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Abstract. This paper discusses ambiguity in the context of single-name credit

risk. We focus on uncertainty on the default intensity but also discuss un-

certainty on the recovery in a fractional recovery of the market value. This
approach is a first step towards integrating uncertainty in credit risky term

structure models and can profit from its simplicity. We derive drift conditions

in a Heath-Jarrow-Morton forward rate setting in the case of ambiguous de-
fault intensity in combination with zero recovery, and in the case of ambiguous

fractional recovery of the market value.
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1. Introduction

Recently, an increasing amount of literature focuses on uncertainty as it relates
to financial markets. The problem is that, the probability distribution of random-
ness in these markets is unknown. Typically, the unknown distribution is either
estimated by statistical methods or calibrated to given market data by means of a
model for the financial market. For example, in credit risk, the default probability
is not observed, hence, have to be estimated from observable data. These methods
introduce a large model risk.

Already, [21] pointed towards a formulation of risk which is able to treat such
challenges in a systematic way. He was followed by [14], who called random vari-
ables with known probability distribution certain, and those where the probability
distribution is not known as uncertain. In this paper, we address these problems
by constructing a model such that the parameters are characterised by uncertainty.
Then, a single probability measure in a classical model, is replaced by a family of
probability measures, that is, a full class of models.

Following the modern literature in the area, we will call the feature that the prob-
ability distribution is not entirely fixed, ambiguity. This area has recently renewed
the attention of researchers in mathematical finance to fundamental subjects such
as arbitrage conditions, pricing mechanisms, and super-hedging, see for example,
[4, 8, 27], just to mention a few.

Roughly speaking, ambiguity focuses on a set of probability measures whose role
is to determine events that are relevant and those that are negligible. In this paper,
we introduce the concept of ambiguity to defaultable term structure models. The
starting point for term structure models are typically bond prices of the form

P (t, T ) = e−
∫ T
t
f(t,u)du, 0 ≤ t ≤ T, (1)
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where (f(t, T ))0≤t≤T is the instantaneous forward rate and T is the maturity time.
This follows the seminal approach proposed in [18]. The presence of credit risk1

in the model introduces an additional factor known as the default time. In this
setting, bond prices are assumed to be absolutely continuous with respect to the
maturity of the bond. This assumption is typically justified by the argument that,
in practice, only a finite number of bonds are liquidly traded and the full term
structure is obtained by interpolation, thus is smooth. There are two classical
approaches to model market default risk: the structural approach [23] and the
reduced-form approach (see for example, [2, 12, 22] for some of the first works in
this direction).

In structural models of credit risk, the underlying state is the value of a firm’s
assets which is observable. Default happens at maturity time of the issued bond if
the firm value is not sufficient to cover the liabilities. Hence, default is not a surprise.
One exception is the structural model of [28], in which the value of the firm’s assets
is allowed to jump. In fact, the value of the firm’s assets is not observable. A
credit event usually occurs in correspondence of a missed payment by a corporate
entity and, in many cases, the payment dates or coupon dates are publicly known
in advance. For example, the missed coupon payments by Argentina on a notional
of $29 billion (on July 30, 2014), and by Greece on a notional of e1.5 billion (on
June 30, 2015).

Reduced-form (HJM-type) models for defaultable term structure generally as-
sume the existence of a default intensity which implies that default occurs with
probability zero at a predictable time. Consequently, reduced-form models typi-
cally postulate that default time is totally inaccessible and prior to default, bond
prices are absolutely continuous with respect to the maturity. That is, under the
assumption of zero recovery2, credit risky bond prices P (t, T ) is given by

P (t, T ) = 1{τ>t}e
−

∫ T
t
f(t,u)du (2)

with τ denoting the random default time. This approach has been studied in numer-
ous works and up to a great level of generality, see [13, Chapter 3], for an overview
of relevant literature. The random default time τ is assumed to have an intensity
process λ. For example, with a constant intensity λ, default has a Poisson arrival at
intensity λ . More generally, for τ > t, λt may be viewed as the conditional rate of
arrival of default at time t, given information up to that time. In a situation where
the owner of a defaultable claim recovers part of its initial investment upon default,
the associated survival process 1{τ>t} in (2), is replaced by a semimartingale.

Under ambiguity, we suggest that there is some a prior information at hand
which gives a upper and lower bounds on the intensity. The implicit assumption
that the probability distribution of default is known is quite restrictive. Thus, we
analyse our problem in a multiple priors model which describe uncertainty about the
“true probability distribution”. By means of the Girsanov theorem, we construct
the set of priors from the reference measure. The assumption is that all priors are
equivalent.

In view of our framework, it is only important to acknowledge that a rating class
provides an estimate of the one-year default probability in terms of a confidence

1The risk that an agent fails to fulfil contractual obligations. Example of an instrument bearing

credit risk is a corporate bond.
2The amount that the owner of a defaulted claim receives upon default.
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interval. Also estimates for 3-, and 5-year default probabilities can be obtained
from the rating migration matrix. Thus, leading to a certain amount of model risk.

The aim of this paper is to incorporate uncertainty into the context of single-
name credit risk. We focus on uncertainty on the default intensity, and also discuss
uncertainty on the recovery.

The main results are as follows: we obtain a necessary and sufficient condition
for a reference probability measure to be a local martingale measure for credit risky
bond markets under default uncertainty, thereby ensuring the absence of arbitrage
in a sense to be precisely specified below. Furthermore, we consider the case where
we have partial information on the amount that the owner of a defaulted claim
receives upon default.

This paper is set up as follows: the next section introduces homogeneous ambigu-
ity, and its example. Section 3 introduces the fundamental theorem of asset pricing
(FTAP) under homogeneous ambiguity. In section 4, we derive the no-arbitrage
conditions for defaultable term structure models with zero-recovery, and fractional
recovery of market value, in our framework.

2. Intensity-based models

.
Intensity-based models are the most used model class for modeling credit risk,

see [5, Chapter 8] for an overview of relevant literature. The default intensity,
however, is difficult to estimate and therefore naturally carries a lot of uncertainty.
This has led to the emergence of rating agencies which since the early 20th century
estimate bond’s credit worthiness3.

Modeling of credit risk has up to now incorporated uncertainty on the default
intensity in a systematic way. On the other side, a number of Bayesian approaches
exist, utilizing filtering technologies, see for example [11, 17], among many others.

Here, we introduce an alternative treatment of the lack of precise knowledge of
the default intensity based on the concept of ambiguity following the seminal ideas
from Frank Knight in [21].

Uncertainty in our setting will be captured through a family of probability mea-
sures P replacing the single probability measure P in classical approaches. In-
tuitively, each P represents a model and the family P collects models which we
consider equally likely.

In this spirit, working with a single P, or with a set P = {P} which contains only
one element, is in a one-to-one correspondence to assuming that the parameters of
the underlying processes are exactly known. In financial markets, this is certainly
not the case and ambiguity helps to incorporate this uncertainty into the used
models.

We consider throughout a fixed finite time horizon T ∗ > 0. In light of our
discussion above, let (Ω,F ) be a measurable space and P a set of probability
measures on the measurable space (Ω,F ). In particular there is no fixed and
known measure P (except in the special case where P contains only one element
which we treat en passant).

Intensity based default models correspond to the case where the ambiguity is
homogeneous, i.e. there is a measure P′ such that P ∼ P′ for all P ∈ P. Here,

3For a historical account, see [26]: John Moody founded the first rating agency in 1909, in the
United States.
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P ∼ P′ means that P and P′ are equivalent, that is, they have the same nullsets.
The reference measure P′ has only the role of fixing events of measure zero for
all probability measures under consideration. Intuitively, this means there is no
ambiguity on these events of measure zero. In the following, We write E′ for the
expectation with respect to the reference measure P′.

Remark 1. As a consequence of the equivalence of all probability measures in P,
all equalities and inequalities will hold almost-surely with respect to any probability
measure P ∈P, or, respectively, to P′.

Ambiguity in intensity-based models. In this section, we introduce ambiguity
in intensity-based models. Our goal is not the most general approach in this setting:
we rather focus on simpler, but still practically highly relevant cases. For a more
general treatment we refer to [3]. The main mathematical tool we use here is
enlargement of filtrations and we refer to [1] for further details and a guide to the
literature.

Assume that under P′ we have a d-dimensional Brownian motion W with canon-
ical and augmented4 filtration F = (Ft)0≤t≤T∗ and a standard exponential random
variable τ , independent of FT∗ , that is, P′(t < τ |Ft) = exp(−t), 0 ≤ t ≤ T ∗. The
Brownian motion W has the role of modelling market movements and general in-
formation, excluding default information. We therefore call F the market filtration
in the following. The filtration G = (Gt)0≤t≤T∗ includes default information and is
obtained by a progressive enlargement of F with τ , i.e.,

Gt =
⋂
ε>0

σ(1{t≥τ},Ws : 0 ≤ s ≤ t+ ε), 0 ≤ t ≤ T ∗.

To finalize our setup, we assume that F = GT∗ .
Note that up to know, everything has been specified under the reference mea-

sure P′ and nothing was said about the concrete models we are interested in (except
about the nullsets). These models will now be introduced using the Girsanov the-
orem, i.e., by changing from P′ to the measures we are interested in.

Consequently, the next step is to construct measures Pλ with appropriate pro-
cesses λ – under Pλ, the default time τ will have the intensity λ. More precisely,
assume that λ is some positive process which is predictable with respect to the
market filtration, F. Define the density process Zλ by

Zλt :=

exp
( ∫ t

0
(1− λs)ds

)
, t < τ

λτ exp
( ∫ τ

0
(1− λs)ds

)
t ≥ τ.

(3)

Note that Zλ is a G-local martingale and corresponds to a Girsanov-type change
of measure (see Theorem VI.2.2 in [7]). If E′[ZλT∗ ] = 1 we obtain an equivalent
measure Pλ ∼ P′ via

Pλ(A) := E′[1AZ
λ
T∗ ] ∀A ∈ F . (4)

Under the measure Pλ, τ has intensity λ: more precisely, this means that the process

Mλ
t := 1{t≤τ} −

∫ t∧τ

0

λsds, 0 ≤ t ≤ T ∗ (5)

is a Pλ-martingale.

4Augmentation can be done in a standard fashion with respect to P′.
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Now we introduce a precise definition of ambiguity on the default intensity
which is very much in spirit of the G-Bronwnian motion: we consider an interval
[λ, λ] ⊂ (0,∞) where λ and λ denote lower (upper) bounds in the default intensity.
Intuitively, we include all possible intensities lying in these bounds in our family of
models P. More precisely, we define the set of density generators H by

H := {λ : λ is F-predictable and P′(λ ≤ λt ≤ λ, t ∈ [0, T ∗]) = 1}.
Ambiguity on the default intensity is now covered by considering the concrete family
of probability measures

P := {Pλ : λ ∈ H}. (6)

In the following we will always consider this P. First, we observe that this set is
convex.

Lemma 2.1. P is a convex set.

Proof. Consider Pλ′ ,Pλ′′ ∈P and α ∈ (0, 1). Then,

αPλ
′
(A) + (1− α)Pλ

′′
(A) = E′

[
1A(αZλ

′

T∗ + (1− α)Zλ
′′

T∗ )
]
.

Now consider the (well-defined) intensity λ, given by∫ t

0

λsds := t− log
[
αe

∫ t
0

(1−λ′s)ds + (1− α)e
∫ t
0

(1−λ′′s )ds
]
,

0 ≤ t ≤ T ∗. Then,

αZλ
′

T∗ + (1− α)Zλ
′′

T∗ = ZλT∗

such that by (4), Pλ ∼ P′ refers to an equivalent change of measure. Finally, we
have to check that λ ∈ H, which means that λ∈[λ, λ], 0 ≤ t ≤ T ∗: note that

t− log
[
αe

∫ t
0

(1−λ′s)ds + (1− α)e
∫ t
0

(1−λ′′s )ds
]

≤ t− log
[
αe

∫ t
0

(1−λ)ds + (1− α)e
∫ t
0

(1−λ)ds
]

≤ t− t(1− λ) = λt,

and λt ≤ λ follows. Similarly, λ ≤ λt and the claim follows since t was arbitrary. �

Remark 2. Intuitively, the requirement λ > 0 states that there is always a positive
risk of experiencing a default, which is economically reasonable. Technically it has
the appealing consequence that all considered measures in P are equivalent.

It turns out that the set of possible densities will play an important role in
connection with measure changes. In this regard, we define admissible measure
changes with respect to P by

A := {λ∗ : λ∗ is positive, F-predictable and E′[Zλ
∗

T∗ ] = 1}.
The associated Radon-Nikodym derivatives Zλ

∗

T∗ for λ∗ ∈ A are the possible Radon-
Nikodym derivatives for equivalent measure changes.

Remark 3. It is of course possible to consider an ambiguity setting more general
than the specific one in (6). One possibility is to consider only a subset of P.
Another possibility is to allow the bounds λ and λ to depend on time, or even
on the state of the process – this latter case is important for considering affine
processes under uncertainty and we refer to [15] for further details. In section 6 we
consider indeed such a more general setting.
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3. Absence of arbitrage under ambiguity

Absence of arbitrage and the respective generalizations, no free lunch (NFL),
and no free lunch with vanishing risk (NFLVR), are well established concepts when
the underlying probability measure P is known and fixed. Here, we give a small
set of sufficient conditions for absence of arbitrage extended to the setting with
ambiguity. In this regard, consider, a fixed set P of probability measures on the
measurable space (Ω,F ). In addition, let G = (Gt)0≤t≤T∗ be a right-continuous
filtration.

Discounted price processes of the traded assets are given by a finite dimensional
G-semimartingale X = (Xt)0≤t≤T∗ . The semimartingale property holds equiva-
lently in any of the filtration G+ or the augmentation of G+, see [24, Proposition
2.2]. It is well known that then X is a semimartingale for all P ∈P.

A self-financing trading strategy is a predictable and X-integrable process Φ and
the associated discounted gains process is given by the stochastic integral of Φ with
respect to X,

(Φ ·X)t =

∫ t

0

ΦudXu, 0 ≤ t ≤ T ∗.

Intuitively, an arbitrage is an admissible self-financing trading strategy which starts
from zero initial wealth, has non-negative pay-off under all possible future scenarios,
hence for all P ∈ P, where there is at least one P ∈ P such that the pay-off is
positive. This is formalized in the following definition, compare for example [27].
As usual a trading strategy is called a-admissible, if (Φ·X)t ≥ −a for all 0 ≤ t ≤ T ∗.

Definition 3.1. A self-financing trading strategy Φ is called P-arbitrage if it is
a-admissible for some a > 0 and

(i) for every P ∈P we have that (Φ ·X)T∗ ≥ 0, P-almost surely, and
(ii) for at least one P ∈P it holds that P((Φ ·X)T∗ > 0) > 0.

Since all probability measures P ∈P are considered as possible, a P-arbitrage
is a riskless trading strategy for all possible models (i.e., for all P ∈P) while it is
a profitable strategy for at least one scenario (i.e., for at least one P ∈P).

The main tool for classifying arbitrage free markets will be local martingale
measures, even in the setting with ambiguity. In this regard, we call a probability
measure Q a local martingale measure if X is a Q-local martingale.

It is well-known that no arbitrage or, more precisely, no free lunch with vanishing
risk (NFLVR) in a market where discounted price processes are locally bounded
semimartingales is equivalent to the existence of an equivalent local martingale
measure (ELMM), see [9, 10]. The technically difficult part of this result is to show
that a precise criterion of absence of arbitrage implies the existence of an ELMM. In
the following we will not aim at such a deep result under ambiguity, but utilize the
easy direction, namely that existence of an ELMM implies the absence of arbitrage
as formulated below.

From the classical fundamental theorem of asset pricing (FTAP), the following
result follows easily.

Theorem 3.1. If, for every P ∈ P there exists an equivalent local martingale
measure Q(P), then there is no arbitrage in the sense of Definition 3.1.

Proof. Indeed, assume on the contrary that there is an arbitrage Φ with respect to
some measure P ∈ P which we fix for the remainder of the proof. If there exists



DEFAULT AMBIGUITY 7

an ELMM Q(P) then Φ would be an arbitrage strategy together with an ELMM, a
contradiction to the classical FTAP. �

This (sufficient) condition directly corresponds to the existing results in the
literature (see, for example, [4]) where arbitrages of the first kind are studied under
the additional assumption of continuity for the traded assets.

4. Ambiguity on the default intensity

Our aim is to discuss dynamic term structure models under default risk with
ambiguity on the default intensity. The relevance of this issue has, for example,
already been reported in [25]. Here, we take this as motivation to propose a precise
framework taking ambiguity on the default intensity into account.

4.1. Dynamic defaultable term structures. We specialize the considerations
of absence of arbitrage in section 3 to defaultable bond markets. Recall that we
have a filtration G at hand and that τ is the G-stopping time at which the company
defaults. We define the default indicator process H by

Ht = 1{t≥τ}, 0 ≤ t ≤ T ∗.
The associated survival process is 1−H. A credit risky bond with a maturity time
T ≤ T ∗ is a contingent claim promising to pay one unit of currency at T . We
denote the price of such a bond at time t ≤ T by P (t, T ). If no default occurs prior
to T , P (T, T ) = 1. We will first consider zero recovery, i.e., assume that the bond
loses its total value at default. Then P (t, T ) = 0 on {t ≥ τ}.

Besides zero recovery, we only make the weak assumption that bond-prices prior
to default are positive and absolutely continuous with respect to maturity T . This
follows the well-established approach by [18]. More formally, we assume that

P (t, T ) = 1{τ>t} exp

(
−
∫ T

t

f(t, u)du

)
0 ≤ t ≤ T. (7)

The initial forward curve T 7→ f(0, T ) is then assumed to be sufficiently integrable
and the forward rate processes f(·, T ) are assumed to follow Itô processes satisfying

f(t, T ) = f(0, T ) +

∫ t

0

a(s, T )ds+

∫ t

0

b(s, T )dWs, (8)

for 0 ≤ t ≤ T . Recall that W was chosen to be a Brownian motion. We denote by
O the optional σ-algebra and by B the Borel σ-algebra.

Assumption 1. We require the following technical assumptions:

(i) the initial forward curve is measurable, and integrable on [0, T ∗]:∫ T∗

0

|f(0, u)|du <∞,

(ii) the drift parameter a(ω, s, t) is R-valued O ⊗B-measurable and integrable
on [0, T ∗]: ∫ T∗

0

∫ T∗

0

|a(s, t)|dsdt <∞,

(iii) the volatility parameter b(ω, s, t) is Rd-valued, O ⊗B-measurable, and

sup
s,t≤T∗

‖b(s, t)‖ <∞.
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(iv) With probability one it holds that

0 < f(t, t)− rt, 0 ≤ t ≤ T ∗.

Set for 0 ≤ t ≤ T ≤ T ∗,

a(t, T ) =

∫ T

t

a(t, u)du,

b(t, T ) =

∫ T

t

b(t, u)du.

Lemma 4.1. Under Assumption 1 it holds that,∫ T

t

f(t, u)du =

∫ T

0

f(0, u)du+

∫ t

0

a(·, u)du+

∫ t

0

b(·, u)dWu −
∫ t

0

f(u, u)du

for 0 ≤ t ≤ T ≤ T ∗, almost surely.

This follows as in [18]: for the case W is a Brownian motion, this is Lemma 6.1 in
[16]. This result could also be generalized where W is replaced by a semimartingale
with absolutely continuous characteristics, see Proposition 5.2 in [6]. Note that the
strong condition (iii) of uniform boundedness of b in Assumption 1 is needed for
the application of the stochastic Fubini theorem.

4.2. Absence of arbitrage without ambiguity on the default intensity. The
first step towards the study of term structure models with default ambiguity is the
study of absence of arbitrage in (classical) intensity-based dynamic term structure
models. Consider λ = (λt)0≤t ≤T∗ ∈ A and the probability measure Pλ. Then,

the dual predictable projection Hp of H is given by Hp
t =

∫ t∧τ
0

λsds (under Pλ).
Moreover, the Doob-Meyer decomposition yields that

Mλ := H −
∫ ·∧τ

0

λsds

is Pλ-martingale, compare equation (5).
For discounting, we use the bank account. Its value is given by a stochastic

process starting with 1 which is then upcounted by the short rate r, i.e., the value

process of the bank account is γ(t) = exp(
∫ t

0
rsds) with an G-predictable process r.

In the bond market context considered here, a measure Q is called local martin-
gale measure if, for any maturity T ∈ (0, T ∗], the discounted bond price process for
the bond with maturity T is a Q-local martingale. Then, we obtain the following
result.

Proposition 4.2. Assume that Assumption 1 holds. Consider a measure Q on
(Ω,F ), such that Mλ is a Q-martingale, that W is a Q-Brownian motion and that

Q(
∫ T∗

0
|rs|ds <∞) = 1. Then Q is a local martingale measure if and only if

(i) f(t, t) = rt + λt,
(ii) the drift condition

ā(t, T ) =
1

2

∥∥b(t, T )
∥∥2
,

holds dt⊗ dQ-almost surely for 0 ≤ t ≤ T ≤ T ∗ on {τ > t}.
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Proof. We set E = 1 − H and F (t, T ) = exp
(
−
∫ T
t
f(t, u)du

)
. Then (7) can be

written as P (t, T ) = E(t)F (t, T ). Integrating by part yields

dP (t, T ) = F (t−, T )dE(t) + E(t−)dF (t, T ) + d[E,F (·, T )]t.

For {t < τ},

dP (t, T ) = P (t−, T )

(
−λtdt+

(
f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )

)
dt

)
(9)

− P (t−, T )
(
dMλ + b(t, T )dWt

)
.

The discounted bond price process is a local martingale if and only if the predictable
part in the semimartingale decomposition vanishes, i.e.,

f(t, t)− rt − λt − ā(t, T ) +
1

2

∥∥b(t, T )
∥∥2

= 0. (10)

Letting T = t we obtain (i) and (ii) and the result follows. �

4.3. Absence of arbitrage with ambiguity on the default intensity. Next,
we derive the no-arbitrage conditions for the forward rate in term of the intensity
and the short rate, and also the conditions for the drift and volatility parameters,
under ambiguity on the default intensity. In this regard, we require a bit more
structure: we assume that the setting detailed in section 2 holds, in particular, we
consider the family of probability measures P constructed in equation (6). Recall
that for all Pλ ∈ P, W is a Brownian motion and that Pλ ∼ P′. We may, for the
moment, safely assume that the market filtration F satisfies the usual conditions
under P′.

For a generic real-valued, F-progressive process θ = (θt)t≥0, let the process
zθ = (zθt )0≤t≤T∗ be given as the unique strong solution of

dzθt = θtz
θ
t dWt, zθ0 = 1. (11)

Then, zθ is a continuous local martingale. If E′[zθT∗ ] = 1, we can define a probability

measure P̃θ by letting

P̃θ(A) := E′[1Az
θ
T∗ ], ∀A ∈ F , (12)

just as in equation (4). Under P̃θ the process W̃ = W −
∫ ·

0
θsds is a Brownian

motion, i.e., W itself became a Brownian motion with drift θ, see Theorem 5.1 in
Chapter 3 of [20].

Moreover, set λ̃t := (f(t, t)− rt) · λ−1
t , t ∈ [0, T ∗]. Note that under Assumption

1, λ̃ is positive (which is necessary for an equivalent change of measure). The
associated density is abbreviated by

Z∗T∗ = Z λ̃T∗ .

Theorem 4.3. Consider Pλ ∈P. Under Assumption 1, there exists an ELMM to
Pλ, if there exists an F-progressive process θ∗ such that

(i) EPλ [Z∗T∗z
θ∗

T∗ ] = 1,
(ii) the drift condition

ā(t, T ) =
1

2
‖ b̄(t, T ) ‖2 − b̄(t, T )θ∗t , 0 ≤ t ≤ T ≤ T ∗

holds dt⊗ dPλ-almost surely on {t < τ}.
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Intuitively, the theorem states that for the probability measure Pλ, we find an
ELMM if we are able to perform an equivalent change of measure (condition (i)) in
such a way that under the new measure the drift condition holds for the Brownian
motion with drift θ∗ (condition (ii)).

Proof. We start from some Pλ ∈ P and fix this measure in the following. This
means that, under Pλ, W is a Brownian motion and τ has intensity λ. In the
search for an ELMM we are looking for an equivalent measure P∗ which satisfies
the conditions of Proposition 4.2.

In this regard, note the following: by its definition, (11), together with condition
(i), zθ

∗
is a density process for a change of measure via the Girsanov theorem for

Itô processes, see Theorem 5.1 in Chapter 3 of [20]. Moreover, by (3) together with

(i), Z∗ = Z λ̃ is the density for the change in intensity from λ under Pλ to the
intensity given by λ∗t := (f(t, t)− rt)0≤t≤T∗ , see [7, Theorem VI.2.T2]. We set

dP∗ := Z∗T∗z
θ∗

T∗dPλ.

According to Theorem 3.40 in Chapter III of [19], this refers to a Girsanov-type

(and equivalent) change of measure. Moreover, W ∗t = Wt −
∫ t

0
θ∗sds, 0 ≤ t ≤ T ∗, is

a P∗-Brownian motion and Mλ∗ is a P∗-martingale.
We now show that P∗ is also a local martingale measure. Recall from (9) that,

under Pλ,

dP (t, T )

P (t−, T )
=

(
f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )

)
dt− dHt − b(t, T )dWt,

for {t < τ}; here Ht = 1{t≥τ} is the default indicator. We introduce the martingales

W ∗ and Mλ∗ into this representation: note that

dP (t, T )

P (t−, T )
=

(
−λ∗(t) + f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )− b̄(t, T )θ∗t

)
dt

− dMλ∗

t − b(t, T )dW ∗t ,

again on {t < τ}. Since, by assumption, −λ∗t + f(t, t) = rt, together with the drift

condition (ii), we obtain for the discounted bond price process P̃ (t, T ) = P (t, T )/γt,

dP̃ (t, T ) = P̃ (t−, T ) ·
(
− dMλ∗

t − b(t, T )dW ∗t
)
,

which is a P∗-local martingale and the proof is finished. �

5. Examples

The setting proposed in the previous setting can, in dimension one, be directly
linked to a special case of the non-linear affine processes introduced in [15]. Indeed,
note that for a progressive process λ, the integral

Xt := x+

∫ t

0

λsds, 0 ≤ t ≤ T ∗

is a special semimartingale. Moreover, there are affine bounds on drift and volatility
(the bound of the volatility is simply zero) since

λ ≤ λt ≤ λ,

such that X is a non-linear affine process.
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The major advantage of this setting is that numerical methods via non-linear
PDE come into reach. More precisely, Theorem 4.1 in [15] shows that whenever ψ
is Lipschitz, the non-linear expectation

E [ψ(XT∗)] := sup
P∈P

EP[ψ(XT∗)] (13)

can be expressed as viscosity solution of the fully non-linear PDE{
−∂tv(t, x)−G

(
x, ∂xv(t, x)

)
= 0 on [0, T ∗)× [λ, λ],

v(T, x) = ψ(x) x ∈ [λ, λ],
(14)

where G is defined by

G(x, p) := sup
λ∈[λ,λ]

{λp} (15)

and v(0, x) = E [ψ(XT∗)] (the dependency on x arises through X0 = x).
Clearly, when p is either strictly positive (hence ∂xv(t, x)) or negative, then the

supremum in (15) is immediate and the PDE (14) can be solved using standard
methods. This means that the solution to the non-linear expectation is obtained
simply by the upper bound λ̄ (or the lower bound λ, respectively). Such a condition
holds if ψ is monotone. The more general case has to be solved using numerical
methods and we provide a simple example now.

Example 5.1. Consider a butterfly on XT∗ , i.e., the derivative with the payoff

ψ(x) = (x−K1)+ − 2(x−K2)+ + (x−K3)+,

where we choose K1 = −0.2, K2 = 0.3, and K3 = 0.8. Moreover, let λ = 0.1
and λ = 0.5. Then the upper and lower price bounds for the butterfly are shown
in Figure 1 (the upper prices are given by the nonlinear expectation in equation
(13), while the lower prices are obtained by replacing the supremum in (13) by an
infimum).

6. Ambiguity on the recovery

A detailed study of bond markets beyond zero recovery is often neglected, the
high degree of uncertainty about the recovery mechanism being a prime reason for
this. This motivates us to take some time for developing a deeper understanding
of a suitable recovery model under ambiguity.

We start from the observation that intensity-based models always need certain
recovery assumptions, as for example, zero recovery, fractional recovery of treasury,
and fractional recovery of par value, see [5, Chapter 8]. We have so far considered
the case where the credit risky bond becomes worthless at default (zero recovery).
In the following, we will consider fractional recovery of market value where the
credit risky bond looses a fraction of its market value upon default. Other recovery
models can be treated in a similar fashion.

6.1. Fractional recovery without ambiguity. Fractional recovery of market
value (RMV) is specified through a market point process (Tn, Rn)n≥1 where the
stopping times (Tn) denote the default times and Rn ∈ (0, 1] denotes the associated
fractional recovery. Let

Rt =
∏
Tn≤t

Rn, 0 ≤ t ≤ T ∗, (16)



12 TOLULOPE FADINA AND THORSTEN SCHMIDT

-0.4 -0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Value: butterfly

Figure 1. This figure shows the solution of the nonlinear PDE
in equation (14) with boundary condition ψ(y) = (y−K1 + x)+−
2(y −K2 + x)+ + (y −K3 + x)+, K1 = −0.2, K2 = 0.3, K3 = 0.8,
and x ∈ [−0.5, 0.7] is depicted on the x-axis of the plot. The
dashed lines show the solution for the lower bound (upper bound,
respectively), i.e., for the constants λ = 0.1 and λ = 0.5. The
upper and lower solid lines show the upper and lower price bounds.

denote the recovery process. Then, R is non-increasing, positive with R0 = 1. The
recovery process replaces the default indicator in (7). More precisely, we assume
that the family of defaultable bond prices under RMV satisfy

PR(t, T ) = Rt exp

(
−
∫ T

t

f(t, u)du

)
, 0 ≤ t ≤ T ≤ T ∗. (17)

Remark 4. If a default occurs at t = Tn, the bond looses a random fraction
qt = 1 − RTn ∈ [0, 1) of its pre-default value. Thus, the value (1 − qt)P (t−, T ) is
immediately available to the bond owner at default. It is still subject to default
risk because of the possible future defaults occurring at Tn+1, Tn+2, . . . .

First, we state a generalization of Proposition 4.2 to this setting. To this end,
we require more structure and continue in the setting of the section 2. Assume
that the market point process (Tn, Rn)n≥1 is independent from W and standard in
the following sense: the random times (Tn) are the jumping times from a Poisson
process with intensity one, and the recovery values (Rn) are independent from (Tn)
and W , and uniformly distributed in [r, r̄] ⊂ (0, 1].

The filtration G = (Gt)0≤t≤T∗ is obtained by a progressive enlargement of F with
default and recovery information (given by R), i.e.,

Gt =
⋂
ε>0

σ(Rs,Ws : 0 ≤ s ≤ t+ ε), 0 ≤ t ≤ T ∗.
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We assume again F = GT∗ . As next step, we introduce measure changes for the
marked point process. Let

Φt =
∑
Tn≤t

Rn, 0 ≤ t ≤ T ∗.

Then, Φ is a special semimartingale w.r.t. G. Let

µΦ(dt, dx) =
∑
n≥1

δ(Tn,Rn)(dt, dx)

denote the associated jump measure and let νΦ(dt, dx) denote its compensator, see
Chapter II.1 in [19] or Chapter VIII.1 in [7]. Note that νΦ(dt, dx) = 1{x∈[r,r]}(r −
r)−1dxdt.

We introduce the densities

Lµ,h =

( ∏
Tn≤T∗

µTnh(Tn, Rn)

)
· e

∫ T∗
0

∫ r
r

(1−µth(t,x))(r−r)−1dx dt, (18)

where the predictable process µ is positive and, for any x ∈ [r, r], the G-predictable
process (h(t, x))0≤t≤T∗ is also positive. If E[LT∗ ] = 1, we can define the equivalent
measure Pµ,h by

dPµ,h = LT∗dP′. (19)

By A ∗ we denote all pairs (µ, h) which satisfy the above properties. Then, the
compensator of the jump measure µΦ under Pµ,h is

µth(t, x)νΦ(dt, dx) = µth(t, x)1{x∈[r,r]}(r − r)−1dxdt =: Kµ,h
t (dx)dt, (20)

see T10 in Section VIII.3 of [7]. Next, we compute the compensator of R. We
obtain from (16) that

Rt −
∫ t

0

∫
Rs−(x− 1)Kµ,h

s (dx)ds, 0 ≤ t ≤ T ∗ (21)

is a Pµ,h-martingale. For a G-progressive process g, we denote

Mg = R+

∫ ·
0

Rs−gsds.

Proposition 6.1. Assume that Assumption 1 holds and let g be a positive and
G-predictable process. Consider a measure Q on (Ω,F ), such that Mg is a Q-

martingale, W is a Q-Brownian motion, and Q(
∫ T∗

0
|rs|ds <∞) = 1. Then Q is a

local martingale measure if and only if

(i) f(t, t) = rt + gt,
(ii) the drift condition

ā(t, T ) =
1

2

∥∥b(t, T )
∥∥2
, 0 ≤ t ≤ T ≤ T ∗,

holds dt⊗ dQ-almost surely.

Proof. We generalize the proof of Proposition 4.2 to the case of RMV. To this

end, let F (t, T ) = exp
(
−
∫ T
t
f(t, u)du

)
. Then (17) reads PR(t, T ) = R(t)F (t, T ).

Integrating by part yields

dPR(t, T ) = F (t−, T )dR(t) +R(t−)dF (t, T ) + d[R,F (·, T )]t.
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Note that, by assumption,

Mg
t = Rt +

∫ t

0

Rs−gsds, 0 ≤ t ≤ T ∗,

is a Q-martingale and that [R,F (., T )] = 0 since R is of finite variation and F (., T )
is continuous. Hence, by Lemma 4.1,

dPR(t, T ) = PR(t−, T )

(
−gt + f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )

)
dt (22)

+ PR(t−, T )
(
rtdt+ dMg − b(t, T )dWt

)
,

and we obtain the result as in the proof of Proposition 4.2. �

Example 6.1. A classical example is when the defaults (Tn) arrive at rate λ > 0,
and the recovery values (Rn) are i.i.d. Then,

∫
(x − 1)νΦ(dt, dx) = λE[R1 − 1]dt.

We obtain that the instantaneous forward rate of the defaultable bond f(t, t) equals
rt + λE[1 − R1]. In the case of zero recovery, we recover f(t, t) = rt + λ, and, in
the case of full recovery (the case without default risk), f(t, t) = rt.

6.2. Fractional recovery with ambiguity. We introduce ambiguity in this set-
ting by changing from the standardized measure P′ to various appropriate measures
via the Girsanov theorem. We also generalize the setting for ambiguity from the
quite specific P to a general set of probability measures P∗ here, see remark 3.
The reason for this is also economic: while bounding the intensity from above and
below seems to be quite plausible, an upper / lower bound on the recovery (i.e., on
(Rn)) sounds too strong for some applications.

Recall that A ∗ was the set of all candidates (µ, h) which induce the measure
changes via (19). Ambiguity is introduced by the set P∗ of probability measures
satisfying

Ø 6= P∗ ⊂ {Pµ,h : (µ, h) ∈ A ∗}. (23)

If P∗ contains only one probability measure, we are in the classical setting, other-
wise there is ambiguity in the market. Measure changes from Pµ,h to a new measure
are done via the density Lµ

∗,h∗ (see (18)) where, as above, µ∗, h∗(., x), x ∈ [r, r]
are positive and progressive. Recall the definition of the density zθ in (11).

Theorem 6.2. Let g∗t := f(t, t) − rt, t ∈ [0, T ∗], and assume that Assumption 1
holds. Then there exists an ELMM for Pµ,h ∈P∗ if

(i) there exists an F-progressive θ∗ such that E′[zθ
∗

T∗ ] = 1,

(ii) there exist µ∗ and h∗(t, x), such that E[Lµ
∗,h∗ ] = 1 and

g∗t =

∫
(x− 1)µ∗th

∗(t, x)Kµ,h
t (dx), 0 ≤ t ≤ T ∗,

dt⊗ dP ′-almost surely, and
(iii) the drift condition

ā(t, T ) =
1

2
‖ b̄(t, T ) ‖2 −b̄(t, T )θ∗t , 0 ≤ t ≤ T ≤ T ∗,

holds dt⊗ dP ′-almost surely.

Absence of arbitrage in this general ambiguity setting can now be classified,
thanks to Theorem 3.1 as follows: if an ELMM exists for each Pµ,h ∈P∗, then the
market is free of arbitrage in the sense of Definition 3.1.
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Proof. Fix Pµ,h ∈P∗. We can define an equivalent measure P∗ ∼ Pµ,h by

dP∗ := Lµ
∗,h∗ zθ

∗

T∗ dPµ,h,

with µ∗ and h∗ as in (ii). According to Theorem 3.40 in Chapter III of [19], this
refers to a Girsanov-type (and equivalent) change of measure. Moreover, W ∗ =
W −

∫ ·
0
θ∗sds is a P∗-Brownian motion. Next, note that the compensator of the

jump measure µΦ under P∗ computes, according to T10 in Section VIII.3 in [7], to

ν∗(dt, dx) := µ∗th
∗(t, x)Kµ,h

t (dx)dt

with Kµ,h
t from Equation (20). This implies that

Mg∗

t = Rs−(x− 1)ν∗(ds, dx) = Rt −
∫ t

0

Rs−g
∗
sds (24)

is a P∗-martingale.
Now, we show that P∗ is indeed a martingale measure: from (22) we obtain that

dPR(t, T )

PR(t−, T )
=
(
f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )

)
dt+ dRt − b(t, T )dWt.

It follows that

dPR(t, T )

PR(t−, T )
=
(
f(t, t) +

1

2

∥∥b(t, T )
∥∥2 − a(t, T )− b(t, T )θ∗t

)
dt+ dMg

t − b(t, T )dW ∗t

= rtdt+ dMg
t − b(t, T )dW ∗t ,

by the definition of g∗ and the drift condition (iii). Hence, discounted bond prices
are P∗-local martingales and the proof is finished. �

Remark 5. We can view zero recovery in the above setting by assuming that
P′(R1 = 0) = 1 and letting τ = T1. Note that this case is excluded in RMV setting,
since, under this assumption, at the first default all prices drop to zero and further
defaults can not occur.
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[16] Filipović, D. [2009], Term Structure Models: A Graduate Course, Springer
Verlag. Berlin Heidelberg New York.

[17] Frey, R. and Schmidt, T. [2009], ‘Pricing corporate securities under noisy asset
information’, Mathematical Finance 19(3), 403 – 421.

[18] Heath, D., Jarrow, R. A. and Morton, A. J. [1992], ‘Bond pricing and the term
structure of interest rates’, Econometrica 60, 77–105.

[19] Jacod, J. and Shiryaev, A. N. [2003], Limit Theorems for Stochastic Processes,
2nd edn, Springer, Berlin.

[20] Karatzas, I. and Shreve, S. E. [1998], Methods of Mathematical Finance,
Springer, New York.

[21] Knight, F. H. [1921], ‘Risk, uncertainty and profit’, New York: Hart, Schaffner
and Marx .

[22] Lando, D. [1994], Three Essays on Contingent Claim Pricing, PhD thesis,
Cornell University.

[23] Merton, R. [1974], ‘On the pricing of corporate debt: the risk structure of
interest rates’, Journal of Finance 29, 449–470.

[24] Neufeld, A. and Nutz, M. [2014], ‘Measurability of semimartingale charac-
teristics with respect to the probability law’, Stochastic Processes and their
Applications 124(11), 3819 – 3845.

[25] Riedel, F. [2015], ‘Financial economics without probabilistic prior assump-
tions’, Decisions in Economics and Finance 38(1), 75–91.

[26] Sylla, R. [2002], An Historical Primer on the Business of Credit Rating,
Springer US, Boston, MA, pp. 19–40.

[27] Vorbrink, J. [2014], ‘Financial markets with volatility uncertainty.’, Journal of
Mathematical Economics 53, 64–78.

[28] Zhou, C. [1997], ‘A jump-diffusion approach to modeling credit risk and valu-
ing defaultable securities’, Finance and Economics Discussion Paper Series
1997/15, Board of Governors of the Federal Reserve System .

Freiburg University, www.stochastik.uni-freiburg.de,

Email: tolulope.fadina@stochastik.uni-freiburg.de

Freiburg University, www.stochastik.uni-freiburg.de and Freiburg Research Insti-

tute of Advanced Studies (FRIAS) and University of Strasbourg Institute for Ad-
vanced Study (USIAS). Email: thorsten.schmidt@stochastik.uni-freiburg.de


	1. Introduction
	2. Intensity-based models
	Ambiguity in intensity-based models

	3. Absence of arbitrage under ambiguity
	4. Ambiguity on the default intensity
	4.1. Dynamic defaultable term structures
	4.2. Absence of arbitrage without ambiguity on the default intensity
	4.3. Absence of arbitrage with ambiguity on the default intensity

	5. Examples
	6. Ambiguity on the recovery
	6.1. Fractional recovery without ambiguity
	6.2. Fractional recovery with ambiguity

	References

