

)
,

f(x, y) =
[
u(x)− u(y)

]
ρu,x,y −

[
v(x)− v(y)

]
ρv,x,y.

Since we assume Luu−Lvv ∈ L1(RN ) and since η ∈ L∞(RN ), the symmetrization
argument (see Remark 2.5) gives us∫

RN

(
(Luu)(x)− (Lvv)(x)

)
η(x) dx

=

∫∫
R2N

f(x, y) dy η(x) dx =
1

2

∫∫
R2N

f(x, y)
[
η(x)− η(y)

]
dy dx.

Because of the symmetry condition (A2), we have f(x, y) = −f(y, x) and hence∫∫
R2N

f(x, y)
[
η(x)− η(y)

]
dy dx

=
1

2

∫∫
R2N

f(x, y)
[
η(x)− η(y)

]
1{η(x)>η(y)} dy dx

+
1

2

∫∫
R2N

f(x, y)
[
η(x)− η(y)

]
1{η(x)<η(y)} dy dx

=

∫∫
R2N

f(x, y)
[
η(x)− η(y)

]
1{η(x)>η(y)} dy dx .

The set {η(x) > η(y)} is a subset of the set M = {u(x) ≥ v(x), v(y) ≥ u(y)}.
In order to complete the proof, if suffices to show that f is nonnegative on

M . If (x, y) ∈ M and additionally v(x) ≥ v(y), then f(x, y) ≥ 0 because of
assumption (A3). Thus, we only need to consider the situation, where (x, y) ∈ M
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and v(x) < v(y). There are two cases. If u(x) ≥ u(y), then f(x, y) ≥ 0 just because
ρ is nonnegative. If u(x) < u(y), then v(x) ≤ u(x) < u(y) ≤ v(y). In this case,
assumption (A3) implies[

v(y)− v(x)
]
ρ(v(y), v(x), y, x)−

[
u(y)− u(x)

]
ρ(u(y), u(x), y, x) ≥ 0

Due to assumption (A2) we obtain[
u(x)− u(y)

]
ρ(u(x), u(y), x, y)−

[
v(x)− v(y)

]
ρ(v(x), v(y), x, y) ≥ 0 ,

which is nothing but f(x, y) ≥ 0. The proof of Theorem 2.6 is complete. �

3. Regular jump kernels

In this section we construct global-in-time unique classical solutions of prob-
lem (1) under strong regularity assumptions on the jump kernel. Notice that we do
not assume the jump kernel to be homogeneous.

Definition 3.1. We say a function ρ : (R × R) × (RN × RN ) → R is a regular
jump kernel if it satisfies conditions (A1), (A2) and (A3) in Definition 1.1 and in
addition:

(B1): it is integrable on the diagonal y = x, namely, for each R > 0 there
exists MR > 0 such that

sup
‖u‖∞≤R

sup
x∈RN

∫
RN

ρu,x,y dy = MR <∞;

(B2): it is locally Lipschitz-continuous with respect to u, that is, for each
R > 0 there exists LR > 0 such that

sup
x∈RN

∫
RN
|ρu,x,y − ρv,x,y| dy ≤ LR‖u− v‖[1,∞]

for all ‖u‖∞ ≤ R and ‖v‖∞ ≤ R.

First we prove a counterpart of Lemma 2.3 for regular jump kernels. It turns
out that in this case for every v ∈ L[1,∞](RN ) the linear operator Lv is bounded on
L[1,∞](RN ).

Lemma 3.2. If ρ is a regular jump kernel then for every u, v ∈ L[1,∞](RN ) we
have Lvu ∈ L[1,∞](RN ).

Proof. Let R be such that ‖v‖∞ ≤ R. It follows from condition (B1) that

‖Lvu‖∞ ≤ 2‖u‖∞MR.

Renaming the variables, using the symmetry condition (A2) (cf. Remark 2.5) and
property (B1) we obtain∫∫

R2N

∣∣u(y)
∣∣ρv,x,y dy dx =

∫∫
R2N

∣∣u(x)
∣∣ρv,x,y dy dx ≤ ‖u‖1MR

and therefore

‖Lvu‖1 ≤
∫∫

R2N

(∣∣u(x)
∣∣+
∣∣u(y)

∣∣)ρv,x,y dy dx ≤ 2‖u‖1MR,

which completes the proof that Lv : L[1,∞](RN )→ L[1,∞](RN ). �

Lemma 3.3. If ρ is a regular jump kernel then the operator F (u) = −Luu is locally
Lipschitz as a mapping F : L[1,∞](RN )→ L[1,∞](RN ).
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Proof. Let u, v ∈ L[1,∞](RN ) be such that ‖u‖∞ ≤ R and ‖v‖∞ ≤ R. Note the
identity

Luu− Lvv = Lu(u− v) + (Lu − Lv)v.
We have, using the integrability condition (B1),

‖Lu(u− v)‖∞ = sup
x∈RN

∣∣∣∣ ∫
RN

(
u(x)− u(y)− v(x) + v(y)

)
ρu,x,y dy

∣∣∣∣
≤ 2‖u− v‖∞ sup

x∈RN

∫
RN

ρu,x,y dy ≤ 2MR‖u− v‖∞

and by the local Lipschitz-continuity of the jump kernel (B2) we obtain

‖Luv − Lvv‖∞ = sup
x∈RN

∣∣∣∣ ∫
RN

[
v(x)− v(y)

](
ρu,x,y − ρv,x,y

)
dy

∣∣∣∣
≤ 2‖v‖∞ sup

x∈RN

∫
RN
|ρu,x,y − ρv,x,y| dy ≤ 2LR‖v‖∞‖u− v‖[1,∞].

By a similar calculation and the symmetrization argument (see Remark 2.5) we
also get

‖Lu(u− v)‖1 =

∫
RN

∣∣∣∣ ∫
RN

[
u(x)− u(y)− v(x) + v(y)

]
ρu,x,y dy

∣∣∣∣ dx
≤
∫∫

R2N

(∣∣u(x)− v(x)
∣∣+
∣∣v(y)− u(y)

∣∣)ρu,x,y dy dx
= 2

∫
RN

∣∣u(x)− v(x)
∣∣ ∫

RN
ρu,x,y dy dx ≤ 2MR‖u− v‖1

and

‖Luv − Lvv‖1 =

∫
RN

∣∣∣∣ ∫
RN

[
v(x)− v(y)

]
(ρu,x,y − ρv,x,y) dy

∣∣∣∣ dx
≤
∫∫

R2N

(∣∣v(x)
∣∣+
∣∣v(y)

∣∣)|ρu,x,y − ρv,x,y| dy dx
= 2

∫
RN

∣∣v(x)
∣∣ ∫

RN
|ρu,x,y − ρv,x,y| dy dx ≤ 2LR‖v‖1‖u− v‖[1,∞],

which completes the proof of Lemma 3.3. �

Now we may construct local-in-time solutions via the Banach fixed point argu-
ment.

Lemma 3.4. If ρ is a regular jump kernel then for every u0 ∈ L[1,∞](RN ) there
exist T > 0 and a unique local classical solution u ∈ C1

(
[0, T ], L[1,∞](RN )

)
to

problem (1) on [0, T ].

Proof. Notice that if v ∈ C1
(
[0, T ], L[1,∞](RN )

)
then the expression ∂tv + Lvv is

well-defined for every regular jump kernel ρ (see Lemma 3.2). Consider the mapping
F (v) = −Lvv and an integral operator

Fv(t) = u0 +

∫ t

0

F
(
v(s)

)
ds

in the Banach space C
(
[0, T ], L[1,∞](RN )

)
. We know from Lemma 3.3 that the

operator F is locally Lipschitz. Therefore it suffices to apply the Banach contraction
principle on a certain interval [0, T ] in order to obtain the unique fixed point u of
the operator F. Moreover,

F : C
(
[0, T ], L[1,∞](RN )

)
→ C1

(
[0, T ], L[1,∞](RN )

)
,
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hence the equation ∂tu = F (u) = −Luu is satisfied in the usual classical sense. �

Lemma 3.5. If u is a local classical solution to problem (1) on [0, T ] then for every
t ∈ [0, T ] and every p ∈ [1,∞] we have

(11) ‖u(t)‖p ≤ ‖u0‖p.

Proof. Let us fix p ∈ (1,∞). We multiply the equation ∂tu = −Luu by |u|p−2u
and integrate with respect to x to obtain∫

RN

(
∂tu(x)

)(∣∣u(x)
∣∣p−2

u(x)
)
dx =

∫∫
R2N

[
u(y)− u(x)

]∣∣u(x)
∣∣p−2

u(x) dρu.

Using the fact that u ∈ C1
(
[0, T ], L[1,∞](RN )

)
we get

∂t

∫
RN

∣∣u(x)
∣∣p dx = p

∫
RN

(
∂tu(x)

)(∣∣u(x)
∣∣p−2

u(x)
)
dx

and thanks to the symmetrization argument (see Remark 2.5) it follows that∫∫
R2N

[
u(y)− u(x)

]∣∣u(x)
∣∣p−2

u(x) dρu

=
1

2

∫∫
R2N

[
u(y)− u(x)

](∣∣u(x)
∣∣p−2

u(x)−
∣∣u(y)

∣∣p−2
u(y)

)
dρu ≤ 0.

The last inequality holds because the mapping a 7→ |a|p−2a is non-decreasing on R
and the measure dρu is non-negative due to condition (A1). We thus have proved
inequalities (11) for all p ∈ (1,∞). The limit cases in (11) are obtained by passing
to the limits p→ 1 and p→∞. �

Now we are ready to prove existence of solutions in the case of regular jump
kernels.

Theorem 3.6. If ρ is a regular jump kernel then the classical solution is global.

Proof. Consider the local classical solution ∂tu = −Luu on an interval [0, T ], as
constructed in Lemma 3.4. It follows from Lemma 3.5 that

‖u(t)‖[1,∞] ≤ ‖u0‖[1,∞]

thus the local classical solution may be extended to all t ∈ [0,∞) by a usual
continuation argument. �

We now examine some of the properties of classical solutions, which will be
useful in the next section. Notice that these results cannot be directly applied in
the general case, where we need a weaker notion of solutions. In the following
lemma we discuss the L1-contraction property. In the proof we use the Kato-type
inequality from Theorem 2.6.

Lemma 3.7 (L1-contraction for classical solutions). If u, v are classical solutions
to problem (1) with initial conditions u0 and v0, respectively then

‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1
for every t ≥ 0.

Proof. We have u, v ∈ C1
(
[0,∞), L[1,∞](RN )

)
, therefore the following integral∫ ∞

0

∫
RN

(
∂t
(
u(t, x)− v(t, x)

)
+
(
Luu− Lvv

)
(t, x)

)
ψ(t, x) dx dt = 0

is convergent for

ψ(t, x) = 1[0,T ](t) sgn
(
(u(t, x)− v(t, x)

)
,
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where we arbitrarily fix T > 0. Thus by the assumed regularity of u and v we get∫ T

0

∂t

∫
RN
|u− v| dx dt = −

∫ T

0

∫
RN

(
Luu− Lvv

)
sgn(u− v) dx dt.

It follows from Theorem 2.6 that∫ T

0

∂t‖u− v‖1 dt ≤ 0

and consequently ‖u(T )− v(T )‖1 ≤ ‖u0 − v0‖1. �

In the next lemma we estimate the BV -norm of a solution in case of an additional
assumption of homogeneity (as in condition (A4) in Definition 1.1). This estimate
will help us to establish relative compactness of an approximating sequence of
solutions we construct in Lemma 4.7 by regularizing the jump kernel.

Lemma 3.8. Let ρ be a regular jump kernel satisfying the homogeneity condi-
tion (A4) i.e.

ρ
(
v(x), v(y);x, y

)
= ρ
(
v(x), v(y); |x− y|

)
.

If u0 ∈ BV (RN ) and u is the classical solution to problem (1) then

‖u(t)‖BV ≤ ‖u0‖BV for every t ≥ 0.

Proof. Let vξ(x) = v(x + ξ) for an arbitrary ξ ∈ RN and v ∈ L∞(RN ). Because
ρ is homogeneous we have ρv,x+ξ,y+ξ = ρvξ,x,y and consequently, for an arbitrary

ψ ∈ C∞c (RN ),

(12)
(
Lvψ

)
(x+ ξ) =

∫
RN

(
ψ(x+ ξ)− ψ(y)

)
ρεv,x+ξ,y dy

=

∫
RN

(
ψξ(x) − ψξ(y)

)
ρεvξ,x,y dy =

(
Lvξψξ

)
(x).

It follows from identity (12), and assumed regularity of u, that uξ is the classical
solution to problem (1) with initial condition u0,ξ(x) = u0(x + ξ). By Lemma 3.7
we thus have

‖uξ(t)− u(t)‖1 ≤ ‖u0,ξ − u0‖1
and by [31, Lemma 13.33]

‖uξ,0 − u0‖1 =

∫
RN

∣∣u0(x+ ξ)− u0(x)
∣∣ dx ≤ |ξ|‖u0‖BV .

By taking ξ = hei with {ei} being the canonical basis of RN and h > 0 we get∫
RN

∣∣u(x)− u(x+ hei)
∣∣

h
dx ≤ ‖u0‖BV

and it follows by Lemma 2.1 that ‖u(t)‖BV ≤ ‖u0‖BV . �

4. Construction of solutions

Definitions of solutions. Our goal is to construct solutions in the case of general
homogeneous jump kernels and prove the results stated in Theorem 1.5. As usual
in such contexts we work with a weak formulation of problem (1).

Definition 4.1. We say u ∈ L∞
(
[0,∞)×RN

)
is a very weak solution to problem (1)

if

(13)

∫ ∞
0

∫
RN

u(t, x)
[(
∂t − Lu

)
ψ
]
(t, x) dx dt = 0

for every ψ ∈ C∞c
(
(0,∞)× RN

)
and limt→0 u(t, x) = u0(x) in L1

loc(RN ).
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Remark 4.2. Notice that thanks to Lemma 2.3 this definition is well-posed.

Definition 4.3. We say a very weak solution to problem (1) u is a strong solution
to problem (1) if

u ∈ L∞
(
[0,∞), BV (RN ) ∩ L∞(RN )

)
∩ C

(
[0,∞), L1

loc(RN )
)
.

Remark 4.4. Notice that because of Lemmas 2.3 and 2.4, if u is a strong solution
to problem (1) then Luu is well-defined and we have∫ ∞

0

∫
RN

u(t, x)∂tψ(t, x)−
(
Luu

)
(t, x)ψ(t, x) dx dt = 0.

Remark 4.5. Notice that each constant function u(t, x) ≡ k ∈ R is a classical
solution to problem (1) for every jump kernel ρ and we have Luu ≡ 0.

Approximate solutions. In this part we regularize an arbitrary homogeneous
jump kernel and study compactness of the corresponding sequence of approxima-
tions. In order to simplify our reasoning we begin with the following observation.

Remark 4.6. Consider a homogeneous jump kernel ρ. For arbitrary a, b, c, d ∈ R by
the symmetry assumption (A2) we have∣∣ρ(a, b;x, y)− ρ(c, d;x, y)

∣∣
≤
∣∣ρ(a, b;x, y)− ρ(c, b;x, y)

∣∣+
∣∣ρ(b, c;x, y)− ρ(d, c;x, y)

∣∣.
Therefore it is sufficient (and necessary) to verify the Lipschitz-continuity part of
condition (A6) only for the difference∣∣ρ(a, b;x, y)− ρ(c, b;x, y)

∣∣
and a, b, c ∈ [−R,R] such that |a− b| ≥ ε and |c− b| ≥ ε.

Lemma 4.7. For every ε ∈ (0, 1] consider a function hε ∈ C∞
(
[0,∞)

)
which is

non-decreasing and such that hε(x) = 0 for x ≤ ε
2 and hε(x) = 1 for x ≥ ε. Let ρ

be a homogeneous jump kernel and

ρε(a, b;x, y) = hε
(
|a− b|

)
1|x−y|≥ε(x, y)ρ(a, b;x, y)

Then ρε are regular, homogeneous jump kernels.

Proof. Conditions (A1) to (A6) in Definition 1.1 are easy to verify. Let us check
conditions (B1) and (B2) of Definition 3.1 for fixed functions u, v ∈ L∞(RN ) such
that ‖u‖∞, ‖v‖∞ ≤ R. Because ρ is a homogeneous jump kernel, we have

sup
x∈RN

∫
RN

ρε(a, b;x, y) dy ≤
∫
RN

1|y|>ε(y)mR

(
|y|
)
dy

≤ ε−1

∫
RN

(
1 ∧ |y|

)
mR

(
|y|
)
dy = ε−1KR,

where mR and KR come from condition (A5) satisfied by the jump kernel ρ. This
verifies condition (B1).

Notice that because of the properties of the function hε and condition (A6), the
jump kernel ρε is locally Lipschitz-continuous in the first two variables, including
the diagonal. Namely,∣∣ρε(a, b;x, y)− ρε(c, b;x, y)

∣∣ ≤ CR|a− c|1|x−y|>ε(x, y)mR

(
|x− y|

)



A FRAMEWORK FOR NON-LOCAL, NON-LINEAR INITIAL VALUE PROBLEMS 15

for all −R ≤ a, b, c ≤ R, where CR = CR, ε2 is the constant from condition (A6)
satisfied by the jump kernel ρ (cf. Remark 4.6). Therefore

sup
x∈RN

∫
RN
|ρεu,x,y − ρεv,x,y| dy

≤ sup
x∈RN

∫
RN

∣∣ρεu,x,y − ρε(u(x), v(y), x, y
)∣∣+

∣∣ρε(u(x), v(y), x, y
)
− ρεv,x,y

∣∣ dy
≤ CR sup

x∈RN

∫
RN

(∣∣u(y)− v(y)
∣∣+
∣∣u(x)− v(x)

∣∣)1|x−y|>εmR

(
|x− y|

)
dy

≤ LR‖u− v‖[1,∞],

which confirms condition (B2). �

Theorem 4.8 (Existence of strong solutions). If ρ is a homogeneous jump kernel
then there exists a strong solution to problem (1) for every initial condition u0 ∈
BV (RN ) ∩ L∞(RN ).

Proof. For every ε ∈ (0, 1] consider the unique classical solution uε of the following
initial value problem

(14)


∂tu

ε + Lεuεuε = 0,

Lεvu =

∫
RN

[
u(x)− u(y)

]
ρε
(
v(x), v(y);x, y

)
dy,

uε(0, · ) = u0,

where the regular, homogeneous jump kernels ρε are introduced in Lemma 4.7. It
follows from Lemmas 3.8 and 2.3 that Lεuε(t)u

ε(t) ∈ L1(RN ) is well-defined for every

t ≥ 0. Moreover, we get an estimate on the time derivative∥∥∂tuε(t)∥∥1
=
∥∥Lεuε(t)uε(t)∥∥1

≤
∥∥uε(t)∥∥

BV
KR ≤ ‖u0‖BVKR.

For an arbitrary bounded open set Ω ⊂ RN with a sufficiently regular boundary we
have the compact embedding BV (Ω) ⊂ L1(Ω) (see [31, Theorem 13.35]). Thus we
obtain a convergent subsequence in the usual way, by applying the Aubin-Lions-
Simon lemma (see [40, Theorem 1]) in the space L∞

(
[0, T ], L1(Ω)

)
for an arbitrarily

fixed T > 0. Namely, it follows that there exists a function u and a subsequence
{εj} such that

uεj → u in C
(
[0, T ], L1

loc(RN )
)
.

In particular we also have limj→∞ uεj (t, x) = u(t, x) almost everywhere. We may
enhance this result by applying the Fatou lemma to inequalities

(15) ‖uε(t)‖p ≤ ‖u0‖p,

which we proved in Lemma 3.5, to obtain the same estimates for ‖u‖p. By using [31,
Theorem 13.35] and Lemma 2.1 we also get

(16) ‖u(t)‖BV ≤ ‖u0‖BV .

In this way we obtain that

(17) u ∈ L∞
(
[0,∞), BV (RN ) ∩ L∞(RN )

)
∩ C

(
[0,∞), L1

loc(RN )
)
.

Consider the sequence of approximations uj = uεj . Let

fj(t, x, y) =
[
uj(t, x)− uj(t, x− y)

]
ρεj
(
uj(x), uj(x− y), |y|

)
ψ(t, x),
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with an arbitrary test function ψ ∈ C∞c
(
(0,∞)×RN

)
. Let f be defined analogously

for the function u in place of uj and the jump kernel ρ instead of ρεj . We have (see
Remark 4.4)

(18)

∫ ∞
0

∫
RN

uj ∂tψ dx dt =

∫ ∞
0

∫∫
R2N

fj(t, x, y) dx dy dt

for every j ∈ N.
On the left-hand side of equalities (18) we have the majorant∣∣uj(t, x)∂tψ(t, x)

∣∣ ≤ ‖u0‖∞
∣∣∂tψ(t, x)

∣∣
hence we may pass to the limit by the Lebesgue dominated convergence theorem.
On the right-hand side of equalities (18), by the integrability condition (A5) satisfied
by the jump kernel ρ, we obtain the following estimate

(19)
∣∣fj(t, x, y)

∣∣ ≤ 2RmR

(
|y|
)
|ψ(t, x)|.

Because of the continuity of the jump kernel assumed in condition (A6) we also
have

lim
j→∞

fj(t, x, y) = f(t, x, y) a.e. in (t, x, y)

and therefore we may pass to the limit by the Lebesgue dominated convergence
theorem and get

lim
j→∞

∫
RN

fj(t, x, y) dx =

∫
RN

f(t, x, y) dx, a.e. in (t, y).

Then, by Lemmas 2.2 and 3.8, we have

(20)

∣∣∣∣ ∫
RN

fj(t, x, y) dx

∣∣∣∣
≤ sup
x∈RN

|ψ(t, x)|
(
1 ∧ |y|

)
mR

(
|y|
)

sup
y∈RN\{0}

∫
RN

∣∣uj(t, x)− uj(t, x− y)
∣∣

1 ∧ |y|
dx

≤ sup
x∈RN

|ψ(t, x)|
(
1 ∧ |y|

)
mR

(
|y|
)
‖u0‖BV .

By the Lebesgue dominated convergence theorem we may thus pass to the limit
once more. Combining both arguments in (19) and (20), we get

lim
j→∞

∫∫
R2N

fj(t, x, y) dx dy =

∫∫
R2N

f(t, x, y) dx dy a.e. in t.

We also have∣∣∣∣ ∫∫
R2N

fj(t, x, y) dx

∣∣∣∣ ≤ 1suppψ(t)‖ψ‖∞‖u0‖BVKR,

which allows us to pass to the limit with the integral in time. In this way we have
shown that u satisfies the following integral equality∫ ∞

0

∫
RN

u ∂tψ dx dt =

∫ ∞
0

∫∫
R2N

[
u(t, x)− u(t, y)

]
ρu,x,yψ(t, x) dx dy dt

for each test function ψ. To finish the proof we apply the Fubini-Tonelli theorem
to exchange dx and dy, which together with (17) confirms Definition 4.1. �

Theorem 4.9. If u is a strong solution to problem (1) then

u ∈W 1,1
loc

(
[0,∞), L1(RN )

)
.
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Proof. Consider a sequence {φn} ∈ C∞c
(
(0,∞)× RN

)
such that

lim
n→∞

φn(t, x) = 1[t1,t2](t)φ(x) pointwise,

lim
n→∞

∂tφn(t, x) =
(
δt1(t)− δt2(t)

)
φ(x) weakly as measures

for given t2 > t1 > 0 and a function φ ∈ Cc(RN ). Because u ∈ C
(
[0,∞), L1

loc(RN )
)
,

the function t 7→
∫
RN u(t, x)φ(x) dx is continuous. Then, due to the very weak

formulation (13) and the fact that u ∈ BV (RN ), we have

(21) 0 = lim
n→∞

∫ ∞
0

∫
RN

u(t, x)∂tφn(t, x)−
(
Luu

)
(t, x)φn(t, x) dx dt

=

∫
RN

(
u(t1, x)− u(t2, x)

)
φ(x) dx−

∫ t2

t1

∫
RN

(
Luu

)
(t, x)φ(x) dx dt.

The assumed continuity also allows us to approach the case t1 = 0.
Because u ∈ L∞

(
[0,∞), BV (RN )

)
, for every t ≥ 0 we have u(t) ∈ L1(RN ) and

Lu(t)u(t) ∈ L1(RN ). Since equality (21) holds for every function φ ∈ Cc(RN ), it
follows that

u(t2, x) = u(t1, x) +

∫ t2

t1

−
(
Luu

)
(t, x) dt a.e. in x.

By [14, Theorem 1.4.35] we obtain u ∈W 1,1
loc

(
[0,∞), L1(RN )

)
. �

Remark 4.10. As stated in [14, Theorem 1.4.35], if u ∈W 1,1
loc

(
[0,∞), L1(RN )

)
then

in particular u : [0,∞)→ L1(RN ) is absolutely continuous.

The next theorem provides the proof of the L1-contraction of strong solutions,
which then directly implies uniqueness.

Theorem 4.11. If u and v are strong solutions to problem (1), corresponding to
initial conditions u0, v0 ∈ BV (RN ) ∩ L∞(RN ) respectively, then

‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1 for every t > 0.

Proof. Consider a sequence of test functions {ψn} ⊂ C∞c
(
[0,∞) × RN

)
such that

limn→∞ ψn(t, x) = 1[t1,t2](t) sgn
(
u(t, x)−v(t, x)

)
for almost every t > 0 and x ∈ RN

and some t2 > t1 > 0. Then for every t ∈ [t1, t2] we have

lim
n→∞

−
∫
RN

(
u(t, x)− v(t, x)

)
∂tψn(t, x) dx

= lim
n→∞

∫
RN

∂t
(
u(t, x)− v(t, x)

)
ψn(t, x) dx =

∫
RN

∂t
∣∣u(t, x)− v(t, x)

∣∣ dx
and

lim
n→∞

∫
RN

((
Luu

)
(t, x)−

(
Lvv

)
(t, x)

)
ψn(t, x) dx dt.∫

RN

((
Luu

)
(t, x)−

(
Lvv

)
(t, x)

)
sgn

(
u(t, x)− v(t, x)

)
dx dt.

Then ∫ t2

t1

∫
RN

∂t
∣∣u(t, x)− v(t, x)

∣∣ dx =

∫ t2

t1

∂t

∫
RN

∣∣u(t, x)− v(t, x)
∣∣ dx dt

=
∥∥u(t2, x) − v(t2, x)

∥∥
1
−
∥∥u(t1, x) − v(t1, x)

∥∥
1
.
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Moreover, thanks to Theorem 4.9 and Remark 4.10, we may also approach the case
t1 = 0. Finally we obtain∥∥u(t1, x)− v(t1, x)

∥∥
1
−
∥∥u(t2, x)− v(t2, x)

∥∥
1

=

∫ t2

t1

∫
RN

((
Luu

)
(t, x)−

(
Lvv

)
(t, x)

)
sgn

(
u(t, x)− v(t, x)

)
dx dt.

The right-hand side is positive due to Theorem 2.6. �

Properties of strong solutions. We conclude our reasoning by gathering some
of the most fundamental properties of strong solutions to problem (1).

Corollary 4.12 (Uniqueness of solutions). Let ρ be a homogeneous jump kernel.
For every u0 ∈ BV (RN ) ∩ L∞(RN ) there exists a unique strong solution to prob-
lem (1).

Proof. It follows directly from Theorems 4.8 an 4.11. �

Corollary 4.13 (Lp-estimates). If u is a strong solution to problem (1) with initial
condition u0 ∈ BV (RN ) ∩ L∞(RN ) then

‖u(t)‖p ≤ ‖u0‖p and ‖u(t)‖BV ≤ ‖u0‖BV for all t > 0.

Proof. We established these estimates in relations (15) and (16), in the course
of proving Theorem 4.8 for the solution obtained as the limit of a subsequence of
approximate solutions. It follows from Corollary 4.12 that there are no other strong
solutions. �

Corollary 4.14 (Mass conservation). If u is a strong solution to problem (1) with
initial condition u0 ∈ BV (RN ) ∩ L∞(RN ) then

∫
RN u(t) dx =

∫
RN u0 dx for every

t ≥ 0.

Proof. The technique of this proof is essentially the same as the one used in the
proof of Theorem 4.9. Consider a sequence {φn} ∈ C∞c

(
(0,∞)× RN

)
such that

lim
n→∞

φn(t, x) = 1[t1,t2](t)1K(x) pointwise,

lim
n→∞

∂tφn(t, x) =
(
δt1(t)− δt2(t)

)
1K(x) weakly as measures

for given t2 > t1 > 0. Then, due to the very weak formulation (13) and the fact
that u ∈ BV (RN ), we have

(22) 0 = lim
n→∞

∫ ∞
0

∫
RN

∂tφn(t, x)u(t, x)−
(
Luu

)
(t, x)φn(t, x) dx dt

=

∫
RN

(
u(t1, x)− u(t2, x)

)
dx−

∫ t2

t1

∫
RN

(
Luu

)
(t, x) dx dt.

The assumed continuity also allows us to approach the case t1 = 0.
We may now use the symmetrization argument (see Remark 2.5) and get∫

RN
Luu dx =

∫∫
R2N

[
u(t, y)− u(t, x)

]
ρ
(
u(t, x), u(t, y);x, y

)
dy dx = 0.

Note that the integrals are convergent because of the same calculation we used in
Lemma 2.3 and we may use the Fubini-Tonelli theorem needed for the argument to
work. In consequence, it follows from (22) that∫

RN
u(t1, x) dx =

∫
RN

u(t2, x) dx.

This means that the function t 7→
∫
RN u(t, x) dx is constant. �
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Corollary 4.15 (Comparison principle). If u and v are strong solutions to prob-
lem (1) with initial conditions u0, v0 ∈ BV (RN ) ∩ L∞(RN ), respectively, such that
u0(x) ≤ v0(x) almost everywhere in x ∈ RN then u(t, x) ≤ v(t, x) almost every-
where in (t, x) ∈ [0,∞)× RN .

Proof. Using the L1-contraction property established in Theorem 4.11 and the con-
servation of mass from Corollary 4.14 we get∫

RN

(
u(t)− v(t)

)+
dx =

∫
RN

∣∣u(t)− v(t)
∣∣+ u(t)− v(t)

2
dx

≤
∫
RN

|u0 − v0|+ u0 − v0

2
dx =

∫
RN

(u0 − v0)+ dx.

In particular, the equality (u0 − v0)+ = 0 a.e. implies (u − v)+ = 0 a.e., which
means exactly that u ≤ v a.e. in [0,∞)× RN . �

Corollary 4.16 (Positivity of solutions). If u is a strong solution to problem (1)
with initial condition u0 ∈ BV (RN ) ∩ L∞(RN ) such that u0 ≥ 0 then u ≥ 0.

Proof. This follows directly from Corollary 4.15 and the fact that v ≡ 0 is a strong
solution to problem (1) (cf. Remark 4.5). �

Existence of solutions for less regular initial data. The results obtained for
strong solutions may be used to show existence of solutions for more general initial
conditions, namely in the space L[1,∞](RN ) (see Corollary 1.6).

Theorem 4.17. If ρ is a homogeneous jump kernel then there exists a very weak
solution to problem (1) for every initial condition u0 ∈ L[1,∞](RN ).

Proof. We define uε0 = ωε ∗ u0 for a sequence of mollifiers {ωε}. We then have
uε0 ∈ BV (RN ), ‖uε0‖∞ ≤ ‖u0‖∞ and limε→0 ‖uε0 − u0‖1 = 0.

For every ε > 0 we consider the strong solution uε corresponding to the initial
condition uε0. It follows from Theorem 4.11 that

sup
t≥0
‖uε1(t)− uε2(t)‖1 ≤ ‖uε10 − u

ε2
0 ‖1,

which shows that {uε} is a Cauchy sequence in the space Cb
(
[0,∞), L1(RN )

)
and

hence has a limit u ∈ Cb
(
[0,∞), L1(RN )

)
.

Consider the following equations (cf. Definition 4.1)

(23)

∫ ∞
0

∫
RN

uε(t, x)∂tψ(t, x) dx dt =

∫ ∞
0

∫
RN

u(t, x)
(
Luεψ

)
(t, x) dx dt

=

∫ ∞
0

∫∫
R2N

uε(t, x)
[
ψ(t, x)− ψ(t, y)

]
ρuε(t),x,y dy dx dt = 0.

Notice that because u is the limit of {uε} in the space Cb
(
[0,∞), L1(RN )

)
, it also

is its limit in the space L1
(
[0, T ]× RN

)
for an arbitrary T > 0. It follows from [9,

Theorem 4.9] that there exists a function v ∈ L1
(
[0, T ] × RN

)
and a subsequence

εj such that

lim
j→∞

uεj (t, x) = u(t, x) a.e. in (t, x) ∈ [0, T ]× RN ,

|uεj (t, x)| ≤ v(t, x) a.e. in (t, x) ∈ [0, T ]× RN for every j ∈ N.
We thus have∣∣uε(t, x)

[
ψ(t, x)− ψ(t, x− y)

]
ρuε(t),x,x−y

∣∣
≤ 2v(t, x) sup

t∈[0,T ]

‖ψ(t)‖W 1,∞(RN )

(
1 ∧ |y|

)
mR

(
|y|
)
,
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where R ≥ ‖u0‖∞. This allows us to pass to the limits on both sides of equa-
tions (23) on a subsequence {εj} and verify that u satisfies Definition 4.1. �

Corollary 4.18. Let u be the very weak solution to problem (1) constructed in
Theorem 4.17. We have

• u ∈ C
(
[0,∞), L1(RN )

)
•
∫
RN u(t, x) dx =

∫
RN u0(x) dx for all t ≥ 0;

• ‖u(t)‖p ≤ ‖u0‖p for all p ∈ [1,∞] and t ≥ 0;
• if u0(x) ≥ 0 for almost every x ∈ RN then u(t, x) ≥ 0 for almost every
x ∈ RN and t > 0.

Proof. The first claim follows from the construction itself. Two other are a conse-
quence of the fact that u is the pointwise limit of the sequence of approximations,
for which these claims are satisfied. �

5. Examples

In this section we discuss several examples of homogeneous jump kernels, either
well-known or new. Before we do so, however, we would like to have a quick look
at the geometry of the set of jump kernels.

Lemma 5.1. Let ρ1 and ρ2 be homogeneous jump kernels in the sense of Defini-
tion 1.1. Then ρ = αρ1 + βρ2 is a homogeneous jump kernel for every α, β ≥ 0
(i.e. the set of homogeneous jump kernels is a convex cone).

Proof. It is easy to see that ρ satisfies conditions (A1), (A2), (A4) and (A6). Then,

(a− b)ρ(a, b;x, y) = α(a− b)ρ1(a, b;x, y) + β(a− b)ρ2(a, b;x, y)

≥ α(c− d)ρ1(c, d;x, y) + β(c− d)ρ2(c, d;x, y) = (c− d)ρ(c, d;x, y),

which confirms (A3), and

sup
−R≤a,b≤R

ρ(a, b;x, y) ≤ α sup
−R≤a,b≤R

ρ1(a, b;x, y) + β sup
−R≤a,b≤R

ρ2(a, b;x, y)

≤ αm1
R

(
|x− y|

)
+ β m2

R

(
|x− y|

)
= mR

(
|x− y|

)
,

where m1
R and m2

R are functions related to ρ1 and ρ2 as in condition (A5), respec-
tively, and it follows that∫

RN

(
1 ∧ |y|

)
mR

(
|y|
)
dy ≤ αK1

R + βK2
R,

where K1
R and K2

R are appropriate constants related to m1
R and m2

R as in condi-
tion (A5). This confirms condition (A5) in case of the jump kernel ρ. �

Remark 5.2. It is easy to observe that if ρ is a homogeneous jump kernel and
m ∈ L∞([0,∞)) satisfies m ≥ 0, then m

(
|x − y|

)
ρ
(
a, b, |x − y|

)
is a homogeneous

jump kernel as well. As a useful example we may consider m(z) = 1z<δ(z).

Decoupled jump kernels. In this subsection we study examples of homogeneous
jump kernels given in the following form

(24) ρ(a, b;x, y) = F (a, b)× µ
(
|x− y|

)
,

where F ≥ 0 and µ is a density of a Lévy measure with low singularity, i.e.∫
RN

(
1 ∧ |y|

)
µ
(
|y|
)
dy ≤ ∞.

We call such jump kernels decoupled. We are going to consider several different
choices of F and show that the resulting functions possess properties (A1) to (A6),
confirming they are homogeneous jump kernels. Some of these examples have been
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well-studied before, but we are able to verify that they fit neatly in our framework.
Because of the structure of formula (24), condition (A4) is always satisfied. The
same is true for (A5), as long as sup−R≤a,b≤R F (a, b) <∞. In identical fashion as
in Lemma 5.1, we may see that decoupled jump kernels also form a convex cone on
their own.

Fractional porous medium equation. In our first example we show that the theory
we developed may be applied to equation (4), for restricted ranges of parameters s
and m, and some of its generalisations.

Proposition 5.3. Let f ∈ C1(R) be a non-decreasing function. If

F (a, b) =
f(a)− f(b)

a− b
then ρ given by formula (24) is a homogeneous jump kernel.

Proof. We assume f ∈ C1(R), thus the function F is in fact continuous even for
a = b. Because the function f is non-decreasing we have F (a, a) = f ′(a) ≥ 0 and

sgn
(
f(a)− f(b)

)
= sgn(a− b) or f(a) = f(b) for all a 6= b,

therefore both (A1) and (A2) are satisfied. Because of the assumed monotonicity
of f , for a ≥ c ≥ d ≥ b we have f(a) ≥ f(c) ≥ f(d) ≥ f(b), hence

(a− b)f(a)− f(b)

a− b
= f(a)− f(b) ≥ f(c)− f(d) = (c− d)

f(c)− f(d)

c− d
and (A3) is also fulfilled.

Next, let us take −R < a, b, c < R such that |c− b|, |a− b| > ε. Then∣∣∣∣f(a)− f(b)

a− b
− f(c)− f(b)

c− b

∣∣∣∣ ≤ 2

ε2

(
max
|ξ|<R

|f(ξ)|+R max
|ξ|<R

|f ′(ξ)|
)
|a− c|.

This proves the local Lipschitz-continuity condition (A6) (see Remark 4.6). �

Remark 5.4. This example, for µ
(
|y|
)

= |y|−N−α, α ∈ (0, 1) and f(u) = u|u|m−1,
corresponds to the following operator

Luu = ∆α/2
(
u|u|m−1(x)

)
,

introduced in Section 1 by formula (4). It has been thoroughly studied in [20] (for
the full range α ∈ (0, 2) and m > 0). Even more general non-linear operators of
this type, involving linear operators represented by formula (5), were considered
in [21, 22].

Convex diffusion operator. In the next example we introduce a decoupled jump
kernel which has not been previously studied.

Proposition 5.5. Let f : R→ [0,∞) be a convex function and

F (a, b) = f(a) + f(b).

Then ρ given by formula (24) is a homogeneous jump kernel.

Proof. Conditions (A1) and (A2) are easy to verify.
Let a ≥ c ≥ d ≥ b and take t ∈ [0, 1] such that d = ta+ (1− t)b. Then

f(a) + f(b) ≥ (1− t2)f(a) + (1− t)2f(b)

= (1− t)
(
(1 + t)f(a) + (1− t)f(b)

)
= (1− t)

(
f(a) + tf(a) + (1− t)f(b)

)
.

Because we assume f to be convex, we have

tf(a) + (1− t)f(b) ≥ f
(
ta+ (1− t)b

)
= f(d),
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hence

f(a) + f(b) ≥ (1− t)
(
f(a) + f(d)

)
.

In the same fashion, by taking s ∈ [0, 1] such that c = (1− s)a + sd, we can show
that

f(a) + f(d) ≥ (1− s)
(
f(c) + f(d)

)
.

We also have (1− t)(a− b) = a−
(
ta+(1− t)b

)
= a−d and (1−s)(a−d) = (c−d),

therefore

(a−b)
(
f(a)+f(b)

)
≥ (1−s)(1−t)(a−b)

(
f(c)+f(d)

)
= (c−d)

(
f(c)+f(d)

)
.

This verifies the property (A3). Since every convex function is locally Lipschitz,
condition (A6) is satisfied and hence ρ is a homogeneous jump kernel. �

Remark 5.6. This example is somewhat similar to the fractional porous medium
case. Indeed, consider g(a) = a|a|m for m = 2k and k ∈ N. Then

g(a)− g(b) = (a− b)
(
|a|m + |a|m−1|b|+ . . .+ |a||b|m−1 + |b|m

)
and one may be tempted to “abbreviate” the expression on the right-hand side to
obtain

(25) G(a, b) = (a− b)(|a|m + |b|m).

However, the operator L based on the second kernel cannot be expressed as a linear
operator acting on a non-linear transformation of the solution, as in the case of the
fractional porous medium equation.

Notice that the jump kernel related to expression (25) satisfies the hypothesis of
Proposition 5.5 for every real number m ≥ 1.

Fractional p-Laplacian. Our results may also be applied to equation (6).

Proposition 5.7. Let Φ : R → R be a continuous, non-decreasing function sat-
isfying Φ(z) ≥ 0 for z ≥ 0, Φ(−z) = −Φ(z) such that Φ(z) is locally Lipschitz-

continuous and limz→0
Φ(z)
z <∞. If

F (a, b) =
Φ(a− b)
a− b

then ρ given by formula (24) is a homogeneous jump kernel.

Proof. Because sgn
(
Φ(z)

)
= sgn(z) and Φ(−z) = −Φ(z), conditions (A1) and (A2)

are satisfied. We assume the limit limz→0
Φ(z)
z to exist, which verifies condi-

tion (A5). Then, for a ≥ c ≥ d ≥ b and by using the fact that Φ is non-decreasing,
we have

(a− b)Φ(a− b)
a− b

= Φ(a− b) ≥ Φ(c− d) = (c− d)
Φ(c− d)

c− d
,

from which (A3) follows. Let −R < a, b, c < R such that |a − b|, |c − b| > ε. The
function Φ is locally Lipschitz-continuous, therefore∣∣∣∣Φ(a− b)

a− b
− Φ(c− b)

c− b

∣∣∣∣ ≤ cR
ε2
|a− c|,

with a number cR > 0 depending on R and the Lipschitz constant of the function Φ.
This confirms condition (A6) (see Remark 4.6). �

Remark 5.8. Consider the function Φ(z) = |z|p−2z. It is easy to verify that it
satisfies the hypothesis of Proposition 5.7 if and only if p ≥ 2. Then we may take
s < 1

p (so that sp < 1 and condition (A5) holds) and we recover the non-local

s-fractional p-Laplace operator which appears in equation (6).
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Doubly non-linear Lévy operator. The following non-local counterpart of equa-
tion (7), which appears to have not yet been studied, turns out to be covered
by our theory.

Proposition 5.9. Suppose functions f and Φ satisfy adequate parts of hypotheses
of Propositions 5.3 and 5.7, respectively. If

F (a, b) =
Φ
(
f(a)− f(b)

)
a− b

then ρ given by formula (24) is a homogeneous jump kernel.

Proof. Conditions (A1), (A2), (A3) and (A6) follow easily as combinations of the
arguments already used to prove Propositions 5.3 and 5.7. �

Entangled jump kernels. Homogeneous jump kernels which cannot be decom-
posed as in formula (24) are also part of our framework.

Jump kernel with variable order. In the last example we study an operator whose
“differentialbility order” is allowed to depend on the solution itself.

Proposition 5.10. Let

Ψ(a; z) = Ψ1(a)1z<1(z) + Ψ2(a)1z≥1(z) + Θ
(
z
)
,

where Ψ1 : [0,∞) → R is non-decreasing, Ψ2 : [0,∞) → R is non-increasing, both
Ψ1 and Ψ2 are locally Lipschitz-continuous, Θ : [0,∞)→ R is measurable and

0 < A1 ≤ Ψ(a; z) ≤ A2 < 1, A1 ≤ Θ(z) ≤ A2

Then

ρ(a, b;x, y) = |x− y|−N−Ψ(|a−b|;|x−y|)

is a homogeneous jump kernel.

Proof. Conditions (A1), (A2) and (A4) are easy to check. In order to verify (A3)
we notice that for a ≥ b and z ≥ 0 we have

az−Ψ1(a)1z<1(z) ≥ bz−Ψ1(b)1z<1(z),

because Ψ1 is non-decreasing and

az−Ψ2(a)1z≥1(z) ≥ bz−Ψ2(b)1z≥1(z),

because Ψ2 is non-increasing. Hence for a ≥ c ≥ d ≥ b, by setting a = a − b and
b = c− d, we obtain

(a− b)ρ(a, b;x, y) ≥ (c− d)ρ(c, d;x, y).

Notice the following estimate

(26)

∫
RN

(
1 ∧ |x− y|

)
sup

−R<a,b<R
ρ(a, b;x, y) dy

≤
∫
|y|<1

|y|1−N−A2 dy +

∫
|y|≥1

|y|−N−A1 dy < ∞

and let

m0(z) = 1z<1(z)z−N−A2 + 1z≥1(z)z−N−A1 .
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Because functions Ψ1, Ψ2 are locally Lipschitz-continuous, we have

(27)

∣∣z−N−Ψ(a;z) − z−N−Ψ(b;z)
∣∣

=
(
z−N−Θ(z)

)(∣∣zΨ1(a) − zΨ1(b)
∣∣1z<1(z) +

∣∣zΨ2(a) − zΨ2(b)
∣∣1z≥1(z)

)
≤
∣∣Ψ1(a)−Ψ1(b)

∣∣∣∣ log(z)
∣∣( sup

α∈[0,A2−A1]
z∈[0,1)

zα
)(
z−N−A21z<1(z)

)
+
∣∣Ψ2(a)−Ψ2(b)

∣∣∣∣ log(z)
∣∣( sup

α∈[A1−A2,0]
z∈[1,∞)

zα
)(
z−N−A11z≥1(z)

)
≤
(
LΨ1

2R + LΨ2

2R

)
|a− b|

∣∣ log(z)
∣∣m0(z).

In estimate (27) we used the local Lipschitz-continuity of functions Ψ1 and Ψ2 as
well as the fact that

sup
α∈[0,A2−A1]
z∈[0,1)

zα = sup
α∈[A1−A2,0]
z∈[1,∞)

zα = 1.

It follows from estimates (26) and (27) that by putting a = |a− b|, b = |c− d| and
z = |x− y| we may verify both conditions (A5) and (A6) by considering

mR

(
z
)

=
(
1z<1(z)z−N−A2 + 1z≥1(z)z−N−A1

)
×max

{
1,
∣∣ log(z)

∣∣}. �

Remark 5.11. In Proposition 5.10 it would suffice to assume local Lipschitz-continuity
of functions Ψ1 and Ψ2 on (0,∞).
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