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Abstract. We consider the stochastic Cahn-Hilliard equation with additive noise term
εγg Ẇ (γ > 0) that scales with the interfacial width parameter ε. We verify strong error
estimates for a gradient �ow structure-inheriting time-implicit discretization, where ε−1

only enters polynomially; the proof is based on higher-moment estimates for iterates, and
a (discrete) spectral estimate for its deterministic counterpart. For γ su�ciently large,
convergence in probability of iterates towards the deterministic Hele-Shaw/Mullins-Sekerka
problem in the sharp-interface limit ε → 0 is shown. These convergence results are partly
generalized to a fully discrete �nite element based discretization.

We complement the theoretical results by computational studies to provide practical evi-
dence concerning the e�ect of noise (depending on its 'strength' γ) on the geometric evolution
in the sharp-interface limit. For this purpose we compare the simulations with those from a
fully discrete �nite element numerical scheme for the (stochastic) Mullins-Sekerka problem.
The computational results indicate that the limit for γ ≥ 1 is the deterministic problem,
and for γ = 0 we obtain agreement with a (new) stochastic version of the Mullins-Sekerka
problem.

1. Introduction

We consider the stochastic Cahn-Hilliard equation with additive noise

du = ∆
(
− ε∆u+

1

ε
f(u)

)
dt+ εγg dW in DT := (0, T )×D(1.1a)

∂nu = ∂n∆u = 0 on (0, T )× ∂D ,(1.1b)

u(0, ·) = uε0 on D .(1.1c)

We �x T > 0, γ > 0, and ε > 0 is a (small) interfacial width parameter. For simplicity,
we assume D ⊂ R2 to be a convex, bounded polygonal domain, with n ∈ S2 the outer unit
normal along ∂D, and W ≡ {Wt; 0 ≤ t ≤ T} to be an R-valued Wiener process on a �ltered
probability space (Ω,F , {Ft}t,P). The function g ∈ C∞(D) is such that

∫
D g dx = 0 to

enable conservation of mass in (1.1), and ∂ng = ∂n∆g = 0 on ∂D. Furthermore, we assume
uε0 ∈ H1, and impose

∫
D u

ε
0 dx = 0, for simplicity; generalization for arbitrary mean values is

straightforward.
The nonlinear drift part f in (1.1) is the derivative of the double-well potential F (u) :=

1
4
(u2−1)2, i.e., f(u) = F ′(u) = u3−u. Associated to the system (1.1) is the Ginzburg-Landau
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free energy

E(u) =

∫
D

(ε
2
|∇u|2 +

1

ε
F (u)

)
dx .

The particular case g ≡ 0 in (1.1) leads to the deterministic Cahn-Hilliard equation which can
be interpreted as the H−1-gradient �ow of the Ginzburg-Landau free energy. It is convenient
to reformulate (1.1) as

du = ∆wdt+ εγg dW in DT ,(1.2a)

w = −ε∆u+
1

ε
f(u) in DT ,(1.2b)

∂nu = ∂nw = 0 on (0, T )× ∂D ,(1.2c)

u(0, ·) = uε0 on D ,(1.2d)

where w denotes the chemical potential.
The Cahn-Hilliard equation has been derived as a phenomenological model for phase sep-

aration of binary alloys. The stochastic version of the Cahn-Hilliard equation, also known
as the Cahn-Hilliard-Cook equation, has been proposed in [20, 12, 21]: here, the noise term
is used to model e�ects of external �elds, impurities in the alloy, or may describe thermal
�uctuations or external mass supply. We also mention [18], where computational studies
for (1.1) show a better agreement with experimental data in the presence of noise. For a
theoretical analysis of various versions of the stochastic Cahn-Hilliard equation we refer to
[8, 9, 13, 14]. Next to its relevancy in materials sciences, (1.1) is used as an approximation
to the Mullins-Sekerka/Hele-Shaw problem; by the classical result [1], the solution of the
deterministic Cahn-Hilliard equation is known to converge to the solution of the Mullins-
Sekerka/Hele-Shaw problem in the sharp interface limit ε ↓ 0. A partial convergence result
for the stochastic Cahn-Hilliard equation (1.1) has been obtained recently in [3] for a su�-
ciently large exponent γ. We extend this work to eventually validate uniform convergence of
iterates of the time discretization Scheme 3.1 to the sharp-interface limit of (1.1) for vanish-
ing numerical (time-step k), and regularization (width ε) parameters: hence, the zero level
set of the solution to the geometric interface of the Mullins-Sekerka problem is accurately
resolved via Scheme 3.1 in the asymptotic limit.

It is well-known that an energy-preserving discretization, along with a proper balancing
of numerical parameters and the interface width parameter ε, is required for accurate simu-
lation of the deterministic Cahn-Hilliard equation; see e.g. [16]: analytically, this balancing
of scales allows to circumvent a straight-forward application of Gronwall's lemma in the
error analysis, which would otherwise cause a factor in a corresponding error estimate that
grows exponentially in ε−1. The present paper pursues a corresponding goal for a structure-
preserving discretization of the stochastic Cahn-Hilliard equation (1.1); we identify proper
discretization scales which allow a resolution of interface-driven evolutions, and thus avoid a
Gronwall-type argument in the corresponding strong error analysis. This allows for practi-
cally relevant scaling scenarios of involved numerical parameters to accurately approximate
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solutions of (1.1) even in the asymptotic regime where ε� 1.

The proof of a strong error estimate for a space-time discretization of (1.1) which causes
only polynomial dependence on ε−1 in involved stability constants uses the following ideas:

(a) We use the time-implicit Scheme 3.1, whose iterates inherit the basic energy bound
(see Lemma 3.1, i)) from (1.1). We bene�t from a weak monotonicity property of the
drift operator in the proof of Lemma 3.4 to e�ectively handle the cubic nonlinearity
in the drift part.

(b) For γ > 0 su�ciently large, we view (1.1) as a stochastic perturbation of the deter-
ministic Cahn-Hilliard equation (i.e., (1.1) with g ≡ 0), and proceed analogically also
in the discrete setting. We then bene�t in the proof of Lemma 3.4 from (the discrete
version of) the spectral estimate (2.1) from [11, 2] for the deterministic Cahn-Hilliard
equation (see Lemma 3.1, v)).

(c) For the deterministic setting [16], an induction argument is used on the discrete
level, which addresses the cubic error term (scaled by ε−1) in Lemma 3.4. This
argument may not be generalized in a straightforward way to the current stochastic
setting where the discrete solution is a sequence of random variables allowing for
(relatively) large temporal variations. For this reason we consider the propagation
of errors on two complementary subsets of Ω: on the large subset Ω2 we verify the
error estimate (Lemma 3.5), while we bene�t from the higher-moment estimates for
iterates of Scheme 3.1 from (a) to derive a corresponding estimate on the small set
Ω \ Ω2 (see Corollary 3.7). A combination of both results then establishes our �rst
main result: a strong error estimate for the numerical approximation of the stochastic
Cahn-Hilliard equation (see Theorem 3.8), avoiding Gronwall's lemma.

(d) Building on the results from (c), and using an L∞-bound for the solution of Scheme
3.1 (Lemma 5.1), along with error estimates in stronger norms (Lemma 5.2), we
show uniform convergence of iterates on large subsets of Ω (Theorem 5.5). This in-
termediate result then implies the second main result of the paper: the convergence
in probability of iterates of Scheme 3.1 to the sharp interface limit in Theorem 5.7
for su�ciently large γ. In particular, we show that the numerical solution of (1.1)
uniformly converges in probability to ±1 in the interior and exterior of the geomet-
ric interface of the deterministic Mullins-Sekerka problem (5.1), respectively. As a
consequence we obtain uniform convergence of the zero level set of the numerical
solution to the geometric interface of the Mullins-Sekerka problem in probability;
cf. Corollary 5.8.

The error analysis below in particular identi�es proper balancing strategies of numerical
parameters with the interface width that allow to approximate the limiting sharp interface
model for realistic problem setups, and motivates the use of space-time adaptive meshes for
numerical simulations; see e.g. [23]. In Section 6, we present computational studies which
evidence asymptotic properties of the solution for di�erent scalings of the noise term. Our
studies suggest the deterministic Mullins-Sekerka problem as sharp-interface limit already for
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γ ≥ 1; we observe this in simulations for spatially colored, as well as for the space-time white
noise. In contrast, corresponding simulations for γ = 0 indicate that the sharp-interface limit
is a stochastic version of the Mullins-Sekerka problem; see Section 6.4.

To sum up, the convergence analysis presented in this paper is a combination of a per-
turbation and discretization error analysis. The latter depends on stability properties of
the proposed numerical scheme: higher-moment energy estimates for the Scheme 3.1, a dis-
crete spectral estimate for the related deterministic variant, and a local error analysis on the
sample set Ω are crucial ingredients of our approach. The techniques developed in this pa-
per constitute a general framework which can be used to treat di�erent and/or more general
phase-�eld models including the stochastic Allen-Cahn equation, and apply to settings which
involve multiplicative noise, driving trace-class Hilbert-space-valued Wiener processes, and
bounded polyhedral domains D ⊂ R3, as well.
The paper is organized as follows. Section 2 is dedicated to the analysis of the continuous

problem. The time discretization Scheme 3.1 is proposed in Section 3 and rates of con-
vergence are shown, while Section 4 extends this convergence analysis to its �nite-element
discretization. The convergence of the numerical discretization to the sharp-interface limit
is studied in Section 5. Section 6 contains the details of the implementation of the numer-
ical schemes for the stochastic Cahn-Hilliard and the stochastic Mullins-Sekerka problem,
respectively, as well as computational experiments which complement the analytical results.

2. The stochastic Cahn-Hilliard equation

2.1. Notation. For 1 ≤ p ≤ ∞, we denote by
(
Lp, ‖ · ‖Lp

)
the standard spaces of p-th order

integrable functions on D. By (·, ·) we denote the L2-inner product, and let ‖ · ‖ = ‖ · ‖L2 .
For k ∈ N we write

(
Hk, ‖ · ‖Hk

)
for usual Sobolev spaces on D, and H−1 = (H1)′. We de�ne

L2
0 := {φ ∈ L2;

∫
D φ dx = 0}, and for v ∈ L2 we denote its zero mean counterpart as v ∈ L2

0,
i.e., v := v − 1

|D|

∫
D v dx. We frequently use the isomorphism ∆−1 : L2

0 → H2 ∩ L2
0, where

w = ∆−1v is the unique solution of

−∆w = v in D, ∂nw = 0 on ∂D.
In particular, (∇∆−1v,∇ϕ) = (v, ϕ) for all ϕ ∈ H1. Below, we denote ∆−1/2v := ∇∆−1v
and note that norms ‖ψ‖H−1 und ‖∆−1/2ψ‖ are equivalent for all ψ ∈ H−1 which satisfy
(ψ, 1)H−1×H1 = 0, where (·, ·)H−1×H1 denotes the duality pairing between H−1 and H1.
Throughout the paper, C denotes a generic positive constant that may depend on D, T ,
but is independent of ε.

2.2. The Problem. We recall the de�nition of a strong variational solution of the stochastic
Cahn-Hilliard equation (1.1); its existence, uniqueness, and regularity properties have been
obtained in [13, Prop. 2.2].

De�nition 2.1. Let uε0 ∈ L2(Ω,F0,P;H1) ∩ L4(Ω,F0,P;L4). Then, the process

u ∈ L2
(
Ω, {Ft}t,P;C([0, T ];H1)

)
∩ L4

(
Ω, {Ft}t,P;C([0, T ];L4)

)
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is called a strong solution of (1.1) if it satis�es P-a.s. and for all 0 ≤ t ≤ T(
u(t), ϕ

)
= (uε0, ϕ) +

∫ t

0

(
ε∆u+

1

ε
f(u),∆ϕ

)
ds+ εγ

∫ t

0

(ϕ, g) dW (s) ∀ϕ ∈ H2 .

The following lemma establishes existence and bounds for the strong solution u of (1.1)
and for the chemical potential w from (1.2b); cf. [13, Section 2.3] for a proof of i), while ii)
follows similarly as part i) by the Itô formula and the Burkholder-Davis-Gundy inequality.

Lemma 2.1. Let T > 0. There exists a unique strong solution u of (1.1), and there hold

i) E
[
E
(
u(t)

)]
+ E

[ ∫ t

0

‖∇w(s)‖2 ds
]
≤ C

(
E(uε0) + 1

)
∀ t ∈ [0, T ] ,

ii) For any p ∈ N there exists C ≡ C(p) > 0 such that

E
[

sup
t∈[0,T ]

E
(
u(t)

)p] ≤ C
(
E(uε0)p + 1

)
.

2.3. Spectral estimate. Throughout the paper we denote by uCH : DT → R the solution
of the deterministic Cahn-Hilliard equation, i.e., (1.1) with g ≡ 0. Let ε0 � 1; for every
ε ∈ (0, ε0), there exists an arbitrarily close approximation uA ∈ C2(DT ) of uCH which satis�es
the spectral estimate (cf. [1, relation (2.3)])

(2.1) inf
0≤t≤T

inf
ψ∈H1, w=∆−1ψ

ε‖∇ψ‖2 + 1
ε

(
f ′(uA)ψ, ψ

)
‖∇w‖2

≥ −C0 ,

where the constant C0 > 0 does not depend on ε > 0; cf. [1, 11, 2].

2.4. Error bound between u of (1.1) and uCH of (1.1) with g ≡ 0. In [3] the authors
study the convergence of the solution of the stochastic Cahn-Hilliard equation (1.1) to the
deterministic sharp-interface limit. In particular, they show the convergence in probability
of the solution u of (1.1) to the approximation uA of uCH for su�ciently large γ > 0. Apart
from the spectral estimate (2.1), a central ingredient of their analysis is the use of a stopping
time argument to control the drift nonlinearity. The stopping time which, in our setting, is
de�ned as

Tε := inf
{
t ∈ [0, T ] :

1

ε

∫ t

0

‖u(s)− uCH(s)‖3
L3 ds > εσ0

}
for some constant σ0 > 0, enables the derivation of the estimates in Lemma 2.2 below up to
the stopping time Tε on a large probability subset

Ω1 :=
{
ω ∈ Ω : εγ

∫ Tε

0

(
u(s)− uCH(s),∆−1g dW (s)

)
≤ εκ0

}
that satis�es P[Ω1] → 1 for ε ↓ 0, for some constant κ0. On specifying the condition (A)
below it can be shown that Tε ≡ T , which yields Lemma 2.2. In this section we extend the
work [3] by showing a strong error estimate for u− uCH in Lemma 2.3.
In Section 3 we perform an analogous analysis on the discrete level by using a stopping

index Jε, and a set Ω2 which are discrete counterparts of Tε and Ω1, respectively. Both
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approaches require a lower bound for the noise strength γ to ensure, in particular, positive
probability of the sets Ω1 and Ω2, respectively.

For the analysis in this section we require the following assumptions to hold.

(A) Let E(uε0) ≤ C. Assume that the triplet (σ0, κ0, γ) ∈
[
R+
]3

satis�es

σ0 > 12 , σ0 > κ0 >
2

3
σ0 + 4 , γ > max

{23

3
,
κ0

2

}
.

Assumption (A) ensures positivity of all exponents in the estimates in the lemmas of this
section. The following lemma relies on the spectral estimate (2.1) and is a consequence of
[3, Theorem 3.10] for p = 3, d = 2, where a slightly di�erent notational setup is used.

Lemma 2.2. Suppose (A). There exists ε0 ≡ ε0(σ0, κ0) > 0 such that for any ε ≤ ε0 and
arbitrary ` > 0

i) P
[
‖u− uA‖2

L∞(0,T ;H−1) ≤ Cεκ0
]
≥ 1− Cε(γ+

σ0+1
3
−κ0)` ,

ii) P
[
ε‖∇[u− uA]‖2

L2(0,T ;L2) ≤ Cε
2σ0

3

]
≥ 1− Cε(γ+

σ0+1
3
−κ0)` ,

where ` and C ≡ C(`) > 0 are independent of γ, σ0, κ0 and ε.

We now use Lemma 2.2 to show bounds for the di�erence u− uCH in di�erent norms.

Lemma 2.3. Suppose (A), and ε ≤ ε0, for ε0 ≡ ε0(σ0, κ0) > 0 su�ciently small. There
exists C > 0 such that

E
[
‖u− uCH‖2

L∞(0,T ;H−1) + ε‖∇[u− uCH]‖2
L2(0,T ;L2)

]
≤ Cε

2σ0
3 .

Proof. By [1, Theorem 2.1] (see also [1, Theorem 4.11 and Remark 4.6]) there exists
uA ∈ C2(DT )∩L2

0 which satis�es (2.1) and

(2.2) ‖uA − uCH‖2
L∞(0,T ;H−1) + ‖uA − uCH‖2

L2(0,T ;H1) ≤ Cε2γ ,

and, cf. [1, Theorem 2.3],

(2.3) ‖uA − uCH‖C1(DT ) ≤ Cε .

By using the energy bound for uCH and (2.3) we get ‖uA‖L∞(0,T ;H1) ≤ C.
Consider the subset Ω1 ⊂ Ω (cf. [3, Lemma 4.5, Lemma 4.6]),

Ω1 :=
{
ω ∈ Ω : ‖u− uA‖2

L∞(0,T,H−1) + ε‖∇[u− uA]‖2
L2(0,T ;L2) ≤ Cε

2σ0
3

}
.

6



By Lemma 2.2, ii), we have P[Ωc
1] ≤ Cε

(
γ+

σ0+1
3
−κ0

)
`. Then using Lemma 2.1, ii) and (2.3),

we estimate the error ErrA := ‖u− uA‖2
L∞(0,T ;H−1) + ε‖∇[u− uA]‖2

L2(0,T ;L2) as

E
[
ErrA

]
=

∫
Ω

1Ω1ErrA dω +

∫
Ω

1Ωc1
ErrA dω

≤ Cε
2σ0

3 + C
(
P[Ωc

1]
)1/2
(
E
[

sup
[0,T ]

E
(
u(t)

)2
]

+ ‖uA‖2
L∞(0,T ;H1)

)1/2

≤ C
(
ε

2σ0
3 + ε(γ+

σ0+1
3
−κ0) `

2

)
.

It is due to (A) that γ + σ0+1
3
− κ0 > 0. We now choose ` su�ciently large such that(

γ + σ0+1
3
− κ0

)
`
2
> 2

3
σ0 and the statement follows from the estimate for ErrA and (2.2) by

the triangle inequality.
�

3. A time discretization Scheme for (1.1)

For �xed J ∈ N, let 0 = t0 < t1 < · · · < tJ = T be an equidistant partition of [0, T ] with
step size k = T

J
, and ∆jW := W (tj)−W (tj−1), j = 1, . . . , J . We approximate (1.1) by the

following scheme:

Scheme 3.1. For every 1 ≤ j ≤ J , �nd a [H1]2-valued r.v. (Xj, wj) such that P-a.s.

(Xj −Xj−1, ϕ) + k(∇wj,∇ϕ) = εγ
(
g, ϕ

)
∆jW ∀ϕ ∈ H1 ,

ε(∇Xj,∇ψ) +
1

ε

(
f(Xj), ψ

)
= (wj, ψ) ∀ψ ∈ H1 ,

X0 = uε0 ∈ H1 .

The solvability and uniqueness of {(Xj, wj)}j≥1, as well as the P-a.s. conservation of mass
of {Xj}j≥1 are immediate.

For the error analysis of Scheme 3.1, we use the iterates
{

(Xj
CH, w

j
CH)
}J
j=0
⊂
[
H1
]2

which

solve Scheme 3.1 for g ≡ 0. These iterates have the following properties.

Lemma 3.1. Suppose E(uε0) ≤ C. Let
{

(Xj
CH, w

j
CH)
}J
j=0
⊂
[
H1
]2

be the solution of Scheme 3.1

for g ≡ 0. For every 0 < β < 1
2
, ε ∈ (0, ε0), k ≤ ε3, and pCH > 0, there exist mCH, nCH, C > 0,

and lCH ≥ 3 such that

i) max
1≤j≤J

E(Xj
CH) ≤ E(uε0) .

Assume moreover ‖uε0‖H2 ≤ Cε−pCH, then

ii) max
1≤j≤J

‖Xj
CH‖H2 ≤ Cε−nCH ,

iii) max
1≤j≤J

‖Xj
CH‖L∞ ≤ C for k ≤ CεlCH .
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Assume in addition ‖uε0‖H3 ≤ Cε−pCH. Then for k ≤ CεlCH, and C0 > 0 from (2.1) it holds

iv) max
1≤j≤J

‖uCH(tj)−Xj
CH‖2

H−1 +
J∑
j=1

k1+β
∥∥∇[uCH(tj)−Xj

CH

]∥∥2 ≤ C
k2−β

εmCH
,

v) inf
0≤t≤T

inf
ψ∈H1, w=∆−1ψ

ε‖∇ψ‖2 + 1−ε3
ε

(
f ′(Xj

CH)ψ, ψ
)

‖∇w‖2
≥ −(1− ε3)(C0 + 1) .

Proof. The proof of i), ii), iv), v) is a direct consequence of [16, Lemma 3, Corollary 1,
Proposition 2].
To show iii), we use the Gagliardo-Nirenberg inequality and [16, inequality (76)], ii), iv)

to get the following L∞-error estimate for k ≤ CεlCH , and some lCH > 0,

max
1≤j≤J

‖Xj
CH − uCH(tj)‖L∞ ≤ ε2 .

Hence, ‖Xj
CH‖L∞ ≤ C since ‖uCH‖L∞ ≤ C; cf. [1, proof of Theorem. 2.3] and [17, Lemma 2.2].

�
The numerical solution of Scheme 3.1 satis�es the discrete counterpart of the energy

estimate in Lemma 2.1, i). The time-step constraint in the lemma below is a consequence of
the implicit treatment of the nonlinearity; see the last term in (3.2), its estimate (3.3), and
(3.4); the lower bound for admissible γ has the same origin.

Lemma 3.2. Let γ > 3
2
, ε ∈ (0, ε0) and k ≤ ε3. Then the solution of Scheme 3.1 conserves

mass along every path ω ∈ Ω, and there exists C > 0 such that

i) max
1≤j≤J

E
[
E(Xj)

]
+
k

2

J∑
i=1

E
[
‖∇wi‖2

]
≤ C

(
E(uε0) + 1

)
,

ii) E
[

max
1≤j≤J

E(Xj)
]
≤ C

(
E(uε0) + 1

)
.

For every p = 2r, r ∈ N, there exists C ≡ C(p, T ) > 0 such that

iii) max
1≤j≤J

E
[
|E(Xj)|p

]
≤ C

(
|E(uε0)|p + 1

)
,

iv) E
[

max
1≤j≤J

|E(Xj)|p
]
≤ C

(
|E(uε0)|p + 1

)
.

Proof. i) For ω ∈ Ω �xed, we choose ϕ = wj(ω) and ψ = [Xj − Xj−1](ω) in Scheme 3.1.
Adding both equations then leads to P-a.s.

(3.1)

ε

2
‖∇Xj‖2 − ε

2
‖∇Xj−1‖2 +

ε

2
‖∇[Xj −Xj−1]‖2 + k‖∇wj‖2

+
1

ε

(
f(Xj), Xj −Xj−1

)
= εγ(g, wj)∆jW .
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Note that the third term on the left-hand side re�ects the numerical dissipativity in the
scheme. We can estimate the nonlinear term as (cf. [15, Section 3.1]),(

f(Xj), Xj −Xj−1
)
≥ 1

4
‖f(Xj)‖2 − 1

4
‖f(Xj−1)‖2

+
1

4
‖f(Xj)− f(Xj−1)‖2 − 1

2
‖Xj −Xj−1‖2 ,(3.2)

where we employ the notation f(u) := |u|2 − 1, i.e., f(Xj) = f(Xj)Xj. The third term on
the right-hand side again re�ects numerical dissipativity.
By ω ∈ Ω �xed, and ϕ = ∆−1[Xj −Xj−1](ω) in Scheme 3.1, we eventually have P-a.s.,

‖∆−1/2[Xj −Xj−1]‖2 ≤
(
k‖∇wj‖+ εγ‖∆−1/2g‖|∆jW |

)
‖∆−1/2[Xj −Xj−1]‖ ,

which together with ‖∆−1/2g‖ ≤ C yields the estimate

‖∆−1/2[Xj −Xj−1]‖2 ≤ 2k2‖∇wj‖2 + Cε2γ|∆jW |2 .
Hence, using this estimate, and exploiting again the inherent numerical dissipation of the
scheme we can estimate

1

2ε
‖Xj −Xj−1‖2 =

1

2ε

(
∇∆−1[Xj −Xj−1],∇[Xj −Xj−1]

)
≤ 1

4ε3
‖∆−1/2[Xj −Xj−1]‖2 +

ε

4
‖∇[Xj −Xj−1]‖2

≤ k2

2ε3
‖∇wj‖2 + Cε2γ−3|∆jW |2 +

ε

4
‖∇[Xj −Xj−1]‖2 .

(3.3)

We substitute (3.2) along with the last inequality into (3.1) and get
ε

2

(
‖∇Xj‖2 − ‖∇Xj−1‖2

)
+
ε

4
‖∇[Xj −Xj−1]‖2

+
1

4ε

(
‖f(Xj)‖2 − ‖f(Xj−1)‖2 + ‖f(Xj)− f(Xj−1)‖2

)
+
(
k − k2

2ε3

)
‖∇wj‖2

= εγ(g, wj)∆jW + Cε2γ−3|∆jW |2 ,

(3.4)

which motivates time-steps k < 2ε3. Next, by using the second equation in Scheme 3.1, we
can rewrite the �rst term on the right-hand side as

εγ
(
g, wj

)
∆jW = εγ+1

[(
∇[Xj −Xj−1],∇g

)
+
(
∇Xj−1,∇g

)]
∆jW

+ εγ−1
[(
f(Xj)− f(Xj−1), g

)
+
(
f(Xj−1), g

)]
∆jW

=: A1 + A2 + A3 + A4 .

(3.5)

Note that E[A2] = E[A4] = 0. Next, we obtain

A1 = εγ+1
(
∇[Xj −Xj−1],∇g

)
∆jW ≤

ε

8
‖∇[Xj −Xj−1]‖2 + Cε2γ+1‖∇g‖2|∆jW |2

≤ ε

8
‖∇[Xj −Xj−1]‖2 + Cε2γ+1|∆jW |2 .

(3.6)

9



On recalling f(Xj) = f(Xj)Xj, we rewrite the remaining term as

A3 = εγ−1
(
f(Xj)− f(Xj−1), g

)
∆jW

= εγ−1
([

f(Xj)− f(Xj−1)
]
Xj, g

)
∆jW + εγ−1

(
f(Xj−1)

[
Xj −Xj−1

]
, g
)

∆jW

=: A3,1 + A3,2 .

(3.7)

Thanks to the embeddings Ls ↪→ Lr (r ≤ s), and the Cauchy-Schwarz and Young's inequal-
ities,

A3,1 ≤
1

16ε
‖f(Xj)− f(Xj−1)‖2 + Cε2γ−1‖|Xj|2 ± |Xj−1|2 ± 1‖L1‖g‖2

L∞|∆jW |2

≤ 1

16ε
‖f(Xj)− f(Xj−1)‖2 + Cε2γ−1

(
‖f(Xj)− f(Xj−1)‖L1 + ‖Xj−1‖2

)
|∆jW |2

≤ 1

8ε
‖f(Xj)− f(Xj−1)‖2 + Cε4γ−1|∆jW |4 + Cε2γ−1

∥∥|Xj−1|2 ± 1
∥∥|∆jW |2

≤ 1

8ε
‖f(Xj)− f(Xj−1)‖2 + Cε4γ−1|∆jW |4 + Cε2γ−1

(
‖f(Xj−1)‖+ 1

)
|∆jW |2

≤ 1

8ε
‖f(Xj)− f(Xj−1)‖2 + Cε4γ−1|∆jW |4 + Cε2γ−1

(
‖f(Xj−1)‖2 + 1

)
|∆jW |2 .

The leading term may now be controlled by the numerical dissipation term in (3.2). Finally,
by the Poincaré's inequality,

A3,2 ≤ ‖f(Xj−1)‖2‖g‖2
L∞|∆jW |2 + ε2γ−2‖Xj −Xj−1‖2

≤ C‖f(Xj−1)‖2|∆jW |2 + CDε
2γ−2‖∇[Xj −Xj−1]‖2 .

By combining the above estimates for A3,1, A3,2 we obtain an estimate for (3.7).
Next, we insert the estimates (3.5), (3.6), and (3.7) into (3.4), account for 2γ−2 > 1, sum

the resulting inequality over j and take expectations,

E
[ε
2
‖∇Xj‖2 +

1

4ε
‖f(Xj)‖2

]
+

1

8ε

j∑
i=1

E
[
‖f(X i)− f(X i−1)‖2

]
+
(ε

8
− CDε2γ−2

) j∑
i=1

E
[
‖∇[X i −X i−1]‖2

]
+
(
k − k2

2ε3

) j∑
i=1

E
[
‖∇wi‖2

]
≤ E

[ε
2
‖∇X0‖2 +

1

4ε
‖f(X0)‖2

]
+ CT

(
ε4γ−1k + ε2γ−1 + ε2γ−3

)
+ C(1 + ε2γ−1)k

j−1∑
i=0

E
[
‖f(X i)‖2

]
.

(3.8)

On noting that ‖F (u)‖L1 = 1
4
‖f(u)‖2, assertion i) now follows with the help of the discrete

Gronwall lemma.
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ii) The second estimate can be shown along the lines of the �rst part of the proof by
applying maxj before taking the expectation in (3.8). The additional term that arises from
the terms A2, A4 in (3.5) can be rewritten by using the second equation in Scheme 3.1,

(3.9)

E
[

max
1≤i≤j

∣∣∣ i∑
`=1

{
εγ−1

(
f(X`−1), g

)
+ εγ+1

(
∇X`−1,∇g

)}
∆`W

∣∣∣]
= E

[
max
1≤i≤j

∣∣∣ i∑
`=1

εγ
(
w`−1, g

)
∆`W

∣∣∣] = E
[

max
1≤i≤j

∣∣∣ i∑
`=1

εγ
(
w`−1, g

)
∆`W

∣∣∣]
≤ E

[
max
1≤i≤j

∣∣∣ i∑
`=1

εγ
(
w`−1, g

)
∆`W

∣∣∣2]1/2

,

where the equality in the second line follows from the zero mean property of the noise.
The last sum in (3.9) is a discrete square-integrable martingale, and by the independence

properties of the summands, the Poincaré inequality and the energy estimate i) we have

E
[( i∑

`=1

εγ
(
w`−1, g

)
∆`W

)2]
= ε2γE

[
k

i∑
`=1

(
w`−1, g

)2
]

≤ CDε
2γE
[
k

i∑
`=1

∥∥∇w`−1‖2‖g‖2
L∞

]
≤ Cε2γ.

Therefore, (3.9) can be estimated using the discrete BDG-inequality (see Lemma 3.3) and
part i) by

≤ Cεγ‖g‖L∞E
[
k

J∑
`=1

∥∥w`−1‖2
]1/2

≤ CεγE
[ J∑
`=1

k
∥∥∇w`−1‖2

]1/2

≤ Cεγ .

iii)We show assertion iii) for p = 21. By collecting the terms appearing on the right-hand
side in part (3.4) we deduce

E(Xj)− E(Xj−1) +
ε

4
‖∇[Xj −Xj−1]‖2 +

1

4ε
‖f(Xj)− f(Xj−1)‖2 +

k

2
‖∇wj‖2

≤ C
(
εE(Xj−1) + 1

)
|∆jW |2 + Cε4γ−1|∆jW |4 + Cε2γ+1|∆jW |2(3.10)

+εγ+1(∇Xj−1,∇g)∆jW + εγ−1
(
f(Xj−1), g

)
∆jW .
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Multiply this inequality with E(Xj) and use the identity (a − b)a = 1
2
[a2 − b2 + (a − b)2],

Young's inequality, and the generalized Hölder's inequality to conclude

1

2

[
|E(Xj)|2 − |E(Xj−1)|2 + |E(Xj)− E(Xj−1)|2

]
+
ε

4
‖∇[Xj −Xj−1]‖2E(Xj)

≤ C
(
ε|E(Xj−1)|2 + 1

)
|∆jW |2 + C

(
E(Xj−1)ε4γ−1 + ε2

)
|∆jW |4

+Cε2(4γ−1)|∆jW |8 + Cε2γ+1E(Xj−1)|∆jW |2(3.11)

+Cε2(2γ+1)|∆jW |4 +
1

4

∣∣E(Xj)− E(Xj−1)
∣∣2

+
[
εγ+1(∇Xj−1,∇g)∆jW + εγ−1

(
f(Xj−1), g

)
∆jW

]
E(Xj−1)

+C max
{
‖∇g‖2, ‖g‖2

L∞
}[
ε2(γ+1)‖∇Xj−1‖2 + ε2(γ−1)‖f(Xj−1)‖2‖Xj−1‖2

]
|∆jW |2 .

By Poincaré's inequality, the last term may be bounded by

≤ Cε2(γ−1)
[
ε2E
(
Xj−1

)
+
∣∣E(Xj−1)

∣∣2]|∆jW |2 .

After summing-up in (3.11) and taking expectations we get for any j ≤ J that

(3.12)

1

2
E
[
E(Xj)2

]
+

1

4

j∑
i=1

E
[∣∣E(X i)− E(X i−1)

∣∣2]
≤ 1

2
E
[
E(X0)2

]
+ Ctj + Cε2γk

j−1∑
i=0

E
[
E(X i)] + Cε2γ−1k

j−1∑
i=0

E
[
E(X i)2

]
,

where the third term is bounded via (3.8) in part ii), and the statement then follows from
the discrete Gronwall inequality.
For p = 2r, r = 2, we may now argue correspondingly: we start with (3.11), which we now

multiply with |E(Xj)|2. Assertion iii) now follows via induction with respect to r.

iv) The last estimate follows analogously to ii) from the BDG-inequality and iii). �

The error analysis of the implicit Scheme 3.1 in the subsequent Section 3.1 involves the
use of a stopping index Jε, and an associated random variable 1{j≤Jε} that is measurable
w.r.t. the σ-algebra Ftj , but not w.r.t. Ftj−1

. This issue prohibits the use of the standard
BDG-inequality since 1{j≤Jε} is not independent of the Wiener increment ∆jW . The fol-
lowing lemma contains a discrete BDG-inequality which will be used in Section 3.1. We
take {Ftj}Jj=0 to be a discrete �ltration associated with the time mesh {tj}Jj=0 ⊂ [0, T ] on
(Ω,F ,P).

Lemma 3.3. For every j = 1, . . . , J , let Fj be an Ftj -measurable random variable, and

∆jW be independent of Fj−1. Assume that the {Ftj}j-martingale Gj :=
∑j

j=1 Fj−1∆jW

(1 ≤ j ≤ J), with G0 = 0 be square-integrable. Then for any stopping index τ : Ω→ N0 such
12



that 1{j≤τ} is Ftj -measurable, it holds that

E
[

max
j=1,...,τ∧J

∣∣ j∑
j=1

Fj−1∆jW
∣∣2] ≤ 4E

[ (τ+1)∧J∑
j=1

kF 2
j−1

]
,

where τ ∧ J = min{τ, J}.

Proof. We start by noting that

(τ+1)∧j∑
j=1

Fj−1∆jW =
j∑

j=1

1{j−1≤τ}Fj−1∆jW (1 ≤ j ≤ J) .

With this identity, we obtain

E
[

max
j=1,...,τ∧J

∣∣ j∑
j=1

Ff−1∆fW
∣∣2] ≤ E

[
max

j=1,...,(τ+1)∧J

∣∣ j∑
j=1

Fj−1∆iW
∣∣2](3.13)

= E
[

max
j=1,...,J

∣∣ j∑
j=1

1{j−1≤τ}Fj−1∆jW
∣∣2] .

The random variable 1{j−1≤τ} is Ftj−1
-measurable, therefore, Gj :=

∑j
j=1 1{j−1≤τ}Fj−1∆jW

is also a discrete square-integrable martingale. Hence, by the L2-maximum martingale in-
equality, using the independence of 1{j≤τ}Fj and ∆jW for j < j it follows that

E
[

max
j=1,...,J

∣∣ j∑
j=1

1{j−1≤τ}Fj−1∆jW
∣∣2] ≤ 4E

[∣∣ J∑
j=1

1{j−1≤τ}Fj−1∆jW
∣∣2]

≤ 4E
[ J∑
j=1

(1{j−1≤τ}Fj−1)2|∆jW |2
]

+ 8
J∑

i,j=1;i<j

E
[
1{i−1≤τ}Fi−11{j−1≤τ}Fj−1∆iW

]
E
[
∆jW

]
= 4

J∑
j=1

E
[
(1{j−1≤τ}Fj−1)2

]
E
[
|∆jW |2

]
= 4E

[ (τ+1)∧J∑
j=1

F 2
j−1k

]
.(3.14)

The assertion of the lemma then follows from (3.13) and (3.14). �

3.1. Error analysis. Denote Zj := Xj−Xj
CH, use Scheme 3.1 for a �xed ω ∈ Ω, and choose

ϕ = −∆−1Zj(ω), ψ = Zj(ω). We obtain P-a.s.
1

2

(
‖∆−1/2Zj‖2 − ‖∆−1/2Zj−1‖2 + ‖∆−1/2[Zj − Zj−1]‖2

)
+ kε‖∇Zj‖2

+
k

ε

(
f(Xj)− f(Xj

CH), Z
j
)

= εγ(∆−1/2g,∆−1/2Zj)∆jW .

(3.15)

We use Lemma 3.1, v) to obtain a �rst error bound.
13



Lemma 3.4. Assume γ > 3
2
, ‖uε0‖H3 ≤ Cε−pCH for ε ∈ (0, ε0), and let k ≤ CεlCH with lCH ≥ 3

from Lemma 3.1 be su�ciently small. There exists C > 0, such that P-a.s. and for all
1 ≤ j ≤ J ,

max
1≤j≤j

‖∆−1/2Zj‖2 + ε4k
j∑

j=1

‖∇Zj‖2

≤ Ck

ε

j∑
j=1

‖Zj‖3
L3 + Cεγ max

1≤j≤j
|

j∑
i=1

(∆−1g, Zi−1)∆jW |+ Cε2γ

j∑
j=1

|∆jW |2 .

Proof. 1. Consider the last term on the left-hand side of (3.15). By a property of f , see [1,
(GA1), item 3)], and Lemma 3.1, iii), we get for some C > 0,(

f(Xj)− f(Xj
CH), Z

j
)

=
(
f(Xj

CH)− f(Xj), Xj
CH −Xj

)
≥
(
f ′(Xj

CH)[X
j
CH −Xj], Xj

CH −Xj
)
− 3
(
Xj

CH|X
j
CH −Xj|2, Xj

CH −Xj
)

≥ (1− ε3)
(
f ′(Xj

CH)Z
j, Zj

)
− C‖Zj‖3

L3 + ε3
(
f ′(Xj

CH)Z
j, Zj

)
.

2. In order to later keep a portion of ‖∇Zj‖2 on the left-hand side of (3.15) we use the
identity

(3.16)

ε‖∇Zj‖2 +
(1− ε3)

ε

(
f ′(Xj

CH)Z
j, Zj

)
= (1− ε3)

(
ε‖∇Zj‖2 +

(1− ε3)

ε

(
f ′(Xj

CH)Z
j, Zj

))
+ε3

(
ε‖∇Zj‖2 +

(1− ε3)

ε

(
f ′(Xj

CH)Z
j, Zj

))
.

We apply Lemma 3.1, v) to get a lower bound for the �rst term on the right-hand side,

≥ −(C0 + 1)‖∆−1/2Zj‖2
L2 .

On noting ε < 1, we estimate the remaining nonlinearities in (3.16) using Lemma 3.1, iii),

ε2
(
f ′(Xj

CH)Z
j, Zj

)
≤ Cε2‖∇Zj‖‖∆−1/2Zj‖ ≤ ε4

4
‖∇Zj‖2 + C‖∆−1/2Zj‖2.

3. We insert the estimates from the steps 1. and 2. into (3.15), and use the bound

(3.17) εγ(∆−1g, Zj − Zj−1)∆jW ≤
1

4
‖∆−1/2[Zj − Zj−1]‖2 + ε2γ|∆jW |2‖∆−1/2g‖2

to validate

1

2

(
‖∆−1/2Zj‖2 − ‖∆−1/2Zj−1‖2 +

1

2
‖∆−1/2[Zj − Zj−1]‖2 +

ε4

4
k‖∇Zj‖2

)
≤ Ck‖∆−1/2Zj‖2 +

Ck

ε
‖Zj‖3

L3 + εγ(∆−1/2g,∆−1/2Zj−1)∆jW + Cε2γ|∆jW |2 .
14



4. We sum the last inequality from j = 1 up to j = j, and consider maxj≤j. On noting
Z0 = 0, we obtain P-a.s.

Aj ≤ CRj + Ck

j∑
i=1

Ai (1 ≤ j ≤ J) ,

where

Aj =
1

2
max
1≤j≤j

‖∆−1/2Zj‖2+
1

2

j∑
i=1

‖∆−1/2[Zj − Zj−1]‖2 + ε4k
j∑

i=1

‖∇Zi‖2 ,

Rj =
k

ε

j∑
j=1

‖Zj‖3
L3 + εγ max

1≤j≤j
|

j∑
i=1

(∆−1g, Zi−1)∆jW |+ ε2γ

j∑
i=1

|∆iW |2 .
(3.18)

Hence, the implicit version of the discrete Gronwall lemma implies for k ≤ k0(D) that P-a.s.

(3.19) Aj ≤ CRj ∀ j ≤ J ,

which concludes the proof. �

In the deterministic setting (g ≡ 0), an induction argument, along with an interpolation
estimate for the L3-norm is used to estimate the cubic error term on the right-hand side of
(3.16); cf. [16]. In the stochastic setting, this induction argument is not applicable any more,
which is why we separately bound errors in (3.16) on two subsets Ω2 and Ω \ Ω2. In the
�rst step, we study accumulated errors on Ω2 locally in time, and therefore mimic a related
(time-continuous) argument in [3]. We introduce the stopping index 1 ≤ Jε ≤ J

Jε := inf
{

1 ≤ j ≤ J :
k

ε

j∑
i=1

‖Zi‖3
L3 > εσ0

}
,

where the constant σ0 > 0 will be speci�ed later. The purpose of the stopping index is
to identify those ω ∈ Ω where the cubic error term is small enough. In the sequel, we
estimate the terms on the right-hand side of (3.16), putting j = Jε. Clearly, the part
k
ε

∑Jε−1
i=1 ‖Zi‖3

L3 of RJε in (3.18) is bounded by εσ0 ; the remaining part will be denoted by

R̃Jε := RJε − k
ε

∑Jε−1
i=1 ‖Zi‖3

L3 , i.e.,

R̃Jε = εγ max
1≤j≤Jε

∣∣ j∑
i=1

(
∆−1g, Zi−1

)
∆iW

∣∣+ ε2γ

Jε∑
j=1

|∆Wj|2 +
k

ε
‖ZJε‖3

L3 .

For 0 < κ0 < σ0, we gather those ω ∈ Ω in the subset

Ω2 :=
{
ω ∈ Ω : R̃Jε(ω) ≤ εκ0

}
where the error terms in Lemma 3.4 which cannot be controlled by the stopping index Jε
do not exceed the larger error threshold εκ0 . The following lemma quanti�es the possible
error accumulation in time on Ω2 up to the stopping index Jε in terms of σ0, κ0 > 0, and
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illustrates the role of k in this matter; it further provides a lower bound for the measure of
Ω2 correspondingly.

Lemma 3.5. Assume γ > 3
2
, ‖uε0‖H3 ≤ Cε−pCH for ε ∈ (0, ε0), and let k ≤ CεlCH with lCH ≥ 3

from Lemma 3.1 be su�ciently small. Then, there exists C > 0 such that

i) max
1≤i≤Jε

‖∆−1/2Zi‖2 + ε4k

Jε∑
i=1

‖∇Zi‖2 ≤ Cεκ0 on Ω2 ,

ii) E
[
1Ω2

(
max

1≤i≤Jε
‖∆−1/2Zi‖2 +

ε4

2
k

Jε∑
i=1

‖∇Zi‖2
)]
≤ C max

{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
.

Moreover, P[Ω2] ≥ 1− C
εκ0

max
{
k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
.

The proof uses the discrete BDG-inequality (Lemma 3.3), which is suitable for the implicit
Scheme 3.1; we use the higher-moment estimates from Lemma 3.2, iii) to bound the last term

in R̃Jε .

Proof. 1. Estimate i) follows directly from Lemma 3.4, using the de�nitions of Jε and Ω2.

2. Let Ωc
2 := Ω \Ω2. We use Markov's inequality to estimate P[Ωc

2] ≤ 1
εκ0

E[R̃Jε ]. We �rst

estimate the last term in R̃Jε : interpolation of L3 between L2 and H1, then of L2 between
H−1 and H1 yields (D ⊂ R2)

(3.20)
k

ε
‖ZJε‖3

L3 ≤
Ck

ε
‖ZJε‖H−1‖∇ZJε‖2

L2 ≤
1

8
‖∆−1/2ZJε‖2

L2 +
Ck2

ε2
‖∇ZJε‖4

L2 .

The leading term on the right-hand side is absorbed on the left-hand side of the inequality
in Lemma 3.4, which is considered on the whole of Ω; the expectation of the last term (on

the whole of Ω) is bounded via Lemma 3.2, iv) by Ck2

ε4

(
|E(uε0)|2 + 1

)
.

For the �rst term in R̃Jε we use the discrete BDG-inequality (Lemma 3.3) to bound its
expectation by

CεγE
[ Jε+1∑
i=1

k
(
∆−1g, Zi−1

)2
] 1

2
.

In order to bene�t from the de�nition of Jε for its estimate, we split the leading summand,

= CεγE
[ Jε∑
i=1

k|
(
∆−1g, Zi−1

)
|2
] 1

2
+ C
√
kεγE

[
|(∆−1g, ZJε)|2

] 1
2

≤ CεγE
[
k
(Jε−1∑
i=1

‖Zi‖3
L3

) 2
3
(∑
i≤J

13
) 1

3

] 1
2 ≤ Cεγ+

σ0+1
3 + C

√
kεγE

[
‖∆−1/2ZJε‖2

L2

] 1
2

≤ Cεγ+
σ0+1

3 + Ckε2γ +
1

8
E
[
‖∆−1/2ZJε‖2

L2

]
.
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Putting things together leads to E[1
2
AJε ] ≤ C

(
εσ0 + εγ+

σ0+1
3 + ε2γ + k2

ε4

)
. Revisiting (3.20)

again then yields from Lemma 3.4

E[R̃Jε ] ≤ C max
{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
.

3. Consider the inequality in Lemma 3.4 on Ω2. Estimate ii) follows along the lines of step
1.

�
The previous lemma establishes local error bounds for iterates of Scheme 3.1 � by using the

stopping index Jε, and the subset Ω2 ⊂ Ω; the following lemma identi�es values (γ, σ0, κ0)
such that Lemma 3.5 remains valid globally in time on Ω2.

Lemma 3.6. Let the assumptions in Lemma 3.5 be valid. Assume

σ0 > 10 , κ0 >
2

3
(σ0 + 5) .

There exists ε0 ≡ ε0(σ0, κ0), such that for every ε ∈ (0, ε0)

Jε(ω) = J ∀ω ∈ Ω2 .

Moreover, limε↓0 P[Ω2] = 1 if

γ > max{19

3
,
κ0

2
} , k2 ≤ Cε4+κ0+β ,

where β > 0 may be arbitrarily small.

Compared to assumption (A), the less restrictive lower bound for γ is due to the use of
the discrete spectral estimate (see Lemma 3.1, v)), which introduces a factor ε−4 that is

absorbed into ε
3
2
κ0 in the proof below. Consequently we only need to require γ > 19

3
in order

to ensure positive probability of Ω2.

Proof. 1. Assume that Jε < J on Ω2; we want to verify that

k

ε

Jε∑
i=1

‖Zi‖3
L3 ≤ εσ0 on Ω2 .

Use (3.20), and the estimate in Lemma 3.5 to conclude

k

ε

Jε∑
i=1

‖Zi‖3
L3 ≤

C

ε
max

1≤i≤Jε
‖∆−1/2Zi‖L2

( Jε∑
i=1

k‖∇Zi‖2
)
≤ Cε−1+

κ0
2

+(κ0−4) .

The right-hand side is below εσ0 for 3κ0

2
> σ0 + 5. To establish the requirement κ0 < σ0

implies σ0 > 10.
2. The last part in Lemma 3.5 yields γ + σ0+1

3
− κ0 > 0 to ensure P[Ω2] > 0. By step 1.,

κ0 >
2
3
(σ0 + 5), which implies γ > 19

3
. The remaining requirements are immediate. �

Next, we bound max1≤i≤J ‖∆−1/2Zi‖2 + ε4

2
k
∑J

i=1 ‖∇Zi‖2 on the whole sample set. We
collect the requirements on the analytical and numerical parameters:

17



(B) Let uε0 ∈ H3. Assume that (σ0, κ0, γ) satisfy

σ0 > 10 , σ0 > κ0 >
2

3
(σ0 + 5) , γ > max{19

3
,
κ0

2
} .

For su�ciently small ε0 ≡ (σ0, κ0) > 0 and lCH ≥ 3 from Lemma 3.1, and arbitrary
0 < β < 1

2
, the time-step satis�es

k ≤ C min
{
εlCH , ε2+

κ0
2

+β
}

∀ ε ∈ (0, ε0) .

We note that, except for the higher regularity of the initial condition, the assumption (B)
is less restrictive than the assumption (A) from Section 2.

Lemma 3.7. Suppose (B). Then there exists C > 0 such that

E
[

max
1≤j≤J

‖Zj‖2
H−1 + ε4k

J∑
i=1

‖∇Zi‖2
]
≤
( C
εκ0

max
{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
2
.

Proof. Recall the notation from (3.18), and split AJ = 1Ω2AJ + 1Ωc2
AJ in (3.5). We use

Lemmata 3.5, ii), and 3.6 to bound E[1Ω2AJ ]. In order to bound E[1Ωc2
AJ ], we use higher-

moment estimates from Lemma 3.2 for iterates of Scheme 3.1, as well as the lower estimate
for P[Ω2] in Lemma 3.5,

E[1Ωc2
AJ ] ≤

(
P[Ωc

2]
)1/2(E[A2

J ]
)1/2 ≤

( C
εκ0

max
{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
2 (E(uε0) + 1

)
.

�
The dominating error contribution in Lemma 3.7 comes from the term E[1Ωc2

AJ ]. This is
in contrast to Section 2 where the error contribution from the set Ωc

1 can be made arbitrarily
small, due to the additional parameter ` > 0 in Lemma 2.2 which can be chosen arbitrarily
large independently of the other parameters.
We are now ready to prove the �rst main result of this paper.

Theorem 3.8. Let uε0 ∈ H3, let u be the strong solution of (1.1), and let {Xj, j = 1, . . . , J}
solve Scheme 3.1. Suppose (A). Then there exists a constant C > 0 such that for all 0<β < 1

2

E
[

max
1≤j≤J

‖u(tj)−Xj‖2
H−1

]
≤ C max

{
ε

2
3
σ0 ,
(
ε−κ0 max

{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
2
,
k2−β

εmCH

}
.

Due to condition (A)2 it holds that σ0−κ0 <
1
3
σ0. Consequently the contribution ε

2
3
σ0 in

the error estimate is dominated by ε
σ0−κ0

2 ; it is only stated explicitly to highlight the error
contribution from the di�erence u− uCH from Section 2.
Proof. We estimate the error via splitting it into three contributions,

max
1≤j≤J

‖u(tj)−uCH(tj)‖2
H−1 + max

1≤j≤J
‖uCH(tj)−Xj

CH‖2
H−1 + max

1≤j≤J
‖Xj

CH−Xj‖2
H−1 =: I + II + III .

18



Lemma 2.3 bounds E[I], Lemma 3.1, iv) yields E[II] ≤ k2−β

εmCH
, and E[III] is bounded in

Lemma 3.7. �

Remark 3.9. An alternative approach to Theorem 3.8 would be to follow the arguments in
[22] for a related problem, which exploit a weak monotonicity property of the drift operator
in (1.1), and stability of the discretization to obtain a strong error estimate for Scheme 3.1
of the form

(3.21) E
[

max
1≤j≤J

‖u(tj)−Xj‖2
H−1

]
≤ Cβ exp

(T
ε

)
k1−β (β > 0) .

While the error tends to zero for k ↓ 0 in (3.21), this estimate is only of limited practical
relevancy in the asymptotic regime where ε is small, since only prohibitively small step sizes
k � exp(−1

ε
) are required in (3.21) to guarantee small approximation errors for iterates from

Scheme 3.1. Moreover, the error analysis that leads to (3.21) does not provide any insight on
how to numerically resolve di�use interfaces via proper balancing of discretization parameter
k and interface width ε � which is relevant in the asymptotic regime where ε� 1.

4. Space-time Discretization of (1.1)

We generalize the convergence results in Section 3 for Scheme 3.1 to its space-time dis-
cretization. For this purpose, we introduce some further notations: let Th be a quasi-uniform
triangulation of D, and Vh ⊂ H1 be the �nite element space of piecewise a�ne, globally con-
tinuous functions,

Vh :=
{
vh ∈ C(D); vh

∣∣
K
∈ P1(K) ∀K ∈ Th

}
,

and V̊h :=
{
vh ∈ Vh : (vh, 1) = 0

}
. We recall the L2-projection PL2 : L2 → Vh, via(

PL2v − v, ηh
)

= 0 ∀ ηh ∈ Vh ,

and the Riesz projection PH1 : H1 ∩ L2
0 → V̊h, via(

∇[PH1v − v],∇ηh
)

= 0 ∀ ηh ∈ Vh .

In what follows, we allow meshes Th for which PL2 is H1-stable; see [10]. Also, we de�ne the

inverse discrete Laplacian −∆−1
h : L2

0 → V̊h via(
∇(−∆−1

h v),∇ηh
)

= (v, ηh) ∀ ηh ∈ Vh .

We are ready to present the space discretization of Scheme 3.1.

Scheme 4.1. For every 1 ≤ j ≤ J , �nd a [Vh]
2-valued r.v. (Xj

h, w
j
h) such that P-a.s.

(Xj
h −X

j−1
h , ϕh) + k(∇wjh,∇ϕh) = εγ

(
g, ϕh

)
∆jW ∀ϕh ∈ Vh ,

ε(∇Xj
h,∇ψh) +

1

ε

(
f(Xj

h), ψh
)

= (wjh, ψh) ∀ψh ∈ Vh ,

X0
h = PL2uε0 ∈ V̊h .

19



For all 1 ≤ j ≤ J , the solution {(Xj
h, w

j
h)}1≤j≤J satis�es (Xj

h, 1) = 0 P-a.s.

Claim 1. {(Xj
h, w

j
h)}1≤j≤J inherits all stability bounds in Lemma 3.2.

Proof. i') In order to verify the corresponding version of i) for {E(Xj
h)}1≤j≤J , we may choose

ϕh = wjh(ω) and ψh = [Xj
h − X

j−1
h ](ω) in Scheme 4.1, as in part i) of the proof of Lemma

3.2. We then obtain a corresponding version of (3.1), and (3.2).
The next argument in the proof of Lemma 3.2 that leads to (3.3) may again be reproduced

for Scheme 4.1 by choosing ϕh = ∆−1
h [Xj

h − X
j−1
h ](ω), and using the de�nition of ∆−1

h , as

well as Xj
h, PL2g ∈ L2

0 P-a.s., such that

‖∇∆−1
h [Xj

h −X
j−1
h ]‖2 ≤

(
k‖∇wjh‖+ εγ‖∇∆−1

h PL2g‖|∆jW |
)
‖∇∆−1

h [Xj
h −X

j−1
h ]‖ ,

since ‖∇∆−1
h PL2g‖ ≤ ‖g‖ ≤ C.

To obtain the �rst identity in (3.5) for Scheme 4.1, we use εγ(g, wjh)∆jW = εγ
(
PL2g, wjh

)
∆jW ,

such that the second equation in Scheme 4.1 with ψh = PL2g may be applied; as a conse-
quence, g has to be replaced by PL2g in the rest of equality (3.5). This modi�cation leads
to the term ‖∇PL2g‖ in (3.6), which is again bounded by ‖∇g‖; the bound ‖PL2g‖L∞ ≤ C,
which is required to bound the term A3,1 from (3.7), follows by an approximation result;

cf. [7, Chapter 7]. The above steps then yield the estimate (3.8) for {(Xj
h, w

j
h)}1≤j≤J .

ii'), iii'), iv') We can follow the argumentation in the proof of Lemma 3.2 without change.

Claim 2. Lemma 3.4 holds for {(Xj
h, w

j
h)}1≤j≤J , i.e.: Z

j
h := Xj

h −X
j
CH;h satis�es P-a.s.

max
1≤j≤j

‖∇∆−1
h Zj

h‖
2 + cεk

j∑
i=1

‖∇Zi
h‖2

≤ Ck

ε

j∑
i=1

‖Zi
h‖3

L3 + Cεγ max
1≤j≤j

|
j∑
i=1

(∆−1
h PL2g, Zi−1

h )∆jW |+ Cε2γ

j∑
i=1

|∆iW |2 ,

for all j ≤ J , provided that additionally

(4.1) k ≤ C min{εpCH , hq̃CH} , h ≤ C min{1, kβ}εp̃CH

for any β > 0, and numbers pCH, q̃CH, p̃CH > 0 from [16, Corollary 2] and [17, Theorem 3.2].
Requirement (4.1)2 comes from [16, Corollary 2, assumption 4)]; see also [17, Theorem

3.1, assumption 3)] accordingly. Since β > 0 may be chosen arbitrarily small, it does not
severely restrict admissible h > 0.

Proof. Again, we here denote by {(Xj
CH;h, w

j
CH;h)}1≤j≤J ⊂ [Vh]

2 the solution of Scheme 4.1
for g ≡ 0, whose stability and convergence properties are studied in [16, 17]. Under the
assumption (4.1), [17, Theorem 3.2, (iii)] provides the bound

max
0≤j≤J

‖Xj
CH;h‖L∞ ≤ C .
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We use this bound to adapt estimate (3.1) to the present setting,(
f(Xj

h)− f(Xj
CH;h), Z

j
)
≥
(
f ′(Xj

CH;h)Z
j
h, Z

j
h

)
+ 3
(
Xj

CH;h|Z
j
h|

2, Zj
h

)
≥ [1− ε3]

(
f ′(Xj

CH;h)Z
j
h, Z

j
h

)
− C‖Zj

h‖
3
L3 + ε3

(
f ′(Xj

CH;h)Z
j
h, Z

j
h

)
.

Step 2. of the proof of Lemma 3.4 involves the discrete spectral estimate (see Lemma 3.1,
iv)) for {Xj

CH}j to handle the leading term on the right-hand side of (3.1) � which we do

not have for {Xj
CH;h}j in the present setting. Therefore, we perturb the leading term on the

right-hand side of the last inequality, and use the L∞-bounds for Xj
CH, X

j
CH;h, as well as the

mean-value theorem to conclude(
f ′(Xj

CH;h)Z
j
h, Z

j
h

)
=
(
f ′(Xj

CH)Z
j
h, Z

j
h

)
+
([
f ′(Xj

CH;h)− f
′(Xj

CH)
]
Zj
h, Z

j
h

))
≥
(
f ′(Xj

CH)Z
j
h, Z

j
h

)
− C‖Zj

h‖
3
L3 .

The remaining steps in the proof of Lemma 3.4 now follow with only minor adjustments.

Claim 3. Additionally assume (4.1). Then Lemma 3.5 holds for {Zj
h}j, i.e.,

i) max
1≤i≤Jε

‖∇∆−1
h Zi‖2 + ε4k

Jε∑
i=1

‖∇Zi
h‖2 ≤ Cεκ0 on Ω2,h ,

ii) E
[
1Ω2,h

(
max

1≤i≤Jε
‖∇∆−1

h Zi
h‖2 +

ε4

2
k

Jε∑
i=1

‖∇Zi
h‖2
)]
≤ C max

{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
.

Moreover, P[Ω2] ≥ 1 − C
εκ0

max
{
k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
, where Ω2;h :=

{
ω ∈ Ω; R̃Jε;h;h(ω) ≤

εκ0
}
, for Jε,h := inf

{
1 ≤ j ≤ J : k

ε

∑j
i=1 ‖Zi

h‖3
L3 > εσ0

}
, and

R̃Jε,h;h := εγ max
1≤j≤Jε,h

∣∣ j∑
i=1

(
∆−1
h PL2g, Zi−1

h

)
∆iW

∣∣+ ε2γ

Jε,h∑
j=1

|∆Wj|2 +
k

ε
‖ZJε,h

h ‖3
L3 .

Proof. The proof for Lemma 3.5 directly transfers to the present setting.

Claim 4. Lemma 3.6 remains valid for {Zj
h}h accordingly, provided that h ≤ Cεp̃CH and

k ≤ Chq̃CH , i.e.: Jε;h = J for all ω ∈ Ω2;h.

Proof. We only need to adapt the interpolation argument for L3 to the present setting,
starting with the estimate ‖Zi

h‖3
L3 ≤ C‖Zi

h‖H−1‖∇Zi
h‖2. By the de�nition of the H−1-norm,

the de�nition and H1-stability of the L2-projection, and again the fact that (Zi
h, 1) = 0, we

deduce

‖Zi
h‖H−1 = sup

ψ∈H1

(Zi
h, PL2ψ)

‖ψ‖H1

≤ C sup
ψ∈H1

(Zi
h, PL2ψ)

‖∇PL2ψ‖L2

≤ C sup
ψ∈H1

(∇(∆−1
h Zi

h),∇PL2ψ)

‖∇PL2ψ‖L2

≤ C‖∇∆−1
h Zi

h‖ .
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We are now ready to extend Theorem 3.8 to Scheme 4.1.

Theorem 4.1. Suppose uε0 ∈ H3. Let u be the strong solution of (1.1), and
{
Xj
h; 1 ≤ j ≤ J

}
the solution of Scheme 4.1. Assume (A) and (4.1). Then there exists C > 0 such that

E
[

max
1≤j≤J

‖u(tj)−Xj‖2
H−1

]
≤ C max

{(
ε−κ0 max

{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
2
,
k2−β

εmCH
+

h4

εm̃CH

}
,

where mCH, m̃CH > 0 are given in [16, Corollary 2].

Proof. We split the error into three contributions,

E
[

max
1≤j≤J

‖u(tj)−Xj
h‖

2
H−1

]
≤ 3E

[
max

1≤j≤J
‖u(tj)− uCH(tj)‖2

H−1

]
+3 max

1≤j≤J
‖uCH(tj)−Xj

CH;h‖
2
H−1 + 3E

[
max

1≤j≤J
‖Xj

h −X
j
CH;h‖

2
H−1

]
.

The �rst term is bounded by Cε
2
3
σ0 as in Theorem 3.8. The second term is bounded by

C
(
k2−β

εmCH
+ h4

εm̃CH

)
thanks to [16, Corollary 2] provided assumption (4.1) holds. The last term

is bounded by
(

C
εκ0

max
{
k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
2
, due to the Claims 1 to 4 above. �

5. Sharp-interface limit

In this section, we show the convergence of iterates {Xj}Jj=1 of Scheme 3.1 to the solution
of a sharp interface problem. Recall that in the absence of noise, the sharp interface limit
of (1.1) is given by the following deterministic Hele-Shaw/Mullins-Sekerka problem: Find
vMS : [0, T ] × D → R and the interface

{
ΓMS
t ; 0 ≤ t ≤ T

}
such that for all t ∈ (0, T ] the

following conditions hold:

−∆vMS = 0 in D \ ΓMS
t ,(5.1a)

[∂nΓ
vMS]ΓMS

t
= −2V on ΓMS

t ,(5.1b)

vMS = ακ on ΓMS
t ,(5.1c)

∂nvMS = 0 on ∂D ,(5.1d)

ΓMS
0 = Γ00 ,(5.1e)

where κ is the curvature of the evolving interface ΓMS
t , and V is the velocity in the direction

of its normal nΓ, as well as [∂vMS
∂nΓ

]ΓMS
t

(z) = (∂vMS,+
∂nΓ
− ∂vMS,−

∂nΓ
)(z) for all z ∈ ΓMS

t . The constant in

(5.1c) is chosen as α = 1
2
cF , where cF =

∫ 1

−1

√
2F (s) ds = 1

3
2

3
2 , and F is the double-well

potential; cf. [1] for a further discussion of the model.
Below, we show that iterates {Xj}Jj=1 of Scheme 3.1 converge to the limiting Mullins-

Sekerka problem (5.1); see Theorem 5.7 for a precise speci�cation of the convergence result.
For this purpose, we need sharper stability and convergence results than those available from
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Section 3, which also requires to tighten the assumptions (B), and so to further restrict
admissible choices of γ > 0.

Lemma 5.1. Assume (B). For every p > 2, there exists C ≡ C(p) > 0 such that the solution
{Xj}Jj=1 of Scheme 3.1 satis�es

E
[

max
1≤j≤J

‖Xj‖pL∞
]
≤ Cε

3−2p
2p k

2−p
2p (p > 2) .

Proof. 1. The second equation in Scheme 3.12 implies
√
k‖∆Xj‖ ≤ 2

√
k
ε
‖wj‖+2

√
k
ε2
‖f(Xj)‖.

Then Lemma 3.2, i), and Gagliardo-Nirenberg and Poincaré inequalities imply

E
[

max
1≤j≤J

√
k‖∆Xj‖

]
≤ C

ε
E
[(
k

J∑
j=1

‖∇wj‖2
)1/2]

+
2
√
k

ε2
E
[

max
1≤j≤J

(
‖Xj‖3

L6 + ‖Xj‖L2

)]
≤ C

ε
+

√
k

ε2
E
[

max
1≤j≤J

‖Xj‖2
L4‖∇Xj‖L2

]
(5.2)

≤ C

ε
+
C
√
k

ε2
E
[

max
1≤j≤J

‖Xj‖4
L4

]1/2

E
[

max
1≤j≤J

‖∇Xj‖2
L2

]1/2

,

which is bounded by Cε−1 for k ≤ ε4.
2. SinceW1,p ↪→ L∞ (p > 2), by Gagliardo-Nirenberg and Hölder inequalities, Lemma 3.2,

i), and step 1.,

E
[

max
1≤j≤J

‖Xj‖pL∞
]
≤ C

(
E
[

max
1≤j≤J

‖∇Xj‖L2

]) 1
p
(
E
[

max
1≤j≤J

‖∆Xj‖
p−2
p−1

L2

]) p−1
p

≤ Cε−
1
2pk−

p−2
2p

(√
kE
[

max
1≤j≤J

‖∆Xj‖L2

]) p−2
p ≤ Cε−

1
2pk−

p−2
2p ε−

p−2
p .

�
The following lemma sharpens the statement of Lemma 3.4 for iterates {Zj}Jj=1, where

Zj := Xj −Xj
CH. It involves the parameter nCH > 0 from Lemma 3.1, ii).

Lemma 5.2. Suppose (B). There exists C > 0 such that

E
[

max
1≤j≤J

‖Zj‖2
L2

]
+

1

2
E
[ J∑
j=1

‖Zj − Zj−1‖2
L2 + εk

J∑
j=1

‖∆Zj‖2
L2

]

+
k

2ε

J∑
j=1

E
[
‖Zj∇Zj‖2

L2 + ‖Xj
CH∇Zj‖2

L2

]
≤ F1(k, ε;σ0, κ0, γ) :=

:= C max
{(max

{
k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
εκ0+10+4nCH

) 1
2
,
(max

{
k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}
εκ0+16

) 1
4
}
.
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In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the inequality
of the lemma, we need to impose a stronger assumptions than (B); for simplicity, we assume
nCH ≥ 3

2
in Lemma 3.1:

(C1) Assume (B), and that (σ0, κ0, γ) also satis�es

σ0 > 10 + κ0 + 4nCH , γ > max
{2κ0 + 19 + 8nCH

3
,
κ0 + 10 + 4nCH

2

}
.

For su�ciently small ε0 ≡ (σ0, κ0) > 0 and lCH ≥ 3 from Lemma 3.1, and arbitrary
0 < β < 1

2
the time-step satis�es

k ≤ C min
{
εlCH , ε7+

κ0
2

+2nCH+β
}

∀ ε ∈ (0, ε0) .

Compared to assumption (B), only larger values of σ0, and consequently larger values of γ
are admitted, as well as smaller time-steps k.

Proof. 1. We subtract Scheme 3.1 in strong form for g 6≡ 0 and g ≡ 0, respectively, �x
ω ∈ Ω, and multiply the resulting error equations with Zj(ω) and −∆Zj(ω), respectively.
We obtain

1

2

(
‖Zj‖2

L2 − ‖Zj−1‖2
L2 + ‖Zj − Zj−1‖2

L2

)
+ εk‖∆Zj‖2

L2

= −k
ε

(
f(Xj)− f(Xj

CH),−∆Zj
)

+ εγ
(
g,−∆Zj

)
∆jW =: I + II .(5.3)

We use ∂ng = 0 on ∂D for II and estimate as follows,

II = −εγ
(
∆g, Zj − Zj−1

)
∆jW − εγ

(
∆g, Zj−1

)
∆jW

≤ 1

4
‖Zj − Zj−1‖2

L2 + ε2γ‖∆g‖2
L2|∆jW |2 − εγ

(
∆g, Zj−1

)
∆jW .

We restate the nonlinear part of I as follows,

I +
k

ε
‖∇Zj‖2 =

k

ε

(
|Xj|2Xj ± |Xj

CH|2Xj − |Xj
CH|2X

j
CH,−∆Zj

)
=

k

ε

(
Zj[Zj + 2Xj

CH]X
j+|Xj

CH|2Zj,−∆Zj
)

=
k

ε

(
|Zj|2Zj,−∆Zj

)
+

3k

ε

(
|Zj|2Xj

CH,−∆Zj
)

+
3k

ε

(
|Xj

CH|2Zj,−∆Zj
)

=:
3k

ε
‖Zj∇Zj‖2

L2 + I1 + I2 .

Next, we apply integration by parts to all I1, I2 to estimate

I1 =
2k

ε

[
2
(
Zj∇ZjXj

CH,∇Zj
)

+
(
Zj∇Zj, Zj∇Xj

CH

)]
≥ −2k

ε

[
C‖Xj

CH‖L∞‖∇Zj‖L2 + ‖∇Xj
CH‖L4‖Zj‖L4

]
‖Zj∇Zj‖L2 ,

I2 ≥
3k

ε
‖Xj

CH∇Zj‖2
L2 −

6k

ε
‖Zj‖L4‖∇Xj

CH‖L4‖Xj
CH∇Zj‖L2 .
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Hence, using Poincaré and Sobolev inequalities, Lemma 3.1, ii), and assumption (B), we
deduce that

I ≥ k

2ε

[
‖Zj∇Zj‖2

L2 + ‖Xj
CH∇Zj‖2

L2

]
− Ck

ε1+2nCH
‖∇Zj‖2

L2 .

2. We insert these bounds into (5.3), sum up over all time-steps, take maxj≤J and expecta-
tions,

E
[

max
1≤j≤J

‖Zj‖2
L2

]
+ E

[ J∑
j=1

1

2
‖Zj − Zj−1‖2

L2 + εk
J∑
j=1

‖∆Zj‖2
L2

]

+
k

2ε

J∑
j=1

E
[
‖Zj∇Zj‖2

L2 + ‖Xj
CH∇Zj‖2

L2

]
(5.4)

≤ Ck

ε1+2nCH

J∑
j=1

E
[
‖∇Zj‖2

L2

]
− εγE

[
max

1≤j≤J

j∑
i=1

(
∇g,∇Zi−1

)
∆iW

]
+ Cε2γ .

We use the discrete BDG-inequality (Lemma 3.3) to estimate the last term as follows,

εγE
[(
∇g, max

1≤j≤J

j∑
i=1

∇Zi−1
)
∆iW

)]
≤ Cεγ‖∇g‖L∞E

[
k

J∑
j=1

‖∇Zj−1‖2
] 1

2
.

We now use Lemma 3.7 to bound the right-hand side of (5.4). �

A relevant goal in this section is to establish convergence of max1≤j≤J ‖Zj‖L∞ for ε ↓ 0;
it turns out that this can only be validated on large subsets of Ω, which motivates the
introduction of the following (family of) subsets: For every p > 2, we de�ne

(5.5) κ ≡ κp :=
[
ε

3−2p
2p k

2−p
2p ln

(
ε

3−2p
2p
)] 1

p
,

and the sequence of sets {Ωκ,j}Jj=1 ⊂ Ω via

(5.6) Ωκ,j =
{
ω ∈ Ω : max

1≤`≤j
‖X`‖L∞ ≤ κ

}
(κ > 0) .

Note that Ωκ,j ⊂ Ωκ,j−1. Markov's inequality yields that

(5.7) P
[
Ωκ,j

]
≥ 1− E[max1≤`≤j ‖X`‖pL∞ ]

κp
.

Clearly, lim
ε↓0

min
1≤j≤J

P[Ωκ,j] = 1 by Lemma 5.1. � We use Lemma 5.2 to show a local error

estimate.

Lemma 5.3. Assume (B) and p > 2. Then there exists C > 0 such that

E
[

max
0≤j≤J

1Ωκ,j‖∇Zj‖2
L2

]
≤ F2(k, ε;σ0, κ0, γ) :=

:= C max
{(1 + κ2)

ε2
F1

(
k, ε;σ0, κ0, γ

)
,
(1 + κ2)

ε7+2nCH

( 1

εκ0
max

{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
4
}
.

25



In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the inequality
of the lemma, we impose again a stronger assumptions than (C1):

(C2) Assume (C1), and that (σ0, κ0, γ), and k satisfy

(5.8) lim
ε↓0
F2(k, ε;σ0, κ0, γ) = 0 .

Remark 5.4. A strategy to identify admissible quadruples (σ0, κ0, γ, k) which meet assump-
tion (C2) is as follows:

(1) assumption (C1) establishes limε↓0F1(k, ε;σ0, κ0, γ) = 0, which appears as a factor
in the �rst term on the right-hand side in Lemma 5.3.

(2) the leading factor is κ2

ε2
≡ κ2

p

ε2
≤ ε

6−4p−4p2

2p2
∣∣ln(ε

3−2p
2p )
∣∣ 2
pk

4−2p

2p2 , for p > 2 via (5.5). To
meet (5.8) therefore additionally requires for some p > 2

(5.9) k
4−2p

2p2 F1(k, ε;σ0, κ0, γ)ε
6−4p−4p2

2p2
∣∣ln(ε

3−2p
2p )
∣∣ 2
p → 0 (ε ↓ 0) ,

and hence

(5.10)
[
F1(k, ε;σ0, κ0, γ)ε

6−4p−4p2

2p2
∣∣ln(ε

3−2p
2p )
∣∣ 2
p

] 2p2

2p−4
= o(k) .

A proper scenario is k = εα for some α > 0 to meet assumption (C1). We then
sharpen this choice of the time-step to k = εα̃ for some α̃ ≥ α > 0 to have

F1(k, ε;σ0, κ0, γ)ε
6−4p−4p2

2p2 ln
2
p
(
ε

3−2p
2p
)
≤ εη

for any η > 0. We now choose 2p2

2p−4
� 0 su�ciently large to meet (5.10).

(3) We may proceed analogously for the second term on the right-hand side in Lemma
5.3.

Proof. We subtract Scheme 3.1 for g 6≡ 0 and g ≡ 0 for a �xed ω ∈ Ω, and multiply the
�rst error equation with −∆Zj(ω), and the second with ∆2Zj(ω). We then obtain

1

2

(
‖∇Zj‖2

L2 − ‖∇Zj−1‖2
L2 + ‖∇[Zj − Zj−1]‖2

L2

)
+ εk‖∇∆Zj‖2

L2

=
k

ε

(
∇[f(Xj)− f(Xj

CH)],∇∆Zj
)

+ εγ
(
g,∆2Zj

)
∆jW =: I + II .(5.11)

We proceed as in the proof of Lemma 5.2 and rewrite the nonlinearity on the right-hand side
as

−I−k
ε
‖∆Zj‖2 =

k

ε

(
∇[|Zj|2Zj],∇∆Zj

)
+

3k

ε

(
∇[|Zj|2Xj

CH],∇∆Zj
)

+
3k

ε

(
∇[|Xj

CH|2Zj],∇∆Zj
)

=: I1 + I2 + I3 .
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We estimate

I1 ≤
Ck

ε3
‖Zj‖2

L∞‖Zj∇Zj‖2
L2 +

εk

8
‖∇∆Zj‖2

L2 ,

I2 ≤
Ck

ε3

(
‖Zj‖2

L∞‖X
j
CH‖2

L∞‖∇Zj‖2
L2 + ‖Zj‖2

L∞‖Zj‖2
L4‖∇Xj

CH‖2
L4

)
+
εk

8
‖∇∆Zj‖2

L2 ,

I3 ≤
Ck

ε3

(
‖Xj

CH‖4
L∞‖∇Zj‖2

L2 + ‖Xj
CH‖2

L∞‖∇X
j
CH‖2

L4‖Zj‖2
L4

)
+
εk

8
‖∇∆Zj‖2

L2 .

We estimate
∑3

`=1 I` on Ωκ,j via Lemma 3.1, ii) and the embedding H1 ↪→ L4 by

1Ωκ,j

3∑
`=1

I` ≤ 1Ωκ,j

{εk
2
‖∇∆Zj‖2

L2 +
C(1 + κ2)k

ε3
‖Zj∇Zj‖2

L2 +
C(1 + κ2)k

ε3+2nCH
‖∇Zj‖2

L2

}
.

We multiply (5.11) by 1Ωκ,j , sum up for 1 ≤ i ≤ j, take max1≤j≤J and expectation, employ
the identity

1

2
E
[

max
0≤j≤J

j∑
i=1

1Ωκ,i

(
‖∇Zj‖2

L2 − ‖∇Zi−1‖2
L2

)
± 1Ωκ,i−1

‖∇Zi−1‖2
L2

]
=

1

2
E
[

max
0≤j≤J

1Ωκ,j‖∇Zj‖2
L2

]
+

1

2

J∑
j=1

E
[(
1Ωκ,j−1

− 1Ωκ,j

)
‖∇Zj−1‖2

L2

]
,

and use Lemmata 5.2 and 3.7 to estimate

1

2
E
[

max
0≤j≤J

1Ωκ,j‖∇Zj‖2
L2

]
+

1

2

J∑
j=1

E
[(
1Ωκ,j−1

− 1Ωκ,j

)
‖∇Zj−1‖2

L2

]

+
1

2

J∑
j=1

E
[
1Ωκ,j

(
‖∇[Zj − Zj−1]‖2

L2 + εk‖∇∆Zj‖2
L2

)]
(5.12)

≤ max
{C(1 + κ2)

ε2
F1

(
k, ε;σ0, κ0, γ

)
,
C(1 + κ2)

ε7+2nCH

( C
εκ0

max
{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
4
}

+εγE
[

max
0≤j≤J

j∑
i=1

1Ωκ,i

(
g,∆2Zi

)
∆iW

]
.
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To estimate the stochastic term we use ∂ng = ∂n∆g = 0 on ∂D and proceed as follows,

εγE
[

max
0≤j≤J

j∑
i=1

1Ωκ,i

(
∆2g, Zi

)
∆iW

]
= εγE

[
max

0≤j≤J

j∑
i=1

(
1Ωκ,i

(
∆2g, Zi − Zi−1

)
∆iW

+1Ωκ,i−1

(
∇∆g,∇Zi−1

)
∆iW+

(
1Ωκ,i − 1Ωκ,i−1

)(
∇∆g,∇Zi−1

)
∆iW

)]
≤ εγ

2

J∑
i=1

E
[
‖Zi − Zi−1‖2

L2 + C|∆jW |2
]

+ εγE
[

max
0≤j≤J

j∑
i=1

1Ωκ,i−1

(
∆2g, Zi−1

)
∆iW

]
+

1

4

J∑
i=1

E
[(
1Ωκ,i − 1Ωκ,i−1

)2‖∇Zi−1‖2
]

+ Cεγk

J∑
i=1

E
[
‖∇∆g‖2

L2

]
.

The �rst term on the right-hand side may be bounded by Lemma 5.2, the third term is
absorbed on the right-hand side of (5.12), and for the second term we use the discrete
BDG-inequality (Lemma 3.3) and Lemma 3.7 to estimate

εγE
[

max
0≤j≤J

j∑
i=1

1Ωκ,i−1

(
∇∆g,∇Zi−1

)
∆iW

]
≤ Cεγ‖∆2g‖L∞E

[
k

J∑
i=1

‖∇Zi−1‖2
] 1

2 ≤ Cεγ

ε2

( C
εκ0

max
{k2

ε4
, εγ+

σ0+1
3 , εσ0 , ε2γ

}) 1
4
.

�
The L∞-estimate in the next theorem is a crucial ingredient to show convergence to the

sharp-interface limit.

Theorem 5.5. Assume (C2). For any p > 2, there exists C ≡ C(p) > 0 such that

E
[

max
0≤j≤J

1Ωκ,j‖Zj‖pL∞
]
≤ C

(
F2(k, ε;σ0, κ0, γ)

) 1
2pk

2−p
2p ε

2−p
p

nCH .

Proof. We use Lemma 5.3 and estimate as in step 2. in the proof of Lemma 5.1, and use
the triangle inequality in combination with Lemma 3.1, ii) and (5.2),

E
[

max
1≤j≤J

1Ωκ,j‖Zj‖pL∞
]
≤ C

(
E
[

max
1≤j≤J

1Ωκ,j‖∇Zj‖L2

]) 1
p
k−

p−2
2p

(√
kE
[

max
1≤j≤J

‖∆Zj‖
]) p−2

p

≤ C
(
F2(k, ε;σ0, κ0, γ)

) 1
2pk−

p−2
2p ε

2−p
p

nCH .

�
In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the inequality

of the theorem, we impose again a stronger assumption than (C2):

(C3) Assume (C2), and that (σ0, κ0, γ), and k satisfy

(5.13) lim
ε↓0

[
k2−pε(4−2p)nCHF2(k, ε;σ0, κ0, γ)

] 1
2p

= 0 .
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Remark 5.6. We discuss a strategy to identify admissible quadruples (σ0, κ0, γ, k) which
meet assumption (C3): for this purpose, we limit ourselves to a discussion of the leading
term inside the maximum which de�nes F2 (see Lemma 5.3), and recall Remark 5.4.

(1) To meet (5.13) instead of (5.9), we have to ensure that for some p > 2

k
4−2p

2p2 F1(k, ε;σ0, κ0, γ)ε
6−4p−4p2

2p2
∣∣ln(ε

3−2p
2p )
∣∣ 2
pk2−pε(4−2p)nCH → 0 (ε ↓ 0) ,

and hence[
F1(k, ε;σ0, κ0, γ)ε

6−4p−4p2

2p2 ε(4−2p)nCH
∣∣ln(ε

3−2p
2p )
∣∣ 2
p

] 2p2

4−2p+4p2−2p3

= o(k) .

(2) We may now proceed as in (2) in Remark 5.4 to identify proper choices k = εα

(α > 0).

We are now ready to formulate the second main result of this paper, which is convergence
in probability of the solution {Xj}Jj=0 of Scheme 3.1 to the solution of the deterministic
Hele-Shaw/Mullins-Sekerka problem (5.1) for ε ↓ 0, provided that assumption (C3) is valid,
and (5.1) has a classical solution; cf. Theorem 5.7 below. The proof rests on

a) the uniform bounds for {1Ωκ,j‖Zj‖pL∞}Jj=1 (see Theorem 5.5), and the property that

limε↓0 max1≤j≤J P[Ωκ,j] = 1 (in Lemma 5.1) for the sequence {Ωκ,j}Jj=1 ⊂ Ω, and

b) a convergence result for {Xj
CH}Jj=0 towards a smooth solution of the Hele-Shaw/Mullins-

Sekerka problem in [17, Section 4].

For each ε ∈ (0, ε0) we consider below the piecewise a�ne interpolant in time of the iterates
{Xj}Jj=0 of Scheme 3.1 via

(5.14) Xε,k(t) :=
t− tj−1

k
Xj +

tj − t
k

Xj−1 for tj−1 ≤ t ≤ tj .

Let Γ00 ⊂ D in (5.1e) be a smooth closed curve, and (vMS,Γ
MS) be a smooth solution of (5.1)

starting from Γ00, where ΓMS :=
⋃

0≤t≤T{t} × ΓMS
t . Let d(t, x) denote the signed distance

function to ΓMS
t such that d(t, x) < 0 in IMSt , the inside of ΓMS

t , and d(t, x) > 0 on OMS
t :=

D \ (ΓMS
t ∩ IMSt ), the outside of ΓMS

t . We also de�ne the inside IMS and the outside OMS,

IMS :=
{

(t, x) ∈ DT : d(t, x) < 0
}
, OMS :=

{
(t, x) ∈ DT : d(t, x) > 0

}
.

For the numerical solution Xε,k ≡ Xε,k(t, x), we denote the zero level set at time t by Γε,kt ,
that is,

Γε,kt :=
{
x ∈ D : Xε,k(t, x) = 0

}
(0 ≤ t ≤ T ) .

We summarize the assumptions needed below concerning the Mullins-Sekerka problem (5.1).

(D) Let D ⊂ R2 be a smooth domain. There exists a classical solution (vMS,Γ
MS) of (5.1)

evolving from Γ00 ⊂ D, such that ΓMS
t ⊂ D for all t ∈ [0, T ].
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By [1, Theorem 5.1], assumption (D) establishes the existence of a family of smooth solutions
{uε0}0≤ε≤1 which are uniformly bounded in ε and (t, x), such that if uεCH is the corresponding
solution of (1.1) with g ≡ 0, then

i) lim
ε↓0

uεCH(t, x) =

{
+1 if (t, x) ∈ OMS ,
−1 if (t, x) ∈ IMS , uniformly on compact subsets of DT ,

ii) lim
ε↓0

(1

ε
f(uεCH)− ε∆uεCH

)
(t, x) = vMS(t, x) uniformly on DT .

The following theorem establishes uniform convergence of iterates {Xj}Jj=0 from Scheme 3.1
in probability on the sets IMS, OMS.

Theorem 5.7. Assume (C3) and (D). Let {Xε}0≤ε≤ε0 in (5.14) be obtained via Scheme
3.1. Then

i) lim
ε↓0

P
[{
‖Xε,k − 1‖C(A) > α for all A b OMS

}]
= 0 ∀α > 0 ,

ii) lim
ε↓0

P
[{
‖Xε,k + 1‖C(A) > α for all A b IMS

}]
= 0 ∀α > 0 .

Proof. We decompose DT \Γ = IMS∪OMS, and consider related errorsXε,k
CH ±1 andXε,k−Xε,k

CH .
1. By [17, Theorem 4.2]1, the piecewise a�ne interpolant Xε,k of {Xj

CH}Jj=0 satis�es

i′) Xε,k
CH → +1 uniformly on compact subsets of OMS (ε ↓ 0) ,

ii′) Xε,k
CH → −1 uniformly on compact subsets of IMS (ε ↓ 0) .

2. Since Ωκ,J ⊂ Ωκ,j for 1 ≤ j ≤ J , Theorem 5.5 implies (p > 2)

E
[

max
0≤j≤J

1Ωκ,J‖Zj‖pL∞
]
→ 0 (ε ↓ 0) .

The discussion around (5.7) shows limε↓0 P[Ω\Ωκ,J ] = 0. Let α > 0. By Markov's inequality

P
[{

max
0≤j≤J

‖Zj‖pL∞ ≥ α
}]
≤ P

[{
max

0≤j≤J
‖Zj‖pL∞ ≥ α

}
∩ Ωκ,J

]
+ P

[
Ω \ Ωκ,J

]
≤ 1

α
E
[

max
0≤j≤J

1Ωκ,J‖Zj‖pL∞
]

+ P
[
Ω \ Ωκ,J

]
→ 0 (ε ↓ 0) .

�
A consequence of Theorem 5.7 is the convergence in probability of the zero level set
{Γε,kt ; t ≥ 0} to the interface ΓMS

t of the Mullins-Sekerka/Hele-Shaw problem (5.1).

Corollary 5.8. Assume (C3) and (D). Let {Xε,k}0≤ε≤ε0 in (5.14) be obtained via Scheme
3.1. Then

lim
ε↓0

P
[{

sup
(t,x)∈[0,T ]×Γε,kt

dist(x,ΓMS
t ) > α

}]
= 0 ∀α > 0 .

1Note that the mesh requirement k = O(hq) stated in [17, Theorem 4.2] does not apply for the semi-
discretization in time of (1.1) with g ≡ 0. In fact, in [17] � where the involved parameters k, h, ε tend to
zero simultaneously � the given constraint goes back to requirement [17, Theorem 3.1, 3)] which uses [17,
(3.28)], where we formally send h ↓ 0 �rst (with µ = ν = δ = 1, N = 2) to address our case.
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Proof. We adapt arguments from the proof of [17, Theorem 4.3].
1. For any η ∈ (0, 1) we construct an open tubular neighborhood

Nη :=
{

(t, x) ∈ DT : |d(t, x)| < η
}

of width 2η of the interface ΓMS and de�ne compact subsets

AI = IMS \ Nη , AO = OMS \ Nη .

Thanks to Theorem 5.7 there exists ε0 ≡ ε0(η) > 0 such that for all ε ∈ (0, ε0) it holds that

P
[
{|Xε,k(t, x)− 1| ≤ η for (t, x) ∈ AO}

]
≥ 1− η ,

P
[
{|Xε,k(t, x) + 1| ≤ η for (t, x) ∈ AI}

]
≥ 1− η .

(5.15)

For any t ∈ [0, T ], and x ∈ Γε,kt , since Xε(t, x) = 0, we have∣∣Xε,k(t, x)− 1| =
∣∣Xε,k(t, x) + 1| = 1 .

2. Note that

P
[
{(t,Γε,kt ); t ∈ [0, T ] ⊂ Nη}

]
= P

[{
{(t, x) : t ∈ [0, T ], |Xε,k(t, x)| = 0} ⊂ Nη

}]
= 1− P

[{
∃ (t, x) ∈ DT \ Nη : |Xε,k(t, x)| = 0

}]
.(5.16)

The last probability may be bounded from above by P[Ω3], where

Ω3 :=
{
∃ (t, x) ∈ AO : |Xε,k(t, x)− 1

∣∣ > η ∨ ∃ (t, x) ∈ AI : |Xε,k(t, x) + 1
∣∣ > η

}
.

By (5.15),

P[Ω \ Ω3] = P
[{
∀ (t, x) ∈ AO : |Xε,k(t, x)− 1

∣∣ ≤ η

∧ ∀ (t, x) ∈ AI : |Xε,k(t, x) + 1
∣∣ ≤ η

}]
≥ 1− 2η .

Inserting this estimate into (5.16) leads for all ε ∈ (0, ε0)

P
[
{(t,Γε,kt ), t ∈ [0, T ]} ⊂ Nη

]
≥ 1− 2η .

Since ε0 ↓ 0 for η ↓ 0 we obtain the result. �

Remark 5.9. The numerical experiments in Section 6 suggest that the conditions on γ and
k which are required for Theorem 5.7 to hold are too pessimistic; in particular, they indicate
convergence to the deterministic Mullins-Sekerka/Hele-Shaw problem already for γ = 1,
k = O(ε).

6. Computational experiments

The computational experiments are meant to support and complement the theoretical
results in the earlier sections:
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• Convergence to the deterministic sharp-interface limit (5.1) for the space-time white
noise in Section 6.3. We study pathwise convergence of the white noise-driven simula-
tions to the deterministic sharp interface limit, which is a scenario beyond the one for
regular trace-class noise where Theorem 5.7 and Corollary 5.8 establish convergence
in probability.
• Pathwise convergence to the stochastic sharp interface limit (6.4) (introduced in
Section 6.2 below) for spatially smooth noise in Section 6.4, were we also examine
the sensitivity of numerical simulations with respect to the mesh re�nement.

6.1. Implementation and adaptive mesh re�nement. For the computations below we
employ a mass-lumped variant of Scheme 4.1

(Xj
h −X

j−1
h , ϕh)h + k(∇wjh,∇ϕh) = εγ

(
g∆jW

h, ϕh
)
h

∀ϕh ∈ Vh ,

ε(∇Xj
h,∇ψh) +

1

ε

(
f(Xj

h), ψh
)
h

= (wjh, ψh)h ∀ψh ∈ Vh ,

X0
h = uε,h0 ∈ Vh ,

(6.1)

where the standard L2-inner product in Scheme 4.1 is replaced by the discrete (mass-lumped)
inner product (v, w)h =

∫
D I

h(v(x)w(x))dx for v, w ∈ Vh, where Ih : C(D) → Vh is the
standard interpolation operator. In all experiments we take D = (0, 1)2 ⊂ R2 and g is taken
to be a constant.
For a given initial interface Γ00 we construct an ε-dependent family of initial conditions
{uε0}ε>0 as u

ε
0(x) = tanh(d0(x)√

2ε
), where d0 is the signed distance function to Γ00. Consequently,

{uε0}ε>0 have bounded energy and contain a di�use layer of thickness proportional to ε along
Γ00, and u

ε
0(x) ≈ −1, uε0(x) ≈ 1 in the interior, exterior of Γ00, respectively. The construction

ensures that
∫
D u

ε
0 dx → m0 for ε → 0, where m0 is the di�erence between the respective

areas of the exterior and interior of Γ00 in D. For convenience we set uε,h0 = Ihuε0.
The discrete increments ∆jW

h = W h(tj) − W h(tj−1) in (6.1) are Vh-valued random
variables which approximate the increments of a Q-Wiener process on a probability space
(Ω,F ,P) which is given by

W (t, x) =
∞∑
i=1

λiei(x)βi(t) ,

where {ei}i∈N is an orthonormal basis in L2(D), {βi}i∈N are independent real-valued Brow-
nian motion, and {λi}i∈N are real-valued coe�cients such that Qei = λ2

i ei, i ∈ N. In order
to preserve mass the noise is required to satisfy P-a.s.

∫
DW (t, x) dx = 0, t ∈ [0, T ].

In the experiments below we consider two types of Wiener processes: a smooth (�nite
dimensional) noise and a L2

0-cylindrical Wiener process (space-time white noise). The smooth
noise is given by

∆jŴ (t, x) =
1

2

64∑
k,`=1

cos(2πkx1) cos(2π`x2)∆jβk` x = (x1, x2) ∈ [0, 1]2 ,
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where ∆jβk` = βk`(tj)− βk`(tj−1) are independent scalar-valued Brownian increments. The
discrete approximation of the smooth noise is then constructed as

(6.2) ∆jW
h(x) =

L∑
`=1

∆jŴ (x`)φ`(x),

where φ`(xm) = δ`m, ` = 1, . . . , L are the (standard) nodal basis function of Vh, i.e., Vh =
span{φ`, ` = 1, . . . , L}. The space-time white noise (Q = I) is approximated as (cf. [5])

∆jW̃
h(x) =

L∑
`=1

φ`(x)√
1
3
|suppφ`|

∆jβ` ∀x ∈ D ⊂ R2 .

In order to preserve the zero mean value property of the noise we normalize the increments
as

(6.3) ∆jW
h = ∆jW̃

h − 1

|D|

∫
D

∆jW̃
h dx.

The Wiener process is simulated using a standard Monte-Carlo technique, i.e., for ωm ∈
Ω, m = 1, . . . ,M , we approximate the Brownian incerents in (6.2),(6.3) as ∆jβ`(ωm) ≈√
kN j

` (0, 1)(ωm), where N j
` (0, 1)(ωm) is a realization of the Gaussian random number gener-

ator at time level tj. The discrete nonlinear systems related to (realizations of) the scheme
(6.1) are solved using the Newton method with a multigrid linear solver.
To increase the e�ciency of the computations we employ a pathwise mesh re�nement

algorithm. For a realization Xj
h,m := Xj

h(ωm), ωm ∈ Ω of the Vh-valued random variable

Xj
h we de�ne ηgrad(x) = max{|∇Xj

h,m(x)|, |∇Xj−1
h,m (x)|} and re�ne the �nite element mesh

in such a way that h(x) = hmin if εηgrad(x) ≥ 10−2 and h(x) ≈ hmax if εηgrad(x) ≤ 10−3;

the mesh produced at time level j is then used for the computation of Xj+1
h,m . The adaptive

algorithm produces meshes with mesh size h = hmin along the interfacial area and h ≈ hmax

in the bulk where u ≈ ±1, see Figure 3 for a typical adapted mesh. In our computations we
choose hmax = 2−6 and hmin = π

4
ε, i.e. hmin = hmax for ε ≥ 1/(16π) and hmin scales linearly

for smaller values of ε.
In the presented simulations, mesh re�nement did not appear to signi�cantly in�uence

the asymptotic behavior of the numerical solution. This is supported by comparison with
additional numerical simulation on uniform meshes. The observed robustness of numerical
simulations with respect to the mesh re�nement can be explained by the fact that the
asymptotics are determined by pathwise properties of the solution on a large probability
set. This conjecture is supported by the convergence in probability in Theorem 5.7 and
Corollary 5.8. In the present setup the (possible) bias due to the pathwise adaptive-mesh
re�nement did not have signi�cant impact on the results. In general, the use of adaptive
algorithms with rigorous control of weak errors may be a preferable approach, cf. [23].
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6.2. Stochastic Mullins-Sekerka problem and its discretization. We consider the
following stochastic modi�cation of the Mullins-Sekerka problem (5.1)

−∆ v dt = g dW in D \ Γt ,(6.4a)

[∂nΓ
v]Γt = −2V on Γt ,(6.4b)

v = ακ on Γt ,(6.4c)

∂nv = 0 on ∂D ,(6.4d)

Γ0 = Γ00 .(6.4e)

We note that the only di�erence between (5.1) and (6.4) is in the equations (5.1a), (6.4a),
respectively. Alternatively equation (6.4a) can be stated in an integral form as

−
∫ t

0

∆v ds = g

∫ t

0

dW in D \ Γt.

For the approximation of the stochastic Mullins-Sekerka problem (6.4), we adapt the
un�tted �nite element approximation for the deterministic problem (5.1) from [6]. In par-
ticular, let Γj−1 be a polygonal approximation of the interface Γ at time tj−1, parameterized

by Y j−1
h ∈ [Vh(I)]2, where I = R/Z is the periodic unit interval, and where Vh(I) is the

space of continuous piecewise linear �nite elements on I with uniform mesh size h. Let
πh : C(I) → Vh(I) be the standard nodal interpolation operator, and let 〈·, ·〉 denote the
L2�inner product on I, with 〈·, ·〉h the corresponding mass-lumped inner product. Then we
�nd vjh ∈ Vh, Y

j
h ∈ [Vh(I)]2 and κjh ∈ Vh(I) such that

k (∇ vjh,∇ϕh)− 2
〈
πh
[
Y j
h − Y

j−1
h . νj−1

h

]
, ϕh ◦ Y j−1

h |[Y j−1
h ]ρ|

〉
=
(
g∆jW

h, ϕh
)
h

∀ ϕh ∈ Vh ,(6.5a)

〈vjh, χh |[Y
j−1
h ]ρ|〉 − α 〈κjh, χh |[Y

j−1
h ]ρ|〉h = 0 ∀ χh ∈ Vh(I) ,(6.5b)

〈κjh ν
j−1
h , ηh |[Y j−1

h ]ρ|〉h + 〈[Y j
h ]ρ, [ηh]ρ |[Y j−1

h ]ρ|−1〉 = 0 ∀ ηh ∈ [Vh(I)]2 .(6.5c)

In the above, ρ denotes the parameterization variable, so that |[Y j−1]ρ| is the length ele-

ment on Γj−1 and νj−1
h ∈ [Vh(I)]2 is a nodal discrete normal vector, see [6] for the precise

de�nitions.

6.3. Convergence to the deterministic sharp-interface limit.

6.3.1. One circle. We set γ = 1, g = 8π and consider the discrete space-time white noise
(6.3). We note that the considered space-time white noise does not satisfy the smoothness
assumptions required for the theoretical part of the paper (i.e., γ > 1 and tr(∆Q) < ∞),
however the numerical results indicate that for ε ↓ 0 the computed evolutions still converge
to the deterministic Mullins-Sekerka problem (5.1).
The numerical studies below are performed using the scheme (6.1) with adaptive mesh

re�nement. The time-step size for ε = 2−i/(64π), i = 0, . . . , 4 was ki = 2−i10−5. The
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motivation of the di�erent choice of the time-step is to eliminate possible e�ects of numerical
damping and to ensure the convergence of the Newton solver for smaller values of ε.
For each ε we use the initial condition uε,h0 that approximates a circle with radius R =

0.2. Since circles are stationary solutions of the deterministic Mullins-Sekerka problem,
the convergence of the numerical solution for the stochastic Cahn-Hilliard equation to the
solution of the Mullins-Sekerka problem for ε ↓ 0 can be determined by measuring the
deviations of the zero level-set of the solution Xj

h, j = 1, . . . , J from the circle with radius
R = 0.2 for a su�ciently large computational time. We note that the zero level-set of
the initial condition uε,h0 above, exactly approximates the corresponding stationary solution
of the Mullins-Sekerka problem, but it is not a stationary solution of the corresponding
(discrete) deterministic Cahn-Hilliard equation, i.e., of (6.1) with g ≡ 0. In order to obtain

the optimal phase�eld pro�le across the interfacial region, we let uε,h0 relax towards the
discrete stationary state by computing with (6.1) for g ≡ 0 for a short time and then use
that discrete solution as the actual initial condition for the subsequent simulations.
The results in Figure 1 indicate that for decreasing ε the evolution of the zero level set of

the numerical solution approaches the solution of the deterministic Mullins-Sekerka model,
which is represented by the stationary circle with radius 0.2. We observe that the deviations
of the interface from the circle are decreasing for smaller ε.
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 0
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 0.008
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 0.012

 0  0.02  0.04  0.06  0.08  0.1

eps=1/64pi
eps=1/128pi
eps=1/256pi
eps=1/512pi

eps=1/1024pi

Figure 1. Deviation of the interface along the x-axes from the circle for
ε = 2−i/(64π), i = 0, . . . , 4.

6.3.2. Two circles. In this experiment we consider the same setup as in the previous one
with an initial condition which consists of two circles with radii R1 = 0.15 and R2 = 0.1,
respectively. The evolution of the solution is more complex than in the previous experiment
as the interface undergoes a topological change. To minimize the Ginzburg-Landau energy,
the left (larger) circle grows, the right (smaller) circle shrinks and the resulting steady state
is a single circle with mass equal to the mass of the two initial circles; see Figure 2 for an
example of a deterministic evolution with ε = 1/(512π). In Figure 3 we display the graph
of the evolution of the position of the x-coordinate of rightmost point of the interface along
the x-axis (i.e., we consider the rightmost point on the right (smaller) circle and after the
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Figure 2. Numerical solution for ε = 1/(512π) at time t = 0, 0.007, 0.008.

right circle disappears we track the rightmost point of the left circle) for the deterministic
Cahn-Hilliard equation as well as for typical realizations of the stochastic Cahn-Hilliard
equation for decreasing values of ε, and of the deterministic Mullins-Sekerka problem. Here
the evolutions for the Mullins-Sekerka problem were computed with the scheme (6.5) in the
absence of noise. We observe that the solution of the stochastic Cahn-Hilliard equation with
the scaled space-time white noise (6.3) converges to the solution of the deterministic Mullins-
Sekerka problem for decreasing values of the interfacial width parameter. In addition, the
di�erences between the the stochastic and the deterministic evolutions of the Cahn-Hilliard
equation diminish for decreasing values of ε.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.002  0.004  0.006  0.008  0.01

HS
eps=1/128pi
eps=1/256pi
eps=1/512pi

eps=1/128pi det
eps=1/256pi det
eps=1/512pi det

Figure 3. (left) Position of the rightmost point of the interface for the sto-
chastic and the deterministic Cahn-Hilliard equations with ε = 2−i/(64π),
i = 0, . . . , 4, γ = 1 and the deterministic Mullins-Sekerka problem; the values
are shifted by −0.5. (right) Zoom on the adapted mesh around the smaller
circle for ε = 1/(512π) at t = 0.007.

6.4. Comparison with the stochastic Mullins-Sekerka model. We use the numeri-
cal scheme (6.1) to study the case of non-vanishing noise, i.e., γ = 0, with the discrete
approximation of the smooth noise (6.2). The noise is symmetric across the center of the
domain in order to facilitate an easier comparison with the Mullins-Sekerka problem. The
computations below are pathwise, i.e., in the graphs below we display results computed for
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a single realization of the Wiener process. If not mentioned otherwise we use the time-step
size k = 10−5.
The initial condition is taken to be the ε-dependent approximation of a circle with radius

R = 0.2 as in �6.3.1. In the computations, as before, we �rst let the initial condition relax
to a stationary state and then use the stabilized pro�le X0

h := Xjs
h as an initial condition for

the computation. The zero level-set of the stationary solution Xjs
h is a circle with perturbed

radius R = 0.2 + O(ε), where in general the perturbation O(ε) also depends on the �nite
element mesh. To compensate for the e�ect of the perturbation in the initial condition for
larger values of ε we represent the interface by a level set ΓjuΓ

:= {x ∈ D; Xj
h(x) = uΓ} (i.e., Γj0

is the zero level set of the discrete solution at time level tj) where the values uΓ = Xjs(0.2, 0),
i.e., it is the �compensated� level-set for which the stationary pro�le ΓjsuΓ

coincides with the
circle with radius R = 0.2. The usual value for the �compensated� level-set was uΓ ≈ 0.27
in the computations below.
We observe that in order to properly resolve the spatial variations of the noise it is nec-

essary to use a mesh size smaller or equal to hmax = 2−7 for the discretization of the Cahn-
Hilliard equation. The computations for the Mullins-Sekerka problem, using the scheme
(6.5), were more sensitive to the mesh size, and an accurate resolution for the considered
noise required a mesh size hmax = 2−8, cf. Figure 4 which includes the results for hmax = 2−8

as well as hmax = 2−7.
In Figure 4 we compare the evolution for the stochastic Cahn-Hilliard equation for ε =

1/(32π), ε = 1/(64π) on a uniform mesh with h = 2−7, h = 2−8, respectively, with the
evolution of the stochastic Mullins-Sekerka problem (6.4) on uniform meshes with h = 2−7,
h = 2−8, respectively, for a single realization of the noise. We also include results for
ε = 1/(128π), ε = 1/(512π), where to make the computations feasible we employ the
adaptive algorithm with hmax = 2−8 and hmax = 2−9, hmax = 2−11, respectively. Furthermore,
in order to ensure convergence of the Newton solver for ε = 1/(512π) we decrease the time-
step size k = 10−6. To be able to directly compare with the results for ε = 1/(512π), we
take the values of the realization of the noise generated with step size k = 10−5, which
was used in the other simulations, and to obtain values at the intermediate time levels we
employ linear interpolation in time. We observe that the results in Figure 4 for the stochastic
Mullins-Sekerka model are more sensitive to the mesh size, i.e., the graph for the mesh with
h = 2−7 di�ers signi�cantly from the remaining results. For the mesh with hmin = 2−8 the
results for the stochastic Mullins-Sekerka model are in good agreement with the results for
the stochastic Cahn-Hilliard model. We note that for values smaller than ε = 1/(128π) we do
not observe signi�cant improvements of the approximation of the stochastic Mullins-Sekerka
problem. This is likely caused by the discretization errors in the numerical approximation
of the stochastic Mullins-Sekerka model which, for small values of ε, are greater than the
approximation error w.r.t. ε in the stochastic Cahn-Hilliard equation.
From the above numerical results we conjecture that for ε ↓ 0 the solution of the stochastic

Cahn-Hilliard equation with a non-vanishing noise term (γ = 0) converges to the solution of
a stochastic Mullins-Sekerka problem (6.4) Formally, the stochastic Mullins-Sekerka problem
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Figure 4. Oscillations of the interface along the x-axis (x, 0) on uniform
meshes for the stochastic Cahn-Hilliard equation with ε = 1/(32π), h = 2−7,
ε = 1/(64π), h = 2−8, ε = 1/(128π), hmin = 2−9, ε = 1/(512π), hmin = 2−11

and for the stochastic Mullins-Sekerka problem with h = 2−7 and h = 2−8

with the noise (6.2) (left); detail of the evolution (middle); evolution of the
zero level-set of the solution (right).

(6.4) can be obtained as a sharp-interface limit of a generalized Cahn-Hilliard equation where
the noise is treated as a deterministic function G1(t) = g Ẇ (t), cf. (2.3) in [3] and (1.12) in
[4].
To examine the robustness of previous results with respect to adaptive mesh re�nement

we recompute the previous problems with the noise (6.2) using the adaptive mesh re�ne-
ment algorithm with hmax = 2−6 and hmin = π

4
ε. The stochastic Mullins-Sekerka model is

computed with hmax = 2−6 and the mesh is re�ned along the interface Γ with mesh size
hmin = 2−8.
We note that with adaptive mesh re�nement the results di�er from those computed using

uniform meshes, since the noise (6.2) is mesh dependent. For instance, in the regions with
coarse mesh the noise (6.2) is not properly resolved. The computed results with the adaptive
mesh re�nement can be interpreted as replacing the additive noise (6.2) with a multiplicative
type noise that has lower intensity when u ≈ ±1. The presented computations contain an
additional �geometric� factor in the numerical error that is due to the fact that the mesh is
adapted according to the position of the interface, as well as due to the fact that the adaptive
mesh re�nement algorithm for the Mullins-Sekerka problem is di�erent. Nevertheless, the
results are still in good agreement with the stochastic Mullins-Sekerka problem, see Figure 5.
In particular we observe that the convergence for smaller values of ε is more obvious for the
zero level-set of the solution than in the case of uniform meshes. In Figure 5 we also include
a graph ('ftilde' in pink) which was computed using a modi�cation of scheme (6.1) with(
f(Xj

h), ψh
)
replaced by

(
f̃(Xj

h, X
j−1
h ), ψh

)
where f̃(Xj

h, X
j−1
h ) = 1

2
(|Xj

h|2 − 1)(Xj
h + Xj−1

h );
for equal time-step size the modi�ed scheme provides worse approximation of the Mullins-
Sekerka problem due to numerical damping.
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Figure 5. Oscillations of the �compensated� level-set along the x-axis (x, 0)
with adaptive mesh re�nement with hmax = 2−6 for stochastic Cahn-Hilliard
equation with ε = 1/(32π), hmin = 2−7, ε = 1/(64π), hmin = 2−8,
ε = 1/(128π), hmin = 2−9, and the stochastic Mullins-Sekerka problem with
hmin = 2−8, hmax = 2−6 with the noise (6.2) (left picture); evolution of the
corresponding zero level-set (right picture).
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