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Abstract

We propose a new type SDE, whose coefficients depend on the image of solutions,
to investigate the diffusion process on the Wasserstein space &, over R%, generated by
the following time-dependent differential operator for f € CZ(%%):

At = 5 [, (ot nolty.m’. D). o) ude)n(dy)

+/Rd (%«00*)(@%#&),V{Df(u)}(m>> + <b(t,£v,,u),Df(,u)(:c)>>u(dx), e Py,

where (-,-) is the inner product on R? or R? ® R?, V is the gradient operator on R?,
D is the intrinsic (or Lions) derivative on 425, and

b:[0,00) x REx Py - RY, 0 :]0,00) x RY x P2y - RTQR™

are measurable. We study the exponential convergence of the diffusion process, and
use the diffusion process to solve the following PDE

(Or + @)Ut 1) + (VU)(t, 1) + F(t, 1) =0, (¢, 1) €10,T] x P,

where V' and F are functions on [0, 7] x &5. Moreover, the structure of the invariant
probability measure is described.
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1 Introduction

Let 2, be the space of all probability measures ;. on R? such that

o= ([ et <

where | - | is the norm in R?. We will use || - || to denote the operator norm of a matrix or
linear operator, and use || - || gs to stand for the Hilbert-Schmidt norm. It is well known that
P, is a Polish space under the Wasserstein distance

1

Wa(p,v) == inf (/ Ix—ylzﬂ(dw,dy))Q,
TEE (u,v) Rd xRd

where € (u, v) is the set of couplings for p and v.

Since 1996 when Albeverio, Kondratiev and Réckner [1] introduced the intrinsic deriva-
tive on the configuration space over manifolds, diffusion processes on the space of discrete
Radon measures have been investigated by using Dirichlet forms, see [10] and references
within. This derivative provides a natural Riemannian structure on the Wasserstein space
(P, W,), see Subsection 1.2 below.

To develop stochastic analysis and applications on this space, we intend to construct
diffusion processes generated by second order differentiable operators and solve the associated
PDEs on &. Below we first recall the intrinsic/Lions derivative on &,.

According to [1], let L*(R? — R% ;1) be the tangent space of &, at point pu € 225, and
define the directional derivative by

Dy (1) := lim flpo (Id+€€¢)— ) — F(u)

, ¢ e PR = R p).

When ¢ +— Dyf(p) is a bounded linear functional on L*(R? — R% ), or equivalently the
map

(1.1) L*RY 5 RY 1) 3¢ fpo(Id+¢)™)

is Gateaux differentiable at ¢ = 0, there exists a unique element Df(u) € L*(R? — R%; )
such that

(Df(1), d) 12y = Do f (1), ¢ € L*(R? — R p).

In this case, we call f intrinsically differentiable at p with derivative D f(u). According to
Lions (see [4]), if D f(u) exists and

I - — - D
(1.2) i o dd+0)7) — f(p) — Dyf(p)
#(191%)—=0 p(|8?)
i.e. the map in (1.1) is Fréchet differentiable at ¢ = 0, we call f L-differentiable at u € Z,.

If f is L-differentiable at any u € %5, we call it L-differentiable. Note that D f(u) is a p-a.e.
defined R?-valued function. Let {Df(u)}; be its i-th component for 1 < i < d.

=0,
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In this paper, we investigate diffusion processes and applications to PDEs on #;. Let
m > 1, and let

b:[0,00) x R x &2y = R% 5:[0,00) x R x Py — RE@R™

be measurable such that |b(t, -, u)| + || (¢, -, 1) ||%g € L' () for any (¢, u) € [0,00) x Py. We
consider the following time-dependent second order differential operators on Zs:

1

Afw) =5 [ {oltott, s D) )

(1.3)

i / (%<<<’0’*><@W>v VDL }y)) + (bt . ), DI (1)) ) (dy),

where (-, -) is the inner product on R? or R? ® R?. We also consider the following extension
of a7, on R¢ x Py:

A f (x,p) = A, f(x,-)(p) + %<0(t, v, p)o(t,x, 1), V2 (2, 1)) + (bt @, 1), V f (2, 1))

+ Rd<(DVf)(x7u)(y),0<t,y,ﬂ)0(t,$7u)*>u(dy)-

(1.4)

To present reasonable pre-domains of <7 and 7, we introduce below some classes of
L-differentiable functions.

(1) We write f € C1(P), if f is L-differentiable and the derivative has a pu-version
Df(u)(x) which is jointly continuous in (u,r) € Py x RL If moreover D f(u)(x) is
bounded in (z,u) € R? x Py, we denote f € CL(S,).

(2) We write f € CUV(22,), if f € CH(P,) and Df(u)(z) is differentiable in 2 such that
the R @ R%valued function

VADf () }(zx) = (0o, ADf(1)(2)}) 1<; s

is jointly continuous in (u, x) € Py x R4, If moreover D f(u)(x) and V{Df(u)}(x) are
bounded in (x, ) € R? x &5, we denote f € Cb(l’l)(gzg).

(3) We write f € C?(9%), if f € CWY(P,) and Df(u)(x) is L-differentiable in u such
that the R @ Ri-valued function

D?f(p)(x,y) == ({DIDF (1) (@)]i(W)} ) 1 isea

is jointly continuous in (p,z,y) € P x R x R If moreover f € C\"V(2,) and
D?f(p)(z,y) is bounded in (x,y, ) € R? x R x Py, we denote f € CZ(P,).

(4) We write f € C?*2(R¥ x &2,) for some k > 1, if f is a continuous function on R¥ x &2,
such that f(-,p) € C%*(R¥) for u € Py, f(x,-) € C*P,) for x € RF,

(D). 1)(0) = ({D[0r S, 0)]}) oy € RO R

exists, and the derivatives

V(@ pm), V2 f (@, 1), Df (x, 1) (y), (DV )z, w)(y), VD f (@, 1) () }(y), D* f (2, 1) (y, 2)

are bounded and jointly continuous in the corresponding arguments.



Example 1.1. For any p > 1, consider the following class of cylindrical functions
n>1g¢€ClR"),h € CYRY),1<i<n}.
When p = 2, such a function is in the class CZ(Z?y) with

n

Df(p)(x) =Y (Dg)(u(hn), -+ s ulha)) Vhi(),

=1

(1.5)

(1.6)

n

D*f()(,y) = D> (0:0;9)(u(hn), -+, u(ha) ) {Vhi()} @ {Vh;(y)},

where {Vh;(z)} ® {Vh; (y)}7€ R? @ R? is defined as
({Vhi(2)} @ {Vh;i()}),, = {Okhi(2)}0ih;(y), 1 <k,1<d zy€eR

Moreover, f € C?**(R? x P) if f(a,pu) = gz, u(hy), -, u(hy)) for some n > 1, g €
CEHR™ ) and {h; }1<i<n C CE(RY).

We will construct the .7-diffusion process by solving the following SDE on R¢%:
(L7) dX3/ = 0(t, X AL )dt 4+ o (8, XTF AL AW, AL, i=po (X;j@”)_l, t>s, Xl =2,

st st
where W, is the m-dimensional Brownian motion on a complete filtration probability space
(0 {ZF}>0,P), (s,2,1) € [0,00) x RY x P,. Since this SDE depends on the image of
solutions, we call it image SDE.

In the remainder of this section, we first summarize the main results of the paper, then
present a link of the present model to the Brownian motion on &, for further study, and
finally introduce some previous work for analysis on the Wasserstein space.

1.1 Summary of main results

Existence and uniqueness. Under a monotone condition, Theorem 2.1 ensures the ex-
istence, uniqueness and moment estimates of solutions to the image SDE (1.7), and that
the unique solution is the diffusion processes generated by <% on &, and o, on R? x 2,
respectively.

Feyman-Kac formula. By using the diffusion process (X}, A{;), Theorem 3.1 solves the
following PDE for U on [0,7] x RY x 2, :

QU (t,x, 1) + AU (t,x, ) () + (VU)(t, @, 1) + F(t,2, 1) = 0,
U(T,x,p) = @(x, 1), (t,2,p) €[0,T] x RY x Py,

where T > 0 is a fixed time, ® is a function on R? x &,, and V,F are functions on
0, 7] x RY x 2. When ®, F and V do not depend on x € R%, this PDE reduces to

QU (L, p) + AU(t, ) (1) + (VU)(E, p) + F(t, p) =0,
U(Tnu) = CD(M)’ (tnu) S [OvT] X Py.

(1.8)

(1.9)



Exponential ergodicity and structure of invariant probability measures. Let b
and ¢ do not depend on ¢t. Under a dissipativity condition, Theorem 4.1 provides the
exponential convergence rate of the diffusion process (X, A}') := (Xg}', Ag,) to its unique
invariant probability measure II. Consequently, the diffusion process A} converges at the
same rate to the invariant probability measure I := II(R% x -).

Moreover, let by(x) = b(z,,), 00(x) = o(z,d,), and let 1y be the unique invariant prob-
ability measure for the classical SDE

By Theorem 4.2, IT and II have the representations

(1.11) (e, i) = o) (), 1= [ 8 pn(co),

where d5, is the Dirac measure at point §, € H5. This structure describes an asymptotic
collision property of the diffusion process AY': starting from any probability measure u € &2,
the measure-valued process eventually decays to a Dirac random variable, for which the whole
mass focus on a single random point.

1.2 Link to the Brownian motion on %%

A Riemannian structure has been introduced in [2] on the Wasserstein space (%5, Wy). With
the intrinsic/Lions derivative, this space is an infinite-dimensional Riemannian manifold with
gradient D and Riemannian metric (-, -)z2(,) on the tangent space L*(R? — R% p); that is,
W, is the Riemannian distance induced by D.

As in the finite-dimensional Riemannian setting, we introduce the square field

I (f. 9) (1) = / (DF (1)), Dy()(@)u(da), fog € CHP),

R4

and the Laplace operator

A1) = [ (D20t bulde), ] € CH()

Then by the chain rule we have

D(f,0) = L{A(fo) ~ FAg— 9Af}, fg € CH(P)

This structure can be easily extended to the Wasserstein space &5(M) over a Riemannian
manifold M. Note that when M is compact we have P5(M) = £ (M), the space of all
probability measures on M.

To develop stochastic analysis on &, it is interesting to construct the Brownian motion,
i.e. the diffusion process generated by %A; or more generally, to construct diffusion processes
on &, with square field I'. This is the main motivation of [15] introduced in the next
subsection.



Below we explain that when oo* = Id and g = 9§, is a Dirac measure at some point
x € R?, the process (Ag,t)tzo is such a diffusion process. Indeed, it is easy to check that the
square field of the «7-diffusion process is

Uu(f,9) () = {(fo) (1) — fohg — g} (1)
N / ot w0y DI @), oty 1) DI W) )a(do)u(dy) £, € CH()p € 2o

In particular, when oo* = Id, we have

Uy(f,9)(1) = T(f,9) (), ne Py = {6 :2eR}

w
S

2.1(2) below implies that (A%,);ss for p € 229 is a diffusion process with square field T

s,t

However, this does not hold for ;1 ¢ 3.

Since when p = 4§, for some z € R4, A*, =§ oo 1s a diffusion process on 79, Theorem
s,t

1.3 Some previous work

Let 22(S') be the space of all probability measures on the unit circle S'. A family of prob-
ability measures {Ps}g-0 on 2 (S'), called “entropic measures” with inverse temperature
f > 0, have been constructed by von Renesse and Sturm [15] such that for each 5 > 0, the
bilinear form

5(0)= [ (D), Do) s sl

gives a symmetric Dirichlet form on L?*(Ilg), which refers to a Pg-a.e. starting diffusion
process on Z(S'). See also [16] for a different Dirichlet form on Z([0,1]) with square field
I'. The construction of Dirichlet forms in these papers heavily relies on the one-dimensional
property. In contrast, our diffusion process (A% ;)¢ is defined for any staring point p € 2y,
and by establishing It6’s formula for the image SDE, we are able to investigate the ergodicity
and the corresponding PDEs as in the classical case.

Next, the distribution-dependent (also called mean-field or McKean-Vlasov) SDEs have
been used in [3, 7, 8, 11] to solve PDEs on R? x &, with the following type of differential
operator:

Luf (1) = 5{(00) ), V27 (1)) + (bl ), 9, 10)

+ /R [%«ag*)(y,u),V{(Df(:c,u))(-)}(y)> + (b(y, p), (Df(x,,ﬁ))(y)w(dy)‘

Since this operator only involves in the first order derivative in p, the associated diffusion
process on R? x &, has a deterministic marginal (1¢)e>0 on Py, which solves the nonlinear
Fokker-Planck equation

Oy = (L,ut)*MU

where L, = %sz:1<0-0-*)ij(x,/l/)ai@j + 32 bi(x, 1) See also [9] for nonlinear Fokker-
Planck equations on the path space. In the present work, 7 contains the second-order
L-derivative, so that the associated process Af; is a non-trivial diffusion process on &,.

6



Moreover, Otto [13] introduced a different gradient formula for functions of the proba-
bility density. More precisely, let v(dz) = e™V@dx for some V € C*(R?), and let

mwzég@w

for U € C'(]0,00)) and p(dz) = p(z)v(dz) € P,. The gradient of U, at p = pv is given by
the signed measure

DU, == —{Ap(p) = (VV, Vp(p))}v,
where p(r) := rU’'(r) — U(r). In particular, when V' = 0 and U(r) = plogp, we have
D, U, = —Ap = —(Ap)(z)dz for u(dz) = p(x)dz. See [18, pages 430, 431] for remarks on
further development in this direction.

2 Image SDE and diffusion processes on %

We will construct the o7-diffusion process by solving the image SDE (1.7). In general, we
allow the coefficients

b:Qx[0,00) x Py =R 0:Qx[0,00) x Py —R'@R™

to be random but progressively measurable with respect to the filtration .%;. We first present
the definition of solution.

Definition 2.1. Let (s, p1) € [0,00) x 5. A family of adapted processes {(X;/')i>s : © € R}
is called a solution to (1.7), if the following conditions hold P-a.s.:

(a) X" is continuous in ¢ € [s, 00) and measurable in 2 € R

(b) A%, = po (X)) € P, is continuous in ¢ > s;

S,

() E [/ ([b(r, X2 AL + llo(r, X24,A%,) s )dr < oo and

s,r s,r

¢ ¢
X :x—i-/ b(r, XIH Ag‘,r)dr—l—/ o(r, XD AL AW, t > s,z eR%

S, ) S,r )

The image SDE (1.7) is called well-posed, if it has a unique solution for any (s, 1) € [0, 00) X
Ps.

To ensure the well-posedness of (1.7), we make the following assumption on b and o.

(A) The progressively measurable coefficients b(t,x, ) and o(t,z, ) are continuous in
(z,p) € R? x P, there exists K € L} ([0,00) — [0,00)) for some ¢ > 1 such that
P-a.s. for any ¢t > 0,

21) ot w)P + otz mliis < K@@+ 2l +el3), (z,0) € R x 2y,

2<b<t7xu M) - b(t7y7 V)u r— y>+ + ||U(t7 J],M) - U(t7y7 V)H%{S

22) < K(0) (2 — o + Wl ), (2.12),(y0) € B x 2,



Theorem 2.1. Assume (A). Then the image SDE (1.7) is well-posed, and the unique solu-
tion X;}' is jointly continuous in (t,x) € [s,00) x R%. Moreover:

(1) For any p > 1, there exists an increasing function C, : [0,00) — [0,00) such that

(2:3) E sup (X7 + p(| X0 PP) < Co(t) (@ + o + [lull2?),

rEls,t]

(24)  sup E{|XZ — XU2 P + Wo(AY

8,77
re(s,t]

ALY < Cpt) (| =yl + Wo(p, v)™)
hold for all0 < s < t,z,y € R? and u,v € P,. Consequently, X' is jointly continuous
n (t,r) € [s,00) x R%.

(2) When (b,0) is deterministic, {(Af,)>s : p € Pa} is a diffusion process on Py gen-
erated by <7;; i.e. it is a continuous strong Markov process such that for any p € P
and any f € CZ(Py),

FAL,) — / A f (A )dr, > s

1s a martingale.

(3) When (b,0) is deterministic, {(X }', AL )i>s € Po} is a diffusion on R x 2,
generated by <7 i.e. it is a continuous strong Markov process such that for any (z, ) €

R? x Py and any f € C’g’Q(Rd X Py),
FXEE AL = () / X A )dr, £ s

15 a martingale.

In the following two subsections, we prove Theorem 2.1(1) and (2)-(3) respectively.

2.1 Proof of Theorem 2.1(1)

Obviously, the uniqueness follows from (2.4). Below we prove (2.3), (2.4), joint continuity
and the existence of the solution respectively.

(I) Estimate (2.3). Let (X{/),cras>s be a solution of (1.7). We have
(2.5) IASA I = llw o (X20) 715 = p(I X5, t> s
So, by (2.1) and Itd’s formula, we may find out x € Lj,([0,00) — [0,00)) such that

(2.6)  dAIXJ? < K@) (1 + X+ p( X4 ) de+ 2(X5 o(t, X5 AL )W),



Let 7f = 20(t, XJf', AL,)* X/, Since (AL,):>s is an adapted continuous process on &, and
due to (2.1), o(t, =, p) has linear growth in z, there exists an increasing function ¢ : [0, c0) —
[0, 00) such that

p(li)) < e+ p( XA} = e {1+ A%, )32} < .
So, integrating (2.6) with respect to u(dz) leads to
(2.7) dp(IX3H7) < w() (1 + 26X 5 1) dt + (u(v), dWr), > s.
Let hgy = 2o kA and
=inf {t > s: pu(|XJVP) +|XSF P >n}, n>1

Then (2.7) implies

t tATh
(28)  p(X A0 ) < hodllull2 + / hrari(r)dr + / hralu(y), dW,), ¢ s,

so that by (2.6),

tATh
X2 < Jaf? + / (), dIT,)
(2.9) .

tATR r r
+/ n(r){1 + | X A+ || l]3 + h/ r(0)do +/ hg,r<~yg,dwg>}dr
holds for ¢t > s. Moreover, (2.1) implies
(2.10) VP[P =120 (t, X3F AL X P < AR (OIXTP (1 + | X3P + n(IXE).
This together with the Schwarz inequality gives

(2.11) () < AR (Op( X1 (L + 2u(1 X5 7)).-

Then for any p > 1 and € > 0, there exists a constant ¢ = ¢(p, ) > 0 such that

([ wenpar) <= s (uxpy ve [ KOO+ (XY

rE[s,tATh) s

Combining this with (2.8) and using the BDG inequality, we may find an increasing function
Co : [0,00) = [0,00) such that

Bl sw {u(lX:P)]

[S:t/\Tn}

< 28] s {u®y]+ S (1 i+ [ Py ar)

re(s,tATy)




By Gronwall’s inequality, this implies

(2.12) E[ sw {un(X22)}] < Coyel @0 (14 |ulF).

r€[s,tATh]

Similarly, by (2.9)-(2.12) and the BDG inequality, we conclude that for any p > 1 there exist
increasing functions Cy, Cy : [0,00) — [0, 00) such that

tATh p
B[ swp [Xe] < G+l + ) + ([ solxserar)
rE[s,tATh] s

ya
2

re@e( [ ol + )

t
B[ sup [XEP] + Calt)(L+ o 4 [ulF) + CalE [ wln)|XERar, 25

rEls,tATh]

1
< =
-2

By Grownwall’s lemma, there exists an increasing function @ : [0, 00) — (0, 00) such that

E[ sup [XZP] QO+ ol + ), t2 s

rE[s,tATy]

By letting n — oo in this inequality and (2.12), we prove (2.3) for some increasing function
Cp : [0,00) — [0, 00).

(IT) Estimate (2.4). Let 7 € €(u,v) such that

(2.13) Wo(p,v)? = / |z — y|?m(dz, dy).

R x R4

Then 7, :=mo (X4, X;7)' € €(AL

ENA

AY,), so that

Wa(Al,, AY)? < / & — yPrag(de, dy)
d Rd
(2.14) R

= / |XTF — XYY Pr(de, dy) =: Lyy, t > s.
RixRI ’

Thus, by (2.2) and It6’s formula, we obtain

dIXTI = XU 1P < K@O{IXT = XU P + €, }dt

F XY~ X ol X AL — o(r, XIY AL)YAWL), £ s,

s,t

(2.15)

Integrating both sides with respect to 7, +(dz, dy), and letting
m=2 [ ol XTI AL) — ot XU ALY (G - X0 wlde,dy)

we arrive at
désﬂg S 2K(t)€57tdt + <77t, th>, t Z S.

10



This together with £, ; = Wy(p,v)? implies

t
(2.16) oy < Wo(p, v)2e?fs K +/ I KOO (AW, t > s

s

Moreover, (A) and the Schwarz inequality yield

2 < AK(r)e., /

R4 x

<8K(r)2,, r>s.

S,

{IX5 = X022+ Wy (A2 LAY ) Y (de, dy)
]Rd

(2.17)

For given z,y € R? and p,v € 2, let
remint {82 5 Al 4 AL+ X5 X2 > ).

By (2.16), (2.17) and using the Hélder and BDG inequalities, we may find out increasing
functions ¢y, ¢2 : [0,00) — [0, 00) such that

2

tATh
B sup 2,0.] < ex0a(u)? + s 0B ([ )

re(s,t]
t 1
<1 (H)Wa(p, v)* + Cg(t)/ E ., dr + —]E[ Sl[lp]ﬁs),r/\m}v t>s.
s re|s,t

Then it follows from Gronwall’s lemma that

E[ sup (7 ] < 2¢1 (1) OWy(p, )P, t > s.

S,"N\Tn,
rels,t]

By letting n — oo and using Fatou’s lemma, we obtain
(2.18) E[ sup Ef’;,} < 2c(t)eX P OW,y (u, )%, t > s.
r€[s,t]
Similarly, by (2.15), (2.18), assumption (A) and using the Hélder and BDG inequality, for
any p > 1 we find out increasing functions Ky, K, : [0,00) — [0, 00) such that
tATh

E[ sup Xz, — X00 7] <o -y 4 KdOE [ K@){IXE - X0+ 2,

8,7 N\Tn, 8,7 N\Tn,
r€ls,t] s

t
< |z — y|2p + Kz(t)E/ K| X5E — — X0 ]2p dr + Ky (t)Wa(u, V)QP, t > s.

ER A ER A

Therefore, by Grownwall’s lemma, there exists an increasing function C' : [0,00) — (0, 00)
such that

E[ sup | XD — XU |2p} < C(t)(|x — y|2p +W2(u,u)2p), t>s.

8,7 N\Tn, S$,"N\Tn,
rée(s,t]
Letting n — oo and using Fatou’s lemma, we arrive at

E[ sup [X27 = X0] < C) (I — g + Walu,0)?), £> 5.

T
re(s,t]

Combining this with (2.14) and (2.18), we prove (2.4) for some increasing function C, :
[0,00) = [0, 00).

11



(III) Joint continuity of X[/ in (t,2). Let K € L] ([0,00) — [0,00)) for some ¢ > 1.
By (2.1), (2.3) and (2.4), for any n,p > 1, there exist constants Cy, Cy > 0 such that for any
n>t>r>s, and |z|,|ly| < n,

E(| X5 — XU < 22N EXD) — XU + EIXYF — XUE1P)
2p

t
< Cile o+ CiB| [ K(O) T4 X+ (X2 Pt

+ CLE (/K {1+‘X9M2+ILL‘X }d@)

(2.19) 2 , q -
<cile—yer+ oo [ roran) 8| [ @ e+ uixm)

+01</TtK(9)> (/{1+|X§5‘2+M(,X )}qqlde)p(q—n

(g—1)
< Coflo -y + (¢ - )",

mv =

By Kolmogorov’s continuity criterion, for large enough p > 1 this implies that X7} has a
P-version jointly continuous in (¢,7) € [s,n] x {z € R?: |z| < n}. Since n > 1 is arbitrary,
X! has a version jointly continuous in (t,z) € [s, 00) x R%.

(IV) Existence of solution. It suffices to construct a solution up to an arbitrarily fixed
time 7" > 0. To this end, we adopt an iteration argument as in [17].

(1) For fixed (s,p) € [0,T] x Py, let AS;t = p and ng’f’“ =z for all z € R? and t > s.

(2) Assume that for some n € Z, we have constructed adapted (X;"");>s  ere which is
jointly continuous in (f,z) € [s,00) x S5, and satisfies

(2.20) E{ sup | X0

rée(s,t]

] <O+ e + ), t> 50 R

for some increasing ¢ : [0,00) — [0,00). Consequently, AL} := po (X7")™' € Py is
continuous in ¢t > s. Indeed, by the Fubini theorem, (2.20) implies

B |1 sup 1X25F)| < e+ 20l < e, 02
rée(s,t]
so that P-a.s
,u( sup |X1oH 2) <00, t>s.
re(s,t] '
Then by the dominated convergence theorem and the continuity of X" in t > s, we
obtain P-a.s.

)=0, t>s.

s,rVs) s,rVs

lim Wa (AZA, o, ATF)? < Himop (| X0 — XopH
r—t ’ r—t ’
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(3) Let (XI7""");> solve the SDE
AN = b(t, X At 4 o (t XET AD AW, > s XETH =0

By (A) and (2.20), it is easy to see that this SDE is well-posed, and when x varies the
inequality (2.20) holds for X' Pk peplacing X o " with possibly a different function
¢ : [0,00) — [0,00). Moreover, as in (IIT), (A) and (2.20) also imply the joint
continuity of X[7 LER i (t,x) € [s,00) x RY. Consequently, as shown in step (2) that
AZ}LI’“ =10 (X;le"’“)*l € P, is continuous in ¢t > s.

Therefore, we have construct a sequence { (X7, ATt)>5 zerd fn>0, Which satisfies (2.20),
X! is jointly continuous in (¢,z) € [s,00) x RY, and P-a.s.
¢ ¢
(2.21) X0 =4 / b(r, X220, AR dr + / o(r, X5 AL, t > 5,2 € RY
The following lemma gives a constant ¢, > 0 independent of (s,z, ) € [0,T] x R? x 2,
such that {X[""#},>; is a Cauchy sequence in L*(Q2 = C([s, s + to] — R?); P).
Lemma 2.2. Assume (A). For fivzed T > 0, there ezists a constant to > 0 such that

m,T,l T, | 2
E Supte[s,s+to] |Xs,t - Xs,t ‘ o

= 0.

lim sup
nMO0 (o 1) €[0,T] xRe x 2 L4 |2 + | ull3

Proof. Asin (2.14), we have Wy (AL} AZ;I’“)Q < u(|X§f’t"“—X;f;1"’“|2) for n > 1. Combining

s,t

this with By (2.2) and It6’s formula, we obtain
AIXZ = X < KO{ X = X (X~ X ) fr
+ 2(XE = X o (L X ALE) = o6, X ALTTYWG), > s
So, by (2.2) and using the BDG inequality, we may find out constants ¢;, o > 0 such that

n+1,z,u T, 2
E[ sup |Xs,t - Xs,t }

te[s,s+to)

t
< / K(E[XIo5 - X2 4 | X0 — X019 P)]dr

=

2

t
; E(/ K ()| X g — Xpse s { X e — XIE 2 4 (| X0 X;f;““|2>}d7")

\T

< o [ KE[XS = XU+ p(|X5 = X)) dr

T

1
+ —E[ sup | XI5 — X;ff’“ﬂ, t>s.
2 tE[s,s+to)

Since (2.20) holds for all n, this and Grownwall’s inequality imply

¢
(222)  E sup |X7/H0H — XI0H? < 02/ e ffK(e)deEuﬂXﬁ;ﬁ“ — XU, t> s

rée(s,t] s
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for all (s,x) € [0, T] x R%. Taking integral with respect to pu(dz) leads to

sup Epu(| X250 — X5H2) < eoft — ) KOV sup Bp(|X25# — XI7542), £ > s

relst] rée(s,t]

Now, taking ¢ty > 0 such that

T+
(2.23) e 1= cotge o O K@Ar
by iterating in n we arrive at

sup  Bp(| XD - XM <e osup EBp(| XD — XIS
s€[0,T7],t€[s,s+t0) €[0Tt [s,5-+to]

<. < en sup Eu(]X;’t"“ — Xg’t"“ %) = c(x, p)e" < o0,
s€[0,T7],t€[s,s+to0]

where due to (2.20),

c(w,p) = sup  sup Ep(|Xg" — ) <e(l+ [z +[|p3)
s€[0,T] te[s,s+to]

for some constant ¢ > 0. Substituting this into (2.22) and using (2.23), we get

sup B sup | XIS X2 < (14 af + |l 0> 1.
s€[0,T]  t€[s,s+to]

This finishes the proof. O

By Lemma 2.2, there exist a constant t; > 0 depending on 7" > 0, such that for any
s € [0,T) we have a family of continuous processes

{(XTE ) tesisato) s T € RY 1€ P2y}

which are measurable in 2 and

lim ]E[ sup (]Xg;f”’“ - X7t

o0 Lrels,s+to]

2 p(| X = XHP)] =0,
Letting AL, = po (X})7!, by this and (2.14) we obtain

lim E[ sup  Wy(ALH Ait)z] < IE[ sup  p(| X9 — X 2)} = 0.
re

s,t s,t
n—00 [s,5+10] r€[s,s+t0]

Thus, the continuity of AJ7" in t € [s, s + to] implies that of Af;; due to (2.20) we may find
out a constant ¢; > 0 such that

(220) B[ swp {u( XA +IX2PY] < e (Ll + 1l3). (5., ) € [0, T] <R x 2

te[s,s+to)

and finally, by assumption (A) we may let n — oo in (2.21) to derive

t t
X =z +/ b(r, X3, AL )dr —l—/ o(r, Xgi AL AW, t € [s, s+ 1], 7 € RY.

s, s,
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So, when T' < s + ty we have solved the SDE up to time 7'

In the case that T > s+ 1o, let 5 = s+ 19,2 = X/, and o = AL ., . Since given
Fsi1, the process (W; — Wy)i>5 is an m-dimensional Brownian motion, and (Z, f1) is given as
well, as in above we may construct a solution (X537, AL, )ie(s 544, for (1.7) with § replacing
s. Then extending (X7, AL,) to t € [5,5 + to] by letting

Xol=XIF, A, = AL, te (5541,

we see that (X7, AL,)iefs,s+2t0) s0lves (1.7) up to time 54129 = s+ 2. Runing this procedure
for k times until s + kty > 7', we construct a solution to (1.7) up to time 7'

2.2 Proof of Theorem 2.1(2)-(3)

We first establish It6’s formula for the diffusion process (A%;);>s. To this end, we need the
following chain rule for the L-derivative, which is essentially due to [4, Theorem 6.5] where
the reference probability space is Polish, see also [6, Proposition A.2] for general probability
space but bounded random variables {£;}scp, (note that Dy, therein is compact).

Lemma 2.3. Let {&}co for some e > 0 be a family of square integrable random variables
on R* with respect to a probability space (Q, F,P), and let %, denote the law of &. If

&) = lim &=

sd0 S

exists in L?(Q — R%:P), then for any f € CH(Ps),
H) - f( )

sJ0 S

Proof. By a standard extension argument, we may and do assume that (2, .7, P) is atomless.
For instance, we enlarge (Q,.%,P) by (2 x[0,1],.% x 2([0,1]),P x dr) and use &, to replace
&, where & (w,r) := & (w) for (w,r) € Q x [0,1], so that ¢, under P x dr coincides with
Z¢, under P. Then the proof is completely similar to that of [14, Proposition 3.1] for &
replacing X + sY. m

Lemma 2.4 (Ito’s formula). Assume (A) and let {AL, = po (XJ) " }iss for the solution
0 (1.7). Then for any f € C}(P,),

AL = (AR + ([ {olt,0, AL (DAL @)} u(da). AW; ). 12 5
Proof. For any t > s and small € > 0, let
&=1-nXH+rXH RS RY ref0,1]
Then 0 &1 is the law of & on the probability space (R?, Z(R%), u). By (2.3),

sup Blluo &3 <E[ sup p(l& )| <00, t>5.
rel0,1] r€(0,1]
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Moreover, & := &, = X[, — X,/ exists in L?(R? — R% p1). So, Lemma 2.3 implies

d

1
FAh) = ) = Flpo &) — furotsh) = [ (5

(2.25) = /Rd o (Df(po & )&, X — X3 )pu(da)dr

:/ ]1(x)u(dx)+/ Ig(:zt,r),u(dx)dr+/ Is(z,r)p(dz)dr,
R4 R4x[0,1] R4x[0,1]

where, since po &' = AL,

fluogh))dr

Li(w) = (Df(AL)(XSE), XS — X3F),
Iy(z,r) = (D f(po& )& — Df(MOfo_l)(fm) Xole = X31),
I3(z,7) = <Df(A§t)(§z) Df(AS)(E), Xotie — X))

Below, we calculate I1(x), Iy(z) and I3(z) respectively.
Firstly, by (1.7) and f € CZ(,), we have

/ ((Df)(AL) (XS, dXEE) = / ((Df)(AE)(XEE), dXEE) + ofe)

(2.26) / ((Df) (AL )(XZE), b(u, XD AL,) )du

s,u ?

/ ((Df)(NE (X2, o(u, dXZTE, AL )AW,) + o(e)

s,u
where and in the following, o(¢) means e-dependent (real, vector or matrix valued) random

variables satisfying lim. e t|o(e)| = 0.
Next, (1.7) implies

t+e
227) (Xt~ XIt) @ (XUt = X2 = [ ol X2 AL Do X2 AL, du + ofc).
t

S,u ? S, u

Combining this with f € C}(#,), we deduce from Lemma 2.3 and &, = X%, — X,/ that
up to an error term o(g),

(@)= [ a0 [ (D800 )€, (Xite = X38) @ (&) )
t+e
(2.28) / a9 / du / ((D?) (o &), €8), or(u, X2, AL Jor(u, XV2 A ) ) pu(dy)

—7’/ du [ ((D2F) (A ) (XE, XEE), o (u, X280 AE o (u, X9 AR ) u(dy).
Rd

Similarly, by using (2.27) with = y, we obtain that up to an error term o(e),
L(x,r) = ((Df)(no & )(&) — (Df) (o & )& Xothe — XJF'
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= [ (TUDDWEINE). (X5t~ Xt (X2 — Xt
= [ TN N, )0, X A el
Combining this with (2.25)-(2.28), we arrive at
AP0 = [ (DAL @), ot M)W )
=( (DAL (X, bt XH AL, >>u<dx>)dt
( [ AT UDNARINEE), (000 X5 A20) bt

+(§ [ (D DAL XI) ot X AL o6, X2 ML) (o dy>)d
Rd xRd

= (@ [)(AL,)dt.
Then the proof is finished. ]

Proof of Theorem 2.1(2)-(3). By the uniqueness result in Theorem 2.1, we have the flow
property
(229> X:,;fﬂ = Xi,(tSZ#VAgmv Aﬂt - Art ’ 0 S $ S r S t7

which implies that both (AY,);>, and (X7}, AL,)i>, are Markov processes.

Next, by (2.4), these two Markov processes are Feller and hence, strong Markovian.
Therefore, Theorem 2.1(2) follows from Lemma 2.4.

Finally, for any f € C,JZ’Q(Rd, P5), Lemma 2.4 and the classical 1t6’s formula for the
semimartingale (X/');>s imply

AF (X ALY = ()X AL AL+ (V (- A (XY, o8, XEF, AL AV
(2.30) .
/ (DA M) )t AW, Jd), €5 5.

This proves Theorem 2.1(3). O

3 Feyman-Kac formula for PDEs on R? x £,

In this section, we solve the PDEs (1.8) and (1.9) by using (X7, A%, )o<s<i<r. A function
on U on [0,T] x R? x &2, is called a solution to (1.8), if U(t,z, u) is differentiable in ¢ and
U(t,-, ) € C**(R? x ) such that (1.8) holds. If moreover U(t,x, ) does not depend on
x, it is called a solution to (1.9).

We first introduce the following class Cy ([0, T] x R? x 2,).

17



Definition 3.1. Let f be a real, vector or matrix valued function on [0,7] x R¥ x &, for
some k > 1. We write f € Cp>*([0,T] x R¥ x 92,), if f is jointly continuous, f(t,-,-) €
CP*(RE x 2,) for every t € [0,T], and all derivatives

Vit z,p), Vit p), DFtzuy),

DIVF(t o)} (y). VIDf(tx,m)()}w), D2t x 1) (5. 2)

are bounded and jointly continuous in corresponding arguments. If moreover f(¢,z, ) does
not depend on z, we denote [ € C’Z?’Q([O,T] X Py).

Theorem 3.1. Assume that b,o € Cy>*([0,T] x R? x P,) are deterministic.

(1) Forany® € C}*(RIxP,), F € C)**([0, T|xR¥x P,), and bounded V€ C**([0, T]x
RY x 92),

T,

T
Ut,z,p) =E {CD(XZ’I’,‘, AZT)eftT V(r XA dr +/ F(r, X5# Aﬁr)eft V(0.X7) ,Ai‘,e)dedr}
t

t,r
is the unique solution of (1.8) in the class C"**([0, T] x R x 22y) with 0,U € C([0, T x
Rd X 5@2)
(2) For any ® € C3(R? x 2,), F € C)*([0,T] x £,), and bounded V € Cy*([0,T] x Ps),

T
Ult,p) = E[@(AZT)eftT V(rAg,)dr o / F(r, At’fr)eft V(G,Aﬁg)dadr]

t
is the unique solution of (1.9) in the class C*([0,T] x Py) with d,U € C([0,T] x Z,)

Proof. Since o, F(z, 1) = <, F (1) holds for F' € C2(2,), (2) follows from (1). So, it suffices
to prove Theorem 3.1(1).
If U € C)**([0,T] x R? x &2,) is a solution of (1.8), then (2.30) yields

dU(t, XZF, AL = (0,U + )U (¢, XTf ALt + dM,

st s,t
=dM, — (VU + F)(t, X;{', Ab)dt, te s, T

s,t

for some martingale (M;);c[s,r)- Thus, the process

. t r x,
N = U(t’Xx,,u Af:’t)ef; V(r, X3 AL )dr +/ F(T, X T Air)efs V(G,Xsyg“,Ag’g)der, te [S,T]

st s,r

satisfies )
dn, = els V(T’XS”#’AgvT)d’"th, tes,T].

So,

Ul(s,z,pu) = Eng = Eng

S,r )

T
T T A M T Ty A M
— B[ O(XTE AL el VIXEE AL / Fr, X7, AF Jolt VOXTE AL g,
S
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as claimed in Theorem 3.1(1).
On the other hand, let U be given in Theorem 3.1(1). For any ¢ € [0,7") and ¢ € (0,7 —1),
by (2.29) and the formula of U(¢, z, 1) in Theorem 3.1(1),

Ult,z,p) —E[UE+e, X/ M) = Li(e) + L(e) + Is(e)

holds for

[ XetieMire A ALige TV (r,XTH A", )dr L V(i XTH A", Ydr
I]. (5) = E ®(Xt+E,T 7At+E,T)(eft r, T r,T — eft+5 r, T r, T ) ,

B t+e
. e AR\ [T V(O,XTH AN Y6
12(5) =K / F(r, Xtﬂ“ ’At,r)eft (0, X5 At g) dr ’
LJt

- T
I3(e) =E / F(r, X Afﬂ,) (eft VOX/5 A0 _ o/ V(e,xt’g‘,Aﬁg)de) dfr} )
L Jt

t,r
+e
Therefore,
lim U(t, xZ, [L) - E[U(t +¢, thfg—ll—a? Ait—&-a)]
e—0 £
" TV (r X5 AR Vdr
o) _ V(t,l',M)E[(D(XL#aAZT)eft V(r, X AL )d |+ F(t,z,p)

T
+ V(t> Z, M)E |:/ F(r7 Xz}”a Azlft,r)eft V(9,Xt7’9”,AZ0)d9}
t
= (VU + F)(t,x, ).

By Proposition 3.2 below, U € Cy**([0,T] x R x 9,) and #4U(t,x, 1) is continuous in
(t,x, ). Then (2.30) implies

t+e _
E[U(t + e, X7 AZ, )] = Ut + 2,2, 1) + E / U (r, X2, AL )dr.
t

Combining this with (3.1) we arrive at

t - U(t
_atU(t,w,,LO:hm U( 7'ralu’) U( "‘6,1’,“)
e—0 5

= AU(t, v, 1) + (UV + F)(t,x, ).

Therefore, U solves (1.8) with continuous .o U. O
The remainder of this section devotes to the proof of the following result.

Proposition 3.2. Under conditions of Theorem 3.1 and let U be given in Theorem 3.1(1).
Then U € CP7*([0,T] x RE x ), so that U is continuous on [0,T] x R x 2y,

We first introduce some notations which will be used in calculations.
(a) For f € C*(RY),

(Vf(@))or = (Vf(z),v1) = Vi, f(x), (V2f(2))(v1,02) := Hessy(vr,v2), @, 01,02 € RY,
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(b) For f € C*(2),

(DS} = Do) = | (DI, oa)(da), b€ LR = R )

(c¢) Derivatives of vector or matrix valued functions are given by those of component func-
tions. For instance, for f = (fi;) € C'(R? x &, — R' @ R¥),

Vof(@,p) = ((Vfij(z,1),0), Dof(a,p) = (Dgfij(x, 1)),
where z,v € R4, € P, and ¢ € L2(R? — R%; ).
We will also need the following notion of uniform boundedness and continuity.
Definition 3.2. Let B be a Banach space, and let E be a topological space. The family
{n(z) e L'(Q—B;P):z € E}
is called L~ (PP) bounded continuous, if for any p > 1,

sup E[|n(z)[|” < oo, limE|n(z) —n(y)||" =0, z € E.
z€E y—z

Let Z(B; — By) denote the space of all bounded linear operators from a Banach space
B, to the other one By. When B; and By are finite-dimensional Hilbert spaces, we regard
Z(B; — B,) as Euclidean space. The following lemma can be easily proved by using It6’s
formula, so we omit the proof to save space.

Lemma 3.3. Let k, [ > 1, and let

B :Ox[0,T] xR x 2y = R*, ©,:Qx[0,T] xR x &, - RF @ R™,
By: Ox[0,T] xR x 2 s RFQR*, 3,:Qx[0,7] xR x &, - Z(R* - RF @ R™)

be progressively measurable. If {Bs, Yo} are uniformly bounded and continuous in (t,x, ) €
0, 7] x R x Py, and {By(t,z, 1), S1(t,z, 1)} are L~ (P) bounded continuous, then for any
e € R¥ and (x, ) € R x Py, the solution (1,1 )iefsr) for the SDE

dngy' = { Bu(t, @, )+ Ba(t, @, p)n " pdt4+-{ 2 (¢, 2, )+ 3o (t, @, )" }AW, nik = et € [s, T
is L~ (P) bounded continuous.

In the following subsections, we calculate the first and second order derivatives of (X}, A%
in z and p respectively, which will be used in the proof of Proposition 3.2.

20
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3.1 Formulas for VX}" and V2X/

Let {e;}1<i<a be the canonical orthonormal basis of R%. Given (AL,);,, the SDE (1.7)
becomes the classical one with random coefficients of bounded and continuous first and
second order derivatives in x. So, when Vb(t,z,u) and Vo(t,z, u) are L> (P) bounded
continuous, by taking d,, to X" in (1.7), we see that for any 1 < i < d,

v”“ =0, XY, t>s
solves the linear SDE

i = [{Vb AR (X }W“}dw [{Vo A (X }v”“}dwt,

t>s, v;’fg’“ = e;.

(3.2)

If moreover V2b(t, x, 1) and V2o (t, z, i) are L>~ (P) bounded continuous, then by taking 9;
to the SDE (3.2), we see that for 1 < j <d

v”m“ = 0,0, XS, t>s
solves the SDEs
dofor = [{wi, B A i) a
(Tt ALY (X Jid™ + {20 (t, -, AL (X b, odp#) i, vl = 0.
Combining these with Lemma 3.3, we obtain the following result.

Lemma 3.4. Assume (A) and that Vb(t,z, u), V2b(t,z, u), Vo(t,z, n) and V3a(t,x, p) are
L>>~(IP) bounded continuous, then so are VX" and V*XT}'.

3.2  Formula for DX/
We will establish the SDE for DX /'(y) under the following condition (C) on b and o.

(C) Assume that b and o are progressively measurable such that the derivatives

Vo(t,z,pu), Vo(t,x,p), Dbt z,u)(y), Do(t z,u)(y)
are uniformly bounded and continuous in (z, i, y) € R? x &, x R%.

Lemma 3.5. Assume (C). Then for any (z,p,y) € R x 25 x R, wit'(y) :== (DX} (y)
fort € [s,T] exists and solves the SDE

() = [ (B0} Volt - ALK + (VL) (D0 X3 LX)
+ [ St )} {Dble X5t AL NG la) |t
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{{w } {VU ) 7A5t X:tu }+ VX ){Do’( szt#:')(Ag,t)}(XZ}“)
/ {wit ()} {Do(t, X5, ) (ML) F(XZ ) p(dz) [ AW, wiY = 0,

where {wft“(y)}* is the transposition of the matriz wif' (y). Consequently, (DXJ}")(y) is
L>~(P) bounded continuous.

To prove the existence of DX}, for fixed ¢ € L*(R* — R% 1), let pe = po (Id +e¢)~*

and consider
T,€ X:;Sus - X;U%M
és,’t = %, €€ (O, 1),t € [S,T].
We first establish the SDE for Dy X7/ := lim. o &;7. To this end, we need the following

lemma.

z+ep(x),pe z,
Lemma 3.6. Assume (A) and let €7 := Lo X Then for any f € CY1(RT x P2)

1>
with

Ky = sup (\Vf(iﬂ,#)’Q + HDf(a:,u)H%z(ﬂ)) < 00,
(2,0)EREx Py

the process

f(Xx,U«s AME) _ f(Xx/’« A/‘ )

=2 () = e S Ve £ N (XIE)
/ (e +s§f,{Df< £ (AN (dz), te [s,T]
satisfies
(3.3) =N < 8K (€512 + p(les + E57), te[s,T),
(3.4) limE[=25 ()] = 0.

el0

PT'OOf. Let nr Xftu + T(XI+€¢( oo Xf,f)? re [Oa 1] Then 770 Xst 7771 - sz’;r5¢(l’)7#s’
so that

Lol 7= O (XS?) Agt, Lo = Mo ()(;;Ed)’“g)*1 = j1. 0 (X;’ff)*l = Af:ft.
Moreover, n? = &7 + €77, Then by Lemma 2.3, we have
L 1w, Zo) = (DI N Za) ), )
Y, T]T\u Y, el )\ )5 drnr 12(4)
— e [ (DI 5 + G uldz), re(0.1)y € B
R
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So, letting (¥ = (1 — r) X7 + r X7}, we obtain

s,t

X AV XTP A" 1 4 i
I/ )= I 2 A{@f(rjgmlu)}(ﬁ

/ {<Vf L)), + / (DG ) (L f),fﬁ,’f+5§,’5>u(d2)}dr.

This together with the definition of Z7 (f) gives

9 S

=50 = ’/ {<Vf L) (CF) = VI AL (X, €67

2

B [ DI (6) ~ DI N, € + EDulas)

<8 (|67 1° + n(l&s + &5).

which implies (3.3). On the other hand, it is easy to see that (2.4) implies

(3.6) sup [sup {1572 + S} ] < cullol), ¢ € LR > R% p)

r€R?,£€(0,1) tels, T

for some constant ¢ > 0. Combining this with the facts that (V f, D f) is bounded continuous,

lim, o ¢ = X7}, and lim,_, %}, |, = A%, we may apply the dominated convergence theorem
to deduce (3. 4) from the first equality in (3.5) with ¢ | 0. O

Lemma 3.7. Assume (C). For any (s,z,u) € [0,T] x RY, x Py and ¢ € L*(R? — RY),
wft’”b Dy X/ fort € [s,T] exists in L2(Q — C([s,T] — R%Y);P), and there exists a
constant C' > 0 such that

(3.7) E| sup [wit 2] < Cullol), (s.z.) € [0,T) x R x 25,

s<t<T

Moreover, for any t € [s,T],
t t
wip? = [T bt ) br [ {9 oot M) fa,
t
(38) # [ ([ (0 X A DX,z 4 Ty XaE ()
s R4
t
+/ (/ ({Do(r, XT8N HXZE), wilh? + V) X >M(d2))dWr'
s R4

Proof. To prove the existence of wff’d’ = DX ' in L*(Q — C([s,T] — R%);P), it suffices
to show

(3.9) lim E[ sup €75 — €012 = 0.
eolo” Lycrr 0t
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By the definition of £} and letting

Eif(b) = ('_ff(b ))1<z<d’ Ei,f(o-) = (Hifﬁ(o_l]))l<z<d 1<j<m’

Il il e

we obtain
1 t
€ = 2 [ Do Xae A = b X ) Y
’ €
/{o— CXTHE A=Y — o (r, XA ) AW,
t
= [ {=zm0)+ Vet an ) () Jar
(3.10) s

L[ ot ez o) 0655+ € utan) o
[222(0) + Verzolr, AL )(XTE bam,
# [ ] ot xip q g Hep). 65 + Euid) baw,

Combining this with (C) and using the BDG inequality, we may find out a constant C' > 0
such that for any t € [s,T],

t
| sup [¢r7 - €:7F] < CB [ {0 - =ior + 280 - =3P
rels, S

(3.11)
ez — € 4 I - £ + 1 - €57 far.

Integrating both sides with respect to p(dz), we obtain
Epu(l€ — &9 < CE/: (IE50) = E50)° + E5(0) — 501 + 165 — &0 %) dr
w20 [ Bl - 3Py, tefT]
Then by Grownwall’s inequality, (3.4), (3.6), and the existence of
lgglé; = VX1 in L*(P)

as explained in Subsection 4.1, which implies lim, 50 ]E]fsi - é 2912 =0, we derive

lim sup Eu(]€)5 — 552
lim, s En(lEs ~ €11
T
SCezCTalingE/ pn(1250) = E50) + |25.(0) = 50| + €5 - €0 dr = 0.
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Substituting this into (3.11) and using Gronwall’s inequality again, we arrive at

lim E[ sup [€57 — €57 2]
€,040 te(s,T)

T
<o g e [ {E0) -0+ 1550 - )1
(1€ - AP + 15 - E312) far = 0.
Therefore, (3.9) holds, so that
wx“(b DXt“—hmﬁst, tes,T]

exists in L?(Q — C([s,T] — R9);P), and (3.7) follows from (3.6). Moreover, by (C) and
Lemma 3.6, we may let £ | 0 in (3.10) to derive the desired equation for wf,’t“’qﬁ. [

Proof of Lemma 3.5. By (3.7), (DX/)e[s,r) exists with
(3.12) (DX 02y = Do X = wif®, ¢ € LR — R p).

On the other hand, let w;f*(y) solve the SDE in Lemma 3.5. Then w§f¢ = (Wit d) 2w

solves the SDE in Lemma 3.7 for wg{" *. By the uniqueness, we have wyf" * = wyf ®,

Combining this with (3.12), we obtain p-a.e. wi{ = DX7}. Then the proof is finished. [

3.3 Some other derivatives
We first present a formula for D f(A%,).
Lemma 3.8. Assume (C). For any f € C} (%),

{DfAL) (1)} ()

(3.13) _ (VXLZ}“)*{(Df)(Ag,t)}(Xg’tﬂ) —I—/Rd (DX:’}”) (DAL HXGY ) pu(da).

Proof. Let ¢ € L*(R* — R% y1). Since AY;, = po (X4)!, for any € > 0 we have

/ B() (A0 (02 = / B(XE00 (o (1d 4 26) ) (da)
R4 Rd

_ / RN yqz), e (R,
R

So, Ag;ad%‘b)_l is the law of

T X;j€¢($)vlt°(1d+6¢)7
on the probability space (RY, Z(R%), i1). Therefore, by Lemmas 2.3 and 3.5, we obtain
(DF (A ) (1), 6) 12 = f(AZ,Z(Id+€¢)_)

e=0
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= /]Rd <{(Df)(Agﬁt)}(X;";’t”), %Xf,:rm(x)’uo(ldﬁ@l >u(dx)
= /Rd {(DHNEDHXTS), Vo) Xoi' + D XIf ) u(da)
= [ ARG DNL ) o))

_|_

[ DX DX, 60l )

e=0

= (VX0 (DAL + [ (DX OUPHNENN X etdn). o)

L2(p)
Therefore, (3.13) holds. O

Next, when b,o € CP*%([0,T] x R? x %), by making derivatives to the SDE for wit (y)
presented in Lemma 3.5, we derive the following result.

Lemma 3.9. Assume that b,o € Cy>*([0,T] x R? x ). Then all derivatives
{DVXIHy), VADX(y)} (@), VIDXL/()}Hy), DX (y, 2)
are L~ (P) bounded continuous.

Proof. (a) We first consider {DVXZ}'}(y). Since b,o € C)"**([0,T] x R? x 22,), by (3.2)
and Lemmas 3.4-3.5, v;{" := V, X} for v € R? solves the SDE

vl = Zy(t, z, p)olfdt + { Zo(t, o, )T }AW,, 2t =,

8,8

where

7y [0,T] x REx Py - RY Z,:[0,T] x R x &2y — R @ R?
are progressively measurable and satisfy

(D) Zi(t,x,n) and Zs(t, x, u) are uniformly bounded and continuous in (¢, x, u) € [0,T] x
R x Py; DZy(t,z, 1) (y) and DZy(t, x, p)(y) are L~ (P) bounded continuous.

T,He
s,t

)

z,p

v Vgl

Then for any ¢ € L*(R? = R% ) and pe := po (Id+¢e¢)~" for small & > 0, 45, :=
solves the SDE

dvs, = {21t 2, p)vs  ydt + { Za(t, o, )y, ydW,

Zi(t, x, Zi(t, o (e Zo(t,m, pue) — Zo(t, z, p) Yot
+{ 1 pe) — Zi(t,x, 1)}t dt+{ o ie) o ) }vgy AW, 75, = 0.
5 5 ’

By (D), we may repeat the proof of Lemma 3.7 to conclude that Dyvg}" := lim, 75, exists
and solves the SDE

d{ Dyt = {Zi(t, 2, ) Dyvst' + (DyZi (L, @, ) }dt
+{Zs(t, 2, W) Dyvgt + (D Zo(t, x, p))vgt }dWy, Dyvt = 0.
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Hence, Dvg{(y) solves the SDE
HDv (y)} = {Z1(t, 2, ) Dvt (y) + (DZu(t, @, p)(y))vey' pdt
+{Za(t, 2, 1) D (y) + (DZo(t, 2, 1) (y))vet }dWe, Dt (y) =0.
Therefore, by Lemma 3.4 and (D), Lemma 3.3 yields that {DVX7{'}(y) is L=~ (IP) bounded
continuous.

(b) To calculate V{D X (y) ), V{DXTF(-)}(y) and DXTH(y, 2) := D{DX Y (y)}(2),
we reformulate the SDE in Lemma 3.5 for wif'(y) := DX (y) as

dwf:# = {Al (ta xz, /L)wj;tu + AZ(tv xz, /’L)}dt + {Bl<t7 z, M)w;’# + B2(t> xz, /L)}th, wf,’:su = 07

where, due to Lemmas 3.4-3.5 and (a), {A;, B; }i=1.2 are progressively measurable maps such
that

e A, and B; are uniformly bounded and continuous in (¢, x, u) € [0,T] x RY x Py;

o {A;,,B;,VA;,VB;,DA;, DB;};,—12 are L~ (P) bounded continuous in corresponding
arguments.

So, as explained in (a), by taking derivatives 0,,,0,, and D, to this SDE respectively and
applying Lemma 3.3, we prove that 9, DX.}'(y) and D*X[}'(y,z) are L>(P) bounded
continuous in related arguments. We omit the details to save space. [

3.4 Proof of Proposition 3.2

Since b, o € CY*?([0,T] x R? x 9,), assertions in Lemmas 3.4, 3.5, and 3.9 hold. Then it is
straightforward to show that U given in Theorem 3.1(1) is in the class C%?2([0,T] x Z%,).
Firstly, for any 1 < ¢ < d, by taking derivative 0,, to the formula of U, we obtain

ain(t, x, ,u) = E[<Vc[)(.7 AZT)(X:,#)’ 6xin$‘>eftT v(r,X;f;u,Aﬁr)dr}

T
+EF(Xi’fa’:‘,A’sz>eftTV(“X3”’Wd’” / <VV<r,-,AZT)<X§T;“>,0xiX§;“>dT}
t

T
+E / <VF(r,~,A§T)(X§f;“),8xiX§f;“>eft VO.X/ 5 AL e)d0 g,
t

T T
+E / {F(r, Xk A Yeli VOXG A0 / (VV(0,-, ALy (X5, axing;,*‘}de} dr.
t t

By assumptions on ®, V, F' and Lemmas 3.4, 3.5 and 3.9, this formula implies that VU (¢, z, i)
is bounded and continuous. Moreover, by taking derivatives d,; and D to the formula, we
conclude that V?U(t,z, 1) and D{VX;/'}(y) are bounded and continuous as well.

Similarly, we may prove the assertion for DU (¢, z, ) (y), 0, { DU (t, z, u)(y) }, 0, { DU (t, x, 1) (y) }
and D?U(t,z, 1u)(y, z). For simplicity, we only consider the case for V = F = 0, for the gen-
eral case the formulation is only more complicated due to derivatives to F' and V', but there
is no any essential difference for the proof. For V = F' = 0 the formula for U becomes

Ult,z, p) = EQ(X7, ALy).
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Then by (3.13) and the chain rule we obtain
DU(t, z, p)(y) = E [{Wb(-,A?,t)(Xf,%“)}(DXf,%“)(y) + (VXL (DD, X, ) (ML) XL
+ 4d(DX§,’f)*(y){D¢(X§%“, DAL HXT)n(dz) |-

Since ¢ € C’,?’Q(]Rd X P5), by Lemmas 3.4, 3.5 and 3.9 we deduce from this formula that
DU(t,x, it)(y) is bounded and continuous. Moreover, by taking derivatives 0,,, d,,, D to this
formula, we conclude that 9, { DU (¢, x, 1) (y)}, 0, {DU (¢, x, 1) (y) } and D?*U (¢, z, u)(y, z) are
bounded and continuous as well. In conclusion, U € C%%%([0,T] x R¢ x Z2,).

4 FErgodicity and structure of invariant measures

In this part, we assume that b(¢,z,u) = b(x,n) and o(t,z, ) = o(z, u) are deterministic,
and consider the ergodicity of the diffusion processes generated by & and <7 .

Recall that a Markov process is called ergodic, if for any initial distribution, when t —
oo the process converges weakly to the unique invariant probability measure. For square
integrable Markov processes, the weak convergence is equivalent to the convergence under
the Wasserstein distance. To estimate the Wasserstein distance for solutions to the image
SDE (1.7), we take the following hypothesis:

(H) b(t,z,pu) = b(x, ) and o(t,z, u) = o(z, pu) are deterministic, continuous in (x, x) and
do not depend on t. There exist constants A € R and «,d, K > 0 such that

2<b(x,,u) - b(y7 V)?*T - y> + HO-(:EMM) - U(y’ V)H%{S < HW(V” V)2 - /\|J7 - y|27
lo (2, 1) = oy, v)s < K{W(p,v)* + |z —y|*},
b(z, 1) * + llo(, ) zs < 0+ 2 + [|ull3), 2,y € R, p,v € Ps.

By Theorem 2.1, (H) implies the well-posedness of (1.7). In the present time-homogenous
case, we only consider the solution from time s = 0, i.e. (X, A}) = (Xg}', Ag,) for t > 0.

Let P,(y;-) and Py(z, ;) denote the laws of A* and (X *, A¥) respectively. Then the
associated Markov semigroups P, and P, are given by

PAW) = BFA) = [ f0)PGud0). £ € B2,
Prg(, 1) = Eg(X#, ) = / 9y, ) By, s dy, dv), g € By(RY x ).
R x Py

Let P5(P,) (resp. P(R% x P)) be the set of probability measures on %, (resp.
R? x 2,) with finite second moments, and let W;j 2> be the L?>-Warsserstein distance on

Po(P5) induced by Wy, while Wﬂ;dx‘% be that on Zy(R¢ x ;) induced by the metric

p((:l:,,u), (ya V)) = \/’3j - y’Q + WQ([L, I/)Z.
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For any @ € 5(%,) and = Py(R4 x Py), let

QP, = /J Pp;)Q(dp), QP = /R Py(x, 113 )Q(d, dpa).

d><9z2
In the following two subsections, we first investigate the exponential ergodicity of the
diffusion processes generated by 7 and .7, then figure out the structure of the invariant
probability measures.

4.1 Exponential ergodicity
Theorem 4.1. Assume (H). Then for any (z,u) € R? x P,

(4.1) EW, (A, AY)? < Way(p,v)2e” AR ¢ >0,

(4.2) E| X" — X9V 2 < o — ylPe™ + Wy(p, v)2e” 39 ¢ >0.
Consequently, if A > K then:

(1) 3 has a unique invariant probability measure ITI € Py(R* x Py) such that for any
Q € gZQ(Rd X 92),

(4.3) W3 72(QP, T)? < 2e~A'WE 72 (Q,TT)?, £ > 0;

(2) I := (R x -) is the unique invariant probability measure of Py such that for any
Q € Py (P),
(4.4 WP QP (s ), T < & A WZ2(Q T2, >0,

Proof. (a) We first prove (4.1) and (4.2). Let m € € (u, v) such that
Waln)? = [ o= yPa(de,dy)
Rex R4
Then for any t > 0,
mo=mo (XM, X)) e € (AL AY),
so that
@s) WA < [

R4 xRd

|z — y|*m(dz, dy) = / X" — XV )Pr(da, dy) =: ;.

R4 xR4

Combining this with (H) and It6’s formula, we obtain
d|X7" — XPU)P < kb — N X" — X2V} + dM,

for some martingale M;, which implies

t
(4.6) ME|XPH — XPVP < e —y]P + KJ/ MRl ds, t>0.
0
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Integrating with respect to 7(dz, dy) gives

t
MEL, < Wy (p, v)? + KJ/ e“El,ds, t >0,
0

which together with Grownwall’s lemma and (4.5) leads to
EW,y (A, AY)? < Bl < Wy(p, v)2e” P90 ¢ > 0.

Thus, (4.1) holds. Substituting (4.1) into (4.6) we arrive at

t
E|XH — X2V < e ™Mo —y|? + sWa(u, V)2e_’\t/ e™ds
0

< e—At|x _ y|2 + W2(M7 V)Qe—(k—n)t‘

Hence, (4.2) holds.

(b) Existence of invariant probability measures. Consider, for instance (X, A%), where
8o is the Dirac measure at 0 € R% Let II, = P,(0,8;-) be the law of (X%, A%). By the
completeness of the Wasserstein space, if

(4.7) lim WE>Z2(11,, 11,)? = 0,

s,t—00

then there exists a probability measure I on R? x 2, with ||II||3 := II(p?) < oo such that

limy o WRUZX‘/}2 (Ht,H) — (. Consequently, II is an invariant probability measure for P,.
Moreover, since the law of A2 is II,(R? x -), which converges to II := II(R? x -) weakly as
t — 00, we see that II is an invariant probability measure of P,.

To prove (4.7), let t > s > 0. By the Markov property we have

L= R0 = [ Pulopfie(do.do)
R x Py
Combining this with (4.1) and (4.2) we obtain

WEx 72 (11, 1,2 S/ WEXZ2 (P (z, s ), Pg(o,éo;'))Zﬁt—s(dyady)
R4 x Py

< / {E|X0% — X212 4 Wy (A, AP)? T,y (dz, dp)
R x Py

< / {|z[?e™** + 2W,(dy, H)Qe_@_“)s}ﬂt_s(dx, dp)
Réx Py
_)\SE|X0 50|2 + 2 (A= n)s]EW (50’Afos)2 _ (e—)\s + 26—()\ K S)E|X060|2.
So, to prove (4.7) it remains to show that

(4.8) sup E| X% |? < oc.
>0
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By assumption (H) with A > &, for any A > X' > &’ > & there exists a constant ¢ > 0 such
that
2bz, 1), ) + (1) s < e+ W lllE = N, (2, 11) € R x 2y,

Combining this with It&’s formula, and noting that [|[A%|2 = & (|X;?) = |X2%2, we
obtain
d|XP%)2 < {e+ (K = N)| XDt + dM,

for some martingale M;. This implies
t / /
IE|X,50’60\2 < c/ e~ Nn )Sds, t>0.
0

Since A" > &', we derive (4.8) and hence finish the proof of the existence of invariant proba-
bility measures. Moreover, the invariant probability measure II satisfies

2 2 - < : 0,502< .
L el I, dp) < Jim LX< 50 < o

Hence, IT € 2,(R? x 25). o
(c) It is easy to see that (4.3) follows from (4.1) and (4.2). Indeed, letting I' € €(Q, II)
such that

WéRdX(@b(Q’ﬁy _ / deF7
(]Rdxf/}’g)Q
we deduce from (4.1), (4.2) and II = 1P, that

W3 (QP, ) = Wi (QF, TIR,)?

< / W5 (P, 3 ), Pily, v; )T (da, dps; dy, dv)
(Rdxfﬂz)2

< / E{| X2 — X2 + Wa(AL, AY)? )T (de, dg; dy, dv)
(R x 275)2

< / {|lz — ylPe™™ + 2Wy(pu, V)2e_(’\_”)t}F(dx, dp; dy, dv)
(Rngzz)Q
< 26~ WRIWEXZ2 () T1)2, t > 0.

In particular, II is the unique invariant probability measure of P,.

(d) As shown in (b) and (c), (4.1) for A > k implies that P, has a unique invariant
probability measure II satisfying the estimate (4.4). Noting that P(u;-) = Py(x, ju; R x -)
holds for all (z, 1) € R? x &5, we have I = II(R? x -). O

4.2 Structure of invariant probability measures

Under condition (H), let by(z) = b(x,d,) and og(x) = o(z,d,). Then the SDE (1.10) is
well-posed. Let P be the associated Markov semigroup.
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Theorem 4.2. Assume (H). If P? has an invariant probability measure pg, then

o (dz, dp) = po(dx)ds, (dp)

is an invariant probability measure of P,. Consequently, Ty == TIo(R% x -) = Jra 05, 110(d)
is an invariant probability measure of Py, and when A > £, the unique invariant probability
measures 11 and 11 in Theorem 4.1 satisfy (1.11).

Proof. Recall that (X", A}") solve the SDE
AXP* = b(XP*, At + o(XPP AAW,, X = x,

where A} := po (X,;*)7!. Then, when u = §, we have A} = O xzss, SO that (X150 solves
the SDE (1.10). By the uniqueness of this SDE and that puo is an invariant probability
measure of P, we obtain

[ ot utan) = [ Pgoatan = [ glomlan. 12 0.9 € a@)

Combining this with Ptf(a:, 0y) = Ef(Xf’éz, (5Xf,az) for f € B,(R? x Z2,), and taking g(z) =
f(z,9,), we obtain

[ Rreedn) = [ Pufe6ulds)
R4 x Py Rd
_ /R B Sy polde) = [ [Bg(X ™) a(do)

Ra

= [ stemtan) = [ sledmoiao) = [ . G (ar, dp).

Therefore, Iy is an invariant probability measure of P,. In particular, by taking f(z, ) =
f(p), we see that Il is an invariant probability measure of P;.

Finally, if A > &, by Theorem 4.1, IT and II are the unique invariant probability measures
of P, and P, respectively. So, II = II, and II = IIy; that is, (1.11) holds. H

Acknowledgement. The author would like to thank Professor Renming Song for helpful
comments.
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