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1. Introduction

This paper is devoted to the study of the behavior, as t → ∞, of the probability
solution µt to the Cauchy problem for the nonlinear Fokker–Planck–Kolmogorov
equation

∂tµt = ∂xi
∂xj

(
aij(x, µt)µt

)
− ∂xi

(
bi(x, µt)µt

)
, µ0 = ν (1.1)

with respect to probability measures on Rd, where ν is a given initial distribution.
Let

Lµ = aij(x, µ)∂xi
∂xj

+ bi(x, µ)∂xi

with summation over repeated indices, where the coefficients are defined for all
x ∈ Rd and probability measures µ from some set of probability measures on Rd.

A family of probability measures {µt} on Rd is a solution to the Cauchy problem
(1.1) on [0, T ] if, for every function ϕ ∈ C∞

0 (Rd), there holds the equality∫
ϕ dµt =

∫
ϕ dν +

∫ t

0

∫
Lµsϕ dµs ds

for almost all t ∈ [0, T ]. Here we assume that the coefficients are Borel functions
integrable with respect to the measure µs(dx) ds on bounded sets. A stationary
solution is a probability measure µ on Rd satisfying the equation

∂xi
∂xj

(
aij(x, µ)µ

)
− ∂xi

(
bi(x, µ)µ

)
= 0, (1.2)

which is understood in the sense of the integral equality∫
Lµϕ dµ = 0

for every function ϕ ∈ C∞
0 (Rd). Below for brevity we write equations (1.1) and (1.2)

in the form

∂tµt = L∗
µt

µt and L∗
µµ = 0.

Equations of this form arise in physical, biological and probabilistic models (see
[1]). In this paper we consider a nonlocal type of nonlinearity, where the coefficients
depend on the measure, but not on the pointwise values of its density. Typical
examples are equations with coefficients of the form∫

K(x, y) µt(dy).
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Nonlinear Fokker–Planck–Kolmogorov equations with such nonlinearities arise nat-
urally in the following problem. Let us consider the system of differential equations

ẋi = N−1

N∑
j=1

K(xi, xj),

where K(x, y) is some function of two variables. It is readily verified that the
measure

µN
t = N−1

N∑
j=1

δxj
t

satisfies the Vlasov equation

∂tµ
N
t = −∂x(b(x, µN

t )µN
t ), b(x, µ) =

∫
K(x, y) µ(dy),

which is a particular case of the Fokker–Planck–Kolmogorov equation. Under broad
conditions on K one can show that, as N →∞, the measures µN

t converge weakly to
a measure µt that also satisfies the Vlasov equation. There is an extensive literature
on such equations, we mention in the first place the pioneering paper of Dobrushin
[2] and also the papers [3], [4], [5]. In case of functions K(x, y) of a special form
Vlasov equations can be regarded as a particular case of the theory of gradient flows
(see [6], [7]). If in place of the system of deterministic equations we consider the
system of stochastic equations

dxi
t = N−1

N∑
j=1

K(xi
t, x

j
t)dt +

√
2dwi

t,

where wi
t are independent Wiener processes, then one can show that the one-

dimensional distributions µN,i
t (i.e., µN,i

t (B) = P (xi ∈ B)) converge weakly to some
measure µt as N →∞ and this measure satisfies the McKean–Vlasov equation

∂tµt = ∆µ− ∂x(b(x, µt)µt), b(x, µ) =

∫
K(x, y) µ(dy),

which is also a particular case of the Fokker–Planck–Kolmogorov equation. There
are fundamental works [8], [9], [10], [11] on such equations. In this paper, as com-
pared to the above examples, we study a more general situation where the diffusion
matrix depends on the solution.

Note that there exists a deep connection between Fokker–Planck–Kolmogorov
equations and the corresponding stochastic equations, which is expressed in the
form of the so-called superposition principle (see [12], [13], [14], [15]). This principle
asserts that under broad conditions on the coefficients of the linear Fokker–Planck–
Kolmogorov equation for every solution {µt} there exists a probability measure P
on C[0, T ] such that∫

ϕ dµt =

∫
C[0,T ]

ϕ(x(t)) dP ∀ϕ ∈ C∞
0 (Rd)

and the process

ϕ(x(t))− ϕ(x(0))−
∫ t

0

[tr(AD2ϕ) + 〈b,∇ϕ〉](x(s)) ds

is a martingale with respect to the measure P and the filtration σ(x(s), s ∈ [0, t]).
Thus, to every solution of the Fokker–Planck–Kolmogorov equation there corre-
sponds a solution to the martingale problem, moreover, an analogous assertion is
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also true for nonlinear equations, which finds applications in deriving and justify-
ing probability representations of solutions to partial differential equations (see [15],
[16]). The problems of existence and uniqueness of solutions to stochastic McKean–
Vlasov equations under very weak restrictions on their coefficients are discussed in
the papers [17], [18], [19], [20]. The last paper gives a generalization of the known
method of Lyapunov functions to the nonlinear case.

The problems of existence and uniqueness of probability solutions to the Cauchy
problem (1.1) and to the stationary equation (1.2) are discussed in the papers
[21], [22], [23], [24], [25]. Infinite-dimensional nonlinear Fokker–Planck–Kolmogorov
equations are discussed in [26], [27]. A survey of the theory of linear Fokker–Planck–
Kolmogorov equations is given in the book [28].

In this paper we study convergence to the stationary distribution and show that
in the case where the nonlinear Fokker–Planck–Kolmogorov equation is in a sense a
small perturbation of the linear equation, there holds the estimate

‖W k(µt − µ)‖TV ≤ q1e
−q2t

with

W (x) = 1 + |x|,

where {µt} is the solution to the Cauchy problem (1.1), µ is the solution to the
stationary equation (1.2), ‖ · ‖TV denotes the total variation norm on the space of
measures and W kσ is the measure with density W k with respect to σ.

The problems of convergence to stationary distributions of solutions to nonlinear
Fokker–Planck–Kolmogorov equation are considered in many papers, among which
we note [29], [30], [31], and [32]. Most of the known results give merely weak
convergence or convergence in the Kantorovich metric. Convergence in variation
is concerned only in the recent papers [33], [34] and [35], in which, however, only
the drift coefficient b depends on µ, but the diffusion matrix A does not depend
on µ. Dependence of the diffusion matrix on the solution considerably complicates
this study, which is seen even in the proof of uniqueness of solutions to the Cauchy
problem. For instance, an example is given in [25] in which the drift coefficient b is
zero and the diffusion matrix A(t, x, µ) is Lipschitz in µ, but the Cauchy problem
has several solutions.

In case of locally bounded coefficients and a nondegenerate diffusion matrix the
solution {µt} to the Fokker–Planck–Kolmogorov equation for almost all t > 0 has a
density %(x, t) with respect to Lebesgue measure and this density possesses a version
continuous in all variables (see [28]). A similar assertion is true for solutions to the
stationary equation. Thus, in the case of a nondegenerate diffusion matrix it is nat-
urally to consider convergence in variation (in L1(Rd)), but not in the Kantorovich
metric.

2. Main results

Let k ≥ 1. Let Pk(Rd) denote the set of probability measures µ on Rd with
finite kth moment, i.e., |x|k ∈ L1(µ). Let Pk

a (Rd) denote the subset of Pk(Rd)
consisting of absolutely continuous measures. The space Pk

a (Rd) with the metric
‖W k(µ− σ)‖TV is complete.

Suppose that for every measure µ ∈ Pk
a (Rd) and every ε ∈ [0, 1] we are given

Borel functions x 7→ aij
ε (x, µ) and x 7→ bi

ε(x, µ). Let the following conditions be
fulfilled.
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(H1) The matrix Aε(x, µ) = (aij
ε (x, µ)) is symmetric and positive definite, more-

over, there exist constants Λ > 0 and α > 0, independent of ε and µ, such that

|Aε(x, µ)− Aε(y, µ)| ≤ Λ|x− y|, α−1I ≤ Aε(x, µ) ≤ αI.

(H2) There exist constants β0 > 0, β1 > 0, β2 > 0, β3 > 0 and m ≥ 0,
independent of ε and µ, such that

|bε(x, µ)| ≤ β0(1 + |x|)m‖W kµ‖TV , 〈bε(x, µ), x〉 ≤ β1 − β2|x|2k + εβ3‖W kµ‖2
TV .

(H3) There exists a constant N > 0, independent of ε, µ and σ, such that

|Aε(x, µ)− Aε(x, σ)| ≤ εN‖W k(µ− σ)‖TV

and for all 1 ≤ i, j ≤ d

|∂xj
aij

ε (x, µ)− ∂xi
aij

ε (x, σ)|+ |bj
ε(x, µ)− bj

ε(x, σ)| ≤ εN(1 + |x|)m‖W k(µ− σ)‖TV .

Example 2.1. Let

Aε(x, µ) = I + ε

∫
Q(x, y) µ(dy), bε(x, µ) = −x + ε

∫
K(x, y) µ(dy).

Suppose that Q is a symmetric matrix and

0 ≤ Q(x, y) ≤ C1I, |Q(x, y)−Q(z, y)| ≤ C2|x− z|,
〈K(x, y), x〉 ≤ C3(1 + |y|)(1 + |x|), |K(x, y)| ≤ C4(1 + |x|)m(1 + |y|).

Then conditions (H1), (H2), (H3) are fulfilled.

Throughout we consider the solution {µε
t} to the Cauchy problem (1.1) in which

the coefficients of the Fokker–Planck–Kolmogorov equation are precisely Aε and bε,
but for notational simplicity we omit the index ε. Similarly we do in the case of a
stationary solution and a stationary Fokker–Planck–Kolmogorov equation.

The following theorem is the main result of this paper.

Theorem 2.2. Let conditions (H1), (H2), (H3) be fulfilled and r ∈ (0, β2/2αk).
Suppose that exp(r|x|2k) ∈ L1(ν). Then there exists ε0 ∈ (0, 1] along with positive
numbers q1, q2 such that for all ε ∈ [0, ε0] there holds the estimate

‖W k(µε
t − µε)‖TV ≤ q1e

−q2t,

where {µε
t} is the solution to the Cauchy problem (1.1) with initial condition ν and µε

is the solution to the stationary equation (1.2). The constants ε0, q1 and q2 depend
only on d, ν, r and the constants from conditions (H1), (H2), (H3).

We observe that the existence of a solution {µt} on [0, T ] for every T > 0 follows
from [25, Theorem 3]. Sufficient conditions for uniqueness are obtained in the papers
[23] and [25]. In [25, Theorem 5] under conditions close to (H1), (H2) and (H3),
uniqueness is proved under the additional very essential assumption that the initial
distribution ν has a density %0 with respect to Lebesgue measure and %0 ln %0 ∈
L1(Rd). In this paper we do not impose this restriction on the initial distribution.
However, it will be shown below (see Corollary 3.5) that %ε(x, t) ln %ε(x, t) ∈ L1(Rd)
for all t > 1, where %ε(x, t) is the density of the solution µε

t . An assertion analogous
to [25, Theorem 5], is discussed in Remark 3.8. Thus, we can use the uniqueness
condition for t > 1, which is sufficient for extending the solution to [0, +∞). Hence
under our conditions there exists a solution {µε

t} to the Cauchy problem (1.1) on
the whole half-line [0, +∞). Note that for the existence of solutions we do not need
that ε be small.

We now show that for ε sufficiently small there exists a stationary solution from
the class Pk

a (Rd) introduced above.
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Proposition 2.3. Suppose that conditions (H1), (H2), (H3) are fulfilled. Then there
exists ε0 > 0 such that for all ε ∈ [0, ε0] the corresponding stationary equation has a
solution µε in the class Pk

a (Rd).

Proof. Let σ ∈ Pk
a (Rd). According to [28, Corollary 2.4.2 and Theorem 4.1.6], there

exists a unique solution µ to the linear stationary equation L∗
σµ = 0. The solution

µ possesses a density with respect to Lebesgue measure. Note that

Lσ|x|2 ≤ 2αd + 2β1 − 2β2|x|2k + 2εβ3‖W kσ‖2
TV .

According to [28, Theorem 2.3.2], there holds the estimate∫
|x|2k µ(dx) ≤ αdβ−1

2 + β1β
−1
2 + εβ3β

−1
2 ‖W kσ‖2

TV .

Suppose that ‖W 2kσ‖TV ≤ R. Then ‖W kσ‖2
TV ≤ R and

‖W 2kµ‖TV ≤ C1 + εC2R,

where C1, C2 depend only on α, β1, β2, β3 and k. Let R = 2C1 and ε ≤ 1/(2C2).
Then we have C1 + εC2R ≤ R. We denote by PR the set of probability measures
σ ∈ Pk

a (Rd) satisfying the inequality

‖W 2kσ‖TV ≤ R.

Thus, we have the well-defined mapping T that to every measure σ ∈ PR associates
the solution µ ∈ PR. We observe that for every measure σ ∈ PR we have

|bε(x, σ)| ≤ β0

√
R(1 + |x|)m, 〈bε(x, σ), x〉 ≤ β1 + β3R− β2|x|2k.

Moreover, applying again [28, Theorem 2.3.2], one can show that for µ = T (σ) and
any p ≥ 1 there holds the estimate∫

(1 + |x|)p µ(dx) ≤ C(p),

in which the constant C(p) depends only on p, d, α, β1, β2, β3 and R. Let µ1 = T (σ1)
and µ2 = T (σ2). Denote by %µ2 the density of the measure µ2. By [36, Theorem 3.1]
with V (x) = (1 + |x|)k one has the estimate

‖W k(µ1−µ2)‖2
TV ≤ C3

(∫
|A(µ1)

−1/2Φ|2 dµ2

)(∫
(1+|x|2k)(1+|A(µ1)

−1/2Φ|2) dµ2

)
,

(2.1)
where

Φ =

(
A(µ1)− A(µ2)

)
∇%µ2

%µ2

−
(
h(µ2)− h(µ1)

)
,

hi(µ) = bi(µ)− ∂xj
aij(µ).

Here for shortening the notation we omit indication of x in the coefficients. Accord-
ing to [28, Corollary 3.4.7], for every p ≥ 1 there exists a constant C2, depending on
p, R and the constants from conditions (H1), (H2), (H3), for which∫ ∣∣∣∇%µ2

%µ2

∣∣∣p dµ2 ≤ C4.

We observe that

(1 + |A(µ1)
−1/2Φ|2)2 ≤ C5

∣∣∣∇%µ2

%µ2

∣∣∣4 + C6(1 + |x|)4m.
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Therefore,∫
(1 + |x|2k)(1 + |A(µ1)

−1/2Φ|2) dµ2

≤
(∫

(1 + |x|2k)2 dµ2

)1/2(∫
(1 + |A(µ1)

−1/2Φ|2)2 dµ2

)1/2

≤ C7.

From the estimate

|A(µ1)
−1/2Φ|2 ≤ 2α

∣∣∣∇%µ2

%µ2

∣∣∣2|A(µ1)− A(µ2)|2 + 2α|h(µ2)− h(µ1)|2

and condition (H3) we obtain the estimate

|A(µ1)
−1/2Φ|2 ≤ 2αN2ε2‖W k(σ1 − σ2)‖2

TV

(∣∣∣∇%µ2

%µ2

∣∣∣2 + (1 + |x|)2m
)
,

whence ∫
|A(µ1)

−1/2Φ|2 dµ2 ≤ ε2C8‖W k(σ1 − σ2)‖2
TV .

Thus, we have estimated the expressions in the right-hand side of (2.1) and now
we can write down the estimate for the distance between µ1 and µ2 through the
distance between σ1 and σ2:

‖W k(µ1 − µ2)‖TV ≤ εC9‖W k(σ1 − σ2)‖TV ,

where C9 does not depend on ε. It is clear that for sufficiently small ε > 0 the
mapping T is contracting. Hence there exists a unique fixed point µ = T (µ), which
is the desired solution to the stationary equation. �

The uniqueness of a stationary solution in the class Pk
a (Rd) follows immediately

from Theorem 2.2. Note that under somewhat different assumptions the existence
and uniqueness theorem was obtained in the papers [21], [37].

3. Auxiliary results and proofs

For the proof of the main result we need several auxiliary assertions, in which we
substantially use various facts from the theory of linear Fokker–Planck–Kolmogorov
equations. In particular, we apply a priori estimates with a Lyapunov function,
upper bounds on the density of the solution, estimates for the logarithmic gradient
and entropy, and estimates for distances between solutions.

We recall that µε
t = %ε(x, t) dx is the solution to the Cauchy problem (1.1) and

that we assume throughout that the coefficients of the Fokker–Planck–Kolmogorov
equation satisfy conditions (H1), (H2), (H3). For shortening the notation we omit
the index ε and write simply µt and %(x, t).

Below we always assume that the constants Ni can depend only on r, d, ν and
the constants from conditions (H1), (H2), (H3), but do not depend on t, τ , T , ε, µt.

The next lemma is based on estimates with a Lyapunov function.

Lemma 3.1. There holds the estimate∫
exp(r|x|2k) µt(dx) ≤ N1 ∀t > 0.

Proof. Note that the constants Ci, C ′
i and Mi used below depend only on d, r, k, α

and βi. First we obtain a bound on ‖W 2kµt‖TV . There holds the inequality

Lµt|x|2k ≤ C1 − C2|x|4k−2 + εC3|x|2k−2‖W kµt‖2
TV .
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Note that ‖W kµt‖2
TV ≤ ‖W 2kµt‖TV . In addition, by Young’s inequality

|x|2k−2|y|2k ≤ 2k − 2

4k − 2
|x|4k−2 +

2k

4k − 2
|y|4k−2.

Therefore,

Lµt|x|2k ≤ C ′
1 − C ′

2|x|4k−2 + εC ′
3

∫
|y|4k−2 µt(dy).

It is readily seen that∫ (
C ′

1−C ′
2|x|4k−2 +εC ′

3

∫
|y|4k−2 µt(dy)

)
µt(dx) = C ′

1−(C ′
2−εC ′

3)

∫
|x|4k−2 µt(dx).

Let C ′
4 ∈ (0, C ′

2) and let ε be so small that C ′
4 + εC ′

3 < C ′
2. Repeating the reasoning

from the proof of [28, Theorem 7.1.1] and taking into account that −|x|4k−2 ≤
1− |x|2k, we obtain the inequality∫

eC′
4t|x|2k µt(dx) ≤

∫
|x|2k ν(dx) + C ′

5e
C′

4t.

Thus, ‖(1 + |y|)2kµt‖ ≤ R, where

R = 4k + 4k

∫
|x|2k ν(dx) + 4kC ′

5.

Therefore, ‖(1 + |x|)kµt‖2 ≤ R and

〈b(x, µt), x〉 ≤ β′1 − β2|x|2k, β′1 = β1 + β3R.

We now obtain a bound on the integral of exp(r|x|2k) for r < β2/2αk. There
holds the inequality

Lµt exp(r|x|2k) ≤ M1 −M2 exp(r|x|2k).

Let M3 ∈ (0, M2) and V (x) = exp(r|x|2k). Then

∂t(e
M3tV ) + Lµt(e

M3tV ) ≤ M1e
M3t.

By [28, Theorem 7.1.1] we have∫
eM3tV dµt ≤

∫
V dν + M1M

−1
3 eM3t.

Therefore,∫
V dµt ≤ e−M3t

∫
V dν + M1M

−1
3 ≤

∫
V dν + M1M

−1
3 = N1,

which completes the proof. �

Remark 3.2. Below we always assume that ε ≤ ε1. In the proof of Lemma 3.1 we
obtained the estimate ‖W kµt‖2

TV ≤ R. Therefore, condition (H2) can be rewritten
as follows:

|b(x, µt)| ≤ β′0(1 + |x|)m, 〈b(x, µt), x〉 ≤ β′1 − β2|x|2k,

where β′0 = β0

√
R and β′1 = β1 + β3R. We shall use condition (H2) in this form.

Remark 3.3. Let µ ∈ Pk
a (Rd) and τ > 0. Let us consider a probability solution

{σt} to the Cauchy problem

∂tσt = L∗
µσt, στ = µτ , t > τ.

By Lemma 3.1 ∫
exp(r|x|2k) dµτ ≤ N1.
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In addition, as in the proof of Lemma 3.1, one can obtain the inequality

Lµ exp(r|x|2k) ≤ M1(µ)−M2(µ) exp(r|x|2k),

whence one can derive the bound∫
exp(r|x|2k) σt(dx) ≤

∫
exp(r|x|2k) µτ (dx) + M3(µ) = N1 + M3(µ) = N ′

1(µ),

where the constants Mi(µ) and N ′
1(µ) depend on d, r, k, the constants from condi-

tions (H1) and (H2) and the measure µ through the expression ‖W kµ‖TV .

In the following lemma we establish an upper bound on the solution density.

Lemma 3.4. For all t > 1 one has %(x, t) ≤ N2.

Proof. We observe that the measures µt−1+s = %(x, t− 1 + s) dx satisfy the Fokker–
Planck–Kolmogorov equation with the operators Lµt−1+s on the interval (0, 2). Let γ
be a number larger than (d+2)/2. By [28, Corollary 7.2.3], in which we set Θ = 1/2,
one has the inequality

%(x, t− 1 + s) ≤ C1s
−(d+2)/2(1 + s2γ)

∫ s

s/2

∫
(1 + |x|2γm) µt−1+τ (dx) dτ,

where C1 depends only on d, γ, β′0 and the constants from conditions (H1) and (H2).
By the estimate

|x|2γm ≤ C2 exp(r|x|2k),

where C2 depends only on γ, m, r, k, the integral of |x|2γm with respect to the
measure µt−1+τ is estimated from above by a constant C2N1. Therefore, for s = 1
we obtain the estimate %(x, t) ≤ C1(1 + C2N1). �

From Lemma 3.4 one immediately deduces an estimate for the entropy, which we
apply below.

Corollary 3.5. For all t > 1 one has∫
%(x, t) ln %(x, t) dx ≤ ln N2.

In the following assertion we obtain an estimate on the logarithmic derivative of
the solution.

Lemma 3.6. Let τ > 1 and T > 0. Then∫ τ+T

τ

∫
|∇%(x, t)|2

%(x, t)
dx dt ≤ N3(1 + T ).

Proof. The measure µτ+t = %(x, τ + t) dx satisfies on the interval [0, T ] the Fokker–
Planck–Kolmogorov equation with the operator Lµτ+t and at t = 0 it equals the
measure µτ . By [28, Theorem 7.4.1] (see also the remark after the cited theorem)
one has the estimate∫ T

0

∫
|∇%(τ + t, x)|2

%(τ + t, x)
dx dt ≤ C1 + α

∫ T

0

∫
|b(x, µτ+t)|2 %(x, τ + t) dx dt

+ 2α

∫
%(x, τ) ln %(x, τ) dx + 2α(d + 1)

∫
ln(max |x|, 1)%(T + τ, x) dx,

where C1 depends only on α, d, Λ. The integral of %(x, τ) ln %(x, τ) is estimated
by a constant ln N2 according to the previous assertion. In addition, the function
|b(x, µτ+t)|2 is estimated by the expression (β′0)

2(1 + |x|)2m, hence, it is estimated
by the expression exp(r|x|2k) with some constant factor. The function ln(max |x|, 1)
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is also estimated by the expression exp(r|x|2k) with some constant factor. Thus,
the integral of |b(x, µτ+t)|2 is estimated by the quantity C2TN1 and the integral of
ln(max |x|, 1) is estimated by the quantity C2N1, where C2 depends only on β′0, m,
r, k. Therefore,∫ T

0

∫
|∇%(τ + t, x)|2

%(τ + t, x)
dx dt ≤ C1 + α ln N2 + 2α(d + 1)C2N1 + αC2N2T,

which completes the proof. �

The next assertion is a corollary of estimates obtained in the paper [24] and plays
the key role in justification of convergence to the stationary distribution.

Lemma 3.7. Let τ > 1, T > 0 and let µ be some probability measure in Pk
a (Rd).

Suppose that a family of measures σt from Pk
a (Rd) for t ∈ [τ, τ + T ] is a solution to

the Cauchy problem
∂tσt = L∗

µσt, στ = µτ .

Then

‖W k(µt − σt)‖TV ≤ εN4(µ)
(∫ t

τ

G(s)‖W k(µs − µ)‖2
TV ds

)1/2

,

where G is a positive function such that∫ τ+T

τ

G(t) dt ≤ N3T + N5.

Proof. Applying [24, Corollary 1.2], we obtain the estimate

‖W k(µt − σt)‖2
TV ≤ 4kr−1(1 + ln η(t))

∫ t

τ

∫
|A(µ)−1/2Φ|2 dµs ds,

where

Φ =
(A(µ)− A(µt))∇%

%
− (h(µt)− h(µ)),

hi(µ) = bi(µ)− ∂xj
aij(µ),

η(t) =

∫
exp(4−kr(1 + |x|)2k) σt(dx) ≤ er

∫
exp(r|x|2k) σt(dx).

Here for shortening the notation we omit indication of x in the coefficients. We
recall that by conditions (H1) and (H3) the following inequalities are fulfilled:

A(µ)−1/2 ≤ α1/2I, |A(µ)− A(µt)| ≤ εN‖W k(µ− µt)‖TV ,

|h(µ)− h(µt)| ≤ εN(1 + |x|)m‖W k(µ− µt)‖TV .

Set

G(t) =

∫
Rd

|∇%(t, x)|2

%(t, x)
dx +

∫
Rd

(1 + |x|)2m%(x, t) dx.

Then ∫
|A(µ)−1/2Φ|2% dx ≤ ε2αN2G(t)‖W k(µ− µt)‖2

TV .

We now observe that by Lemma 3.1, Remark 3.3 and Lemma 3.6 we have

η(t) ≤ erN ′
1(µ),

∫ τ+T

τ

G(t) dt ≤ N3T + N5.

We finally obtain

‖W k(µt − σt)‖2
TV ≤ ε2αN24kr−1(1 + r + ln N ′

1(µ))

∫ t

τ

G(s)‖W k(µ− µs)‖2
TV ds,

as required. �
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Remark 3.8. Let us show that with the aid of [24, Corollary 1.2] one can derive
the uniqueness of solutions of the Cauchy problem ∂tµt = L∗

µt
µt, µ0 = ν on a

sufficiently small interval [0, τ ], provided that the initial distribution ν has a density
%0 with respect to Lebesgue measure such that %0 ln %0 ∈ L1(Rd). The following
reasoning actually repeats the proof of Theorem 5 from [25]. Similarly to the proof
of Lemma 3.7 one can apply [24, Corollary 1.2] and [28, Theorem 7.4.1], which for
two solutions µ1

t and µ2
t to the Cauchy problem yields the estimate

sup
t
‖W k(µ1

t − µ2
t )‖2

TV ≤ C1

∫ τ

0

G(s) ds sup
t
‖W k(µ1

t − µ2
t )‖2

TV ,

where C1 does not depend on τ and the function G(s) is integrable on [0, τ ]. Let τ
be so small that ∫ τ

0

G(s) ds < 1/2C1.

Then supt ‖W k(µ1
t −µ2

t )‖TV = 0. Note that without the assumption of finite entropy
in the general case a solution can be nonunique (see [25, Example 3]).

The next assertion is a particular case of [35, Lemma 3.5] (see also [38]).

Lemma 3.9. Let µ ∈ Pk
a (Rd) be a stationary solution and let {σt} be the solution

to the Cauchy problem ∂tσt = L∗
µσt, σ0 = η ∈ Pk(Rd). Then there exist numbers

λ1 > 0 and λ2 > 0 such that

‖W k(σt − µ)‖TV ≤ λ1e
−λ2t‖W k(η − µ)‖TV .

In [35] (as well as in [38]) this assertion was proved with the aid of the known
Harris theorem (see [39]). A drawback of applying the Harris theorem is that the
constants λ1 and λ2 depend on the coefficients of the operator Lµ in a complicated
way. There are other methods of justification of such convergence, in particular,
the method of coupling (see [34]). However, these methods usually require greater
regularity of the coefficients than is necessary for applying the Harris theorem. Note
that if the constants λ1 and λ2 are known, then it is not very difficult to control
dependence of the constants q1 and q2 on the coefficients of the equation.

We are now able to prove Theorem 2.2. The idea of the proof is this. It suffices
to show that for some T > 0 there exists q ∈ (0, 1) such that for every τ > 1 one
has the estimate

‖W k(µτ+T − µ)‖TV ≤ q‖W k(µτ − µ)‖TV .

For the proof of this estimate we compare on the interval [τ, τ +T ] the solution {µt}
and the solution {σt} to the Cauchy problem ∂tσt = L∗

µσt with στ = µτ and use
that for σt convergence to µ is already known.

Proof of Theorem 2.2. Let τ > 1 and T > 0. Let {σt} be the solution to the Cauchy
problem

∂tσt = L∗
µσt, στ = µτ .

We have
‖W k(µt − µ)‖TV ≤ ‖W k(σt − µ)‖TV + ‖W k(µt − σt)‖TV .

Then by Lemma 3.7 and Lemma 3.9 there holds the inequality

‖W k(µt − µ)‖TV

≤ λ1e
−λ2(t−τ)‖W k(µτ − µ)‖TV + εN4

(∫ t

τ

G(s)‖W k(µs − µ)‖2
TV ds

)1/2

. (3.1)

We pick T > 1 such that
λ1e

−λ2T < 1/2.
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From the inequalities ε ≤ 1 and e−λ2(t−τ) ≤ 1 we obtain

‖W k(µt − µ)‖2
TV ≤ 2λ2

1‖W k(µτ − µ)‖2
TV + 2N2

4

∫ t

τ

G(s)‖W k(µs − µ)‖2
TV ds.

By Gronwall’s inequality

‖W k(µt − µ)‖2
TV ≤ 2λ2

1‖W k(µτ − µ)‖2
TV exp

(
2N2

4

∫ τ+T

τ

G(t) dt
)
.

Applying the estimate for the integral of the function G, we obtain

‖W k(µt − µ)‖2
TV ≤ 2λ2

1‖W k(µτ − µ)‖2
TV exp

(
2N2

4 (N3T + N5)
)
.

Substituting this estimate into (3.1) and estimating the integral of the function G
again, for t = τ + T we arrive at the inequality

‖W k(µτ+T − µ)‖TV ≤ q‖W k(µτ − µ)‖TV ,

where

q =
1

2
+ εN4λ12

1/2(N3T + N5)
1/2 exp

(
N2

4 (N3T + N5)
)
.

Let us pick ε so small that q < 1. By the fact that τ was arbitrary we obtain

‖W k(µnT − µ)‖TV ≤ qn‖W k(µT − µ)‖TV .

It remains to observe that on [0, T ] the expression ‖W k(µt − µ)‖TV is bounded. We
note that the constants q1 and q2 from the formulation of the theorem depend on
‖W kµ‖TV . However, by the uniqueness of µ, which follows from the established
convergence of µt to µ, we can assume that we consider the stationary solution
constructed in Proposition 2.3. For this sttaionary solution the expression ‖W kµ‖TV

is estimated by a quantity depending only on the constants from conditions (H1),
(H2) and (H3). �

Remark 3.10. It is easy to see in the proof of Lemma 3.1 that, taking t sufficiently
large, we can assume that the constant N1 does not depend on the initial distribu-
tion ν. This implies that for τ sufficiently large all constants Ni appearing in the
estimates of the solution µt on the interval [τ, τ + T ] do not depend on ν. There-
fore, the number q from the proof of Theorem 2.2 does not depend on ν, hence the
constant q2 from the formulation of the theorem does not depend on the measure ν.

Remark 3.11. The assumption that ε is small is essential. Technically it is used
in Lemma 3.1 for obtaining a priori estimates with Lyapunov functions and in the
proof of Theorem 2.2, when we ensure the smallness of the factor q in the key
estimate. It is important to bear in mind that without this assumption a stationary
solution need not exist. Let us consider a simple example. Let d = 1, A = I and
b(x, µ) = −x + 1 + εB(µ), where

B(µ) =

∫
R

y µ(dy).

It is readily verified that conditions (H1), (H2) and (H3) are fulfilled. However, for
ε = 1 the stationary equation has no solutions, since for a stationary solution µ the
equality (1− ε)B(µ) = 1 must hold.

In conclusion we formulate several problems, investigation of which is of interest in
connection with the study of convergence of solutions of nonlinear Fokker–Planck–
Kolmogorov equations to the stationary distribution.

1. For comparing the solution to the linear equation and the solution to the
nonlinear equation an important role is played by the estimate of the integral of the
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square of the logarithmic derivative of the density of one of the solutions. It is of
great interest to obtain various estimates on the logarithmic derivative of the density
of the solution in the case where the coefficients of the Fokker–Planck–Kolmogorov
equation have a considerable growth at infinity.

2. We have established above convergence to the stationary solution in the case
where the stationary solution is unique. It is important and interesting to study
the case where there exist several stationary solutions. This case is not sufficienty
studied (see a discussion of this problem in [35]).

3. It has been shown above that convergence holds in the case of a sufficiently
small parameter ε. This actually means that the nonlinear perturbation is so small
that it does not spoil the linear equation, whose solutions converge to the stationary
solution. It would be interesting to obtain results on convergence in the case where
the nonlinear part is not small and convergence is due to the nonlinearity.

This work is supported by the RFBR Grants 17-01-00662, 18-31-20008, the CRC
1283 at Bielefeld University, the DFG Grant RO 1195/12-1, and the Simons funda-
tion.
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