
The evolution to equilibrium of solutions
to nonlinear Fokker-Planck equation

Viorel Barbu∗ Michael Röckner†‡

Abstract

One proves the H-theorem for mild solutions to a nondegenerate, non-
linear Fokker-Planck equation

ut −∆β(u) + div(E(x)b(u)u) = 0, t ≥ 0, x ∈ Rd, (1)

and under appropriate hypotheses on β, E and b the convergence in
L1

loc(Rd), L1(Rd), respectively, for some tn →∞ of the solution u(tn)
to an equilibrium state of the equation for a large set of nonnegative
initial data in L1. These results are new in the literature on nonlinear
Fokker-Planck equations arising in the mean field theory and are also
relevant to the theory of stochastic differential equations. As a matter
of fact, by the above convergence result, it follows that the solution
to the McKean-Vlasov stochastic differential equation corresponding
to (1), which is a nonlinear distorted Brownian motion, has this equi-
librium state as its unique invariant measure.
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1 Introduction

We shall study here the asymptotic behaviour of solutions u = u(t, x) to the
nonlinear Fokker-Planck equation
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ut −∆β(u) + div(Eb(u)u) = 0 in (0,∞)× Rd,
u(0, x) = u0(x), x ∈ Rd,

(1.1)

under the following hypotheses on the functions β : R → R, E : Rd → Rd

and b : R→ R, where 1 ≤ d <∞.

(i) β ∈ C1(R), β(0) = 0, γ ≤ β′(r) ≤ γ1, ∀r ∈ R, for 0 < γ < γ1 <∞.

(ii) b ∈ Cb(R) ∩ C1(R).

(iii) E ∈ L∞(Rd;Rd) ∩W 1,1
loc (Rd;Rd) and divE ∈ (L2(Rd) + L∞(Rd)).

(iv) E = −∇Φ, where Φ ∈ C(Rd) ∩W 2,1
loc (Rd), Φ ≥ 1, lim

|x|→∞
Φ(x) = +∞

and there exists m ∈ [2,∞) such that Φ−m ∈ L1(Rd).

Hypothesis (iv) means that system (1.1) is conservative.
A typical example is Φ(x) = C(1 + |x|2)α, x ∈ Rd, with α ∈

(
0, 1

2

]
, for

which we even have that divE ∈ L∞.
If (i)-(iv) hold, we prove the existence of solutions given by a nonlinear

semigroup S(t), t > 0, of contractions in L1(Rd) (Theorem 4.1), which is
positivity and mass preserving. If, (i)-(iv) and also (v) hold, where

(v) b(r) ≥ b0 > 0 for r ≥ 0,

we prove the convergence of the solutions to equilibrium in L1
loc(Rd), while

(see Theorem 6.1) the convergence in L1(Rd) is proved if, in addition to
(i)-(v), the following condition holds

(vi) γ1∆Φ(x)− b0|∇Φ(x)|2 ≤ 0, for a.e. x ∈ Rd. (1.2)

An example of such a function Φ for d ≥ 2 is

Φ(x) =

{
|x|2 log |x|+ µ for |x| ≤ δ,

ϕ(|x|) + η|x|+ µ for |x| > δ,
(1.3)

δ = exp
(
−d+2

2d

)
, and

ϕ(r) = δ2 log δ − ηδ +

∫ r

δ

h(s)ds, (1.4)

for r ≥ δ, where µ, η > 0 are sufficiently large and h is given by formula
(A.8) in the Appendix to which we refer for more details.
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Equation (1.1), where u is a probability density, is known in the litera-
ture as the nonlinear Fokker-Planck equation (NFPE) and it is relevant in
the kinetic theory of statistical mechanics as a generalized mean field Smolu-
chowski equation for the case where the diffusion and transport coefficients
depend on the density u. (See [17], [22]-[23] [31].) The case of the classi-
cal Smoluchowski equation is recovered for b ≡ 1 and β(r) ≡ r. In the case
where the first order part in (1.1) is given by a vector field independent of
the spatial variable x, the existence and uniqueness of a kinetic, respectively
generalized entropic, solution to (1.1) in L1(Rd) was proved in [18]. In this
paper, we give an existence and uniqueness result for (1.1) in the sense of
mild solutions in L1(Rd), i.e., given as a nonlinear semigroup S(t), t > 0,
in L1(Rd) (see Proposition 2.2). Its proof is different from that in [18] and,
though it has an intrinsic interest in itself, it is used subsequently to prove
our main result about convergence to equilibrium and existence of a unique
stationary solution to (1.1). In [6] (see, also, [4], [5]), a more general NFPE
of the form

ut −
d∑

i,j=1

D2
ij(aij(x, u)u) + div(b(x, u)u) = 0 (1.5)

was studied under appropriate assumptions on aij : Rd × R → R and
b : Rd × R→ Rd. In the latter case, it is shown that, if u0 is a probability
density, the distributional mild solution u to (1.5) is the probability density of
the law LX(t) of the (probabilistically) weak solution to the McKean-Vlasov
stochastic differential equation (SDE)

dX(t) = b(X(t), u(t,X(t)))dt+
√

2σ(X(t), u(t,X(t)))dW (t), (1.6)

where σσ⊥ = 1
2

(aij)
d
i,j=1 and X(0) has law u0dx, where dx = the Lebesgue

measure on Rd.
In the special case (1.1), SDE (1.6) reduces to

dX(t) = E(X(t))b(u(t,X(t)))dt+
1√
2

(
β(u(t,X(t)))

u(t,X(t))

) 1
2

dW (t), (1.7)

which, since E = −∇Φ, is a nonlinear analogue of the SDE for the classical
distorted Brownian motion, where β = id and b ≡ const. Hence, its solution
X(t), t ≥ 0, can be considered as a nonlinear distorted Brownian motion.

One of our motivations is to apply our asymptotic results to find an
invariant (probability) measure for the nonlinear distorted Brownian motion

3



on Rd. So, Theorems 6.1 and 6.4 solve this problem and this is one of the
main contributions of this work. Condition (vi) requires a certain balance
between the strength of the (in general nonlinear) diffusion coefficient β′ and
the strength of the nonlinear drift coefficient b in terms of the potential Φ.
Without the additional condition (vi), there is in general no equilibrium on
L1(Rd) for equation (1.1). Just consider the linear case β = id and E ≡ 0,
so the case where (1.1) is the heat equation. Hence, as in the linear case,
we need a big enough negative drift. Condition (vi) is, however, not optimal,
because for the Fokker-Planck equation associated to the classical Ornstein-
Uhlenbeck process on Rd, it does not hold, though the standard Gaussian
measure is its equilibrium measure.

We would like to mention here another special case of (1.1), namely with
β(u) = um, m > 1, b ≡ const. and E(x) = x, which is not covered by our
results, but was deeply analyzed in [16]. In this case, the equilibrium is given
through an explicit formula and the decay rate in L1-distance is calculated in
[16]. So, the approach is completely different from ours which is to prove the
so-called H-theorem (see below) to show convergence of solutions to a unique
equilibrium of (1.1) in L1(Rd) as t→∞. A general result combining [16], the
linear case and ours including convergence rates is still to be proved and will
be subject to our future study. As explained in detail in [6, Section 2], the
nonlinear Fokker-Planck equation (1.1) is a (very singular) special case (called
Nemytskii type) of a general nonlinear Fokker-Planck-Kolmogorov equation
in the sense of Section 6.7(iii) in [11] and of [26], [27], where the solutions
are measure-valued and the coefficients depend on these solutions. There
is a number of papers where existence of and convergence to equilibria are
studied (see, e.g., [12] and [21] and the references therein). However, in these
papers the dependence of the coefficients on the measures is assumed to be
linear or Lipschitz continuous in weighted variation norm, which is never
fulfilled in our Nemytskii-type case. So, these results do not apply here.

The main objective of this work is to study the asymptotic behaviour
of a solution t → u(t) for t → ∞ and prove the so called H-theorem
for the NFPE (1.1), that is, prove the existence of a Lyapunov function
V : D(V ) ⊂ L1

loc(Rd)→ R for (1.1) and prove, for a certain class of u0 ∈ L1,
u0 ≥ 0, the ω-limit set

ω(u0) =
{
w = lim

n→∞
u(tn) in L1

loc(Rd), {tn} → ∞
}

(1.8)

is nonempty. This is proved in Sections 4 and 5 under assumptions (i)-(v).
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Moreover, if (vi) also holds, we shall prove in Section 6 that, for u0 ∈
M ∩ P (see (2.2), (2.28)), the orbit {u(t); t ≥ 0} is compact in L1 and so

the corresponding ω-limit set ω̃(u0) =
{
w = lim

n→∞
u(tn) in L1, {un} → ∞

}
is

nonempty and reduces to a single element u∞, which is a stationary solution
to (1.1). Furthermore, u∞ is a probability density, if so is u0. As a conse-
quence, u∞dx is an invariant measure for SDE (1.7), i.e., if u0 = u∞, then the
nonlinear distorted Brownian motion X(t), t ≥ 0, has the law u∞dx, ∀t ≥ 0.

The H-theorem amounts to saying that the function

V (u) = −S̃[u] + F [u], u ∈ L1(Rd), (1.9)

where S̃ is the entropy of the system and F is the mean field energy, is a
Lyapunov function for (1.1), that is, monotonically decreasing in time on the
solutions to (1.1). In our case,

S̃[u] =

∫
Rd
η(u(x))dx, F (u) =

∫
Rd

Φ(x)u(x)dx, (1.10)

where η(r) = −
∫ r

0
dτ
∫ 1

τ
β′(s)
sb(s)

ds, r ≥ 0.
This form of the Lyapunov theorem comes from the classical H-theorem

and is consistent with the Boltzmann thermodynamics (see, e.g., [17], [22],

[31]), in which case β′ ≡ b ≡ const., so S̃ in (1.10) reduces to the classical
Boltzmann-Gibbs entropy. In the literature on NFPE arising in the mean
field theory, the H-theorem is often invoked, but in most cases its proof is
formal because, in general, the NFPE (1.1) has not a classical solution and
so the computation is not rigorous. By our knowledge, this paper contains
the first rigorous mathematical result on the H-theorem for NFPE.

In fact, here the basic functional space for the well-posedness is L1(Rd)
and, in general, the space of the maximal spatial regularity for u is the
Sobolev space W 1,q(Rd), 1 < q ≤ d

d−2
, (which happens in the special case

of the porous media equation b ≡ 0, aij(u)u ≡ δijβ(u)). This low regular-
ity precludes the classical argument involving regular Lyapunov functions.
However, the situation is different for linear FPE where, in the last decades,
many convergence results to equilibrium were obtained. We refer to the
monographs [2], [34] and, e.g., to [1], [16], [28], [29], as well as the references
therein.

Here, the convergence of S(t)u0 for t → ∞ to an equilibrium state is
proved under nondegenerancy assumption (i) for β. In the degerate case,
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β′ > 0 on [0,∞), one expect, however, that the omega limit set ω̃(u0) is
nonempty and is a compact attractor for S(t). (We refer to [32] for a theory
of infinite dimensional attractor.)

Let us now explain the structure of the paper. The first part is con-
cerned with the well-posedness of NFPE (1.1) in L1(Rd) via the theory
of nonlinear semigroups of contractions in L1(Rd), i.e., the construction of
such a semigroup S(t), t > 0, so that t 7→ S(t)u0 a continuous function
u : [0,∞)→ L1(Rd) given as the limit of the finite difference scheme asso-
ciated with (1.1) (the so called mild solution). Moreover, u is obtained as
the limit in L1(Rd) of the smooth solutions {uε}ε>0 to an approximating
equation associated with (1.1). The corresponding result given in Proposi-
tion 2.1 is not essentially new since, as mentioned earlier, a similar existence
result was previously established in [4]-[7], [18]. However, we have developed
here a semigroup approach to NFPE (1.1) necessary for the treatment of the
asymptotic behaviour of solutions. In fact, in the second part of the work
we shall prove under assumptions (i)-(v) the H-theorem for (1.1) (Theorem
4.1). The ω-limit set is a singleton {u∞} and the invariant measure of the
solution X(t), t ≥ 0, of SDE (1.7) if, additionally, the balance condition (vi)
holds (Theorem 6.1). A main point to prove the latter is to show that S(t)
is also a contraction on the weighted L1 space with the potential Φ from
condition (iv) as its weight (see Lemma 6.2).

Finally, we prove that the equilibrium u∞ from Theorem 6.1 is indeed the
unique solution of the stationary version of (1.1) in the sense of distributions
(Theorem 6.4) and, as a consequence, that the stationary nonlinear distorted
Brownian motion is unique in law (Theorem 6.5).

Notation. For p ∈ [1,∞), Lp(Rd) - simply denoted Lp, is the space of all
Lebesgue p-summable functions on Rd. The norm in Lp is denoted by | · |p.
Similarly, if O is a Lebesgue measurable set, Lp(O) is the space of all p-
summable functions on O. By Lploc(Rd) we denote the space of Lebesgue
measurable functions u : Rd → R which are in Lp(O) for every bounded
measurable subset O ⊂ Rd. (Lploc is endowed with a standard locally convex
metrizable topology.) The scalar product of L2 is denoted by 〈·, ·〉2. If O is an
open subset of Rd, we denote by D′(O) the space of Schwartz distributions
on O and by W 1,p(O) the Sobolev space {u ∈ Lp(O), Diu ∈ Lp(O) for
i = 1, ...d}, where Di = ∂

∂xi
is taken in the sense of Schwartz distributions.

We set also Hk(O) = W k,2(O), k ∈ N. We denote the Euclidean norm of Rd

by | · |, if there is no possible confusion, and by Cb(R) and Cb(Rd,Rd) the
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spaces of continuous and bounded functions from R to itself and, respectively,
from Rd to Rd. By C1(R) we denote the space of continuously differentiable
real valued functions.

2 Existence of mild solutions for NFPE (1.1)

Consider in the space L1 = L1(Rd) the operator A0 : D(A0) ⊂ L1 → L1,
defined by

A0u = −∆β(u) + div(Eb(u)u), ∀u ∈ D(A0),

D(A0) = {u ∈ L1; −∆β(u) + div(Eb(u)u) ∈ L1}.
(2.1)

Here, the differential operators ∆ and div are taken in the sense of Schwartz
distributions, i.e., in D′(Rd). Obviously, the operator (A0, D(A0)) is closed
on L1.

By Hypotheses (i)-(iii), we see that β(u), Eub(u) ∈ L1, ∀u ∈ L1, and so
−∆β(u), div(Eub(u)) ∈ D′(Rd) for all u ∈ L1.

Proposition 2.1 Assume that Hypotheses (i)-(iv) hold. Then,

R(I + λA0) = L1, ∀λ > 0, (2.2)

and there is an operator Jλ : L1 → L1 such that Jλ(0) = 0, λ > 0, and

Jλ2(f) = Jλ1

(
λ1

λ2

f +

(
1− λ1

λ2

)
Jλ2(f)

)
, ∀λ1, λ2 > 0, (2.3)

(I + λA0)Jλ(f) = f, ∀f ∈ L1, λ > 0, (2.4)

|Jλ(f1)− Jλ(f2)|1 ≤ |f1 − f2|1, ∀λ > 0, f1, f2 ∈ L1. (2.5)

Furthermore,
D(A) = L1, (2.6)

where denotes the closure in L1 and A is the operator defined by formula
(2.9) below. Moreover,∫

Rd
Jλ(f)dx =

∫
Rd
f(x)dx, ∀f ∈ L1, (2.7)

Jλ(f) ≥ 0, a.e. in Rd if f ≥ 0, a.e. in Rd. (2.8)
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The proof of Proposition 2.1 will be given in Section 3.
We note that Jλ1(L

1) = Jλ2(L
1), ∀λ1, λ2 > 0. We are led to introduce the

operator A : D(A) ⊂ L1 → L1,

Au = A0u, ∀u ∈ D(A) = Jλ0(L
1), ∀λ > 0, (2.9)

where λ0 > 0 is arbitrary. Hence, D(A) ⊂ D(A0) and taking into account
(2.3), it follows that D(A) is independent of λ0.

By (2.2)-(2.6), it follows that A is m-accretive in L1. This means (see,
e.g. [1], p. 97) that |u− v + λ(Au− Av)|1 ≥ |u− v|1, ∀u, v ∈ D(A), λ > 0,
and R(I + λA) = L1, ∀λ > 0 (equivalently, for some λ > 0). We have

(I + λA)−1u = Jλ(u), ∀u ∈ L1, λ > 0. (2.10)

We note that A is an accretive section of A0 and if (I + λA0)−1 is single
valued, then A = A0. As shown in [10] (Proposition 2.4), this happens for
instance if, besides (i)–(iii), the following conditions hold

divE ∈ Lmloc, m >
d

2
, |rb′(r) + b(r)| ≤ αβ′(r), ∀ r ∈ R; α > 0. (2.11)

Consider now the Cauchy problem associated with A, that is,

du

dt
+ Au = 0, t ≥ 0,

u(0) = u0.

(2.12)

A continuous function u : [0,∞)→ L1 is said to be a mild solution to equation
(2.12) if

u(t) = lim
h→0

uh(t) in L1, (2.13)

uniformly on compacts of [0,∞), where u1
h = u0, and

uh(t) = uih, t ∈ [ih, (i+ 1)h), i = 0, 1, ..., (2.14)

uih + hAuih = ui−1
h , i = 0, ... (2.15)

Since A is m-accretive, we have by the Crandall & Liggett theorem (see, e.g.,
[3], p. 141) the following existence result for problem (2.12).

Proposition 2.2 Under Hypotheses (i)-(iv), for every u0 ∈ L1(Rd) there is
a unique mild solution u = S(t)u0 to (2.12). Moreover, one has
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u(t) = lim
n→∞

(
I +

t

n
A

)−n
u0, ∀ t ≥ 0, (2.16)

uniformly on bounded intervals of [0,∞) in the strong topology in L1. One
also has that ∫

Rd
u(t, x)dx =

∫
Rd
u0(x)dx, ∀t ≥ 0, (2.17)

u(t, x) ≥ 0, a.e. on (0,∞)× Rd if u0 ≥ 0, a.e. in Rd. (2.18)

Taking into account that by (2.9)–(2.10), equation (2.14) can be written as

uih − h∆β(uih) + h div(Eb(uih)u
i
h) = ui−1

h in D′(Rd), (2.19)

the function u will be called mild solution to NFPE (1.1).
In particular, it follows by (2.17), (2.18) that, for each t ≥ 0, u(t, ·) is a

probability density if so is u0.
We note that (2.17)-(2.18) follow by (2.7)-(2.8) and (2.16).
The map t → S(t)u0 is a continuous semigroup of contractions on L1,

that is,

S(t)u0 = u(t) = lim
n→∞

(
I +

t

n
A

)−n
u0, ∀t ≥ 0, (2.20)

S(t+ s)u0 = S(t)S(s)u0, ∀t, s ≥ 0, u0 ∈ L1, (2.21)

lim
t→0

S(t)u0 = u0 in L1, (2.22)

|S(t)u0 − S(t)ū0|1 ≤ |u0 − ū0|1, ∀t ≥ 0, u0, ū0 ∈ L1. (2.23)

If

P =

{
u ∈ L1; u ≥ 0, a.e. in Rd,

∫
Rd
u(x)dx = 1

}
, (2.24)

we see by (2.17)-(2.20) that

S(t)(P) ⊂ P , ∀t ≥ 0, (2.25)

and, since Jλ(0) = 0, that

S(t)(0) = 0, t ≥ 0. (2.26)
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Since, for every i and h the function uih ∈ D(A) is a solution to (2.15) in
the sense of distributions, i.e. in the space D′(Rd), it follows also that the
mild solution u to (2.12) is a solution to NFPE (1.1) in the sense of Schwartz
distributions on (0,∞)× Rd, that is,∫ ∞

0

∫
Rd

(uϕt + β(u)∆ϕ+ Eb(u)u · ∇ϕ)dx dt

+

∫
Rd
u0ϕ(t, x)dx = 0, ∀ϕ ∈ D([0,∞)× Rd),

(2.27)

where D((0,∞) × Rd) is the space of infinitely differentiable functions on
(0,∞)× Rd with compact support.

It should be emphasized, however, that the solution u to NFPE (1.1)
exists and is unique in the class of mild solutions corresponding to the opera-
tor A and not in the space of Schwartz distributions on (0,∞)×Rd. In other
words, it is dependent on {Jλ} which in our case is the limit of (I+λ(A0)ε)

−1

in L1, where (A0)ε is a smooth approximation of A0. However, as u =
S(t)u0 is L1-valued continuous, then, as shown in [8], [9] under the additional
condition that u0 ∈ L∞, it is unique in this case in the class of distributional
solutions u ∈ L∞((0,∞) × Rd) ∩ L1((0,∞) × Rd) and so it is unique in the
class of all mild solutions with u0 ∈ L1 ∩ L∞. The semigroup S(t) can be
viewed, therefore, as the Fokker–Planck flow generated by equation (1.1)
which is uniquely defined on the space L1 ∩ L∞.

We consider the following subspace of L1

M =

{
u ∈ L1;

∫
Rd

Φ(x)|u(x)|dx <∞
}

(2.28)

with the norm

‖u‖ =

∫
Rd

Φ(x)|u(x)|dx, ∀u ∈M. (2.29)

We also set M+ = {u0 ∈M; u0 ≥ 0, a.e. on Rd}.
It turns out that the semigroup S(t) leaves invariantM. More precisely,

we prove in Section 3:

Proposition 2.3 Assume that Hypotheses (i)-(iv) hold and that divE ∈ L∞.
Then

‖S(t)u0‖ ≤ ‖u0‖+ ρt|u0|1, ∀u0 ∈M, (2.30)

where ρ = γ1(m+ 1)|∆Φ|∞ + |b|∞(1 +m)2|E|2∞.
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Remark 2.4 Proposition 2.3 remains valid if, in addition to Hypotheses
(i)-(iii), we assume, instead of (iv),

(iv)′ E0 = sup
x∈Rd

|E(x) · x| <∞,

but we have to replace M by

M2 =

{
u ∈ L1 : ‖u‖2 =

∫
Rd
|x|2|u(x)|dx <∞

}
and we have to replace ρ in Proposition 2.3 by ρ̃ := 2(dγ1 + E0|b|∞) (see
Remark 3.3 below). The assumption (iv), in particular that E is the nega-
tive of the gradient of a positive function, becomes, however, important for
Sections 4-6 below, i.e., to prove the H-Theorem.

3 Proof of Propositions 2.1 and 2.3

As mentioned earlier, one can derive Proposition 2.1 from similar results es-
tablished in [5], [6]. However, for later use we shall prove it by a constructive
regularization technique already developed in the above works. Namely, we
define, for each ε > 0, the operator (A0)ε : D((A0)ε) ⊂ L1 → L1,

(A0)εu = −∆(β(u)) + εβ(u) + div(Eεb
∗
ε(u)), (3.1)

D((A0)ε) = {u ∈ L1, −∆(β(u)) + εβ(u) + div(Eεb
∗
ε(u)) ∈ L1}. (3.2)

Here ∆ and div are taken in the sense of Schwartz distributions and

bε ≡ b ∗ ρε, b∗ε(r) ≡
bε(r)r

1 + ε|r|
, r ∈ R, (3.3)

where ρε(r) ≡ 1
ε
ρ
(
r
ε

)
, ρ ∈ C∞0 (R), ρ ≥ 0, is a standard mollifier. Moreover,

Eε = −∇Φε, Φε(x) ≡ Φ(x)

(1 + εΦ(x))m
.

Then Φε ∈ L2, since m ≥ 2, and

Eε = E(1 + εΦ)−m −mεΦE(1 + εΦ)−(m+1) (3.4)

and, therefore, by Hypothesis (iv),
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Eε ∈ (L∞ ∩ L1)(Rd;Rd)

|Eε(x)| ≤ (1 +m)|E(x)|, lim
ε→0

Eε(x) = E(x), for a.e. x ∈ Rd,

εm|Eε| ≤ (1 +m)|E|∞Φ−m, ∀ε > 0.

(3.5)

We also note that b∗ε, bε are bounded and Lipschitz and that, for ε→ 0,

b∗ε(r)→ b(r)r uniformly on compacts. (3.6)

Obviously, the operator ((A0)ε, D((A0)ε)) is closed on L1.

Lemma 3.1 Assume that Hypotheses (i)-(iv) hold. Then

R(I + λ(A0)ε) = L1, ∀λ > 0, (3.7)

and there is an operator Jελ : L1 → L1 such that Jελ(0) = 0 and (2.3)–(2.5)
hold. Namely,

Jελ2(f) = Jελ1

(
λ1

λ2

f +

(
1− λ1

λ2

)
Jελ(f)

)
, ∀λ1, λ2 > 0, (3.8)

(I + λ(A0)ε)J
ε
λ(f) = f, ∀f ∈ L1, ∀ε > 0, (3.9)

|Jελ(f1)− Jελ(f2)|1 ≤ |f1 − f2|1, ∀f1, f2 ∈ L1, λ > 0, (3.10)

Jελ(f) ≥ 0, a.e. in Rd if f ≥ 0, a.e. in Rd, ∀λ ∈ (0, λ1), (3.11)∫
Rd
Jελ(f)dx =

∫
Rd
f dx, ∀λ > 0, ∀ f ∈ L1. (3.12)

Moreover, there is λ0 > 0 independent of f ∈ L1 such that, for all λ ∈ (0, λ0),

lim
ε→0

Jελ(f) = Jλ(f) in L1, ∀f ∈ L1, (3.13)

where Jλ satisfies (2.3)–(2.5) and (2.7), (2.8).

As in the case of the operator A, we define (see (2.9))

Aεu = (A0)εu, ∀u ∈ D(Aε) = Jελ(L1). (3.14)

Then, Lemma 3.1 implies that Aε is m-accretive in L1 and (I+λAε)
−1 = Jελ.

Moreover, by (3.13) it follows that

lim
ε→0

(I + λAε)
−1f = Jλ(f) in L1, ∀f ∈ L1, for λ ∈ (0, λ0). (3.15)

Proof of Lemma 3.1. We fix f ∈ L2 ∩ L1 and consider the equation
u+ λ(A0)εu = f, that is,
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u− λ∆(β(u)) + ελβ(u) + λ div(Eεb
∗
ε(u)) = f in D′(Rd). (3.16)

To solve equation (3.16), we consider the equation

(εI−∆)−1u+λβ(u)+λ(εI−∆)−1div(Eεb
∗
ε(u)) = (εI−∆)−1f in L2. (3.17)

Clearly, a solution of (3.17) satisfies (3.16) in L2. We set

Fε(u) = (εI −∆)−1u, G(u) = λβ(u), u ∈ L2,
Gε(u) = λ(εI −∆)−1(div(Eεb

∗
ε(u))), u ∈ L2,

(3.18)

and note that Fε and G are accretive and continuous in L2.
We also have by Hypotheses (ii)-(iii) that Gε is continuous in L2 and∫

Rd
(Gε(u)−Gε(ū))(u− ū)dx

= −λ
∫
Rd
Eε(b

∗
ε(u)− b∗ε(ū)) · ∇(εI −∆)−1(u− ū))dx

≥ −Cελ|u− ū|2|∇(εI −∆)−1(u− ū)|2, ∀u, ū ∈ L2(Rd),

(3.19)

for some positive constant Cε = 0
(

1
ε

)
. Moreover, we have∫

Rd
(εI −∆)−1uu dx = ε|(εI −∆)−1u|22 + |∇(εI −∆)−1u|22, ∀u ∈ L2. (3.20)

By (3.17)-(3.20), we see that, for u∗ = u− ū, we have

(Fε(u
∗) +Gε(u)−Gε(ū) +G(u)−G(ū), u∗)2

≥ λγ|u∗|22 + |∇(εI −∆)−1u∗|22 + ε|(εI −∆)−1u∗|22
−Cελ|u∗|2|∇(εI −∆)−1u∗|2.

This implies that Fε+Gε+G is accretive and coercive on L2 for λ < λε, where
λε is sufficiently small. Since this operator is continuous and accretive, it
follows that it is m-accretive and, therefore, surjective (because it is coercive).
Hence, for each f ∈ L2∩L1 and λ < λε, equation (3.17) has a unique solution
uε ∈ L2. Since uε ∈ L2, b∗ε(r) ≤ Cε|r|, r ∈ R, and Eε ∈ L∞, by (3.16) we see
that β(uε) ∈ H1(Rd), whence by (i) we have

uε ∈ H1(Rd). (3.21)
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Multiplying (3.16) by uε and β(uε), respectively, integrating over Rd and
using hypothesis (i) (part β′ ≥ γ), we get after some calculation that, for
λ < λ1 with λ1 small enough,

|uε|22 + λ|∇β(uε)|22 + λ|∇uε|22 + ελ|β(uε)|22 ≤ Cλ1|f |22, (3.22)

where Cλ1 is independent of ε.
We denote by uε(f) ∈ H1(Rd) the solution to (3.17) for f ∈ L2 ∩ L1 and

prove that

|uε(f1)− uε(f2)|1 ≤ |f1 − f2|1, ∀f1, f2 ∈ L1 ∩ L2. (3.23)

Here is the argument. We set u = uε(f1) − uε(f2), f = f1 − f2. By (3.16),
we have, for ui = uε(fi), i = 1, 2,

u− λ∆(β(u1)− β(u2)) + ελ(β(u1)− β(u2))

+λ div(Eε(b
∗
ε(u1)− b∗ε(u2))) = f in L2.

(3.24)

Proceeding as in [6] (see, also, [19]), we consider the Lipschitzian function
Xδ : R→ R,

Xδ(r) =


1 for r ≥ δ,
r

δ
for |r| < δ,

−1 for r < −δ,
(3.25)

where δ > 0. We set

Fε = λ∇(β(u1)− β(u2))− λEε(b∗ε(u1)− b∗ε(u2))

and rewrite (3.24) as

u = div Fε − ελ(β(u1)− β(u2)) + f. (3.26)

By (3.21), it follows that Fε ∈ L2(Rd) and by (3.26) that divFε ∈ L2(Rd). We
set Λδ = Xδ(β(u1)−β(u2)). Since Λδ ∈ H1(Rd), it follows that ΛδdivFε ∈ L1

and so, by (3.26), we have∫
Rd
uΛδdx = −

∫
Rd
Fε · ∇Λδdx

− ελ
∫
Rd

(β(u1)− β(u2))Λδdx+

∫
Rd
fΛδdx

= −
∫
Rd

(Fε · ∇(β(u1)− β(u2))X ′δ(β(u1)− β(u2))dx

−ελ
∫
Rd

(β(u1)− β(u2))Xδ(β(u1)− β(u2))dx+

∫
Rd
fΛδdx.

(3.27)
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We set

I1
δ =

∫
Rd
Eε(b

∗
ε(u1)− b∗ε(u2)) · ∇Λδdx

=

∫
Rd
Eε(b

∗
ε(u1)− b∗ε(u2)) · ∇(β(u1)− β(u2))X ′δ(β(u1)− β(u2))dx

=
1

δ

∫
[|β(u1)−β(u2)|≤δ]

Eε(b
∗
ε(u1)− b∗ε(u2)) · ∇(β(u1)− β(u2))dx.

(3.28)

Since |Eε| ∈ L∞ ∩ L2 and, by Hypothesis (i),

|b∗ε(u1)− b∗ε(u2)| ≤ Lip(b∗ε)|u1 − u2| ≤
1

γ
Lip(b∗ε)|β(u1)− β(u2)|,

it follows that

lim
δ→0

1

δ

∫
[|(β(u1)−β(u2))|≤δ]

|Eε(b∗ε(u1)− b∗ε(u2)) · ∇(β(u1)− β(u2))|dx

≤ 1

γ
Lip(b∗ε)|Eε|2 lim

δ→0

(∫
[|β(u1)−β(u2)|≤δ]

|∇(β(u1)− β(u2))|2dx
) 1

2

= 0.

This yields
lim
δ→0

I1
δ = 0, (3.29)

because ∇(β(u1) − β(u2))(x) = 0, a.e. on [x ∈ Rd; β(u1(x)) − β(u2(x))=0].
On the other hand, since X ′δ ≥ 0, we have∫

Rd
∇(β(u1)− β(u2)) · ∇(β(u1)− β(u2))X ′δ(β(u1)− β(u2)) dx ≥ 0. (3.30)

By (3.27)-(3.30), since |Λδ| ≤ 1, we get

lim
δ→0

∫
Rd
uXδ(β(u1)− β(u2))dx ≤

∫
Rd
|f | dx

and, since uXδ(β(u1) − β(u2)) ≥ 0 and Xδ → sign as δ → 0, by Fatou’s
lemma this yields

|u|1 ≤ |f |1, (3.31)

as claimed.
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Next, for f arbitrary in L1, consider a sequence {fn} ⊂ L2 such that
fn → f strongly in L1. Let {unε} ⊂ L1 ∩ L2 be the corresponding solutions
to (3.17) for 0 < λ < λε. We have, for all m,n ∈ N,

unε − umε + λ((A0)εu
n
ε − (A0)εu

m
ε ) = fn − fm. (3.32)

Taking into account (3.31), we obtain by the above equation that

|unε − umε |1 ≤ |fn − fm|1, ∀n,m ∈ N.

Hence, for n → ∞, we have unε → uε(λ, f) in L1. Now, (3.32) implies that
(A0)εu

n
ε → v in L1. Since ((A0)ε, D((A0)ε)) is closed on L1, we conclude that

uε(λ, f) ∈ D((A0)ε) and that

uε(λ, f) + λ(A0)εuε(λ, f) = f, (3.33)

which proves (3.7) for λ < λε. Moreover, by (3.31), we have

|uε(λ, f1)− uε(λ, f2)|1 ≤ |f1 − f2|1, ∀f1, f2 ∈ L1. (3.34)

By Proposition 3.3 in [3], p. 99, it follows that R(1 + λ(A0)ε) = L1, ∀λ > 0,
and, therefore, (3.33) holds for all λ > 0 if f ∈ L1. We set Jελ(f) = uε(λ, f).
Then, by (3.33), (3.34), it follows that (3.7), (3.9), (3.10) are satisfied. Since
uε = Jελ(f) is for f ∈ L1 ∩ L2 the solution to (3.16), it follows (3.8) for all
f ∈ L1 ∩ L2 and so by density for all f ∈ L1. We also note that, by (3.16),∫

Rd
Jελ(f)dx =

∫
Rd
f dx− ελ

∫
Rd
β(Jελ(f))dx,

∀f ∈ L1 ∩ L2, λ > 0,
(3.35)

and so (3.12) follows for all f ∈ L1 ∩ L2 and so, by (3.34) for all f ∈ L1.

Note also that there exists λ̃1 independent of ε such that, for all λ ∈ (0, λ̃1)
and f ∈ L1 ∩ L2,

Jελ(f) ≥ 0, a.e. in Rd if f ≥ 0, a.e. in Rd. (3.36)

(The latter follows by multiplying (3.16), where u = uε, with sign u−ε and
integrating over Rd.)

Next, we show (3.13). Fix λ < λ0 = min(λ1, λ̃1), with λ1 as in (3.22), and
let f ∈ L1 ∩ L2. If uε = uε(λ, f), by (3.22), it follows that {uε} is bounded
in H1(Rd) and {β(uε)} is bounded in H1(Rd). Clearly, uε(f) = 0 if f ≡ 0,
hence (3.34) implies that {uε} is bounded in L1. Hence, along a subsequence,
again denoted {ε} → 0, we have
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uε −→ u weakly in H1(Rd), strongly in L2
loc(Rd),

β(uε) −→ β(u) weakly in H1(Rd) and strongly in L2
loc(Rd),

∆β(uε) −→ ∆β(u) weakly in H−1(Rd),

(3.37)

and, by Hypothesis (ii) and (3.6),

b∗ε(uε) −→ b(u)u strongly in L2
loc(Rd). (3.38)

This yields
Eεb

∗
ε(uε)→ Eb(u)u strongly in L2

loc(Rd). (3.39)

Passing to the limit in (3.16), we obtain

u− λ∆β(u) + λ div(Eb(u)u) = f in D′(Rd), (3.40)

where u = u(λ, f) ∈ H1(Rd). By (3.34) and (3.37), it follows via Fatou’s
lemma that

|u(λ, f1)− u(λ, f2)|1 ≤ |f2 − f2|1, ∀f1, f2 ∈ L2 ∩ L1, (3.41)

and hence (since u(λ, f) = 0 if f ≡ 0) u1(λ, f), u2(λ, f) ∈ L1 ∩ L2, if f ∈
L1 ∩ L2. In particular, u(λ, f) ∈ D(A0) and

u(λ, f) + λA0u(λ, f) = f, ∀f ∈ L1 ∩ L2. (3.42)

Now, let f ∈ L1 and fn ∈ L1 ∩ L2, n ∈ N, such that fn → f in L1. Then,
by (3.41), u(λ, fn) → u = u(λ, f) in L1 and, therefore, since each u(λ, fn)
satisfies (3.42), we conclude that u(λ, f) ∈ D(A0) and that u also satisfies
(3.42), and so (2.2) follows for all λ ∈ (0, λ0). Again by Proposition 3.3 in
[3], p. 99, (2.2) and (3.41) extend to all λ > 0.

We define Jλ : L1 → L1 as Jλ(f) = u(λ, f) and, by (3.41), (2.5) follows.
Moreover, letting ε→ 0 in (3.8)–(3.11), it follows that Jλ satisfies (2.3)–(2.5)
and (2.7), (2.8), as claimed.

Clearly, by (3.37),

uε → u = u(λ, f) = Jλ(f) in L1
loc, (3.43)

for 0 < λ < λ0. (Here, uε = Jελ(f) = (I + λAε)
−1f .)

To prove that (3.13), that is that (3.43) holds in L1, we shall prove first the
following lemma, which has an intrinsic interest and where we use Hypothesis
(iv) for the first time.
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Lemma 3.2 Assume that Hypotheses (i)-(iv) hold, and let u0 ∈M∩ L2.

(a) We have

sup
ε∈(0,1)

∫
Rd
|uε|Φ dx <∞. (3.44)

(b) Assume that divE ∈ L∞. Then, for all λ ∈ (0, λ0),

‖(I + λAε)
−1u0‖ ≤ ‖u0‖+ ρελ|u0|1, (3.45)

where ρε = γ1(m+ 1)|∆Φ|∞ + γ1m(m+ 3)ε|E|2∞ + |b|∞(1 +m)2|E|2∞.

Proof. By approximation also in (b), we may restrict to the case u0∈M∩L2.
If we multiply equation (3.33) by ϕνXδ(β(uε)), where uε = (I+λ(A0)ε)

−1u0 =
(I + λAε)

−1u0, ϕν(x) = Φε(x) exp(−νΦε(x)) and integrate over Rd, we get,
since X ′δ ≥ 0,∫

Rd
uεXδ(β(uε))ϕν dx ≤ −λ

∫
Rd
∇β(uε) · ∇(Xδ(β(uε))ϕν)dx

+λ

∫
Rd
Eεb

∗
ε(uε) · ∇(Xδ(β(uε))ϕν)dx+

∫
Rd
|u0|ϕνdx

≤ −λ
∫
Rd
∇β(uε) · ∇ϕνXδ(β(uε))dx

+λ

∫
Rd
Eεb

∗
ε(uε) · ∇β(uε)X ′δ(β(uε))ϕνdx

+λ

∫
Rd

(Eε · ∇ϕν)b∗ε(uε)Xδ(β(uε))dx+

∫
Rd
|u0|ϕνdx.

(3.46)

Letting δ → 0, we get as above∫
Rd
|uε|ϕνdx ≤ −λ

∫
Rd
∇|β(uε)| · ∇ϕνdx

+lim
δ→0

λ

δ

∫
[|β(uε)|≤δ]

|Eε| |b∗ε(uε)| |∇β(uε)|ϕνdx

+λ

∫
Rd

signuεb
∗
ε(uε)Eε · ∇ϕν dx+

∫
Rd
|u0|ϕνdx

≤ λ

∫
Rd

(|β(uε)|∆ϕν + |b∗ε(uε)| |∇Φε · ∇ϕν |)dx+

∫
Rd
|u0|ϕνdx,

(3.47)

because |b∗(uε)| ≤ C|uε| ≤ C
γ
|β(uε)|, a.e. in Rd, and so

1

δ

∫
[|β(uε)|≤δ]

|Eε| |b∗(uε)| |∇β(uε)|ϕνdx ≤
C

γ
|Eε|2

(∫
[|β(uε)|≤δ]

|∇β(uε)|2dx
) 1

2
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and

lim
δ→0

∫
[|v|≤δ]

|∇v|2dx = 0, ∀v ∈ H1(Rd).

We have

∇ϕν(x) = (1− νΦε)∇Φε exp(−νΦε), (3.48)

∆ϕν(x) = ((1− νΦε)∆Φε − 2ν|∇Φε|2 + ν2Φε|∇Φε|2) exp(−νΦε), (3.49)

∆Φε = − div Eε = (1−mεΦ(1 + εΦ)−1)(1 + εΦ)−m∆Φ (3.50)

+mε((m+ 1)εΦ(1 + εΦ)−1 − 2)(1 + εΦ)−(m+1)|E|2.

Then, letting ν → 0, since β(uε), ε ∈ (0, 1), is bounded in L1 ∩L2, we get by
(3.47), (3.50) and Hypothesis (iii) that

sup
ε∈(0,1)

∫
Rd
|uε|Φ dx <∞,

and assertion (a) follows. If divD ∈ L∞, we additionally get from (3.47) that

‖uε‖ ≤ ‖u0‖+ λγ1|∆Φε|∞|u0|1 + λ|b|∞|u0|1|∇Φε|22, ∀ε > 0.

By (3.50), we have

|∆Φε(x)| ≤ (m+ 1)|∆Φ(x)|+m(m+ 3)ε|E|2(x) for a.e. x ∈ Rd, (3.51)

and this, together with (3.5), yields (3.45), as claimed.

Remark 3.3 If, as in Remark 2.4, we replace (iv), M, ‖ · ‖ and ρ by (iv)′

(see Remark 2.4), M2, ‖ · ‖2 and ρ̃, respectively, we can prove a complete
analogue of Lemma 3.2 by the same arguments. One only has to replace ϕν
by the function ϕ̃ν(x) = |x|2e−ν|x|2 in the above proof. Once one has this
analogue of Lemma 3.2, the proofs below can easily be adjusted to this case.

Proof of (3.13). By (3.44) and Hypothesis (iv), it follows that, if f ∈M∩L2,
then we have, for all λ ∈ (0, λ0) and ε ∈ (0, 1), N > 0,∫

{Φ≥N}
|(I + λAε)

−1f |dx ≤ 1

N
‖(I + λAε)

−1f‖ ≤ C

N
.

Recalling (3.43) and that {Φ ≤ N} is compact, the latter implies that, if
f ∈M∩ L2, then limε→0 |uε − u|1 = 0, i.e.,

lim
ε→0

(I + λAε)
−1f = (I + λA)−1f in L1, ∀f ∈M∩ L2. (3.52)
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Since L2 ∩M is dense in L1 and (I + λAε)
−1, ε > 0, are equicontinuous,

(3.13) follows.

Proof of (2.6). Let f ∈ C∞0 (Rd) and uλ = Jλ(f) ∈ D(A), λ > 0. Since
D(A) ⊂ D(A0), we have

uλ + λA0uλ = f, (3.53)

where uλ ∈ L1 ∩ L∞, |uλ|1 ≤ |f |1, and, by Lemma 3.1 in [7],

sup
λ∈(0,λ0)

|uλ|∞ = C∞ <∞. (3.54)

By (3.22), we also have

sup
λ∈(0,λ0)

|uλ|22 = C2 <∞, (3.55)

for some λ0 > 0. Taking into account (3.54) and that b∗(r) ≡ b(r)r is locally
Lipschitz, it follows as in the proof of Lemma 3.2 that

sup
λ∈(0,λ0)

∫
Rd
|uλ(x)|Φ(x)dx <∞. (3.56)

Next, by (3.53), we see that since A0uλ ∈ L2, we have

〈A0uλ, uλ〉2 + λ|A0uλ|22 = 〈A0uλ, f〉2 ≤ |A0uλ|2|f |2.

This yields

〈∇β(uλ),∇uλ〉2 ≤ 〈E, b
∗(uλ)∇uλ〉2 + 〈∇β(uλ),∇f〉2 − (E, b∗(uλ)∇f)2

and so, by Hypotheses (i)–(ii) we get, for δ > 0,

γ|∇uλ|22 ≤ δ(1 + γ2
1)|∇uλ|2 +

1

δ
(|E|2∞|b|2∞|uλ|22 + |∇f |22) + |E|∞|b|∞|uλ|2|∇f |2.

This yields
|∇uλ|22 ≤ Kδ(γ − δ(1 + γ2

1))−1. (3.57)

By (3.53)–(3.57), it follows

λA0uλ → 0 in H−1 as λ→ 0

and, therefore, uλ → f in H−1 as λ → 0 and so, by (3.57), we have on a
subsequence {λ} → 0

uλ → f in L2
loc ⊂ L1

loc.

20



Then, by (3.56), we infer that for λ → 0, uλ → f in L1 and so f ∈ D(A).
Hence, C∞0 (Rd) ⊂ D(A) and so (2.6) follows.

We note that, similarly, it follows that

D(Aε) = L1. (3.58)

This completes the proof of Proposition 2.1.

Proof of Proposition 2.3. By Lemma 3.1 and (3.45) in Lemma 3.2, we
have, for λ ∈ (0, λ0), and δ > 0,

‖(I + λA)−1u0‖ ≤ ‖u0‖+ ρλ|u0|1, ∀u0 ∈M.

This yields
‖(I + λA)−nu0‖ ≤ ‖u0‖+ nλρ|u0|1, ∀n ∈ N,

and so, by (2.16), we get

‖S(t)u0‖ ≤ ‖u0‖+ ρt|u0|1, ∀t ≥ 0, u0 ∈M, (3.59)

as claimed.

4 The H-theorem

Let S(t) be the continuous semigroup of contractions defined by (2.20). A
lower semicontinuous function V : L1 → (−∞,∞] is said to be a Lyapunov
function for S(t) (equivalently, for equations (1.1) or (2.12)) if

V (S(t)u0) ≤ V (S(s)u0), for 0 ≤ s ≤ t <∞, u0 ∈ L1.

(See, e.g., [30].)
In the following, we shall restrict the semigroup to the probability density

set P (see (2.24)). For each u0 ∈ P , consider the ω-limit set

ω(u0) = {w = limS(tn)u0 in L1
loc for some {tn} → ∞}.

Our aim here is to construct a Lyapunov function for S(t), to prove that
ω(u0) 6= ∅ and also that every u∞ ∈ ω(u0) is an equilibrium state of equation
(1.1), that is, Au∞ = 0. To this end, we shall assume that, besides (i)-(iv),
Hypothesis (v) also holds.
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Consider the function η ∈ C(R),

η(r) = −
∫ r

0

dτ

∫ 1

τ

β′(s)

sb(s)
ds, ∀r ≥ 0, (4.1)

and define the function V : D(V ) =M+ = {u ∈M;u ≥ 0, a.e. on Rd} → R

V (u) =

∫
Rd
η(u(x))dx+

∫
Rd

Φ(x)u(x)dx = −S̃[u] + F [u]. (4.2)

Since, by (i), (iv) and (v),

γ

r|b|∞
≤ β′(r)

rb(r)
≤ γ1

rb0

, ∀r > 0, (4.3)

we have

γ1

b0

1[0,1](r)r(log r − 1) +
γ

|b|∞
1(1,∞)(r)r(log r − 1) ≤ η(r)

≤ γ

|b|∞
1[0,1](r)r(log r − 1) +

γ1

b0

1(1,∞)(r)r(log r − 1).
(4.4)

We also have that η ∈ C([0,∞)), η ∈ C2((0,∞)), η′′ ≥ 0. Since Φ is Lipschitz,
hence of at most linear growth, F [u] is well-defined and finite if u ∈ M.
Furthermore, exactly as in [25], p. 16, one proves that (u log u)− ∈ L1 if

u ∈ D(V ). Hence S̃[u] is well-defined and −S̃[u] ∈ (−∞,∞] because of (4.4)
and thus V (u) ∈ (−∞,∞] for all u ∈ D(V ). We define V =∞ on L1\D(V ).
Then, obviously, V : L1 → (−∞,∞] is convex and L1

loc-lower semicontinuous
on balls in M, as easily follows by (4.4) from (4.5) below. If, in addition,

(u log u)+ ∈ L1, then, again by (4.4), we have that S̃[u] ∈ (−∞,∞) and also
V is real-valued. The function (see (1.10))

S̃[u] = −
∫
Rd
η(u(x))dx, u ∈ P ,

is called in the literature (see, e.g., [22], [31]) the entropy of the system,
while F [u] is the mean field energy. In fact, according to the general theory

of thermostatics (see [23]), the functional S̃ = S̃[u] is a generalized entropy
because its kernel −η is a strictly concave continuous functions on (0,∞) and
lim
r↓0

η′(r) = +∞. In the special case β(s) ≡ s and b(s) ≡ 1, η(r) ≡ r(log r−1)

and so S̃[u]− 1 reduces to the classical Boltzmann-Gibbs entropy.

22



As in [25] (formula (15)), one proves that, for α ∈
[

m
m+1

, 1
)
, where m is

as in assumption (iv),∫
{Φ≥R}

|min(u log u, 0)|dx ≤ Cα

(∫
{Φ≥R}

Φ−mdx

)1−α

‖u‖α, (4.5)

for all R > 0. Indeed, obviously, for every α ∈ (0, 1), there exists Cα ∈ (0,∞)
such that (r log r)− ≤ Cαr

α for r ∈ [0,∞). Hence, the left hand side of (4.5)
by Hölder’s inequality is dominated by

Cα

(∫
{Φ≥R}

uΦdx

)α(∫
{Φ≥R}

Φ−
α

1−αdx

)1−α

.

Therefore, for α ∈
[

m
m+1

, 1
)
, we obtain (4.5) since Φ ≥ 1 and (4.5) yields

V (u) ≥ −C(‖u‖+ 1)α, ∀u ∈ D(V ). (4.6)

We also consider the function Ψ : D(Ψ) ⊂ L1 → [0,∞) defined by

Ψ(u) =

∫
Rd

∣∣∣∣∣β′(u)∇u√
ub(u)

− E
√
ub(u)

∣∣∣∣∣
2

dx, (4.7)

D(Ψ) = {u ∈ L1 ∩W 1,1
loc (Rd); u ≥ 0, Ψ(u) <∞}. (4.8)

We extend Ψ to all of L1 by Ψ(u) =∞ if u ∈ L1 \D(Ψ). Since ∇u = 0, a.e.
on {u = 0}, we set here and below

∇u√
u

= 0 on {u = 0}.

Theorem 4.1 is the main result and, as mentioned earlier, can be viewed as
the H-theorem for NFPE (1.1).

Theorem 4.1 Assume that Hypotheses (i)-(v) and (2.30) hold. Then the
function V defined by (4.2) is a Lyapunov function for S(t), that is, for
D0(V ) = D(V ) ∩ {V <∞} (= {u ∈ D(V ); u log u ∈ L1}),

S(t)u0 ∈ D0(V ), ∀t ≥ 0, u0 ∈ D0(V ) and

V (S(t)u0) ≤ V (S(s)u0), ∀u0 ∈ D0(V ), 0 ≤ s ≤ t <∞.
(4.9)
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Moreover, we have, for all u0 ∈ D0(V ),

V (S(t)u0) +

∫ t

s

Ψ(S(σ)u0)dσ ≤ V (S(s)u0) for 0 ≤ s ≤ t <∞. (4.10)

In particular, S(σ)u0 ∈ D(Ψ) for a.e. σ ≥ 0. Furthermore, there exists
u∞ ∈ ω(u0) (see (1.8)) such that u∞ ∈ D(Ψ), Ψ(u∞) = 0 and, for any
such a u∞, we have either u∞ = 0 or u∞ > 0 a.e. In the latter case,

u∞ = g−1(−Φ + µ) for some µ ∈ R, (4.11)

g(r) =

∫ r

1

β′(s)

sb(s)
ds, r > 0. (4.12)

Moreover, by (4.2), (4.10), we see that the entropy of the semiflow u(t) =
S(t)u0 is evolving according to the law

S̃[u(t)] ≥ S̃[u(s)] +

∫
Rd

Φ(x)(u(t, x)− u(s, x))ds+

∫ t

s

Ψ(u(σ))dσ,

for all 0 ≤ s ≤ t <∞.

Remark 4.2 We note that (2.30) holds if divD ∈ L∞ (see Propopsition 2.3)
or if Hypothesis (vi) holds (see Lemma 6.2 below).

5 Proof of Theorem 4.1

In the following, we approximate V : L1 → (−∞,∞] by the functional Vε
defined by

Vε(u) =

∫
Rd

(ηε(u(x)) + Φε(x)u(x))dx, ∀u ∈ D(V ),

Vε(u) =∞ if u ∈ L1 \D(V ),

where ηε(r) = −
∫ r

0
dτ
∫ 1

τ
β′(s)

b∗ε(s)+ε2m
ds, r ≥ 0, ε > 0. Clearly, ηε → η as ε→ 0

locally uniformly. We note that Vε is convex, and L1
loc-lower semicontinuous

on every ball in M. Furthermore, there exists C > 0 such that, for all
ε ∈ (0, 1], we have |ηε(u)| ≤ C(1 + |u|2). This implies that Vε <∞ on L2 and
Vε(u)→ V (u) as ε→ 0 for all u ∈ D(V ) ∩ L2 and by the generalized Fatou
lemma that Vε is lower semicontinuous on L2. We set

V ′ε (u) = η′ε(u) + Φε, ∀u ∈ D(V ) ∩ L2.
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It is easy to check that V ′ε (u) ∈ ∂Vε(u) for all u ∈ D(V )∩L2, where ∂Vε is the
subdifferential of Vε on L2. As regards the function Ψ defined by (4.7)-(4.8),
we have

Lemma 5.1 We have

D(Ψ) = {u ∈ L1; u ≥ 0,
√
u ∈ W 1,2(Rd)}, (5.1)

‖
√
u‖W 1,2(Rd) ≤ C(Ψ(u) + 1), ∀u ∈ D(Ψ), (5.2)

where C ∈ (0,∞) is independent of u. Furthermore, Ψ is L1
loc-lower semi-

continuous on L1-balls.

Proof. By (4.7), taking into account (i), (ii), we have

γ|b|−1
∞

∫
Rd

|∇u|2

u
dx ≤

∫
Rd

|β′(u)|2 · |∇u|2

ub(u)
dx

≤ 2Ψ(u) + 2

∫
Rd
|E|2ub(u)dx <∞, ∀u ∈ D(Ψ).

(5.3)

This yields (5.1) and (5.2) since ∇(
√
u) = 1

2
∇u√
u

and (v) holds. To show the
lower semicontinuity of Ψ, we rewrite it as

Ψ(u) =

∫
Rd
|∇j(u)− E

√
ub(u)|2dx, u ∈ D(Ψ), (5.4)

where

j(r) =

∫ r

0

β′(s)√
sb(s)

ds, r ≥ 0. (5.5)

Clearly,

0 ≤ j(r) ≤ 2γ1√
b0

√
r. (5.6)

Let {un} ⊂ L1 and ν > 0 be such that sup
n
|un|1 <∞ and

Ψ(un) ≤ ν <∞, ∀n, (5.7)

un −→ u in L1
loc as n→∞. (5.8)

(5.8) yields √
unb(un) −→

√
ub(u) in L2

loc
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and so, by Hypothesis (iii), we have

E
√
unb(un) −→ E

√
ub(u) in L2

loc(Rd;Rd). (5.9)

Hence (5.7) implies that (selecting a subsequence if necessary) for all balls
BN of radius N ∈ N around zero we have

sup
n

∫
BN

|∇j(un)|2dx <∞

and
j(un)→ j(u) in L2

loc as n→∞.
Therefore (again selecting a subsequence, if necessary), for every N ∈ N,

∇j(un)→ ∇j(u) weakly in L2(BN , dx) as n→∞.

Hence, if we define ΨN analogously to Ψ, but with the integral over Rd

replaced by an integral over BN , we conclude that

lim inf
n→∞

ΨN(un) ≥ lim inf
n→∞

∫
BN

|∇j(un)|2dx− 2

∫
BN

∇j(u) · E
√
ub(u)dx

+

∫
BN

|E|2ub(u)dx ≥ ΨN(u).

Hence, since u ∈ L1, we can let N →∞ to get

lim inf
n→∞

Ψ(un) ≥ Ψ(u).

Now, we consider the functional

Ψε(u) =

∫
Rd

∣∣∣∣∣ β′(u)∇u√
b∗ε(u) + ε2m

− Eε
√
b∗ε(u) + ε2m

∣∣∣∣∣
2

dx

+ε2m

∫
Rd
Eε ·

(
β′(u)∇u
b∗ε(u) + ε2m

− Eε
)
dx

+ε

∫
Rd
β(u)(η′ε(u) + Φε)dx, ∀u ∈ D(Ψε) = D(V ) ∩H1,

(5.10)

and
Ψε(u) :=∞ if u ∈ D(V ) \H1.

We have

26



Lemma 5.2 For each ε > 0, Ψε is L1
loc-lower semicontinuous on every ball

in M. Moreover, for any sequence {vε} ⊂ D(V ) ∩H1 such that

sup
ε≥0
‖vε‖ <∞, lim

ε→0
vε = v in L1

loc,

we have
lim inf
ε→0

Ψε(vε) ≥ Ψ(v). (5.11)

Furthermore, there exists c ∈ (0,∞) such that, for all u ∈ D(V ), ε ∈ (0, 1],

Ψε(u) ≥ −c(|u|+ ‖u‖+ 1). (5.12)

Proof. First of all we note that by the assusmption on uε it follows that
lim
ε→0

vε = 0 in L1, since lim
|x|→∞

Φ(x) = ∞. We write Ψε(u) ≡ Ψ∗ε(u) + Gε(u),

where

Ψ∗ε(u) =

∫
Rd

∣∣∣∣∣ β′(u)∇u√
b∗ε(u) + ε2m

− Eε
√
b∗ε(u) + ε2m

∣∣∣∣∣
2

dx

+ε2m

∫
Rd
Eε ·

(
β′(u)∇u
b∗ε(u) + ε2m

− Eε
)
dx,

Gε(u) = ε

∫
Rd
β(u)(η′ε(u) + Φε)dx.

We have, since η′ε(τ) ≥ γ1
b0

(log τ − ε(1− τ)) for τ ∈ (0, 1],

Gε(vε) ≥ εγ1

∫
{vε≤1}

vεη
′
ε(vε)dx ≥ ε

γ2
1

b0

∫
{vε≤1}

(vε log vε − εvε)dx

≥ −ε γ
2
1

b0

[
Cα

(∫
Rd

Φ−mdx

)1−α

‖vε‖α + ε

∫
Rd
vε dx

]
,

(5.13)

where we used (4.5). Hence lim inf
ε→0

Gε(vε) ≥ 0. Now, arguing as in the proof

of Lemma 5.1, we represent Ψ∗ε as (see (5.3))

Ψ∗ε(u)=

∫
Rd
|∇j∗ε (u)−Eε

√
b∗ε(u)+ε2m|2dx+ε2m

∫
Rd
Eε ·

(
β′(u)∇u
b∗ε(u)+ε2m

−Eε
)
dx,

where u ∈ D(V ) ∩H1 and

j∗ε (r) =

∫ r

0

β′(s)ds√
b∗ε(s) + ε2m

.
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We may assume that Ψ∗ε(vε) ≤ ν <∞, ∀ε > 0. Then, as in (5.3), we see that∫
Rd

|β′(vε)|2|∇vε|2

b∗ε(vε) + ε2m
dx ≤ 2

(
Ψ∗ε(vε) +

∫
Rd
|Eε|2(b∗ε(vε) + 2ε2m)dx

)
+2ε2m

∫
Rd

|Eε|β′(vε)|∇vε|
b∗ε(vε) + ε2m

dx.

(5.14)

Taking into account that

2ε2m

∫
Rd

|Eε|β′(vε)|∇vε|
b∗ε(vε) + ε2m

dx

≤ 1

2

∫
Rd

|β′(vε)|2|∇vε|2

b∗ε(vε) + ε2m
dx+ 2ε4m

∫
Rd

|Eε|2

b∗ε(vε) + ε2m
dx

≤ 1

2

∫
Rd

|β′(vε)|2|∇vε|2

b∗ε(vε) + ε2m
dx+ 2ε2m

∫
Rd
|Eε|2dx,

(5.15)

and that lim
ε→0

vε = v in L1 by our assumption, it follows by (3.5) and (5.14)

that, for some C > 0 independent of ε,∫
Rd

|∇vε|2

b∗ε(vε) + ε2m
dx ≤ C, ∀ε > 0,

and so {∇j∗ε (vε)} is bounded in L2. Then, arguing as in Lemma 5.1 (see
(5.8)-(5.9)), we get for ε→ 0

Eε
√
b∗ε(vε) + ε2m −→ E

√
b(u)u in L2(Rd;Rd),

and, therefore,

lim inf
ε→0

Ψε(vε) ≥ lim inf
ε→0

Ψ∗ε(vε) ≥ Ψ(v),

as claimed. By a similar (even easier) argument, one proves that Ψε is L1
loc-

lower semicontinuous on balls in M. The last part of the assertion is an
immediate consequence of (5.13) and (5.15), which hold for all u ∈ D(V )∩H1

replacing vε. Hence, the lemma is proved.
We denote by Sε(t) the continuous semigroup of contractions on L1 gene-

rated by the m-accretive operator Aε defined by (3.1), (3.2), (3.14), that is,

Sε(t)u0 = lim
n→∞

(
I +

t

n
Aε

)−n
u0, ∀t ≥ 0, u0 ∈ L1. (5.16)
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We note that by (3.13) it follows, by virtue of the Trotter-Kato theorem for
nonlinear semigroups of contractions, that (see [14] and [3], p. 169)

lim
ε→0

Sε(t)u0 = S(t)u0, ∀u0 ∈ L1, (5.17)

strongly in L1 uniformly on compact time intervals.
We shall prove first (4.10) for Sε(t). Namely, one has

Lemma 5.3 For each u0 ∈ L2∩D(V ), we have Sε(σ)u0 ∈ D(Ψε) for ds-a.e.
σ ≥ 0, and

Vε(Sε(t)u0) +

∫ t

s

Ψε(Sε(σ)u0)dσ ≤ Vε(Sε(s)u0), 0 ≤ s ≤ t <∞, (5.18)

and all three terms are finite.

Proof. First, we shall prove that, for all ε > 0,

Vε((I + λAε)
−1u0) + λΨε((I + λAε)

−1u0) ≤ Vε(u0), λ ∈ (0, λ0). (5.19)

We set uλε = (I + λAε)
−1u0 and note that, by (3.21)-(3.22), we have

uλε ∈ H1(Rd), β(uλε ) ∈ H1(Rd), ∀λ ∈ (0, λ0), ε > 0, (5.20)

V ′ε (u
λ
ε ) = η′ε(u

λ
ε ) + Φε ∈ ∂Vε(uλε ), (5.21)

where η′ε(u
λ
ε ) ∈ H1(Rd). Taking into account that, by Lemma 3.2,

div(∇β(uλε )− Eεb∗ε(uλε )) =
1

λ
(uλε − u0) + εβ(uλε ) ∈M∩ L2, (5.22)

it follows, since Φε ∈ L2 and divEε ∈ L2 + L∞ by (3.50) and Hypothesis
(iii), that∫

Rd
(−∆β(uλε ) + divEεb

∗
ε(u

λ
ε ))Φε dx = −

∫
Rd

(∇β(uλε )− Eεb∗ε(uλε )) · Eε dx.

This yields, by (5.21),
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〈
Aε(u

λ
ε ), V

′
ε (u

λ
ε )
〉

2

=
〈
−∆(β(uλε )) + εβ(uλε ) + div(Eεb

∗
ε(u

λ
ε )), η

′
ε(u

λ
ε ) + Φε

〉
2

=

∫
Rd

(β′(uλε )∇uλε − Eεb∗ε(uλε )) ·
(

β′(uλε )

b∗ε(u
λ
ε ) + ε2m

∇uλε − Eε
)
dx

+ε
〈
β(uλε ), η

′
ε(u

λ
ε ) + Φε

〉
2

=

∫
Rd

∣∣∣∣∣ β′(uλε )∇uλε√
b∗ε(u

λ
ε ) + ε2m

− Eε
√
b∗ε(u

λ
ε ) + ε2m

∣∣∣∣∣
2

dx+ ε
〈
β(uλε ), η

′
ε(u

λ
ε ) + Φε

〉
2

+ε2m

∫
Rd

(
Eε·

β′(uλε )∇uλε
b∗ε + ε2m

− Eε
)
dx = Ψε(u

λ
ε ), ∀ε > 0, λ ∈ (0, λ0).

This yields (5.19) because, by the convexity of Vε, we have by (5.21)

Vε(u
λ
ε ) ≤ Vε(u0) +

〈
V ′ε (u

λ
ε ), u

λ
ε − u0

〉
2
, uλε − u0 = −λAε(uλε ).

To get (5.18), we shall proceed as in the proof of Theorem 3.4 in [30]. Namely,
we set

λδ(λ, v) = Vε((I + λAε)
−1v) + λΨε((I + λAε)

−1v)− Vε(v),

∀λ ∈ (0, λ0), v ∈ L2 ∩D(V ),

and note that, by (5.19), δ(λ, u0) ≤ 0, λ ∈ (0, λ0). This yields

Vε((I + λAε)
−ju0) + λΨε((I + λAε)

−ju0)− Vε((I + λAε)
−j+1u0)

= λδ(λ, (I + λAε)
−j+1u0), ∀j ∈ N.

Then, summing up from j = 1 to j = n and taking λ = t
n
, we get

Vε

((
I +

t

n
Aε

)−n
u0

)
+

n∑
j=1

t

n
Ψε

((
I +

t

n
Aε

)−j
u0

)

= Vε(u0) +
n∑
j=1

t

n
δ

(
t

n
,

(
I +

t

n
Aε

)−(j−1)

u0

)
.

(5.23)

Note also that, if n > t
λ0

, then

δ

(
t

n
,

(
I +

t

n
Aε

)−j
u0

)
≤ 0, 1 ≤ j ≤ n. (5.24)
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We consider the step function

fn(σ) = Ψε

((
I +

t

n
Aε

)−j
u0

)
for

(j − 1)t

n
< σ ≤ jt

n
,

and note that, for each t > 0,

n∑
j=1

t

n
Ψε

((
I +

t

n
Aε

)−j
u0

)
=

∫ t

0

fn(σ)dσ.

Then, by (3.45), (5.16) and the L1
loc-lower semicontinuity of Ψε on balls in

M, we conclude, by the Fatou lemma, which is applicable because of (5.12),
that

−∞ <

∫ t

0

Ψε(S(σ)u0)dσ ≤ lim inf
n→∞

∫ t

0

fn(σ)dσ, (5.25)

while, by the L1
loc-lower semicontinuity of Vε on balls in M, we have

lim inf
n→∞

Vε

((
I +

t

n
Aε

)−n
u0

)
≥ Vε(Sε(t)u0).

Then, by (5.23)-(5.25), we get

Vε(Sε(t)u0) +

∫ t

0

Ψε(Sε(σ)u0)dσ ≤ Vε(u0), ∀t ≥ 0.

In particular, Vε(Sε(t)u0) < ∞ since Vε(u0) < ∞. Taking this into account
and that Sε(t+ s)u0 = Sε(t)Sε(s)u0, we get (5.18), as claimed.

Proof of Theorem 4.1 (continued). We shall assume u0 ∈ L2 ∩D0(V ).
We want to let ε→ 0 in (5.18), where s = 0.

We note first that we have

lim inf
ε→0

Vε(Sε(t)u0) ≥ V (S(t)u0), ∀t ≥ 0. (5.26)

Here is the argument. We note that, if vε→v in L1 as ε→0 and sup
ε>0
‖vε‖ <∞,

then vε(log vε)
− → v(log v)− in L1

loc as ε → 0. Furthermore, for δ > 0, and
α ∈

[
m+δ
m+δ+1

, 1
)
, by (4.5),∫

{Φ≥R}
vε(log vε)

−dx ≤ Cα
1

Rδ(1−α)

(∫
Φ−mdx

)1−α

‖vε‖α,
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hence

lim
R→∞

sup
ε>0

∫
{Φ≥R}

vε(log vε)
−dx = 0,

therefore, vε(log vε)
− → v(log v)− in L1. Applying this to vε = Sε(t)u0, which

by (5.17), (3.45) and (5.16) is justified, and because ηε → η as ε→ 0 locally
uniformly on [0,∞) and, because for all ε ∈ (0, 1], r ∈ [0,∞),

ηε(r) ≥ −
γ1

b0

(r ∧ 1)(log(r ∧ 1)− − 2(r ∧ 1)),

we can apply the generalized Fatou lemma to conclude that

lim inf
ε→∞

∫
Rd
ηε(Sε(t)u0)dx ≥

∫
Rd
η(S(t)u0)dx,

and we get (5.26), as claimed.
By Lemma 5.3, (3.45) and (5.16), we have that vε = Sε(t)u0, ε > 0,

satisfy for dt-a.e. t > 0 the assumptions of Lemma 5.2, hence

lim inf
ε→0

Ψε(Sε(t)u0) ≥ Ψ(S(t)u0), a.e. t > 0.

Moreover, by Fatou’s lemma, which is applicable by (5.12), it follows that

lim inf
ε→0

∫ t

0

Ψε(Sε(s)u0)ds ≥
∫ t

0

Ψ(S(s)u0)ds, ∀t ≥ 0. (5.27)

Because, as mentioned earlier, Vε(u) → V (u) as ε → 0, if u ∈ D(V ) ∩ L2,
(5.26), (5.27) and (5.18) with s = 0 imply

V (S(t)u0) +

∫ t

0

Ψ(S(σ)u0)dσ ≤ V (u0), ∀u0 ∈ D(V ) ∩ L2, t ≥ 0. (5.28)

We note that, by (2.30) and (4.6), we have

V (S(t)u0) ≥ −C(‖S(t)u0‖+ 1)α

≥ −C(‖u0‖+ t|u0|1)α, α ∈
[

m
m+1

, 1
)
.

(5.29)

Hence

0 ≤
∫ t

0

Ψ(S(σ)u0)dσ <∞, ∀t ≥ 0,
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which implies that
S(σ)u0 ∈ D(Ψ) a.e. σ > 0. (5.30)

Now, to extend (5.28) to all u0 ∈ D0(V ), take un0 ∈ D(V ) ∩ L2(⊂ D0(V ))
with un0 ≤ u0 and un0 → u0 as n→∞ in L1. Then, because for all r ≥ 0

η(r) ≥ −γ0

b0

[
(r ∧ 1)(log(r ∧ 1)− + (r ∧ 1))

]
,

arguing as above (using again (4.5)), we conclude the monotone convergence
applies to get

lim
n→∞

V (un0 ) = V (u0)

and the generalized Fatou lemma applies to get eventually (5.28) and (5.30)
for all u0 ∈ D0(V ). Since S(t)u0 ∈ D0(V ), if u0 ∈ D0(V ), the first part
including (4.10) follows.

To prove (4.11), we note that since α < 1, by (4.10) and (5.29), we have

0 = lim
t→∞

1

t

∫ t

0

Ψ(S(σ)u0)dσ ≥ lim
t→∞

1

t

∫ t

n

inf
r≥n

Ψ(S(r)u0)dσ

= inf
r≥n

Ψ(S(r)u0) for all n ∈ N.
(5.31)

Hence, there exists tn →∞ such that

lim
n→∞

Ψ(S(tn)u0) = 0. (5.32)

Furthermore, we obtain by Lemma 5.1 the first inequality in (5.31), (2.23)
and (2.26) that

sup
t≥0
|S(t)u0|1 + lim sup

t→∞

1

t

∫ t

0

|∇(
√
S(s)u0)|2ds <∞.

Hence, similarly as above (selecting a subsequence of (tn), if necessary),

sup
n
‖
√
S(tn)u0‖W 1,2(Rd) <∞. (5.33)

So, by the Rellich-Kondrachov theorem (see, e.g., [14], p. 284), the set

{S(tn)u0 | n ∈ N}
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is relatively compact in L1
loc. Hence, along a subsequence {tn′} → ∞, we have

limS(tn′)u0 = u∞ in L1
loc (5.34)

for some u∞ ∈ L1. Since Ψ is L1
loc-lower semicontinuous on L1-balls by Lemma

5.1, this together with (5.32) implies that u∞ ∈ D(Ψ) and Ψ(u∞) = 0.
If u∞ ∈ D(Ψ), such that Ψ(u∞) = 0, then

β′(u∞)∇u∞√
u∞b(u∞)

= E
√
u∞b(u∞), a.e. in Rd. (5.35)

Let us prove now that either u∞ ≡ 0 or u = u∞ > 0, a.e. in Rd. To this end,
we consider the solution y = y(t, x) to the system

y′i(t) = D̃i(yi(t)), t ≥ 0, i = 1, ..., d,

yi(0) = xi,

where D̃i ∈ C1(R), i = 1, ...., d, is an arbitrary vector field on R of at most
linear growth, and y(t) = {yi(t)}di=1, x = {xi}di=1. If j is defined by (5.5), we
have

d

dt
j(u(y(t, x))) = ju(u(y(t, x)))∇u(y(t, x)) · d

dt
y(t, x)

=
β′(u(y(t, x)))√

b(u(y(t, x)))u(y(t, x))
∇u(y(t, x))·D(y(t, x)),∀t ≥ 0,

where D(y) = (D̃i(yi))
d
i=1. Let E = {Ei}di=1. Then, by (5.35),

d

dt
j (u(y(t, x))) =

d∑
i=1

D̃i(yi(t, x))Ei(u(y(t, x))) (u(y(t, x))b(u(y(t, x))))
1
2 .

We note that
C2j(r) ≤

√
rb(r) ≤ C1j(r),∀r ≥ 0,

where C1, C2 > 0. We set α(t, x) = (u(y(t, x))b(u(y(t, x))))
1
2 (j(u(y(t, x))))−1.

Then α ∈ L∞((0,∞)× Rd) and

d

dt
j(u(y(t, x))) = α(t, x)

d∑
i=1

D̃i(yi(t, x))Ei(u(y(t, x)))j(u(y(t, x))), ∀t ≥ 0.
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Hence

j(u(y(t, x))) = j(u(x)) exp

(∫ t

0

α(s, x)D(eDsx) · E(u(eDsx))

)
,∀t ≥ 0, x ∈ Rd,

and, therefore,

j(u(x)) = j(u(eDtx)) exp

(
−
∫ t

0

α(s, x)D(eDsx) · E(u(eDsx))

)
,

where eDt is the flow generated by D. Since D is an arbitrary vector field on
Rd, it follows that, for fixed x and t, {eDtx} covers all Rd. We infer that, if
u 6≡ 0, then j(u(x)) > 0, ∀x ∈ Rd, and this implies that u = u∞ > 0, a.e. on
Rd. For such a u∞, this yields, because Ψ(u∞) = 0,

∇(g(u∞) + Φ) = 0, a.e. in Rd, (5.36)

where

g(r) =

∫ r

1

β′(s)

sb(s)
ds, ∀r > 0.

By (5.36), we see that g(u∞) + Φ = µ for some µ ∈ R, in Rd and, since g is
strictly monotone, we have

u∞(x) = g−1(−Φ(x) + µ), x ∈ Rd. (5.37)

6 The asymptotic behaviour in L1

Theorem 6.1 Assume that Hypotheses (i)-(vi) hold and let u0∈D0(V )\{0}.
Set

ω̃(u0) =
{

lim
n→∞

S(tn)u0 in L1, {tn} → ∞
}
.

Then
ω(u0) = ω̃(u0) = {u∞}, (6.1)

and u∞ > 0, a.e. on Rd. Furthermore, u∞ ∈ D0(V ) ∩ D(Ψ), Ψ(u∞) = 0,
S(t)u∞ = u∞ for t ≥ 0, |u∞|1 = |u0|1, and it is given by

u∞(x) = g−1(−Φ(x) + µ), ∀x ∈ Rd, (6.2)

where µ is the unique number in R such that∫
Rd
g−1(−Φ(x) + µ)dx =

∫
Rd
u0 dx, (6.3)
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where

g(r) =

∫ r

1

β′(s)

sb(s)
ds, r > 0.

In particular, for all u0 ∈ D0(V ) with the same L1-norm, the sets in (6.1)
coincide, and thus u∞ is the only element in D0(V ) with given L1-norm such
that S(t)u∞ = u∞ for all t ≥ 0.

Proof. Let us first prove the following version of Proposition 2.3.

Lemma 6.2 Under Hypotheses (i)-(vi), we have, for all u0 ∈M+,

‖(I + λA)−1u0‖ ≤ ‖u0‖, ∀λ ∈ (0, λ0), (6.4)

‖S(t)u0‖ ≤ ‖u0‖, ∀t ≥ 0. (6.5)

Proof. We may assume that by approximation u0 ∈ M+ ∩ L2. Arguing as
in the proof of Lemma 3.2 and taking into account that uε ≥ 0, we get by
(3.46)-(3.48),∫

Rd
uεϕνdx≤−λ

∫
Rd
((b∗ε(uε)|∇Φε|2+∇Φε·∇β(uε))(1−νΦε) exp(−νΦε))dx

+

∫
Rd
u0ϕν dx.

(6.6)

Since, by (3.4) and Hypotheses (iii), (iv), we have that |∇Φε| ∈ L2 and
β(uε) ∈ H1, we may pass to the limit ν → 0 in (6.6) to find after integrating
by parts using Hypothesis (v) that∫

Rd
uεΦε dx ≤ λ

∫
Rd

(
−b0 .

uε
1 + ε|uε|

|∇Φε|2 + ∆Φεβ(uε)

)
dx

+

∫
Rd
u0Φε dx.

(6.7)

We note that integrating by parts is justified here, since β(uε) ∈ L1∩L2 and
∆Φε ∈ L2 + L∞ because of (3.50) and Hypothesis (iii). Now, we want to
let ε → 0 (along a subsequence) in (6.7). To this end, we note that, since
by Hypothesis (iii) ∆Φ = f2 + f∞ for some f2 ∈ L2, f∞ ∈ L∞, it follows by
(3.50), (3.51) that

∆Φε = gε(f2 + f∞) + εhε|D|2,
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where gε, hε : Rd → R such that gε → 1, a.e. as ε → 0, with |gε| ≤ m + 1
and |hε| ≤ m(m + 3). Since β(uε) → β(u) in L1 by Lemma 3.2 (a) and also
weakly in L2 by (3.37) and since |∇Φε|2 → |∇Φ|2, a.e. as ε→ 0, by (3.4), by
virtue of Fatou’s lemma we can pass to the limit ε→ 0 (along a subsequence)
in (6.7) to obtain

‖u‖ ≤ λ

∫
Rd

(−b0|∇Φ|2u+ ∆Φβ(u))dx+ ‖u0‖,

where u = Jλu0 = (I + λA)−1u0 is as in (3.43). By Hypothesis (vi), this
implies (6.4), which in turn implies (6.5) by the same argument as in the
proof of Proposition 2.3.

As a consequence of Lemma 6.2, inequality (2.30) holds, hence we can
apply Theorem 4.1 below. Hence, by (4.6) and (6.5), we have, for all t ≥ 0,

V (S(t)u0) ≥ −C(‖S(t)u0‖+ 1)α ≥ −C(‖u0‖+ 1)α,

hence, by (4.10), ∫ ∞
0

Ψ(S(σ)u0)dσ <∞. (6.8)

This implies that
ω(u0) ⊂ {u ∈ D(Ψ); Ψ(u) = 0}. (6.9)

To prove this, we shall use a modification of the argument from the proof of
Theorem 4.1 in [30].

Let u∞ ∈ ω(u0) and {tn} → ∞ such that S(tn)u0 → u∞ in L1
loc. Assume

that Ψ(u∞) > δ > 0 and argue from this to a contradiction. This implies
that there is a bounded open subset O of Rd such that

ΨO(u∞) >
δ

2
> 0, (6.10)

where ΨO is the integral for (4.7) restricted to O. Since ΨO is lower semi-
continuous in L1, it follows by (6.10) that there is a µ = µ(δ) > 0 such
that

ΨO(u) ≥ δ

4
if |u∞ − u|1 ≤ µ. (6.11)

Since S(t), t > 0, is a semigroup of contractions, we have

|S(t)u0 − S(s)u0|1 ≤ ν(|t− s|), ∀s, t ≥ 0, (6.12)
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where ν(r) := sup{|S(s)u0 − u0|1 : 0 ≤ s ≤ r}, r > 0. Clearly, ν(r) → 0 as
r → 0. By (6.12), we have

|S(t)u0 − u∞|1 ≤ |S(t)u0 − S(tn)u0|1 + |S(tn)u0 − u∞|1 ≤ µ,

for |t − tn| ≤ ν−1
(
µ
2

)
, n ≥ N(µ), where ν−1 is the inverse function of ν.

By (6.11), this yields

ΨO(S(t)u0) ≥ δ

4
for |t− tn| ≤ ν−1

(µ
2

)
,

and n ≥ N(µ). But this contradicts (6.8).
(6.9) and Theorem 4.1 imply (6.2). By (6.5), we also have

lim
R→∞

sup
t≥0

∫
{Φ≥R}

S(t)u0 dx = 0,

which implies that the orbit {S(t)u0, t ≥ 0} is compact in L1, ω(u0) = ω̃(u0)
and that |u∞|1 = |u0|1 by (2.17) and (2.20).

Hence (6.3) follows and thus (6.1) also holds. By Fatou’s lemma, it follows
that u∞ ∈ D(V ) and, by (5.37), (4.9) and the L1

loc-lower semicontinuity of
V on balls in M, we conclude that u∞ ∈ D0(V ). Now, let us check that
S(t)u∞ = u∞, for t ≥ 0. So, let tn → ∞, such that limn→∞ S(tn)u0 = u∞.
Then, for all t > 0, by the semigroup property and the L1-continuity of S(t),

S(t)u∞ = lim
n→∞

S(t+ tn)u0 ∈ ω̃(u0) = {u∞}.

The last part of the assertion is obvious by (6.3).

Corollary 6.3 Let u∞ be as in Theorem 6.1. Then

|u∞|∞ ≤ max
(

1, e
|b|∞
γ

(µ−1)
)
,

where µ ∈ R is as in (6.2).

Proof. For g as above, we have that g is strictly increasing and g : (0,∞)→ R
is bijective. Furthermore, by (4.3), we have, for r ∈ (0,∞),

γ1

b0

1(0,1](r) log r +
γ

|b|∞
1(1,∞)(r) log r ≤ g(r).
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Hence, replacing r by e
b0
γ1
r
, r ≤ 0, we get

g−1(r) ≤ e
b0
γ1
r
, r ∈ (−∞, 0],

and, replacing r by e
|b|∞
γ

r, r ∈ (0,∞), we obtain

g−1(r) ≤ e
|b|∞
γ

r, r ∈ (0,∞).

This implies, by (6.2), for all x ∈ Rd,

(0 <)u∞(x) = g−1(µ−Φ(x)) ≤ 1{µ≤Φ}(x)e
b0
γ1

(µ−Φ(x))
+1{µ>Φ}(x)e

|b|∞
γ

(µ−Φ(x))

≤ max
(

1, e
|b|∞
γ

(µ−1)
)
,

since Φ ≥ 1.
We show now that Theorem 6.1 implies the uniqueness of solutions u∗ ∈

M∩P ∩{V <∞} of the stationary version of (1.1), that is, to the equation

−∆β(u∗) + div(Db(u∗)u∗) = 0 in D′(Rd). (6.13)

We note that the set of all u∗ ∈ L1(Rd) satisfying (6.13) is just A−1
0 ({0}).

Theorem 6.4 Under Hypotheses (i)-(vi), there is a unique solution u∗ to
equation (6.13), such that u∗ ∈ L1∩L∞. In addition, u∗ ∈M∩P∩{V <∞}.

Proof. By Theorem 6.1 and Corollary 6.3, it follows that u∞ is a solution
to (6.13), which is in M∩P ∩ {V <∞} ∩ L∞. So it only remains to prove
the uniqueness. But this follows from Theorem 2.1 in [8].

Theorem 6.5 Let X i(t), t ≥ 0, i = 1, 2, be two stationary nonlinear dis-
torted Brownian motions, i.e., both satisfy (1.7) with (F it )-Wiener processes
W i(t), t ≥ 0, on probability spaces (Ωi,F i,Pi) equipped with normal filtra-
tions F it , t ≥ 0, with

Pi ◦ (X i(t))−1 = ui∞ dx,

and u(t, x) in (1.7) replaced by ui∞(x) for i = 1, 2, respectively. Assume that
ui∞ ∈M∩ {V <∞} ∩ L∞, i = 1, 2. Then

P1 ◦ (X1)−1 = P2 ◦ (X2)−1,

i.e., we have uniqueness in law of stationary nonlinear distorted Brownian
motions with stationary measures in M∩ {V <∞} ∩ L∞.
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Proof. By Itô’s formula, both u1
∞ and u2

∞ satisfy (6.13). Hence, by Theorem
6.4, we have u1

∞ = u2
∞ = u∞. Fix T > 0 and let

Φ(r) :=
β(r)

r
, r ∈ R.

Then Theorem 3.1 in [7] implies that, for each s ∈ [0, T ] and each v0 ∈
L1 ∩ L∞, there is at most one solution v = v(t, x), t ∈ [s, T ], to

vt −∆(Φ(u∞)v) + div(Eb(u∞)v) = 0 in D′((0, T )× Rd,

v(0, ·) = v0,

such that v ∈ L∞((s, T ) × Rd) and t 7→ v(t, x)dx, t ∈ [s, T ] is narrowly
continuous. But u∞, the time marginal law of X i under Pi, i = 1, 2, is such
a solution with v0 = u∞, since u∞ ∈ L∞ by Corollary 6.3. Hence, Lemma
2.12 in [33] implies the assertion, since by Itô’s formula Pi ◦ (X i)−1, i = 1, 2,
both satisfy the martingale problem for the Kolmogorov operator

Lu∞ = Φ(u∞)∆ + b(u∞)E · ∇.

Remark 6.6 By [6], a stationary nonlinear distorted Brownian motion as
above always exists under the assumptions in this section. Furthermore, we
recall that for u ∈M+ by definition of V we have u ∈ {V <∞} if and only
if u log u ∈ L1.

Appendix

Let α = b0
γ1
, δ = exp

(
−d+2

2d

)
and η, µ ∈ (0,∞) to be chosen (large enough)

later. Let h : [δ,∞)→ R be the solution to the following ODE:

h′(r) +
d− 1

r
h(r)− αh2(r) = 0, r ∈ (δ,∞), (A.1)

h(δ) = δ(2 log δ + 1)− η (A.2)

As we shall see below, it is easy to solve (A.1) explicitly. The solution has
the following properties: (h.1) h is bounded; (h.2) h is negative, |h(r)| ≤
C|r|(1 + log |r|)−1, and there exist C ∈ (0,∞) and η̃ ∈ (0, η) such that∫ r
δ
h(s)ds ≥ −C − η̃(r − δ), r ∈ [δ,∞).
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Now, define as in (1.4) and (1.2)

ϕ(r) = δ2 log δ − ηδ +

∫ r

δ

h(s)ds, r ∈ [δ,∞), (A.3)

Φ(x) =

{
|x|2 log |x|+ µ, for |x| ≤ δ,

ϕ(|x|) + η|x|+ µ for |x| > δ.
(A.4)

Then Φ ∈ C(Rd) ∩W 1,1
loc (Rd) and by (h.2) for large enough µ > 0 and some

ε > 0, Φ(x) ≥ 1 + ε|x| for |x| > δ. Furthermore,

∇Φ(x) =

{
x(2 log |x|+ 1) for |x| ≤ δ,

(h(|x|) + η)
x

|x|
for |x| > δ. (A.5)

By (A.2) and (h.1), it follows that E = −∇Φ ∈ Cb(Rd;Rd). Since h′ is
bounded, it follows that ∇Φ ∈ W 1,1

loc (Rd;Rd)

∆Φ(x) =

 2d log |x|+ d+ 2 for |x| ≤ δ,

h′(|x|) +
d− 1

|x|
(h(|x|) + η) for |x| > δ.

(A.6)

Hence, Φ satisfies both conditions (iii) and (iv). It remains to show (1.2). To
this end, we first note that ∆Φ(x) ≤ 0 ≤ α|∇Φ(x)|2 for |x| ≤ δ. Furthermore,
for |x| ≥ δ, by (A.1) and (A.6),

∆Φ(x) = αh2(|x|) +
d− 1

|x|
η

= α|∇Φ(x)|2 + η

(
d− 1

|x|
− α(2h(|x|) + η)

)
≤ α|∇Φ(x)|2,

by (h.1) and (h.2), if we choose η > 0 large enough. Hence, Φ satisfies
condition (vi). It remains to solve (A.1), (A.2) and prove that (h.1) and
(h.2) hold. This is elementary, but we include it for the convenience of the
reader.

Let I := [δ, inf{r > δ | h(r) = 0}] and h : I → R be such that (A.1),
(A.2) hold. Setting g := 1

h
, we see that

g′(r)− d− 1

r
g(r) = −α, r ∈ I, g(δ) = −

(
2δ

d
+ η

)−1

. (A.7)
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We can rewrite (A.7) equivalently as (r1−dg(r))′ = −αr1−d, r ∈ I. Hence,

g(r) =

 rd−1

[
δ1−dg(δ)− α

2− d
(r2−d − δ2−d)

]
, if d 6= 2,

r[δ−1g(δ)− α(log r − log δ)], if d = 2,

which implies that I = [δ,∞) and that, for r ≥ δ,

h(r) =


−r−1

[(
δ−1

(
2δ

d
+ η

)−1

+ α
d−2

)(
r
δ

)d−2 − α
d−2

]−1

, if d 6= 2,

−r−1
[
δ−1 (δ + η)−1 + α log r

δ

]−1
, if d = 2.

(A.8)

So, h is negative and (h.1) holds, since |h(r)| ≤ 2δ
d

+ η, r ∈ [δ,∞). Now, we
show (h.2) for d = 1, d = 2, d ≥ 3, separately.

Case d = 1. In this case with g(δ) as defined in (A.7), we have, for r ∈ [δ,∞),
h(r) = −[|g(δ)|+ α(r − δ)]−1, and hence, for K ∈ (1,∞),∫ r

δ

h(s)ds = − 1

α
log

(
1 +

α

|g(δ)|
(r − δ)

)
≥ − 1

α
logK−K−1|g(δ)|−1(r−δ)

and so (h.2) follows for K large enough.

Case d = 2. In this case we have, for r ∈ [δ,∞) and K ∈ (1,∞),∫ r

δ

h(s)ds = − 1

α
log

(
1 +

δα

|g(δ)|
log

r

δ

)
≥ −|g(δ)|−1K−1(r − δ)

and (h.2) follows for K large enough.

Case d = 3. In this case we have, for r ∈ [δ,∞), |h(r)| ≤
(
r
δ

)1−d |g(δ)|−1,
hence, for K ∈ (1,∞),∫ r

δ

|h(s)|ds ≤ (K − 1)δ|g(δ)|−1 + |g(δ)|−1δd−1

∫ max(r,Kδ)

kδ

s1−dds

≤ g(δ)−1((K − 1)δ +K1−δ(r − δ)),

and (h.2) follows for K large enough.
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