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Abstract. In this work we derive multi-level concentration inequalities for poly-
nomial functions in independent random variables with a α-sub-exponential tail
decay. A particularly interesting case is given by quadratic forms f(X1, . . . , Xn) =
〈X,AX〉, for which we prove Hanson–Wright-type inequalities with explicit depen-
dence on various norms of the matrix A. A consequence of these inequalities is
a two-level concentration inequality for quadratic forms in α-sub-exponential ran-
dom variables, such as quadratic Poisson chaos.

We provide various applications of these inequalities. Among these are gener-
alizations the results given by Rudelson–Vershynin from sub-Gaussian to α-sub-
exponential random variables, i. e. concentration of the Euclidean norm of the
linear image of a random vector, small ball probability estimates and concentra-
tion inequalities for the distance between a random vector and a fixed subspace.
Moreover, we obtain concentration inequalities for the excess loss in a fixed design
linear regression and the norm of a randomly projected random vector.

1. Introduction

Let X1, . . . , Xn be independent random variables and let f : Rn → R be a measur-
able function. One of the main and rather classical questions of probability theory
consists in finding good estimates on the fluctuations of f(X1, . . . , Xn) around a
deterministic value (e. g. its expectation or median), i. e. to determine a function
h : [0,∞)→ [0, 1] such that

(1.1) P
(
|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| ≥ t

)
≤ h(t).

Of course, h should take into account both the information given by f as well as
X1, . . . , Xn. Perhaps one of the most well-known concentration inequalities is the
tail decay of the Gaussian distribution: if X1, . . . , Xn are independent and are dis-
tributed as a standard a standard normal distribution N (0, 1), and f(X1, . . . , Xn) =
n−1/2

∑n
i=1Xi, then f(X1, . . . , Xn) ∼ N (0, 1) and

(1.2) P
(
|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| ≥ t

)
≤ 2 exp

(
− t2

2

)
.

Using the entropy method, it is possible to show that the estimate (1.2) remains true
for any Lipschitz function f (see e. g. [Led01, Section 5]). On the other hand, if f

1Faculty of Mathematics, Bielefeld University, Bielefeld, Germany
E-mail address: goetze@math.uni-bielefeld.de, hsambale@math.uni-bielefeld.de,

asinulis@math.uni-bielefeld.de.
Date: March 15, 2019.
1991 Mathematics Subject Classification. Primary 60E15, 60F10, Secondary 46E30, 46N30.
Key words and phrases. Concentration of measure phenomenon, Orlicz norms, polynomial

chaos, Poisson chaos, sub-exponential random variables.
This research was supported by the German Research Foundation via CRC 1283.

1

ar
X

iv
:1

90
3.

05
96

4v
1 

 [
m

at
h.

PR
] 

 1
4 

M
ar

 2
01

9



2 CONCENTRATION OF POLYNOMIALS IN α-SUB-EXPONENTIAL R.V.

is a polynomial of degree 2, then the tails of f(X1, . . . , Xn) are heavier. Indeed, the
Hanson–Wright inequality states that for a quadratic form in independent, standard
Gaussian random variables X1, . . . , Xn we have

(1.3) P
(∣∣∣ n∑

i,j=1

aijXiXj − trace(A)
∣∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
min

( t2

‖A‖HS

,
t

‖A‖op

))
.

Here, ‖A‖op is the operator norm and ‖A‖HS the Hilbert–Schmidt norm (also called
Frobenius norm) of A respectively. For a proof see [RV13]. Thus the tails of the
quadratic form decay like exp(−t) for large t. There are inequalities similar to (1.3)
for the multilinear chaos in Gaussian random variables proven in [Lat06] (and in fact,
a lower bound using the same quantities as well), and in [AW15] for polynomials in
sub-Gaussian random variables. However, a key component is that the individual
random variables Xi have a sub-Gaussian tail decay, i. e. P(|Xi| ≥ t) ≤ c exp(−Ct2)
for some constants c, C.

In recent works [BGS18], [GSS18b], [GSS18a] we have studied similar concentra-
tion inequalities for bounded functions f of either independent or weakly dependent
random variables. There, the situation is clearly different, since the distribution
of f(X1, . . . , Xn) has a compact support, and is thus sub-Gaussian, and the chal-
lenge is to give an estimate depending on different quantities derived from f and X.
However, there are many situations of interest where boundedness does not hold,
such as quadratic forms in unbounded random variables as in (1.3). Here it seems
reasonable to focus on certain classes of functions for which the tail behavior can
directly be traced back to the tails of the random variables under consideration.
Therefore, in this note we restrict ourselves to polynomial functions.

In the following results, the setup is as follows. We consider independent random
variables X1, . . . , Xn which have α-sub-exponential tail decay. By this we mean that
there exists two constants c, C and a parameter α > 0 such that for all i = 1, . . . , n
and t ≥ 0

(1.4) P
(
|Xi| ≥ t

)
≤ c exp

(
− tα

C

)
.

There are many interesting choices of random variables Xi of this type, such as
bounded random variables (for any α > 0), random variables with a sub-Gaussian
(for α = 2) or sub-exponential distribution (α = 1) such as Poisson random vari-
ables, or “fatter” tails such as Weibull random variables with shape parameter
α ∈ (0, 1].

We reformulate condition (1.4) in terms of so-called exponential Orlicz norms, but
we emphasize that these two concepts are equivalent. For any random variable X
on a probability space (Ω,A,P) and α > 0 define the (quasi-)norm

(1.5) ‖X‖ψα := inf

{
t > 0: E exp

(
|X|α

tα

)
≤ 2

}
,

adhering to the standard definition inf ∅ =∞. Strictly speaking, this is a norm for
α ≥ 1 only, since otherwise the triangle inequality does not hold. Nevertheless, the
above expression makes sense for any α > 0, and we choose to call it a norm in
these cases as well. For some properties of the Orlicz norms in the case α ∈ (0, 1],
see Appendix A. In this note we concentrate on values α = 2/q for some q ∈ N, but
also prove results for the case α ∈ (0, 1]. Throughout this work, we denote by C an
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absolute constant and by Cl1,...,lk a constant that only depends on some parameters
l1, . . . , lk.

For illustration, we start with a simplified version of some of our results which
may already be sufficient for application purposes. The first result is a concentra-
tion inequality which may be considered as a generalization of the Hanson–Wright
inequality (1.3) to quadratic forms in random variables with α-sub-exponential tail
decay.

Proposition 1.1. Let X1, . . . , Xn be independent random variables satisfying EXi =
0,EX2

i = σ2
i , ‖Xi‖Ψα

≤ M for some α ∈ (0, 1] ∪ {2}, and A be a symmetric n× n
matrix. For any t > 0 we have

P
(∣∣∑

i,j

aijXiXj −
n∑
i=1

σ2
i aii
∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
min

( t2

M4‖A‖2
HS

,
( t

M2‖A‖op

)α
2
))
.

As we will see in Proposition 1.5, the tail decay exp(−tα/2‖A‖−α/2op ) (for large t)
can be sharpened by replacing the operator norm by a smaller norm. Actually, the
technical result contains up to four different regimes instead of two as above.

The next theorem provides tail estimates for polynomials in independent random
variables. Note that this is not a generalization of Proposition 1.1 due to the use of
the Hilbert–Schmidt instead of the operator norms.

Theorem 1.2. Let X1, . . . , Xn be independent random variables satisfying ‖Xi‖Ψα
≤

M for some α ∈ (0, 1]∪{2} and let f : Rn → R be a polynomial of total degree D ∈ N.
Then for all t > 0

(1.6) P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CD,α
min

1≤d≤D

( t

Md‖Ef (d)(X)‖HS

)α/d)
.

In particular, if ‖Ef (d)(X)‖HS ≤ 1 for d = 1, . . . , D, then

E exp

(
CD,α
Mα
|f(X)|

α
D

)
≤ 2,

or equivalently
‖f(X)‖Ψ α

D

≤ Cd,αM
D.

Intuitively, Theorem 1.2 states that a polynomial in random variables with tail
decay as in (1.4) also exhibits α-sub-exponential tail decay whenever the Hilbert–
Schmidt norms are not too large. Moreover, the tail decay is “as expected”, i. e. one
just needs to account for the total degree D by taking the D-th root.

One particularly interesting case is when the functional under consideration is a
d-th order chaos. That is, given a d-tensor A = (ai1...id) which we assume to be
symmetric, i. e. ai1...id = aiσ(1)...iσ(d) for any permutation σ ∈ Sd, we consider the
polynomial

(1.7) fd,A(X) := fd,A(X1, . . . , Xn) :=
∑
i1,...,id

ai1...id(Xi1 − EXi1) · · · (Xid − EXid).

Additionally, we often assume that A has vanishing generalized diagonal in the
sense that ai1...id = 0 whenever i1, . . . , id are not pairwise different. In this situation,
Theorem 1.2 reads as follows:
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Corollary 1.3. Let X1, . . . , Xn be independent random variables with ‖Xi‖Ψα
≤M

for some α ∈ (0, 1]∪{2} and let A be a symmetric d-tensor with vanishing generalized
diagonal such that ‖A‖HS ≤ 1. Then

E exp

(
Cd,α
Mα
|fd,A(X)|

α
d

)
≤ 2.

As in Theorem 1.2, the conclusion is equivalent to a Ψα/d-norm estimate.

1.1. Main results. In comparison to the aforementioned results, our main concen-
tration inequalities provide more refined tail estimates. To this end, we need a family
of tensor-product matrix norms ‖A‖J for a d-tensor A and a partition J ∈ Pqd of
{1, . . . , qd}. For the exact definitions, we refer to (3.5). Using these norms, we may
formulate our first result for chaos-type functionals. Note that we focus on the case
α = 2/q for some q ∈ N only, which is sufficient for many applications, like products
or powers of sub-Gaussian or sub-exponential random variables. The general case
α ∈ (0, 1] will be treated later.

Theorem 1.4. Let X1, . . . , Xn be a set of independent random variables satisfying
‖Xi‖ψ2/q

≤ M for some q ∈ N and M > 0, and let A be a symmetric d-tensor with
vanishing diagonal. Consider fd,A(X) as in (1.7). Then, for any t > 0,

(1.8) P(|fd,A(X)| ≥ t) ≤ 2 exp
(
− 1

Cd,q
min
J∈Pqd

( t

Md‖A‖J

)2/|J |)
.

To give an elementary example, consider the case d = 1 and q = 2. Here, A =
a = (a1, . . . , an) is a vector, and f1,A(X) =

∑n
i=1 ai(Xi − EXi) is just a linear

functional of random variables with sub-exponential tails (‖Xi‖ψ1 ≤ M). It easily
follows from the definition that ‖A‖{1,2} = |a| (i. e. the Euclidean norm of a) and
‖A‖{{1},{2}} = maxi |ai|. As a consequence, for any t > 0

P
(∣∣ n∑

i=1

ai(Xi − EXi)
∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
min

( t2

M2|a|2
,

t

M maxi |ai|

))
.

Hence, up to constants, we get back a classical result for the tails of a linear form
in random variables with sub-exponential tails. For more general functions f and
similar results under a Poincaré-type inequality, we refer to [BL97] (the first order
case) and [GS18] (the higher order case).

Moreover, Theorem 1.4 can be used to give Hanson–Wright-type bounds for qua-
dratic forms in sub-exponential random variables. Here we provide a sharpened
version of Proposition 1.1. Let 〈x, y〉 be the standard scalar product in Rn.

Proposition 1.5. Let q ∈ N, A = (aij) be a symmetric n × n matrix and let
X1, . . . , Xn be a set of independent, centered random variables with ‖Xi‖Ψ2/q

≤ M

and EX2
i = σ2

i . For any t > 0

P
(∣∣∑

i,j

aijXiXj −
n∑
i=1

σ2
i aii
∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
η(A, q, t/M2)

)
,

where

η(A, q, t) := min

(
t2

‖A‖2HS

,
t

‖A‖op
,
( t

maxi=1,...,n‖(aij)j‖2

) 2
q+1

,

(
t

‖A‖∞

) 1
q

)
.
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Consequently, for any x > 0 we have with probability at least 1− 2 exp(−x/C)

|〈X,AX〉 − E〈X,AX〉| ≤M2 max

(√
x‖A‖HS, x‖A‖op, x

q+1
2 max

i=1,...,n
‖(aij)j‖2, x

q‖A‖∞

)
.

It is possible to replace 2/q by a general α ∈ (0, 1] ∪ {2} (see Section 6). In this
case, we have to replace 2/(q + 1) by 2α/(2 + α) and 1/q by α/2.

Remark. Note that in comparison to the Hanson–Wright inequality (1.3) and Propo-
sition 1.1, the more refined version contains two additional terms. The respec-
tive norms maxi=1,...,n‖(aij)j‖2 and ‖A‖∞ can no longer be written in terms of the
eigenvalues of A (in contrast to ‖A‖HS and ‖A‖op). Indeed, as we see later, we
have maxi=1,...,n‖(aij)j‖2 = ‖A‖2→∞, and ‖A‖∞ = maxi,j|〈ei, Aej〉| for the stan-
dard basis (ei)i of Rn. Moreover, the norms might have a very different scaling in
n. For example, if e = (1, . . . , 1) and A = eeT − Id, then ‖A‖HS ∼ ‖A‖op ∼ n,
maxi‖(aij)j‖2 ∼ n1/2 and ‖A‖∞ = 1.

Finally, let us state the result for general polynomials in random variables with
bounded Orlicz norms. To fix some notation, if f : Rn → R is a function in CD(Rn),
for d ≤ D we denote by f (d) the (symmetric) d-tensor of its d-th order partial
derivatives.

Theorem 1.6. Let X1, . . . , Xn be a set of independent random variables satisfying
‖Xi‖ψ2/q

≤M for some q ∈ N and M > 0. Let f : Rn → R be a polynomial of total
degree D ∈ N. Then, for any t > 0,

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CD,q
min

1≤d≤D
min
J∈Pqd

( t

Md‖Ef (d)(X)‖J

) 2
|J |
)
.

Note that if f(X) = fD,A(X) as in (1.7), only the D-th order tensor gives a
contribution, i. e. we retrieve Theorem 1.4. We discuss Theorems 1.4 and 1.6 and
compare them to known results in Subsection 1.2. A variant of Theorem 1.6 for
polynomials in independent random variables with ‖Xi‖ψα ≤ 1 for any α ∈ (0, 1]
with be derived in Section 6.

Remark. With the help of these inequalities, it is possible to prove many results
on concentration of linear and quadratic forms in independent random variables
scattered throughout the literature. For example, [NSU17, Lemma A.6] is an im-
mediate consequence of Theorem 1.4 (combined with Lemma A.1 for f(X,X ′) =∑n

i=1 aiXiX
′
i). In a similar way, one can deduce [Yan+17, Lemma C.4] by apply-

ing Theorem 1.4 to the random variable Zi := XiYi, whenever (Xi, Yi) is a vector
with sub-exponential marginal distributions. More generally, one can consider a
linear form (or higher order polynomial chaoses) in a product of k random variables
X1, . . . , Xk with sub-exponential tails, for which Lemma A.1 provides estimates for
the Ψ 1

k
norm.

Lastly, the results in [EYY12, Appendix B] can be sharpened for α ∈ (0, 1] ∪ {2}
by a more general version of Proposition 1.5, using the same arguments as in [RV13,
Section 3] to treat complex-valued matrices.

1.2. Related work. Inequalities for the Lp-norms of polynomial chaos have been
established in various works. From these Lp norm inequalities one can quite easily
derive concentration inequalities. For a thorough discussion on inequalities involving
linear forms in independent random variables we refer to [PG99, Chapter 1].
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Starting with linear forms, there have been generalizations to certain classes of
random variables as well as multilinear forms of higher degree (also called polynomial
chaoses). Among these are the two classes of random variables with either log-convex
or log-concave tails (i. e. t 7→ − logP(|X| ≥ t) is convex respectively concave). Two-
sided Lp norm estimates for the log-convex case were derived in [HMO97] for linear
forms and in [KL15] for chaoses of all orders. On the other hand, for measures with
log-concave tails similar two-sided estimates have been derived in [GK95; Lat96;
Lat99; LŁ03; AL12] under different conditions. Moreover, two-sided estimates for
non-negative random variables have been derived in [Mel16] and for chaos of order
two in symmetric random variables satisfying the inequality ‖X‖2p ≤ A‖X‖p in
[Mel17].

Our approach is closer to the work of Adamczak and Wolff, [AW15], where the case
of polynomials in sub-Gaussian random variables has been treated. Lastly, let us
mention the two results [EYY12, Lemma B.2, Lemma B.3] and [VW15, Corollary
1.6], where concentration inequalities for quadratic forms in independent random
variables with α-sub-exponential tails have been proven.

To be able to compare our results to the results listed above, let us discuss their
conditions. Firstly, the conditions of a bounded Orlicz norm and log-convex or log-
concave tails cannot be compared in general. It is known that random variables with
log-convex tails satisfy ‖X‖Ψ1

< ∞. On the other hand, the tail function of any
discrete random variable X is a step function (for example, if X has the geometric
distribution, then − logP(X ≥ t) = bxc log(1/(1− p))), which is neither log-convex
nor log-concave but can still have a finite Ψα norm for some α. For example, a
Poisson-distributed random variable X satisfies ‖X‖Ψ1

<∞.
The condition ‖X‖2p ≤ α‖X‖p for all p ≥ 1 and some α > 1 used in the works

of Meller implies the existence of the Ψα̃-norm for α̃ := (log2 α)−1. Especially in
the case α = 2d this yields the existence of the Ψ1/d norm. However, we want to
stress that the results in [AL12; KL15; Mel16; Mel17] are two-sided and require very
different tools.

Moreover, the two works of Schudy and Sviridenko [SS11; SS12] contain concen-
tration inequalities for polynomials in so-called moment bounded random variables.
Therein, a random variable Z is called moment bounded with parameter L > 0, if for
all i ≥ 1 E|Z|i ≤ iLE|Z|i−1. Actually, using Stirling’s formula, it is easy to see that
moment-boundedness implies ‖Z‖Ψ1

< ∞, but it is not clear whether the converse
implication also holds. However, there is no inequality of the form L ≤ C‖X‖Ψ1

, as
can be seen by X ∼ Ber(p).

Considering quadratic forms in random variables X which are moment bounded
and centered, one can easily see that (apart from the constants) the bound in Propo-
sition 1.5 is sharper than the corresponding inequality in [SS12, Theorem 1.1]. Since
for log-convex distributions there are two-sided estimates, Proposition 1.5 is sharp
in this class. Apart from quadratic forms, due to the different conditions and quan-
tities, it is difficult to compare [SS12] and Theorem 1.6 in general.

1.3. Outline. In Section 2 we formulate and prove several applications which can
be deduced from the main results. Section 3 contains the proof for the concentration
inequalities for multilinear forms (Theorem 1.4). Thereafter, we provide the proof of
Proposition 1.5 in Section 4 and of Theorem 1.6 in Section 5. Section 6 is devoted to
some extensions of the main results for random variables with finite Orlicz-norms for
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any α ∈ (0, 1]. Lastly, we finish this note by collecting some elementary properties
of the Orlicz-norms in the Appendix A.

2. Applications

In the following, we provide some applications of our main results. In particular,
all the results in this section follow from either Proposition 1.1 or 1.5. For any
random variables X1, . . . , Xn we write X = (X1, . . . , Xn).

2.1. Concentration of the Euclidean norm of a vector with independent
components. As a start, Proposition 1.1 can be used to give concentration proper-
ties of the Euclidean norm of a linear transformation of X consisting of independent,
normalized random variables with sub-exponential tails. We give two different forms
thereof. The first form is inspired by the results in [RV13] for sub-Gaussian random
variables.

Proposition 2.1. Let X1, . . . , Xn be independent random variables satisfying EXi =
0,EX2

i = 1, ‖Xi‖Ψα
≤ M for some α ∈ (0, 1] ∪ {2} and let B 6= 0 be an m × n

matrix. For any c > 0 and any t ≥ c‖B‖HS we have

(2.1) P
(
|‖BX‖2 − ‖B‖HS| ≥ t

)
≤ 2 exp

(
− min(c2−α, 1)

CM4‖B‖αop

tα
)
.

Note that in the case α = 2 the constant is not present on the right hand side and
thus we can choose any t > 0, which is exactly [RV13, Theorem 2.1]. In the general
case, we need to restrict t to be of the order ‖B‖HS.

The assumption of unit variance can be weakened, with some minor modifications,
i. e. ‖B‖HS has to be replaced by (

∑n
i=1 σ

2
i

∑n
j=1 b

2
ij)

1/2 and the constant C will
depend on mini=1,...,n σ

2
i . We omit the details.

Proof. First off, note that it suffices to prove the inequality for a matrix B such that
‖B‖HS = 1 and t ≥ c, since the general case follows by considering B̃ := B‖B‖−1

HS.
Let us apply Proposition 1.1 to the matrix A := BTB. An easy calculation shows

that trace(A) = trace(BTB) = ‖B‖2
HS = 1, so that we have

P
(
|‖BX‖2

2 − 1| ≥ t
)
≤ 2 exp

(
− 1

CM4
min

( t2

‖B‖2
op

,
( t

‖B‖2
op

)α
2
))

= 2 exp
(
− 1

CM4‖B‖αop

min
( t2−α

‖B‖2−α
op

tα, t
α
2

))
≤ 2 exp

(
− min(c2−αtα, t

α
2 )

CM4‖B‖αop

)
≤ 2 exp

(
− min(c2−α, 1)

CM4‖B‖αop

min(tα, t
α
2 )
)
.

(2.2)

Here, in the first step we have used the estimates ‖A‖2
HS ≤ ‖B‖

2
op‖B‖

2
HS = ‖B‖2

op

and ‖A‖op ≤ ‖B‖
2
op as well as the fact that by Lemma A.2, EX2

i = 1 for any i

implies M ≥ Cα > 0. The second inequality follows from t ≥ c ≥ c‖B‖op and the
third inequality is a consequence of min(c2−αtα, t

α
2 ) ≥ min(c2−α, 1) min(tα, t

α
2 ).
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Now, as in [RV13], we use the inequality |z− 1| ≤ min(|z2− 1|, |z2− 1|1/2), giving
for any t > 0

(2.3) P
(
|‖BX‖2 − 1| ≥ t

)
≤ P

(
|‖BX‖2

2 − 1| ≥ max(t, t2)
)
.

Hence, a combination of (2.2), (2.3) and min(max(r, r2),max(r1/2, r)) = r yields for
t > c

(2.4) P
(
|‖BX‖2 − 1| ≥ t

)
≤ 2 exp

(
− min(c2−α, 1)

CM4‖B‖αop

tα
)
.

�

The next corollary provides an alternative estimate for ‖BX‖2:

Corollary 2.2. Let X1, . . . , Xn be independent, centered random variables satisfying
‖Xi‖Ψ1

≤M and EX2
i = σ2

i . For an n×n matrix B with real entries let A = BTB =
(aij). Then, for any x > 0, with probability at least 1− 2 exp(−x/C) we have

‖BX‖22 ≤
n∑

i=1

σ2
i

n∑
j=1

b2ji +M2 max
(√

x‖A‖HS, x‖A‖op, x
3/2 max

i=1,...,n
‖(aij)j‖2, x

2‖A‖∞
)
.

Corollary 2.2 can be compared to various bounds on the norms of ‖BX‖2 in the
case that X is a sub-Gaussian vector (see for example [HKZ12] or [Ada15]). For
sub-Gaussian vectors with sub-Gaussian constant 1, we have with probability at
least 1− exp(−x)

‖BX‖2
2 ≤ trace(BTB) + 2‖BTB‖HS

√
x+ 2‖BTB‖opx,

so that we have similar terms corresponding to
√
x and x, whereas in the sub-

exponential case we need two additional terms to account for the heavier tails of its
components.

Proof. Define the quadratic form

Z := ‖BX‖2
2 = 〈BX,BX〉 = 〈X,BTBX〉 = 〈X,AX〉.

Using Proposition 1.5 with the matrix A gives with probability 1− 2 exp(−x/C)

|Z − EZ| ≤ max
(√

x‖A‖HS, x‖A‖op, x
3/2 max

i=1,...,n
‖Ai·‖2, x

2‖A‖∞
)
.

From these inequalities and |x| ≥ x the claim easily follows by taking the square
root. Note that EZ = E〈X,AX〉 =

∑n
i=1 σ

2
i

∑n
j=1 b

2
ji. �

2.2. Projections of a random vector and distance to a fixed subspace. It
is possible to apply Proposition 1.5 to any matrix A associated to an orthogonal
projection. In these cases, the norms can be explicitly calculated. Moreover, these
norms do not depend on the structure of the subspace onto which one projects, but
merely on its dimension. This leads to the following application, where we replace
a fixed projection by a random one.

Corollary 2.3. Let X1, . . . , Xn be independent random variables satisfying EXi =
0,EX2

i = σ2
i and ‖Xi‖Ψ1

≤ M . Furthermore, let m < n and P be the (random)
orthogonal projection onto an m-dimensional subspace of Rn, distributed according



CONCENTRATION OF POLYNOMIALS IN α-SUB-EXPONENTIAL R.V. 9

to the Haar measure on the Grassmanian manifold Gm,n. For any x > 0, with
probability at least 1− 2 exp(−x/C), we have

(2.5)
∣∣∣‖PX‖2

2 −
m

n

n∑
i=1

σ2
i

∣∣∣ ≤M2 max
(√

xm, x2
)
.

Proof of Corollary 2.3. This is an application of Proposition 1.5. To see

E‖PX‖2
2 =

m

n

n∑
i=1

σ2
i ,

we use [Ver18, Lemma 5.3.2] conditionally on X, i. e. we have

E‖PX‖2
2 = EE

(
‖PX‖2

2 | X
)

=
m

n
E‖X‖2

2 =
m

n

n∑
i=1

σ2
i .

Moreover, for any projection P onto an m-dimensional subspace, one can see that
‖P‖2

HS =
∑n

i=1 λi(P )2 = m. Moreover, it is clear that ‖P‖∞ ≤ maxi=1,...,n‖(pij)j‖2 ≤
‖P‖2→2 = 1. �

A very similar result which follows from Proposition 2.1 is the following variant of
[RV13, Corollary 3.1]. We use the notation d(X,E) = infe∈E d(X, e) for the distance
between an element X and a subset E of a metric space (M,d).

Corollary 2.4. Let X1, . . . , Xn be independent random variables satisfying EXi =
0,EX2

i = 1 and ‖Xi‖Ψα
≤ M for some α ∈ (0, 1] ∪ {2}, and let E be a subspace of

Rn of dimension d. For any t ≥
√
n− d we have

P
(
|d(X,E)−

√
n− d| ≥ t

)
≤ 2 exp

(
− tα

CM4

)
.

Proof. This follows exactly as in [RV13, Corollary 3.1] by using Proposition 2.1. �

2.3. Spectral bound for a product of a fixed and a random matrix. We
can also extend the second application in [RV13] to any α-sub-exponential random
vector as follows.

Proposition 2.5. Let B be a fixed m × N matrix and let G be a N × n random
matrix with independent entries satisfying E gij = 0,E g2

ij = 1 and ‖gij‖Ψα
≤ M for

some α ∈ (0, 1]. For any u, v ≥ 1 with probability at least 1−2 exp(−uαr(B)α−vαn)
we have

‖BG‖op ≤ 4CαM
4/α
(
u‖B‖HS + vn1/α‖B‖op

)
.

Proof. We mimic the proof of [RV13, Theorem 3.2]. For any fixed x ∈ Sn−1 consider
the linear operator T : RNn → Rm given by T (G) = BGx, and (by abuse of notation)
write T for the matrix corresponding to this linear map in the standard basis. Using
Proposition 2.1 applied to the matrix T we have

P
(
|‖BGx‖2 − ‖T‖HS| ≥ t

)
≤ 2 exp

(
− tα

CM4‖T‖αop

)
.

Now, since ‖T‖HS = ‖B‖HS and ‖T‖op ≤ ‖B‖op, this yields for any t ≥ ‖B‖HS

P
(
‖BGx‖2 > ‖B‖HS + t

)
≤ 2 exp

(
− tα

CM4‖B‖αop

)
.
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If we define t = (2CM4)1/α
(
u‖B‖HS + (log(5) + 1)1/αvn1/α‖B‖op

)
for arbitrary

u, v ≥ 1 and use the inequality 2(r+ s)α ≥ (rα + sα) valid for all r, s ≥ 0, we obtain

P
(
‖BGx‖2 > ‖B‖HS + t

)
≤ 2 exp

(
−
uα‖B‖αHS + vαn(log(5) + 1)‖B‖αop

‖B‖αop

)
≤ 2 exp

(
− uαr(B)α − vαn− vαn log(5)

)
≤ 5−n2 exp

(
− uαr(B)α − vαn

)
.

The last step is again a covering argument as in [RV13]. Choose a 1/2-covering N
(satisfying |N | ≤ 5n, see [Ver12, Lemma 5.2]) of the unit sphere in Rn, and note
that a union bound gives

P
( ⋂
x∈N

‖BGx‖2 ≤ ‖B‖HS + t
)
≥ 1−

∑
x∈N

P
(
‖BGx‖2 > ‖B‖HS + t

)
≥ 1− 2 exp

(
− uαr(B)α − vαn

)
.

Lemma 5.3 in [Ver12, Lemma 5.3] yields

‖BG‖op ≤ 2 max
x∈N
‖BGx‖2 ≤ 2(‖B‖HS + t),

from which the assertion easily follows by upper bounding and simplifying the ex-
pression 2‖B‖HS + 2t. �

2.4. Special cases. It is possible to apply all results to random variables having a
Poisson distribution, i. e. Xi ∼ Poi(λi) for some λi ∈ (0,∞). By using the moment
generating function of the Poisson distribution, it is easily seen that

‖Xi‖Ψ1
=

1

log
(

log(2)λ−1
i + 1

) =: g(λi).

The function g is increasing and satisfies g(x) ∼ log(1/x) (for x → 0) and g(x) ∼
x/ log(2) (for x → ∞). More generally, if the random variable |X| has a moment
generating function φ|X| in a neighborhood of 0, it can be used to explicitly calculate
the Ψ1-norm. Indeed, we have E exp(|X|/t) = φ|X|(t

−1), and so ‖X‖Ψ1
= 1/φ−1

|X|(2).
Thus, as a special case of Proposition 1.5, we obtain the following corollary.

Corollary 2.6. Let Xi ∼ Poi(λi), B := g(maxi=1,...,n λi) and A = (aij) be a sym-
metric n× n matrix. We have for any t > 0

P
(∣∣∣∑

i,j

aijXiXj −
n∑
i=1

aiiλi

∣∣∣ ≥ B2t
)

≤ 2 exp

(
− 1

C
min

(
t2

‖A‖2
HS

,
t

‖A‖op

,
( t

maxi‖(aij)j‖2

) 2
3
,

(
t

‖A‖∞

) 1
2

))

≤ 2 exp

− 1

C
min

 t2

‖A‖2
HS

,

(
t

‖A‖op

) 1
2

 .
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For Poisson chaos of arbitrary order d ∈ N, one may derive similar results by
evaluating Theorem 1.4 or Corollary 6.1 (both for α = 1). Note though that already
for d = 1, we lose a logarithmic factor in the exponent. However, we are not aware
of any more refined fluctuation estimates for d ≥ 2.

Another interesting example of a sub-exponential random variable arises in sto-
chastic geometry. If K ⊆ Rn is an isotropic, convex body and X is distributed
according to the cone measure on K, then ‖〈X, θ〉‖Ψ1

≤ c for some constant c and
any θ ∈ Sn−1. For the details and the proof we refer to [PTT18, Lemma 5.1].

2.5. Concentration properties for fixed design linear regression. It is pos-
sible to extend the example of the fixed design linear regression in [HKZ12] to the
situation of a sub-exponential noise (instead of sub-Gaussian).

To this end, let y1, . . . , yn ∈ Rd be fixed vectors (commonly called the design
vectors), Y = (y1, . . . , yn) (the d×n design matrix ) and assume that the d×d matrix
Σ = n−1

∑n
i=1 yiy

T
i is invertible; in this case, define B := n−1Σ−1/2Y ∈ M(d × n).

Let X1, . . . , Xn be independent random variables with ‖Xi‖Ψ1
≤M and define

β := n−1

n∑
i=1

EXiΣ
−1yi

β̂(X) := n−1

n∑
i=1

XiΣ
−1yi.

β is the coefficient vector of the least expected squared error and β̂(X) is its ordinary
least squares estimator (given the observation X). The quality of the estimator β̂
can be judged by the excess loss

(2.6) R(X) = ‖Σ1/2(β̂(X)− β)‖2 =
∑
i,j

aij(Xi − EXi)(Xj − EXj),

where A = (aij) = BTB = n−2Y TΣ−1Y , as can be shown by elementary calculations.
Observe that this is a quadratic form inXi with coefficients depending on the vectors
yi. Thus, Proposition 1.5 yields the following corollary.

Corollary 2.7. In the above setting, for any x > 0 the inequality

|R(X)− ER(X)| ≤ 4M2 max

(√
x‖A‖HS, x‖A‖op, x

3/2 max
i=1,...,n

‖(aij)j‖2, x
2‖A‖∞

)
holds with probability at least 1− 2 exp(−x/C).

Thus the concentration properties of R(X) around its mean depends on the four
different norms of the matrix A. The factor 4 appears due to the necessary centering
of the Xi.

2.6. Central limit theorems for quadratic forms and random edge weights.
In this section, our aim is to quantify central limit theorems for quadratic forms
Q(X) = QA(X) =

∑
i,j aijXiXj in sub-exponential random variables X1, . . . , Xn

using concentration of measure results. Typically, the first step is finding conditions
such that Q(X) can be approximated by a linear form L(X). This reduces the
problem to finding conditions such that L(X) is asymptotically normal (e. g. using
the Lyapunov central limit theorem).
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The weak convergence of quadratic forms to a normal distribution is classical,
and we refer to [Jon87] and [GT99], [Cha08] for general statements (and rates of
convergence), as well as [PG99] for general statements on central limit theorems for
U -statistics.

Let us first consider the task of approximating Q(X) by a linear form L(X). To
this end, assume that A is symmetric with vanishing diagonal and EXi 6= 0 for some
i. Then, we may decompose

Q(X) =
∑
i,j

aij(Xi − EXi)(Xj − EXj) + 2
n∑
i=1

( n∑
j=1

aijEXj

)
(Xi − EXi) + EQ(X)

(this is in fact the Hoeffding decomposition of Q(X)), and we therefore define

L(X) :=
n∑
i=1

( n∑
j=1

aijEXj

)
(Xi − EXi) =:

n∑
i=1

cA,i(Xi − EXi).

Obviously, Var(L(X)) =
∑n

i=1 c
2
A,iVar(Xi). Thus, under the condition

(2.7) lim
n→∞

∑n
i=1 c

2
A,iVar(Xi)

‖A‖2
HS

=∞,

the asymptotic behavior of the properly normalized quadratic form is dominated by
the linear term. Under additional assumptions of the tail behavior of the Xi, the
approximation can also be quantified.

Lemma 2.8. Let X = (Xn)n∈N be a sequence of independent random variables
with ‖Xi‖Ψ1

≤ M for a constant M > 0 and assume EX = (EXn)n∈N 6= 0,
Var(X) := (Var(Xn))n∈N 6= 0. Furthermore, let A = A(n) be a sequence of symmetric
matrices satisfying (2.7). Then for any t > 0

P (|Q(X)− EQ(X)− 2L(X)| ≥ t) ≤ 2 exp

(
−min

(
t2Var(L(X))2

‖A‖2HS

,
t1/2Var(L(X))1/2

‖A‖1/2HS

))
.

Proof. Rewrite the Hoeffding decomposition of Q as

(2.8) 〈A(n)(X − EX), X − EX〉 = 〈A(n)X,X〉 − E〈A(n)X,X〉 − 2〈X,AEX〉+ 2E〈X,AEX〉,

and recall cn = Var(L(X)). An application of Theorem 1.4 yields

(2.9) P
(
|〈A(n)(X − EX), (X − EX)〉| ≥ cnt

)
≤ 2 exp

(
− 1

Cd
min

(( cnt

‖A‖HS

)2
,
( cnt

‖A‖HS

)1/2))
.

�

In the case that the Xi are also identically distributed, (2.7) is equivalent to
‖A(n)‖2

HS = o(
∑n

i=1(
∑n

j=1A
(n)
ij )2). For example it is satisfied for A(n) = eeT − Id,

where e = (1, . . . , 1)T ∈ Rn.
We may apply these results to sequences of graphs. Here we always assume that

the Xi are identically distributed. For each n, let Gn = (Vn, En) be some undirected
graph on n nodes (which we may consider as a kind of “base graph”). If A = A(n)

denotes its adjacency matrix, then (2.7) can be rewritten as

(2.10)
∑

v∈Vn deg(v)2

2|En|
→ ∞.
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Sequences of graphs satisfying (2.10) are the complete graph, the complete bipartite
graph Gn = Km1(n),m2(n) for parametersm1(n),m2(n) satisfyingm1(n)+m2(n)→∞
and dn-regular graphs for dn →∞.

The example of the n-stars shows that (2.10) is not sufficient for a central limit
theorem of the quadratic form. Indeed, in this case we have Q(X) = X1

∑N
i=2 Xi,

where 1 is the vertex with degree (n− 1). As is easily seen, Q(X) = 0 on {X1 = 0},
and thus if X are Bernoulli distributed, the distribution has an atom which does
not vanish for n→∞.

Finally, let us provide an example of a sequence of graphs for which a central
limit theorem can be shown by imposing additional conditions. Here we assume
that the random variables Xi are non-negative. In this case, they can be used
to define edge weights wn(X) : En → R+ by wn({i, j})(X) = XiXj. Also let
Wn(X) :=

∑
e∈En wn(e)(X) be the total edge weight. Note that Wn(X) = 〈AX,X〉

for the adjacency matrix A of G.

Proposition 2.9. Let X be a non-negative random variable with ‖X‖Ψ1
≤ M and

EX = λ > 0,Var(X) = σ2 > 0, and let (Xn)n∈N be a sequence of independent
copies. Consider a sequence Gn = (Vn, En) of graphs with Vn = {1, . . . , n} such that
(2.10) and

(2.11)
(∑

v∈Vn deg(v)3
)2(∑

v∈Vn deg(v)2
)3 → 0

hold. Then, for the total edge weight Wn(X), we have

Wn(X)− EWn(X)

2λσ
(∑

v∈Vn deg(v)2
)1/2

⇒ N (0, 1).

Note that Wn(X) is neither a sum of independent random variables, nor can be
it written as a sum of an m-dependent sequence, since w(e)(X) and w(f)(X) are
dependent whenever e ∩ f 6= ∅.

In the case that X ∼ Ber(p), the quantity Wn(X) has a nice interpretation. If we
interpret Xv = 0 as a failed vertex in the “base graph” Gn, Wn(X) is the number of
edges in the subgraph that is induced by the (random) vertex set {v ∈ Vn : Xv = 1}.

Proof. Consider the linear approximation given in Lemma 2.8

L(X) :=

(∑
i

ci(A
(n))2

)−1/2 n∑
i=1

ci(A
(n))Xi.

It is also easy to see that condition (2.11) implies Lyapunov’s condition with δ = 1.
Consequently, by Lindeberg’s central limit theorem

L(X)⇒ N (0, 1).

The claim now easily follows by combining Lemma 2.8 and Slutsky’s theorem. �

It should be possible to extend the result to any sequence of random graphs
satisfying (2.10) and (2.11) by conditioning. Moreover, with appropriately modified
conditions, by a more refined analysis it is possible to vary the sub-exponential
constant M with n. We omit the details.
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3. The multilinear case: Proof of Theorem 1.4

To begin with, let us introduce some notation. Define [n] := {1, . . . , n}, and let
i = (i1, . . . , id) ∈ [n]d be a multiindex. For any subset C ⊆ [d] with cardinality
|C| > 1, we may introduce the “generalized diagonal” of [n]d with respect to C by

(3.1) {i ∈ [n]d : ik = il for all k, l ∈ C}.

This notion of generalized diagonals naturally extends to d-tensors A = (ai)i∈[n]d

(obviously, the generalized diagonal of A with respect to C is the set of coefficients
ai such that i lies on the generalized diagonal of [n]d with respect to C). If d = 2
and C = {1, 2}, this gives back the usual notion of the diagonal of an n× n matrix.
Moreover, write

[n]d := {i ∈ [n]d : i1, . . . , id are pairwise different}.

If A,B are d-tensors, we define 〈A,B〉 =
∑

i∈[n]d aibi. Given a set of d vectors
v1, . . . , vd ∈ Rn, we write v1 ⊗ . . .⊗ vd for the outer product

(v1 ⊗ . . .⊗ vd)i1...id :=
d∏
j=1

vjij .

In fact, v1 ⊗ . . .⊗ vd is a d-tensor. In particular, we may regard A as a multilinear
form by setting A(v1, . . . , vd) := 〈A, v1 ⊗ . . .⊗ vd〉 for any v1, . . . , vd ∈ Rn.

The latter idea may be generalized by noting that any partition J = {J1, . . . , Jk}
of [d] induces a partition of the space of d-tensors as follows. Identify the space of
all d-tensors with Rnd and decompose

(3.2) Rnd ∼=
k⊗
i=1

RnJi ∼=
k⊗
i=1

⊗
j∈Ji

Rn.

For any x = x(1)⊗ . . .⊗x(k), the identification with a d-tensor is given by xJ1,...,Jd =∏k
l=1 x

(l)
JIl

. For example, for d = 4 and I = {{1, 4}, {2, 3}} we have two matrices
x, y and xJ1,J2,J3,J4 = xJ1J4yJ2J3 . Using this representation, any d-tensor A can be
trivially identified with a linear functional on Rnd via the standard scalar product,
i. e.

Ax = A
(
x(1) ⊗ . . .⊗ x(k)

)
= 〈A, x(1) ⊗ . . .⊗ x(k)〉 =

∑
i∈[n]d

ai

d∏
l=1

x
(l)
iJl
.

These identifications give rise to a family of tensor-product matrix norms: for any
partition J ∈ Pd, define a norm on the space (3.2) by

‖x‖J := ‖x(1) ⊗ . . .⊗ x(k)‖J := max
i=1,...,k

‖x(i)‖2.

Now, we may define ‖A‖J as the the operator norm with respect to ‖·‖J :

(3.3) ‖A‖J = sup
‖x‖J≤1

|Ax|.

This family of tensor norms agrees with the definitions in [Lat06] and [AW15] (among
others).
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Next we extend these definitions to a family of norms ‖A‖J where A is a d-tensor
but J ∈ Pqd for some q ∈ N. To this end, we first embed A into the space of
qd-tensors. Indeed, denote by eq(A) the qd-tensor given by
(3.4)

(eq(A))i :=

{
ai1iq+1i2q+1...i(k−1)q+1

if ikq+j = ikq+1 ∀k = 0, . . . , d− 1 ∀j = 2, . . . , q

0 else.

In other words, we divide i ∈ [n]qd into d consecutive blocks with q indices in
each block (i1, . . . , iq), (iq+1, . . . , i2q), . . . and only consider such indices for which all
elements of these blocks take the same value. In fact, this is an intersection of d
“generalized diagonals”. Now we set

(3.5) ‖A‖J := ‖eq(A)‖J .
For q = 1, this definition trivially agrees with (3.3).

Remark 3.1. The norms (3.5) are monotone with respect to the underlying partition
in the following sense. For any two partitions I = {I1, . . . , Iµ} and J = {J1, . . . , Jν}
of [qd], we say that I is finer than J (and write I 4 J ) if for any j = 1, . . . , µ
there is a k ∈ {1, . . . , ν} such that Ij ⊆ Jk. If I 4 J , we have ‖A‖I ≤ ‖A‖J . In
particular, we always have

(3.6) ‖A‖{{1},...,{qd}} ≤ ‖A‖J ≤ ‖A‖{1,...,qd}.

In view of (3.6), the two “extreme” norms corresponding to the coarsest and the
finest partition of [qd] deserve special attention. Firstly, it is elementary that

(3.7) ‖A‖{1,...,qd} = ‖eq(A)‖HS = ‖A‖HS =
( ∑

i∈[n]d

a2
i

)1/2

.

Here, ‖·‖HS denotes the Hilbert–Schmidt norm. Secondly, we have

‖A‖{{1},...,{qd}} = ‖eq(A)‖op =

{
‖A‖op q = 1

maxi,j|aij| q ≥ 2
,

see Lemma 4.1.
To prove Theorem 1.4, we furthermore need some auxiliary results. The first

one compares the moments of sums of random variables with finite Orlicz norms
to moments of Gaussian polynomials and the second one provides the estimates for
multilinear forms in Gaussian random variables.

Lemma 3.2 ([AW15], Lemma 5.4). For any positive integer k and any p ≥ 2, if
Y1, . . . , Yn are independent symmetric random variables with ‖Yi‖ψ2/k

≤M , then∥∥ n∑
i=1

aiYi
∥∥
p
≤ CkM

∥∥ n∑
i=1

aigi1 · · · gik
∥∥
p
,

where gij are i.i.d. N (0, 1) variables.

Theorem 3.3 ([Lat06], Theorem 1). Let A = (ai)i∈[n]d be a d-tensor, and let
G1, . . . , Gd be i.i.d. standard Gaussian random variables in Rn. Then, for every
p ≥ 2,

C−1
d

∑
J∈Pd

p|J |/2‖A‖J ≤ ‖〈A,G1 ⊗ . . .⊗Gd〉‖p ≤ Cd
∑
J∈Pd

p|J |/2‖A‖J .
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In the proof of Theorem 1.4, we actually show Lp-estimates for fd,A(X). The
following proposition provides the link to concentration inequalities. It was originally
proven by Adamczak in [Ada06] and [AW15], while at this point we cite it in the
form given in [SS18], with a small modification to adjust the constant in front of the
exponential.

Proposition 3.4. Assume that a random variable Z satisfies for every p ≥ 2

‖Z − EZ‖p ≤
d∑

k=1

(Ckp)
k/2

for some constants C1, . . . , Cd ≥ 0. Let L := |{l : Cl > 0}| and r := min{l ∈
{1, . . . , d} : Cl > 0}. Then, for any t > 0

P(|Z − EZ| ≥ t) ≤ 2 exp

(
− log(2)

2(Le)2/r
min

k=1,...,d

{
t2/k

Ck

})
.

Now we are able to prove Theorem 1.4.

Proof of Theorem 1.4. For simplicity, we always write f(X) := fd,A(X). Moreover,
without loss of generality, we may assume the Xi to be centered.

Let X(1), . . . , X(d) be independent copies of the random vector X. Take a set of
i.i.d. Rademacher variables (ε

(j)
i ), i ≤ n, j ≤ d, which are independent of the (X(j))j.

By standard decoupling and symmetrization inequalities (see [PG99, Theorem 3.1.1]
and [PG99, Lemma 1.2.6]),

‖f(X)‖p ≤ Cd

∥∥∥ ∑
i∈[n]d

ai1,...,idX
(1)
i1
· · ·X(d)

id

∥∥∥
p
≤ Cd

∥∥∥ ∑
i∈[n]d

ai1,...,idε
(1)
i1
X

(1)
i1
· · · ε(d)

id
X

(d)
id

∥∥∥
p
.

An iteration of Lemma 3.2 together with ‖Xi‖ψ2/q
≤M hence leads to

‖f(X)‖p ≤ CdM
d
∥∥∥ ∑

i∈[n]d

ai1,...,id(g
(1)
i1,1
· · · g(1)

i1,q
) · · · (g(d)

id,1
· · · g(d)

id,q
)
∥∥∥
p
.

Here, (g
(j)
i,k ) is an array of i.i.d. standard Gaussian random variables. Rewriting

(recall (3.4)) and applying Theorem 3.3 yields

‖f(X)‖p ≤ CdM
d‖〈eq(A),⊗dj=1 ⊗

q
k=1 (g

(j)
i,k )i≤n〉‖p ≤ CdM

d
∑
J∈Pqd

p|J |/2‖A‖J .

The proof is now easily completed by applying Proposition 3.4. �

4. Hanson–Wright-type inequality: Proof of Proposition 1.5

The main task in the proof of Proposition 1.5 is explicitly calculating the norms.

Lemma 4.1. For any d-tensor A and q ≥ 2 we have

‖A‖{{1},...,{qd}} = ‖A‖∞ = max
i1,...,id

|ai1,...,id |.

Proof. Write J = {{1}, . . . , {qd}}. We have

‖A‖J = sup
{∣∣∣ ∑

i1...iqd

(eq(A))i1,...,iqdx
1
i1
· · · xqdiqd

∣∣∣ : |xj| ≤ 1 for all j = 1, . . . , qd
}

= sup
{∣∣∣ ∑

i1,...,id

ai1,...,idx
1
i1
· · ·xqi1x

q+1
i2
· · ·x2q

i1
· · ·x(d−1)q+1

id
· · ·xqdid

∣∣∣ : |xj| ≤ 1
}
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≤ ‖A‖∞ sup
{ ∑
i1,...,id

|x1
i1
x2
i1
| · · · |x(d−1)q+1

id
x

(d−1)q+2
id

| : |xj| ≤ 1
}

≤ ‖A‖∞.

In the third step, we have iteratively used that for xj with |xj| ≤ 1 we also have
|xji | ≤ 1, and applied the Cauchy–Schwarz inequality d times.

To obtain the lower bound, let l1, . . . , ld be the index which achieves the maximum.
Let x1 = . . . = xq = δl1 , xq+1 = . . . = x2q = δl2 and so on, so that

‖A‖J ≥ |al1···ld| = ‖A‖∞.
�

The following easy observation helps in calculating the norms ‖·‖J . For any
partition J = {J1, . . . , Jk} ∈ P[qd] we write J̃ = {J̃1, . . . , J̃k} for

(4.1) J̃j = {i ∈ {1, . . . , d} : Jj ∩ {q(i− 1) + 1, . . . , qi} 6= ∅}.

That is, the sets J̃j indicate which of the d q-blocks intersect Jj. Note that ∪jJ̃j = [d],
but J̃ need not be a partition of [d]. In fact, some sets I may even appear more
than once (with a slight abuse of notation, we choose to keep the set notation in
this case anyway). Note that Remark 3.1 extends from partitions to decompositions
(all definitions remain valid, even in case of some sets appearing multiple times).
Nevertheless, we have by definition

(4.2) ‖A‖J = ‖A‖J̃ := sup
{ ∑
i1,...,id

ai1...id

k∏
j=1

x
(j)
iJ̃j

: ‖x(j)
iJ̃j
‖2 ≤ 1

}
,

i. e. the norm does not depend on J , but on its “projection” J̃ . We will use this
observation in the next lemma to calculate the norms ‖A‖J for quadratic forms (i. e.
d = 2) and any q ≥ 2.

Lemma 4.2. Let A be a symmetric matrix, q ≥ 2 and J be a partition of [2q].
(1) If J̃ contains {1, 2} two or more times, then ‖A‖J = ‖A‖∞.
(2) If J̃ contains {1, 2} and {1} and {2}, then ‖A‖J = ‖A‖∞.
(3) If J̃ = {{1, 2}, {1}, . . . , {1}} or J̃ = {{1, 2}, {2}, . . . , {2}}, then ‖A‖J =

maxi‖Ai·‖2.
(4) If J̃ comprises l times {1} and k times {2} for k ≥ 2, l ≥ 2, then ‖A‖J =
‖A‖∞. On the other hand, if l = 1, k ≥ 2 or k = 1, l ≥ 2 we have ‖A‖J =
maxi‖Ai·‖2.

(5) If J̃ = {{1}, {2}}, then ‖A‖J = ‖A‖op.
(6) We have ‖A‖{[qd]} = ‖A‖HS.

Proof. To see (1), write J̃ = {J̃1, . . . , J̃k}, use the triangle inequality and the fact
that ‖x‖∞ ≤ ‖x‖HS for any tensor x:

‖A‖J = sup
{∑

i,j

aij

l∏
k=1

x
(k)
iJ̃k

}
≤ ‖A‖∞ sup

{∑
i,j

|xij||yij|
}
≤ ‖A‖∞,

where the supremum is taken over all unit vectors x(k). The lower bound follows
from (3.6) and Lemma 4.1.
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(2) follows immediately from J̃ 4 {{1, 2}, {1, 2}}.
(3) follows from the triangle and Cauchy–Schwarz inequality:

‖A‖J ≤ sup
{∑

i

|
l∏

k=1

yki ||
∑
j

aijxij|
}
≤ sup

{∑
i

|
l∏

k=1

yki |‖(aij)j‖2‖xi·‖2

}

≤ max
i
‖(aij)j‖2 sup

{
|
l∏

k=1

yki |‖xi·‖2

}
≤ max

i
‖(aij)j‖2.

The lower bound is obtained by choosing y1, . . . , yl as a Dirac delta on the row for
which maxi‖Ai·‖ is attained.

To see (4), note that the case k ≥ 2, l ≥ 2 is very similar to the second part. If
l = 1, k ≥ 2 or k = 1, l ≥ 2, similar arguments as in the third part give for any
x, y1, . . . , yl with norm at most one

|
∑
i,j

aijxi
∏
k

ykj | ≤
∑
j

|
∏
k

ykj ||
∑
i

aijxi| ≤
∑
j

|
∏
k

ykj ‖(aij)j‖2| ≤ max
i
‖(aij)j‖2.

The lower bound again follows by choosing suitable Dirac deltas.
(5) and (6) are obvious from the definitions. �

Actually, we have the equality

max
i=1,...,n

‖(aij)j‖2 = ‖A‖2→∞,

where ‖A‖p→q := sup
{
‖Ax‖q : ‖x‖p ≤ 1

}
. For the proof, see [CTP17, Proposition

6.1]. Especially this yields maxi=1,...,n‖(aij)j‖2 ≤ ‖A‖op.
We are now ready to prove Proposition 1.5. Throughout the rest of this section,

for a matrix A let us denote by Aod its off-diagonal and by Ad the diagonal part.

Proof of Proposition 1.5. Lemma 4.2 shows that we only need to consider the four
norms ‖A‖HS, ‖A‖op,maxi=1,...,n‖(aij)j‖2 and ‖A‖∞. It is easy to see that ‖A‖HS ≥
‖A‖op ≥ maxi‖(aij)j‖2 ≥ ‖A‖∞. Thus, we need to determine which partitions give
rise to which norms.

The only partition producing the Hilbert–Schmidt norm is J1 = {[qd]}, with
|J1| = 1. The operator norm appears for the decomposition J2 = {{1, . . . , q}, {q +
1, . . . , 2q}} with |J2| = 2. Moreover, it is easy to see that all partitions J3 of
[2q] giving rise to maxi=1,...,n‖(aij)j‖2 satisfy |J3| ∈ {2, . . . , q + 1}. Finally, for all
k = 2, . . . , 2q there are partitions J4 such that ‖A‖J4 = ‖A‖∞.

Hence for a diagonal-free matrix A we have by simply plugging in the norms
calculated in Lemmas 4.1 and 4.2 into Theorem 1.4

P
(∣∣∣∑

i,j

aij(XiXj − EXi EXj)
∣∣∣ ≥ t

)
≤ 2 exp

(
− 1

C
η(A, q, t/M2)

)
,(4.3)

where

η(A, q, t) = min

(
t2

‖A‖2
HS

,
t

‖A‖op

, min
l=2,...,q+1

( t

maxi‖(aij)j‖2

) 2
l
, min
l=2,...,2q

( t

‖A‖∞

) 2
l

)

= min

(
t2

‖A‖2
HS

,
t

‖A‖op

,
( t

maxi‖(aij)j‖2

) 2
q+1
,
( t

‖A‖∞

) 1
q

)
.
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In the last two terms, we can choose the largest l since we can assume that t
‖A‖J

≥ 1

for any partition J , as the minimum is achieved in t2

‖A‖2HS

otherwise.
For matrices with non-vanishing diagonal, we divide the quadratic form into an

off-diagonal and a purely diagonal part, i. e.∑
i,j

aijXiXj =
∑
i,j

aod
ij XiXj +

n∑
i=1

ad
iiX

2
i .

For brevity, let us define P (t) := P
(∣∣∑

i,j aijXiXj−
∑n

i=1 σ
2
i aii
∣∣ ≥ t

)
. Use the above

decomposition and the subadditivity to obtain

P (t) ≤ P
(
|
∑
i,j

aod
ij XiXj| ≥ t/2

)
+ P

(
|
n∑
i=1

ad
ii(X

2
i − σ2

i )| ≥ t/2
)

=: p1(t) + p2(t).

Equation (4.3) can be used to upper bound p1(t) as

p1(t) ≤ 2 exp

(
− 1

C2

η(Aod, q, t/M2)

)
.(4.4)

The diagonal term can be treated by applying Theorem 1.4 for d = 1, q = 4 and
a = (Aii)i=1,...,n. Moreover, it is easy to see that we have ‖a‖{1,2,3,4} =

∑
i(a

d
ii)

2 (cf.
(3.7)) and ‖a‖J = ‖Ad‖∞ for any other decomposition J . Consequently,

p2(t) ≤ 2 exp
(
− 1

C1

min
( t2

‖Ad‖2
HS

,
t

‖Ad‖∞
,
( t

‖Ad‖∞

)2/3

,
( t

‖Ad‖∞

)1/2))
(4.5)

= 2 exp
(
− 1

C1

η1,Ad(t)
)
.(4.6)

Thus, by combining (4.4) and (4.5) we have

P (t) ≤ 4 exp
(
−C min(η(Aod, q, t), η1,Ad(t)

)
.

Now it remains to lower bound the minimum by grouping the terms according to
the different powers of t. This gives

p(t) ≤ 4 exp
(
− 1

C
η̃(A, q, t/M)

)
,

where

η̃(A, q, t) := min

(
t2

‖A‖2HS

,
t

max(‖Aod‖op, ‖Ad‖∞)
,
( t

maxi=1,...,n‖(aij)j‖2

)2/(q+1)

,

(
t

‖A‖∞

)1/q
)
.

Lastly, from the characterization ‖A‖op := supx∈Sn−1|〈x,Ax〉| it can be easily seen
that the inequalities ‖Ad‖∞ ≤ ‖A‖op and ‖Aod‖op ≤ 2‖A‖op hold, and the constant
4 can be changed to 2 by adjusting the constant in the exponent. �

5. The polynomial case: Proof of Theorem 1.6

Let us now treat the case of general polynomials f(X) of total degree D ∈ N.
Before we start, we need to discuss some more properties of the norms ‖A‖J . To this
end, recall the Hadamard product of two d-tensors A,B given by A◦B := (aibi)i∈[n]d

(pointwise multiplication). If we interpret a d-tensor as a function [n]d → R, we may
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define “indicator matrices” 1C for a set C ⊆ [n]d by setting 1C = (ai)i with ai = 1 if
i ∈ C and ai = 0 otherwise. If |J | > 1, we do not have

(5.1) ‖A ◦ 1C‖J ≤ ‖A‖J
in general. However, [AW15, Lemma 5.2] shows a number of situations in which
such an inequality does hold.

Lemma 5.1. Let A = (ai)i∈[n]d be a d-tensor.
(1) If C = {i : ik1 = j1, . . . , ikl = jl} for some 1 ≤ k1 < . . . < kl ≤ d (“generalized

row”), then (5.1) holds.
(2) If C = {i : ik = il ∀k, l ∈ K} for some K ⊂ [d] (“generalized diagonal”), then

(5.1) holds.
(3) If C1, C2 ⊂ [n]d are such that (5.1) holds, then so is C1 ∩ C2.

There is a further situation in which a version of (5.1) holds. Indeed, for any
partition K = {K1, . . . , Ka} ∈ Pd of [d] we define

(5.2) L(K) = {i ∈ [n]d : ik = il ⇔ ∃j : k, l ∈ Kj}.
That is, L(K) is the set of those indices for which the partition into level sets is
equal to K.

Lemma 5.2. Let J ∈ Pqd, K ∈ Pd and A be a d-tensor. Then,

‖A ◦ 1L(K)‖J ≤ 2|K|(|K|−1)/2‖A‖J .

Proof. This is a generalization of [AW15, Corollary 5.3] which corresponds to the
case q = 1. First note that by definition,

‖A ◦ 1L(K)‖J = ‖eq(A ◦ 1L(K))‖J = ‖eq(A) ◦ eq(1L(K))‖J .
Therefore, it suffices to prove that for any qd-tensor B,

‖B ◦ eq(1L(K))‖J ≤ 2|K|(|K|−1)/2‖B‖J .
To see this, observe that eq(1L(K)) is the indicator matrix of a set C which can
be written as an intersection of |K| generalized diagonals (with the cardinality of
the underlying sets of indices in (3.1) always being an integer multiple of q) and
|K|(|K| − 1)/2 sets of the form {i : ikq+1 6= ilq+1} for k < l. Recall that

‖B ◦ 1{ikq+1 6=ilq+1}‖J = ‖B −B ◦ 1{ikq+1=ilq+1}‖J ≤ 2‖B‖J ,
using Lemma 5.1 (2) in the last step. As a consequence, the claim follows by applying
Lemma 5.1 (2) again and a generalization of Lemma 5.1 (3). �

Finally, it remains to note that [AW15, Lemma 5.1] can be generalized as follows.

Lemma 5.3. Let A be a d-tensor, and let v1, . . . , vd ∈ Rn be any vectors. Then, for
any partition J ∈ Pqd, ‖A ◦ ⊗di=1vi‖J ≤ ‖A‖J

∏d
i=1‖vi‖∞.

Proof. Recall equations (4.1) and (4.2). We have

‖A ◦ ⊗di=1vi‖J = sup
{ ∑
i1,...,iqd

(eq(A))i1...iqd(eq(⊗di=1vi))i1...iqd

k∏
j=1

x
(j)
iJj

: ‖x(j)
iJj
‖2 ≤ 1

}

= sup
{ ∑
i1,...,id

ai1...idv
i1
1 · · · v

id
d

k∏
j=1

x
(j)
iJ̃j

: ‖x(j)
iJ̃j
‖2 ≤ 1

}
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≤ sup
{ ∑
i1,...,id

ai1...id

k∏
j=1

x
(j)
iJ̃i

: ‖x(j)
iJ̃j
‖2 ≤ 1

} d∏
i=1

‖vi‖∞

= sup
{ ∑
i1,...,iqd

(eq(A))i1...iqd

k∏
j=1

x
(j)
iJj

: ‖x(j)
iJj
‖2 ≤ 1

} d∏
i=1

‖vi‖∞

= ‖A‖J
d∏
i=1

‖vi‖∞.

To see the third step, for each vl we choose a set Jj such that l ∈ Jj and then
define vectors x̃(j)

iJ̃j
by multiplying x(j)

iJ̃j
by the components of the vectors vl which

were attributed to Jj. In particular, this leads to ‖x̃(j)
iJ̃j
‖2 ≤

∏
l‖vl‖∞‖x

(j)
iJ̃j
‖2, where

the product is taken over all the vectors vl which were attributed to x(j)
iJ̃j
. �

Before we begin with the proof of the concentration results for general polyno-
mials, let us give some definitions. Boldfaced letters will always represent a vector
(mostly a multiindex with integer components), and for any vector i let |i| :=

∑
j ij.

For the sake of brevity we define

Im,d := {(i1, . . . , im) ∈ Nm : |i| = d},
Im,≤d := {(i1, . . . , im) ∈ Nm : |i| ≤ d}.

Given two vectors i,k of equal size, we write k ≤ l if kj ≤ lj for all j, and k < l if
k ≤ l and there is at least one index such that kj < lj. Lastly, by f . g we mean
an inequality of the form f ≤ CD,qg.

Proof of Theorem 1.6. We assume M = 1. For the general case, given random
variables X1, . . . , Xn with ‖Xi‖Ψ2/q

≤ M , define Yi := M−1Xi. The polynomial
f = f(X) can be written as a polynomial f̃ = f̃(Y ) by appropriately modifying the
coefficients, i. e. multiplying each monomial by M r, where r is its total degree. Now
it remains to see that ∂i1...ij f̃(Y ) = M j∂i1...ijf(X).
Step 1. First, we reduce the problem to generalizations of chaos-type functionals

(1.7). Indeed, by sorting according to the total grade, f may be represented as

f(x) =
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∑
i∈[n]ν

c
(d)
(i1,k1),...,(iν ,kν)x

k1
i1
xk2i2 · · ·x

kν
iν

+ c0,

where the constants satisfy c(d)
(i1,k1),...,(iν ,kν) = c

(d)
(iπ1 ,kπ1 ),...,(iπν ,kπν ) for any permutation

π ∈ Sν . As in [AW15], by rearranging and making use of the independence of
X1, . . . , Xn, this leads to the estimate

|f(X)− Ef(X)| ≤
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∣∣∣ ∑
i∈[n]ν

ak
i (Xk1

i1
− EXk1

i1
) · · · (Xkν

iν
− EXkν

iν
)
∣∣∣,

where

ak
i =

D∑
m=ν

∑
kν+1,...,km>0
k1+...+km≤D

∑
iν+1,...,im

(i1,...,im)∈[n]m

(
m

ν

)
c

(k1+...+km)
(i1,k1),...,(im,km)

m∏
α=1

EXkiα
iα
.
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Step 2. Note that ‖Xk
i ‖ψ2/(qk)

= ‖Xi‖kψ2/q
≤ 1. Thus, slightly modifying the proof

of Theorem 1.4 (in particular, also using Lemma 3.2 for the non-linear terms), we
obtain the estimate

‖f(X)− Ef(X)‖p .
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∥∥∥ ∑
i∈[n]ν

ak
i (g

(1)
i1,1
· · · g(1)

i1,qk1
) · · · (g(ν)

iν ,1
· · · g(ν)

iν ,qkν
)
∥∥∥
p
.

Here, (g
(j)
i,k ) is an array of i.i.d. standard Gaussian random variables.

Moreover, the family (aki )ν∈{1,...,d},k∈Iν,d,i∈[n]ν gives rise to a d-tensor Ad as follows.
Given any index i = (i1, . . . , id) there is a unique number r ∈ {1, . . . , d} of distinct
elements j1, . . . , jr with each jl appearing exactly kl times in i. Consequently, we
set ai1...id := a

(l1,...,lr)
j1,...,jr

, and Ad = (ai)i∈[n]d . Note that this is well-defined due to the
symmetry assumption.

For any k ∈ Iν,d denote by K(k) = K(k1, . . . , kν) ∈ Pd the partition which is de-
fined by splitting the set {1, . . . , d} into consecutive intervals of length k1, . . . , kν . In
other words, K(k) = {K1, . . . , Kν} withKl = {

∑l−1
i=1 ki+1,

∑l−1
i=1 ki+2, . . . ,

∑l
i=1 ki},

l = 1, . . . , ν. Now, recalling the definitions of eq (3.4) and of L(K) (5.2), by rewriting
and applying Lemma 5.1 we obtain

‖f(X)− Ef(X)‖p .
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

‖〈eq(Ad ◦ 1L(K(k))),⊗νj=1 ⊗
qkj
k=1 (g

(j)
i,k )i≤n〉‖p

.
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∑
J∈Pqd

p|J |/2‖Ad ◦ 1L(K(k1,...,kν))‖J

.
D∑
d=1

∑
J∈Pqd

p|J |/2‖Ad‖J .

(5.3)

Step 3. Next, we replace ‖Ad‖J by ‖Ef (d)(X)‖J . To this end, first note that for
i ∈ [n]d with distinct indices j1, . . . , jν which are taken l1, . . . , lν times, we have

E
∂df

∂xi1 . . . ∂xid
(X) =

∑
k:k≥l

D∑
m=ν

∑
kν+1,...,km>0
k1+...+km≤D

∑
jν+1,...,jm

(j1,...,jm)∈[n]m((
m

ν

)
ν!c

(k1+...+km)
(j1,k1),...,(jm,km)

ν∏
α=1

EXkα−lα
jα

m∏
α=ν+1

EXkα
jα

ν∏
α=1

kα!

(kα − lα)!

)
= ν!l1! · · · lν !ai1,...,id +R

(d)
i ,

where the “remainder term” R(d)
i corresponds to the set of indices k satisfying k > l.

If d = D, we clearly have R(d)
i = 0, and therefore

(5.4) E
∂Df

∂xi1 . . . ∂xiD
(X) = ν!l1! · · · lν !ai1...iD = ν!|I1|! · · · |Iν |!ai1...iD ,

where I = {I1, . . . , Iν} is the partition given by the level sets of the index i. It
follows that for any partition J ∈ PqD,

‖AD‖J ≤
∑
K∈PD

‖AD ◦ 1L(K)‖J ≤
∑
K∈PD

‖Ef (D)(X) ◦ 1L(K)‖J . ‖Ef (D)(X)‖J ,
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using the partition of unity 1 =
∑
K∈PD 1L(K) and the triangle inequality in the first,

equation (5.4) in the second and Lemma 5.2 in the last step.
The proof is now completed by induction. More precisely, in the next step will

show that for any d ∈ {1, . . . , D − 1} and any partitions I = {I1, . . . , Iµ} ∈ Pd,
J = {J1, . . . , Jν} ∈ Pqd,

(5.5) ‖R(d) ◦ 1L(I)‖J .
D∑

k=d+1

∑
K∈Pqk
|K|=|J |

‖Ak‖K.

Having (5.5) at hand, it follows by reverse induction and Lemma 5.2 that
D∑
d=1

∑
J∈Pqd

p|J |/2‖Ad‖J .
D∑
d=1

∑
J∈Pqd

p|J |/2‖Ef (d)(X)‖J .

Plugging this into (5.3) and applying Proposition 3.4 finishes the proof.
Step 4: To show (5.5), let us analyze the “remainder tensors” R(d) in more

detail. To this end, fix d ∈ {1, . . . , D − 1} and partitions I = {I1, . . . , Iν} ∈ Pd,
J = {J1, . . . , Jµ} ∈ Pqd, and let l be the vector with lα := |Iα| (note that this
implies |l| = d). For any k ∈ Iν,≤D with k > l, we define a d-tensor S(d,k)

I =

(s
(d,k1,...,kν)
i )i∈[n]d = (s

(d)
i )i∈[n]d as follows:

s
(d)
i = 1i∈L(I)

D∑
m=ν

∑
kν+1,...,km>0
k1+...+km≤D

∑
jν+1,...,jm

(j1,...,jm)∈[n]m

(
m

ν

)
c
(k1+...+km)

(j1,k1),...,(jm,km)

ν∏
α=1

EXkα−lα
jα

m∏
α=ν+1

EXkα
jα

Here, we denote by jα the value of i on the level set Iα. Clearly,

R(d) ◦ 1L(I) =
∑

k∈Iν,≤D
k>l

ν!
k1

(k1 − l1)!
· · · kν

(kν − lν)!
S

(d,k)
I .

Therefore, it remains to prove that there is a partition K ∈ Pq|k| with |K| = |J |
such that

(5.6) ‖S(d,k)
I ‖J . ‖A|k|‖K.

The tensor will be given by an appropriate embedding of the d-tensor S(d,k)
I . To

this end, choose any partition Ĩ = {Ĩ1, . . . , Ĩν} ∈ P|k| with |Ĩα| = kα and Iα ⊂ Ĩα for
all α. Embedding the d-tensor S(d,k)

I into the space of |k|-tensors is done by defining
a new tensor S̃|k| = (s̃

|k|
i )i given by

(5.7) s̃
|k|
i = s

(d)
i[d]

1i∈L(Ĩ).

We choose the partition K = {K1, . . . , Kµ} defined in the following way: for any
j, we have Jj ⊂ Kj, so that it remains to assign the elements r ∈ {qd+ 1, . . . , q|k|}
to the sets Kj. Write r = ηq +m for some η ∈ {d, . . . , |k| − 1} and m ∈ {1, . . . , q}.
Since Ĩ is a partition of |k|, there is a unique j ∈ {1, . . . , ν} such that η + 1 ∈ Ĩj.
Take the smallest element t in Ĩj – since Ij ⊂ Ĩj, we have t ∈ [d] – and add r to the
same set as π(r) := (t− 1)q +m.

We claim that

(5.8) ‖S(d,|k|)
I ‖J ≤ ‖S̃|k|‖K.
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To see this, let x(β) = (x
(β)
iJβ

), β = 1, . . . , µ, be a collection of vectors satisfying

‖x(β)‖2 ≤ 1. This gives rise to a further collection of unit vectors y(β) = (y
(β)
iKβ

),
β = 1, . . . , µ, defined by

y
(β)
iKβ

= x
(β)
iKβ∩[qd]

∏
r∈Kβ\[qd]

1ir=iπ(r)

(recall the definition of π(r) given in the paragraph above). Now, it follows that∑
|i[d]|≤n

s
(d)
i[d]

µ∏
β=1

x
(β)
(eq(i))Jβ

=
∑
|i[|k|]|≤n

s̃
|k|
i|k|

µ∏
β=1

x
(β)
(eq(i))Jβ

=
∑
|i[|k|]|≤n

s̃
(|k|)
i[|k|]

µ∏
β=1

y
(β)
(eq(i))Kβ

.

These equations follow from the definition of the matrix S̃|k| and the fact that if
i ∈ eq(L(Ĩ)), then for r > qd, ir = iπ(r), which implies y(β)

iKβ
= x

(β)
iKβ∩[qd]

= x
(β)
iJβ

. As

this holds true for any collection x(β), we obtain (5.8).
Finally, we prove

(5.9) ‖S̃|k|‖K . ‖A|k|‖K

for any partition K ∈ Pq|k|. To see this, note that if i ∈ L(Ĩ), we have s̃|k|i =

a
|k|
i

∏ν
α=1 EX

kα−lα
iα

. As a consequence,

S̃|k| = (A|k| ◦ 1L(Ĩ)) ◦ ⊗
|k|
α=1vα,

where the vectors vα are defined by vα = (EXkα−lα
i )i≤n if α ∈ {min I1, . . . ,min Iν}

and vα = (1, . . . , 1), otherwise. In particular, we always have ‖vα‖∞ . 1, and
therefore, by Lemma 5.3,

‖S̃|k|‖K . ‖A|k| ◦ 1L(Ĩ)‖K,

from where we easily arrive at (5.9) by applying Lemma 5.2.
Now, (5.6) follows by combining (5.8) and (5.9), which finishes the proof. �

6. The general sub-exponential case: α ∈ (0, 1]

Using slightly different techniques than in the proofs of Theorem 1.4 and Theorem
1.6, we may obtain concentration results for polynomials in independent random
variables with bounded ψα-norms for any α ∈ (0, 1]. Here, the key difference is
that we will not compare their moments to products of Gaussians but to Weibull
variables.

To this end, we need some more notation. Let A = (ai)i∈[n]d be a d-tensor and
I ⊂ [d] a set of indices. Then, for any iI := (ij)j∈I , we denote by AiIc = (ai)iIc the
(d − |I|)-tensor defined by fixing ij, j ∈ I. For instance, if d = 4, I = {1, 3} and
i1 = 1, i3 = 2, then AiIc = (a1j2k)jk. We will also need the notation P (Ic) for the
set of all partitions of Ic.

For I = [d], i. e. we fix all indices of i, we interpret AiIc = ai as the i-th entry
of A. Moreover, in this case, we assume that there is a single element J ∈ P (Ic)
(which we may call the “empty” partition), and ‖AiIc‖J = |ai| is just the Euclidean
norm of ai. Finally, note that if I = ∅, iI does not indicate any specification, and
AiIc = A.
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Using the characterization of the Ψα norms in terms of the growth of Lp norms
(see Appendix A for details), [KL15, Corollary 2] now yields a result similar to
Theorem 1.4 for all α ∈ (0, 1]:

Corollary 6.1. Let X1, . . . , Xn be a set of independent, centered random variables
with ‖X‖Ψα

≤ M for some α ∈ (0, 1] , A be a symmetric d-tensor with vanishing
diagonal and consider fd,A as in (1.7). We have for any t > 0

P
(
|fd,A(X)| ≥ t

)
≤ 2 exp

(
− 1

Cd,α
min
I⊂[d]

min
J∈P (Ic)

( t

Md maxiI‖AiIc‖J

) 2α
2|I|+α|J |

)
.

The main goal of this section is to generalize Corollary 6.1 to arbitrary polynomials
similarly to Theorem 1.6. This yields the following result:
Theorem 6.2. Let X1, . . . , Xn be a set of independent random variables satisfying
‖Xi‖ψα ≤ M for some α ∈ (0, 1] and M > 0. Let f : Rn → R a polynomial of total
degree D ∈ N. Then, for any t > 0,

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CD,α
min

1≤d≤D
min
I⊂[d]

min
J∈P (Ic)

( t

MdmaxiI‖(Ef (d)(X))iIc ‖J

) 2α
2|I|+α|J |

)
.

To prove Theorem 6.2, note that one particular example of centered random
variables with ‖X‖Ψα

≤ M is given by symmetric Weibull variables with shape
parameter α (and scale parameter 1), i. e. symmetric random variables w with
P(|w| ≥ t) = exp(−tα). In fact, [KL15, Example 3] especially implies the following
analogue of of Lemma 3.3:

Lemma 6.3. Let A = (ai)i∈[n]d be a d-tensor and (wji ), i ≤ n, j ≤ d, an array of
i.i.d. Weibull variables with shape parameter α ∈ (0, 1]. Then, for every p ≥ 2,

C−1
α,d

∑
I⊂[d]

∑
J∈P (Ic)

p|I|/α+|J |/2 max
iI
‖AiIc‖J

≤ ‖〈A,w1 ⊗ . . .⊗ wd〉‖p ≤ Cα,d
∑
I⊂[d]

∑
J∈P (Ic)

p|I|/α+|J |/2 max
iI
‖AiIc‖J .

Moreover, we need a replacement of Lemma 3.2. Here, instead of Gaussian random
variables we use Weibull random variables to compare the p-th moments:

Lemma 6.4. For any k ∈ N, any α ∈ (0, 1] and any p ≥ 2, if Y1, . . . , Yn are
independent symmetric random variables with ‖Yi‖ψα/k ≤M , then∥∥∥ n∑

i=1

aiYi

∥∥∥
p
≤ Cα,kM

∥∥∥ n∑
i=1

aiwi1 · · ·wik
∥∥∥
p
,

where wij are i.i.d. Weibull variables with shape parameter α.

Proof. We extend the arguments given in the proof of [KL15, Corollary 2]. As
always, we assume M = 1. Moreover, note that it suffices to prove Lemma 6.4
for p ∈ 2N. It follows from Lemma 6.3 that ‖wij‖p ≥ Cαp

1/α for any i, j, from
where we easily arrive at ‖wi1 · · ·wik‖p ≥ Cα,kp

k/α. Consequently, for a set of
independent Rademacher variables ε1, . . . , εn which are independent of the (Yi)i,
‖Yi‖p = ‖εiYi‖p ≤ Cαp

k/α ≤ Cα,k‖wi1 . . . wik‖p. Therefore, for any m ∈ N and using
standard symmetrization inequalities,∥∥∥ n∑

i=1

aiYi

∥∥∥
2m
≤ 2
∥∥∥ n∑
i=1

aiεiYi

∥∥∥
2m
≤ Cα,k

∥∥∥ n∑
i=1

aiwi1 · · ·wik
∥∥∥

2m
.
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�

Our next goal is to adapt Lemmas 5.1, 5.2 and 5.3 to the “restricted” tensors AiIc .
That is, we examine whether (a modification of) the inequality

(6.1) ‖(A ◦ 1C)iIc‖J ≤ ‖AiIc
‖J

still holds in this situation, where J is a partition of Ic.

Lemma 6.5. Let A = (ai)i∈[n]d be a d-tensor, I ⊂ [d] and iI ∈ [n]I fixed.

(1) If C = {i : ik1 = j1, . . . , ikl = jl} for some 1 ≤ k1 < . . . < kl ≤ d (“generalized
row”), then (6.1) holds.

(2) If C = {i : ik = il ∀k, l ∈ K} for some K ⊂ [d] (“generalized diagonal”), then
(6.1) holds.

(3) If C1, C2 ⊂ [n]d are such that (6.1) holds, then so is C1 ∩ C2.
(4) If K ∈ Pd, then ‖(A ◦ 1L(K))iIc‖J ≤ 2|K|(|K|−1)/2‖AiIc‖J .
(5) For any vectors v1, . . . , vd ∈ Rn, ‖(A ◦ ⊗di=1vi)iIc‖J ≤ ‖AiIc‖J

∏d
i=1‖vi‖∞.

Proof. To see (1), we may assume that {k1, . . . , kl}∩I = ∅ (note that if {k1, . . . , kl}∩
I 6= ∅, either the conditions are not compatible, in which case (A ◦ 1C)iIc = 0, or we
can remove some of the conditions and obtain a subset with {k1, . . . , kl̃}∩I = ∅). In
this case, if C is a generalized row, then (A ◦ 1C)iIc = AiIc ◦ 1C′ for some generalized
row C ′ in Ic. This proves (1).

If C is a generalized diagonal, we have to consider two situations. Assuming
K ∩ I = ∅, i. e. K is subset of Ic, we immediately obtain (2). On the other hand, if
K ∩ I 6= ∅, then (A ◦ 1C)iIc = AiIc ◦ 1C′ for some generalized row C ′ in Ic, readily
leading to (2) again.

(3) is clear. To see (4), one may argue as in the proof of Lemma 5.2 (for q = 1),
replacing Lemma 5.1 (2) and (3) by their analogues we just proved. Finally, an easy
modification of the proof of Lemma 5.3 yields (5). �

We are now ready to prove Theorem 6.2. Here, we recall the notation used in
the proof of Theorem 1.6, with the only difference that now, by f . g we mean an
inequality of the form f ≤ C(D,α)g, where C(D,α) may depend on D,α.

Proof of Theorem 6.2. We will follow the proof of Theorem 1.6. In particular, let
us assume M = 1.
Step 1. Recall the inequality

|f(X)− Ef(X)| ≤
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∣∣∣ ∑
i∈[n]ν

ak
i (Xk1

i1
− EXk1

i1
) · · · (Xkν

iν
− EXkν

iν
)
∣∣∣

from the proof of Theorem 1.6.
Step 2. Applying Lemma 6.5, we arrive at

‖f(X)− Ef(X)‖p .
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∥∥∥ ∑
i∈[n]ν

ak
i (w

(1)
i1,1
· · ·w(1)

i1,k1
) · · · (w(ν)

iν ,1
· · ·w(ν)

iν ,kν
)
∥∥∥
p
.
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Here, (w
(j)
i,k ) is an array of i.i.d. symmetric Weibull variables with shape parameter

α. Now we may define d-tensors Ad as in the proof of Theorem 1.6. Similarly as in
(5.3), rewriting and applying Lemma 6.3 together with Lemma 6.5 (4) then yields

‖f(X)− Ef(X)‖p .
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

‖〈Ad ◦ 1L(K(k1,...,kν)),⊗
ν
j=1 ⊗

kj
k=1 (w

(j)
i,k)i≤n〉‖p

.
D∑
d=1

d∑
ν=1

∑
k∈Iν,d

∑
I⊂[d]

∑
J∈P (Ic)

p|I|/r+|J |/2 max
iI
‖(Ad ◦ 1L(K(k1,...,kν)))iIc ‖J

.
D∑
d=1

∑
I⊂[d]

∑
J∈P (Ic)

p|I|/r+|J |/2 max
iI
‖(Ad)iIc ‖J .

Step 3. In the proof of Theorem 1.6 we have decomposed

E
∂df

∂xi1 . . . ∂xid
(X) = ν!l1! · · · lν !ai1,...,id +R

(d)
i

with a remainder tensor R(d)
i corresponding to the set of indices k with k > l and

R
(d)
i = 0 for d = D. Again, for any I ⊂ [D] and any partition J ∈ P (Ic),

‖(AD)iIc‖J ≤
∑
K∈PD

‖(AD ◦ 1L(K))iIc‖J ≤
∑
K∈PD

‖(Ef (D)(X) ◦ 1L(K))iIc‖J

. ‖(Ef (D)(X))iIc‖J ,
using Lemma 6.5 (4) in the last step. To complete the proof, we need to show that
for any d = 1, . . . , D − 1, any I ⊂ [d] and any partitions I ∈ P ([d]), J ∈ P ([d]\I),

(6.2) ‖(R(d) ◦ 1L(I))iIc‖J .
D∑

k=d+1

∑
K∈P ([k]\I)
|K|≥|J |

‖(Ak)iIc‖K.

Actually, analyzing the proof one can see it is possible to restrict the second sum on
the right-hand side to partitions K with |K| ∈ {|J |, |J | + 1}. Once having proven
(6.2), it follows from reverse induction that

D∑
d=1

∑
I⊂[d]

∑
J∈P (Ic)

p|I|/r+|J |/2 max
iI
‖(Ad)iIc‖J .

D∑
d=1

∑
I⊂[d]

∑
J∈P (Ic)

p|I|/r+|J |/2 max
iI
‖(Ef (d)(X))iIc ‖J .

Here, we use that for any p ≥ 2 and any |K| ≥ |J | we have p|J |/2 ≤ p|K|/2. In view
of Step 2 and Proposition 3.4, this finishes the proof.
Step 4. One last time we need to recall some definitions from the proof of The-

orem 1.6. We fix some I ⊂ [d] and iI , an admissible partition I ∈ P ([d]) and some
associated extension Ĩ ∈ P ([k]), the d-tensor S(d,k)

I = (s
(d,k1,...,kν)
i )i∈[n]d = (s

(d)
i )i∈[n]d

and for any k ∈ Iν,≤D with k > l a |k|-tensor S̃|k|. The notion of admissibility was
not relevant in Theorem 1.6, as we have not fixed any indices I and values iI ∈ [n]I .
Here, it simply means that the level sets have to compatible with the fact that we
have fixed some of the partial derivatives by I and iI . Also, note that I is a parti-
tion of [d] and not of [d]\I, since it arises from level sets of partial derivatives and
includes the partial derivatives taken in I.

Our aim is to prove that there is a partition K ∈ P ([k]\I) with |K| ∈ {|J |, |J |+1}
such that

(6.3) ‖(S(d,k)
I )iIc‖J . ‖(A|k|)iIc‖K.
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K = {K1, . . . , Kµ+1} will be defined as follows: for j = 1, . . . , µ, we add all elements
of Jj to Kj, so that it remains to assign the elements r ∈ {d+ 1, . . . , |k|} to the sets
Kj. Since Ĩ is a partition of |k|, there is a unique k ∈ {1, . . . , ν} such that r ∈ Ĩk.
Take the smallest element t =: π(r) in Ĩk (since Ik ⊂ Ĩk, we have t ∈ [d]). If t ∈ Ic,
it follows that t ∈ Kj for some set Kj and we add r to Kj. If t ∈ I, we assign r to
an “extra set” Kµ+1. In particular, it may happen that Kµ+1 = ∅. In this case, we
ignore β = µ+ 1 in the rest of the proof.

Figure 1. An illustration of the procedure of producing the partition
K; here, I = {1, 2} and we used colors to indicate the partition,
i. e. Ĩ = {{1, 2, 5}, {3, 6, 8}, {4, 7}}. {8} belongs to K4 = Kµ+1 since
{3} ∈ I. Changing its color to yellow would produce a partition K
with 3 subsets.

First off, we claim

(6.4) ‖(S(d,|k|)
I )iIc‖J ≤ ‖(S̃

|k|)iIc‖K.

To see (6.4), let x = (x(β))β=1,...,µ = ((x
(β)
iJβ

))β=1,...,µ, be such that

|x|J = max
β=1,...,µ

‖x(β)‖2 ≤ 1.

We embed this in the unit ball with respect to |x|K = maxi=1,...,µ+1‖xβ‖2 by defining
y = (y(β))β=1,...,µ+1 via

y
(β)
iKβ

=

{
x

(β)
iKβ∩[d]

∏
r∈Kβ\[d] 1ir=iπ(r) β = 1, . . . , µ∏

r∈Kµ+1
1ir=iπ(r) β = µ+ 1.

Note that y(µ+1) only has a single non-zero element, and thus it is easy to see that
|y|K ≤ 1. Moreover, by the definition of the matrix S̃|k| and the fact that if i ∈ L(Ĩ),
then for r > d, ir = iπ(r), which implies y(β)

iKβ
= x

(β)
iKβ∩[d]

= x
(β)
iJβ

as well as y(µ+1)
iKµ+1

= 1

we have

〈(S(d,k))iIc ,

µ⊗
β=1

x(β)〉 = 〈(S̃(|k|))iIc ,

µ+1⊗
β=1

y(β)〉.(6.5)

Hence, the supremum on the left hand side of (6.4) is taken over a subset of the
unit ball with respect to |x|K.

Finally, it remains to prove

(6.6) ‖(S̃|k|)iIc‖K . ‖(A|k|)iIc‖K
for any partition K ∈ P (Ic). This may be achieved as in the proof of Theorem 1.6,
replacing Lemma 5.3 by Lemma 6.5 (5).

Combining (6.4) and (6.6) yields (6.3), which finishes the proof. �
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It remains to prove Proposition 1.1 and Theorem 1.2 (from which Corollary 1.3
follows immediately).

Proof of Proposition 1.1. The case α ∈ (0, 1] follows immediately from the d = 2
case of Corollary 6.1. α = 2 corresponds to the well-known Hanson–Wright inequal-
ity, see e. g. [RV13]. �

Proof of Theorem 1.2. Let α ∈ (0, 1] and consider the bound given by Theorem 6.2.
Fix any d = 1, . . . , D. Then, for any I ⊂ [d], any iI and any J ∈ P (Ic), we have

‖(Ef (d)(X))iIc‖J ≤ ‖(Ef
(d)(X))iIc‖HS ≤ ‖Ef (d)(X)‖HS

(using (3.7)) as well as
α

d
≤ 2α

2|I|+ α|J |
≤ 2.

If t/(Md‖Ef (d)(X)‖HS) ≥ 1, this immediately yields the result. Otherwise, note that
the tail bound given in Theorem 1.2 is trivial. (In fact, here one needs to ensure
that CD,α is sufficiently large, e. g. CD,α ≥ 1. It is not hard to see that in general
this condition will be satisfied anyway.)

In a similar way, it is possible to derive the same results for α = 2/q and any
q ∈ N from Theorem 1.6.

From these results, the exponential moment bound follows by standard arguments,
see for example [BGS18, Proof of Theorem 1.1]. �

Appendix A. Properties of Orlicz quasinorms

As mentioned in the introduction, Orlicz norms (1.5) satisfy the triangle inequality
only for α ≥ 1. However, for any α ∈ (0, 1) (1.5) still is a quasinorm, which for many
purposes is sufficient. We shall collect some elementary results on Orlicz quasinorms
in this appendix. The first result is a Hölder-type inequality for the Ψα norms.

Lemma A.1. Let X1, . . . , Xk be random variables such that ‖Xi‖Ψαi
<∞ for some

αi ∈ (0, 1] and let t := (
∑k

i=1 α
−1
i )−1. Then ‖

∏k
i=1 Xi‖Ψt

<∞ and∥∥∥ k∏
i=1

Xi

∥∥∥
Ψt
≤

k∏
j=1

‖Xi‖Ψαi
.

Proof. By homogeneity we can assume ‖X‖Ψαi
= 1 for all i = 1, . . . , k. We will

need the general form of Young’s inequality, i. e. for all p1, . . . , pk > 1 satisfiyng∑k
i=1 p

−1
i = 1 and any x1, . . . , xk ≥ 0 we have

k∏
i=1

xi ≤
k∑
i=1

p−1
i xpii ,

which follows easily from the concavity of the logarithm. If we apply this to pi :=
αit
−1 and use the convexity of the exponential function, we obtain

E exp
( k∏
i=1

|Xi|t
)
≤ E exp

( k∑
j=1

p−1
i |Xi|αi

)
≤

k∑
j=1

p−1
i E exp

(
|Xi|αi

)
≤ 2.

Consequently, we have ‖
∏k

i=1Xi‖Ψt
≤ 1. �
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The random variables X1, . . . , Xk need not be independent, i. e. we can consider
a random vector X = (X1, . . . , Xk) with marginals having α-sub-exponential tails.
The special case αi = α for all i = 1, . . . , k gives∥∥∥ k∏

i=1

Xi

∥∥∥
Ψα/k

≤
k∏
j=1

‖Xi‖Ψα
.

To state the other lemmas, for any 0 < α < 1 define

(A.1) dα := (αe)1/α/2 and Dα := (2e)1/α.

Lemma A.2. For any 0 < α < 1 we have

(A.2) dα sup
p≥1

‖X‖p
p1/α

≤ ‖X‖Ψα
≤ Dα sup

p≥1

‖X‖p
p1/α

.

The statement of the lemma remains true for α ≥ 1, with (α-independent con-
stants) dα = 1/2 and Dα = 2e, see [Bob10, Section 8]. In the proof, we will closely
follow the proof therein, but keep track of the α-dependent constants.

Proof. We begin with the left inequality. By homogeneity, we assume ‖X‖Ψα
= 1.

First let us show that we have

(A.3) g(x) := (αe)−1/α ex
α − x ≥ 0 for x ≥ 0.

Note that g is continuous on [0,∞) and differentiable on (0,∞) with g(0) > 0
and g(x) → ∞ as x → ∞. Therefore, it suffices to find the critical points. We
can rewrite the condition g′(x) = 0 as eyy = y1/α(αe)1/α, setting y := xα. From
this representation it can be seen that there can be at most two points x0 and x1

satisfying this condition. One of these points is xα := α−1/α, and we have g(xα) = 0.
A short calculation shows that g′′(xα) = α1/α+1 > 0, so that xα is a global minimum,
from which g ≥ 0 follows.

Next, from this we can infer for all p ≥ 1 and α > 0

(A.4) xp ≤
( p
αe

)p/α
ex

α

.

Indeed, by a transformation y = xp and the change α̃ = α
p
this is just an application

of (A.3). Consequently, for any p ≥ 1 we have

E|X|p ≤
( p
αe

)p/α
E exp (|X|α) ≤ 2

( p
αe

)p/α
≤ 2p

( p
αe

)p/α
,

i. e.
‖X‖p ≤ 2(αe)−1/αp1/α.

For the second inequality, again assume that supp≥1

‖X‖p
p1/α

= 1. First, we need to
extend the the supremum to p ∈ [α,∞), which can be done as follows. For any
p ∈ [α, 1) we have

‖X‖p
p1/α

≤ ‖X‖1

p1/α
≤ 1

p1/α
≤ 1

α1/α

and therefore

sup
p≥α

‖X‖p
p1/α

≤ 1

α1/α
.
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Now, by Taylor’s expansion and using the inequality nn ≤ enn! this gives

E exp

(
|X|α

tα

)
= 1 +

∞∑
n=1

E|X|αn

tαnn!
≤ 1 +

∞∑
n=1

nn

n!tαn
≤ 1 +

∞∑
n=1

( e
tα

)n
=

1

1− e/tα
.

For t = (2e)1/α this is less or equal to 2, so that

‖X‖Ψα
≤ (2e)1/α sup

p≥1

‖X‖p

p1/α
.

�

Lemma A.3. For any 0 < α < 1 and any random variables X, Y we have

(A.5) ‖X + Y ‖Ψα
≤ 21/α

(
‖X‖Ψα

+ ‖Y ‖Ψα

)
.

Proof. Let K := ‖X‖Ψα
and L := ‖Y ‖Ψα

and define t := 21/α(K + L). We have

E exp

(
|X + Y |α

tα

)
≤ E exp

(
(|X|+ |Y |)α

tα

)
≤ E exp

(
|X|α + |Y |α

2(K + L)α

)
≤ E exp

(
|X|α

2Kα

)
exp

(
|Y |α

2Lα

)
≤ 1

2
E exp

(
|X|α

Kα

)
+

1

2
E exp

(
|Y |α

Lα

)
≤ 2.

Here, the second step follows from the inequality (x + y)α ≤ xα + yα valid for all
x, y ≥ 0 and α ∈ [0, 1], and the fourth one is an application of Young’s inequality
ab ≤ a2/2 + b2/2 for all positive a, b. �

Lemma A.4. Let 0 < α < 1. For all random variables X we have

‖EX‖Ψα
≤ 1

dα(log 2)1/α
‖X‖Ψα

.

Proof. Assuming ‖X‖Ψα
<∞, an application of Lemma A.2 gives

‖EX‖Ψα
=
|EX|

(log 2)1/α
≤ ‖X‖1

(log 2)1/α
≤ 1

dα(log 2)1/α
‖X‖Ψα

.

�

As a consequence of the last two results, we can readily infer the following corol-
lary.

Corollary A.5. For any α > 0 and any random variable X we have

‖X − EX‖Ψα
≤ 21/α

(
1 + (dα log 2)−1/α

)
‖X‖Ψα

.
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