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Abstract
We study the stochastic total variation flow (STVF) equation with linear multiplicative
noise. By considering a limit of a sequence of regularized stochastic gradient flows
with respect to a regularization parameter ε we obtain the existence of a unique varia-
tional solution of the STVF equation which satisfies a stochastic variational inequality.
We propose an energy preserving fully discrete finite element approximation for the
regularized gradient flow equation and show that the numerical solution converges to
the solution of the unregularized STVF equation. We perform numerical experiments
to demonstrate the practicability of the proposed numerical approximation.

Keywords Stochastic variational inequalities · Convergent numerical
approximation · Finite element method · Stochastic total variation flow · Image
processing

1 Introduction

We study numerical approximation of the stochastic total variation flow (STVF)

dX = div

( ∇X

|∇X |
)

dt − λ(X − g) dt + X dW , in (0, T ) × O,

X = 0 on (0, T ) × ∂O,

X(0) = x0 in O, (1)
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where O ⊂ R
d , d ≥ 1 is a bounded, convex domain with a piecewise C2-smooth

boundary ∂O, and λ ≥ 0, T > 0 are constants. We assume that x0, g ∈ L
2 and con-

sider a one dimensional real-valued Wiener process W , for simplicity; generalization
for a sufficiently regular trace-class noise is straightforward.

Equation (1) can be interpreted as a stochastically perturbed gradient flow of the
penalized total variation energy functional

Jλ(u) :=
∫
O

|∇u| dx + λ

2

∫
O

|u − g|2 dx . (2)

The minimization of above functional, so-called ROF-method, is a prototypical
approach for image denoising, cf. [13]; in this context the function g represents a
given noisy image and λ serves as a penalization parameter. Further applications of
the functional include, for instance, elastoplasticity and the modeling of damage and
fracture, for more details see for instance [4] and the references therein.

The use of stochastically perturbed gradient flows has proven useful in image pro-
cessing. Stochastic numerical methods for models with nonconvex energy functionals
are able to avoid local energyminima and thus achieve faster convergence and/or more
accurate results than their deterministic counterparts; see [10] which applies stochastic
level-set method in image segmentation, and [14] which uses stochastic gradient flow
of a modified (non-convex) total variation energy functional for binary tomography.

Due to the singular character of total variation flow (1), it is convenient to perform
numerical simulations using a regularized problem

dXε = div

(
∇Xε√|∇Xε|2 + ε2

)
dt − λ(Xε − g) dt + Xε dW in (0, T ) × O,

Xε = 0 on (0, T ) × ∂O,

Xε(0) = x0 in O , (3)

with a regularization parameter ε > 0. In the deterministic setting (W ≡ 0) Eq. (3)
corresponds to the gradient flow of the regularized energy functional

Jε,λ(u) :=
∫
O

√
|∇u|2 + ε2 dx + λ

2

∫
O

|u − g|2 dx . (4)

It is well-known that the minimizers of the above regularized energy functional con-
verge to the minimizers of (2) for ε → 0, cf. [7] and the references therein.

Owing to the singular character of the diffusion term in (1) the classical variational
approach for the analysis of stochastic partial differential equations (SPDEs), see
e.g. [11,12], is not applicable to this problem. To study well-posedeness of singular
gradient flow problems it is convenient to apply the solution framework developed
in [3] which characterizes the solutions of (1) as stochastic variational inequalities
(SVIs). In this paper, we show thewell posedness of SVI solutions using the practically
relevant regularization procedure (3) which, in the regularization limit, yields a SVI
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solution in the sense of [3]. Throughout the paper, we will refer to the solutions
which satisfy a stochastic variational inequality as SVI solutions, and to the classical
SPDE solutions as variational solutions. Convergence of numerical approximation of
(3) in the deterministic setting (W ≡ 0) has been shown in [7]. Analogically to the
deterministic setting, we construct an implementable finite element approximation
of the problem (1) via the numerical discretization of the regularized problem (3).
The scheme is implicit in time and preserves the gradient structure of the problem,
i.e., it satisfies a discrete energy inequality. The deterministic variational inequality
framework used in the the numerical analysis of [7] is not directly transferable to
the stochastic setting. Instead, we show the convergence of the proposed numerical
approximation of (3) to the SVI solution of (1) via an additional regularization step on
the discrete level. The convergence analysis of the discrete approximation is inspired
by the analytical approach of [8] where the SVI solution concept was applied to the
stochastic p-Laplace equation. As far as we are aware, the present work is the first to
show convergence of implementable numerical approximation for singular stochastic
gradient flows in the framework of stochastic variational inequalities.

The paper is organized as follows. In Sect. 2 we introduce the notation and state
some auxiliary results. The existence of a unique SVI solution of the regularized
stochastic TV flow (3) and its convergence towards a unique SVI solution of (1) for
ε → 0 is shown in Sect. 3. In Sect. 4 we introduce a fully discrete finite element
scheme for the regularized problem (3) and show its convergence to the SVI solution
of (1). Numerical experiments are presented in Sect. 5.

2 Notation and preliminaries

Throughout the paper we denote by C a generic positive constant that may change
from line to line. For 1 ≤ p ≤ ∞, we denote by (Lp, ‖ · ‖Lp ) the standard spaces of
pth order integrable functions onO, and use ‖·‖ := ‖·‖L2 and (·, ·) := (·, ·)L2 for the
L
2-inner product. For k ∈ Nwe denote the usual Sobolev space onO as (Hk, ‖ · ‖Hk ),

and (H1
0, ‖ · ‖

H
1
0
) stands for the H1 space with zero trace on ∂O with its dual space

(H−1, ‖ · ‖H−1). Furthermore, we set 〈·, ·〉 := 〈·, ·〉
H−1×H

1
0
, where 〈·, ·〉

H−1×H
1
0
is the

duality pairing between H
1
0 and H

−1. The functional (4) with λ = 0 will be denoted
as Jε := Jε,0. We say that a function X ∈ L1(� × (0, T );L2) is Ft -progressively
measurable if X1[0,t] is Ft ⊗ B([0, t])-measurable for all t ∈ [0, T ].

For the convenience of the reader we state some basic definitions below.

Definition 2.1 Let H be a real Banach space, A : D(A) → H a linear operator and
ρ(A) its resolvent set. For a real number ξ ∈ ρ(A)wedefine the resolvent Rξ : H → H

of A as

Rξ (x) := (I − ξ A)−1x .

Furthermore we define the Yosida approximation of A as

Tξ (x) := ARξ = 1

ξ
(I − Rξ )x .

123



Stoch PDE: Anal Comp

Definition 2.2 The mapping Pm : L2 → Vm ⊂ L
2 which satisfies

(w − Pmw, vm) = 0 ∀vm ∈ Vm .

defines the L2-orthogonal projection onto Vm .

Definition 2.3 A function u ∈ L1(O) is called a function of bounded variation, if its
total variation

∫
O

|∇u| dx := sup

⎧⎨
⎩−

∫
O

u div v dx; v ∈ C∞
0 (O,Rd), ‖v‖L∞ ≤ 1

⎫⎬
⎭ , (5)

is finite. The space of functions of bounded variations is denoted by BV (O).
For u ∈ BV (O) we denote

∫
O

√
|∇u|2 + ε2 dx

:= sup

⎧⎨
⎩
∫
O

(
− u div v + ε

√
1 − |v(x)|2

)
dx; v ∈ C∞

0 (O,Rd), ‖v‖L∞ ≤ 1

⎫⎬
⎭ .

The following proposition plays an important role in the analysis below; the propo-
sition holds for convex domains with piecewise smooth boundary, which includes the
case of practically relevant polygonal domains, cf. [3, Proposition 8.2 and Remark
8.1].

Proposition 2.1 LetO ⊂ R
d , d ≥ 1 be a bounded domainwith a piecewiseC2-smooth

and convex boundary. Let g : [0,∞) → [0,∞) be a continuous and convex function
of at most quadratic growth such that g(0) = 0, then it holds

∫
O

g(|∇Rξ (y)|) dx ≤
∫
O

g(|∇ y|) dx, ∀y ∈ H
1
0. (6)

3 Well posedness of STVF

In this section we show existence and uniques of the SVI solution of (1) (see below
for a precise definition) via a two-level regularization procedure. To be able to treat
problems with L

2-regular data, i.e., x0 ∈ L2(�,F0;L2), g ∈ L
2 we consider a H1

0-
approximating sequence {xn0 }n∈N ⊂ L2(�,F0;H1

0) s.t. x
n
0 → x0 in L2(�,F0;L2)

for n → ∞ and {gn}n∈N ⊂ H
1
0 s.t. gn → g in L

2 for n → ∞. We introduce a
regularization of (3) as
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dXε,δ
n = δ	Xε,δ

n dt + div

⎛
⎝ ∇Xε,δ

n√
|∇Xε,δ

n |2 + ε2

⎞
⎠ dt

− λ(Xε,δ
n − gn) dt + Xε,δ

n dW (t) in (0, T ) × O,

Xε,δ
n (0) = xn0 in O, (7)

where δ > 0 is an additional regularization parameter.
We define the operator Aε,δ : H1

0 → H
−1 as

〈Aε,δu, v〉
H−1×H

1
0

=
∫
O

δ∇u∇v + ∇u√|∇u|2 + ε2
∇v + λ(u − gn)v dx ∀u, v ∈ H

1
0,

(8)

and note that (7) is equivalent to

dXε,δ
n + Aε,δXε,δ

n dt = Xε,δ
n dW (t) ,

Xε,δ
n (0) = xn0 . (9)

The operator Aε,δ is coercive, semicontinuos and satisfies (cf. [12, Remark 4.1.1])

〈Aε,δ(u) − Aε,δ(v), u − v〉
H−1×H

1
0

≥ δ‖∇(u − v)‖2 + λ‖u − v‖2, ∀u, v ∈ H
1
0,

(10)

‖Aε,δ(u)‖H−1 ≤ C(δ, λ, ‖gn‖)(‖u‖
H
1
0
+ 1), ∀u ∈ H

1
0. (11)

The followingmonotonicity property,which follows from the convexity of the function√| · |2 + ε2, will be used frequently in the subsequent arguments

(
∇X√|∇X |2 + ε2

− ∇Y√|∇Y |2 + ε2
,∇(X − Y )

)

=
(

∇X√|∇X |2 + ε2
,∇(X − Y )

)
+
(

∇Y√|∇Y |2 + ε2
,∇(Y − X)

)

≥ Jε(X) − Jε(Y ) + Jε(Y ) − Jε(X) = 0. (12)

The existence and uniqueness of a variational solution of (7) is established in the
next lemma; we note that the result only requires L2-regularity of data.

Lemma 3.1 For any ε, δ > 0 and xn0 ∈ L2(�,F0;H1
0), g

n ∈ H
1
0 there exists a unique

variational solution Xε,δ
n ∈ L2(�;C([0, T ];L2)) of (7). Furthermore, there exists a

C ≡ C(T ) > 0 such that the following estimate holds

E

[
sup

t∈[0,T ]
‖Xε,δ

n (t)‖2
]

≤ C(E
[
‖xn0‖2

]
+ ‖gn‖2).
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Proof of Lemma 3.1 Onnoting the properties (10)–(11) of the operator Aε,δ for ε, δ > 0
the classical theory, cf. [12], implies that for any given data xn0 ∈ L2(�,F0;H1

0),

gn ∈ H
1
0 there exists a unique variational solution Xε,δ

n ∈ L2(�;C([0, T ];L2)) of (7)
which satisfies the stability estimate. ��

In next step, we show a priori estimate for the solution of (7) in stronger norms; the
estimate requires H1

0-regularity of the data.

Lemma 3.2 Let xn0 ∈ L2(�,F0;H1
0), g

n ∈ H
1
0. There exists a constant C ≡ C(T )

such that for any ε, δ > 0 the corresponding variational solution Xε,δ
n of (7) satisfies

E

[
sup

t∈[0,T ]
‖∇Xε,δ

n (t)‖2
]

+ δE

[∫ t

0
‖	Xε,δ

n (s)‖2 ds
]

≤ C
(
E

[
‖xn0‖2

H
1
0

]
+ ‖gn‖2

H
1
0

)
.

(13)

Proof of Lemma 3.2 Let {ei }∞i=0 be an orthonormal basis of eigenfunctions of the
Dirichlet Laplacian −	 on L

2 and Vm := span{e0, . . . , em}. Let Pm : L2 → Vm

be the L2-orthogonal projection onto Vm .
For fixed ε, δ, n the Galerkin approximation Xε,δ

n,m ∈ Vm of Xε,δ
n satisfies

dXε,δ
n,m = δ	Xε,δ

n,m dt + Pmdiv

⎛
⎝ ∇Xε,δ

n,m√
|∇Xε,δ

n,m |2 + ε2

⎞
⎠ dt

− λ(Xε,δ
n,m − Pmg

n) dt + Xε,δ
n,m dW (t),

Xε,δ
n,m(0) =Pmx

n
0 . (14)

By standard arguments, cf. [12, Theorem 5.2.6], there exists a Xε,δ
n ∈ L2(�;C([0, T ];

L
2)) such that Xε,δ

n,m⇀Xε,δ
n in L2(� × (0, T );L2) for m → ∞. We use Itô’s formula

for ‖∇Xε,δ
n,m(t)‖2 to obtain

1

2
‖∇Xε,δ

n,m(t)‖2 = 1

2
‖∇Pmx

n
0‖2 − δ

∫ t

0
‖	Xε,δ

n,m(s)‖2 ds

−
∫ t

0

⎛
⎝div ∇Xε,δ

n,m(s)√
|∇Xε,δ

n,m(s)|2 + ε2
,	Xε,δ

n,m(s)

⎞
⎠ ds

− λ

∫ t

0

(
(Xε,δ

n,m(s) − gn),	Xε,δ
n,m(s)

)
ds

−
∫ t

0

(
	Xε,δ

n,m(s), Xε,δ
n,m(s) dW (s)

)
ds

+ 1

2

∫ t

0
‖Xε,δ

n,m(s)‖2
H
1
0
ds. (15)
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Let Tξ be the Yosida-approximation and Rξ the resolvent of the Dirichlet Laplacian
−	 on L2, respectively; see Definition 2.1. By the convexity, cf. (12), we get

⎛
⎝−	Xε,δ

n,m(s), div
∇Xε,δ

n,m(s)√
|∇Xε,δ

n,m(s)|2 + ε2

⎞
⎠

= lim
ξ→∞

⎛
⎝Tξ X

ε,δ
n,m(s), div

∇Xε,δ
n,m(s)√

|∇Xε,δ
n,m(s)|2 + ε2

⎞
⎠

= lim
ξ→∞

1

ξ

⎛
⎝Xε,δ

n,m(s) − Rξ X
ε,δ
n,m(s), div

∇Xε,δ
n,m(s)√

|∇Xε,δ
n,m(s)|2 + ε2

⎞
⎠

= lim
ξ→∞

1

ξ

⎛
⎝∇Rξ X

ε,δ
n,m(s) − ∇Xε,δ

n,m(s),
∇Xε,δ

n,m(s)√
|∇Xε,δ

n,m(s)|2 + ε2

⎞
⎠

≤ lim
ξ→∞

1

ξ

(
Jε(Rξ X

ε,δ
n,m(s)) − Jε(X

ε,δ
n,m(s))

)
≤ 0,

where we used Proposition 2.1 in the last step above. The Burkholder–Davis–Gundy
inequality for p = 1 implies that

E

[
sup

t∈[0,T ]

∫ t

0
‖∇Xε,δ

n,m(s)‖2 dW (s)

]

≤ CE

⎡
⎣(∫ T

0
‖∇Xε,δ

n,m(s)‖4 ds
) 1

2

⎤
⎦

≤ CE

⎡
⎣ sup
t∈[0,T ]

‖∇Xε,δ
n,m(t)‖

(∫ T

0
‖∇Xε,δ

n,m(s)‖2 ds
) 1

2

⎤
⎦

≤ 1

4
E

[
sup

t∈[0,T ]
‖∇Xε,δ

n,m(t)‖2
]

+ CE

[∫ T

0
‖∇Xε,δ

n,m(s)‖2 ds
]

. (16)

After taking supremumover t and expectation in (15), using (16) alongwith the Tonelli
and Gronwall lemmas we obtain

E

[
sup

t∈[0,T ]
‖∇Xε,δ

n,m(t)‖2 + δ

∫ T

0
‖	Xε,δ

n,m(s)‖2 ds
]

≤ C
(
E

[
‖xn0‖2

H
1
0

]
+ ‖gn‖2

H
1
0

)
.
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Hence, from the sequence {Xε,δ
n,m}m∈N we can extract a subsequence (not relabeled),

s.t. for m → ∞

Xε,δ
n,m⇀Xε,δ

n in L2(�; L2((0, T );H2)

Xε,δ
n,m⇀∗Xε,δ

n in L2(�; L∞((0, T );H1
0)).

By lower-semicontinuity of the norms, we get

E

[
sup

t∈[0,T ]
1

2
‖∇Xε,δ

n (t)‖2 + δ

∫ T

0
‖	Xε,δ

n (s)‖2 ds
]

≤ C(E
[
‖xn0‖2

H
1
0

]
+ ‖gn‖2

H
1
0
).

��
We define the SVI solution of (3) and (1) analogically to [3, Definition 3.1] as a

stochastic variational inequality.

Definition 3.1 Let 0 < T < ∞, ε ∈ [0, 1] and x0 ∈ L2(�,F0;L2) and
g ∈ L

2. Then a Ft -progressively measurable map Xε ∈ L2(�;C([0, T ];L2)) ∩
L2(�; L1((0, T ); BV (O))) [denoted by X ∈ L2(�;C([0, T ];L2)) ∩ L2(�;
L1((0, T ); BV (O))) for ε = 0] is called a SVI solution of (3) [or (1) if ε = 0]
if Xε(0) = x0 (X(0) = x0), and for each (Ft )-progressively measurable pro-
cess G ∈ L2(� × (0, T ),L2) and for each (Ft )-adapted L

2-valued process Z ∈
L2(� × (0, T );H1

0) with P-a.s. continuous sample paths which satisfy the equation

dZ(t) = −G(t) dt + Z(t) dW (t), t ∈ [0, T ], (17)

it holds for ε ∈ (0, 1] that

1

2
E

[
‖Xε(t) − Z(t)‖2

]
+ E

[∫ t

0
Jε,λ(X

ε(s)) ds

]

≤ 1

2
E

[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0
Jε,λ(Z(s)) ds

]

+ E

[∫ t

0
‖Xε(s) − Z(s)‖2 ds

]
+ E

[∫ t

0

(
Xε(s) − Z(s),G

)
ds

]
, (18)

and analogically for ε = 0 it holds that

1

2
E

[
‖X(t) − Z(t)‖2

]
+ E

[∫ t

0
Jλ(X(s)) ds

]

≤ 1

2
E

[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0
Jλ(Z(s)) ds

]

+ E

[∫ t

0
‖X(s) − Z(s)‖2 ds

]
+ E

[∫ t

0
(X(s) − Z(s),G) ds

]
. (19)
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In the next theorem we show the existence and uniqueness of a SVI solution to (3) for
ε > 0 in the sense of the Definition 3.1.

Theorem 3.1 Let 0 < T < ∞ and x0 ∈ L2(�,F0;L2), g ∈ L
2. For each ε ∈ (0, 1]

there exists a unique SVI solution Xε of (3). Moreover, any two SVI solutions Xε
1, X

ε
2

with x0 ≡ x10 , g ≡ g1 and x0 ≡ x20 , g ≡ g2 satisfy

E

[
‖Xε

1(t) − Xε
2(t)‖2

]
≤ C

(
E

[
‖x10 − x20‖2

]
+ ‖g1 − g2‖2

)
, (20)

for all t ∈ [0, T ].
Proof of Theorem 3.1 We show that for fixed ε > 0 the sequence {Xε,δ

n }δ,n of varia-
tional solutions of (7) is a Cauchy-sequence w.r.t. δ for any fixed n ∈ N, and then
show that it is a Cauchy-sequence w.r.t. n for δ ≡ 0.

We denote by Xε,δ1
n1 , Xε,δ2

n2 the solutions of (7) for δ ≡ δ1, δ ≡ δ2 and x0 ≡ xn10 ∈
L2(�,F0;H1

0), x0 ≡ xn20 ∈ L2(�,F0;H1
0), respectively, where xn10 , xn20 belong to

the H1
0-approximating sequence of x0 ∈ L2(�,F0;L2). By Itô’s formula it follows

that

1

2
‖Xε,δ1

n1 (t) − Xε,δ2
n2 (t)‖2

= 1

2
‖xn10 − xn20 ‖2 +

∫ t

0

(
δ1	Xε,δ1

n1 (s) − δ2	Xε,δ2
n2 (s), Xε,δ1

n1 (s) − Xε,δ2
n2 (s)

)
ds

−
∫ t

0

⎛
⎝ ∇Xε,δ1

n1 (s)√
|∇Xε,δ2

n2 (s)|2 + ε2
− ∇Xε,δ2

n2 (s)√
|∇Xε,δ2

n2 (s)|2 + ε2
,∇(Xε,δ1

n1 (s) − Xε,δ2
n2 (s))

⎞
⎠ ds

− λ

∫ t

0
‖(Xε,δ1

n1 (s) − Xε,δ2
n2 (s)‖2 ds +

∫ t

0
‖Xε,δ1

n1 (s) − Xε,δ2
n2 (s)‖2 dW (s)

+
∫ t

0
‖Xε,δ1

n1 (s) − Xε,δ2
n2 (s)‖2 ds.

We note that

(
δ1	Xε,δ1

n1 (s) − δ2	Xε,δ2
n2 (s), Xε,δ1

n1 (s) − Xε,δ2
n2 (s)

)
= − (δ1∇Xε,δ1

n1 (s) − δ2∇Xε,δ2
n2 (s),∇Xε,δ1

n1 (s) − ∇Xε,δ2
n2 (s)

)
≤ C(δ1 + δ2)(‖∇Xε,δ1

n1 (s)‖2 + ‖∇Xε,δ2
n2 (s)‖2).

Hence by using the convexity (12), Lemma3.2, theBurkholder–Davis–Gundy inequal-
ity for p = 1, the Tonelli and Gronwall lemmas we obtain

E

[
sup

t∈[0,T ]
‖Xε,δ1

n1 (t) − Xε,δ2
n2 (t)‖2

]
≤ CE

[
‖xn10 − xn20 ‖2

]

+ C
(
E

[
‖xn10 ‖2

H
1
0

]
,E
[
‖xn20 ‖2

H
1
0

]
, ‖gn‖2

H
1
0

)
(δ1 + δ2). (21)
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Inequality (21) implies for xn10 ≡ xn20 ≡ xn0 that

E

[
sup

t∈[0,T ]
‖Xε,δ1

n (t) − Xε,δ2
n (t)‖2

]
≤ C

(
E

[
‖xn0‖2

H
1
0

]
, ‖gn‖2

H
1
0

)
(δ1 + δ2).

Hence for any fixed n, ε there exists a {Ft }-adapted process Xε
n ∈ L2(�,C([0, T ];

L
2)), s.t.

lim
δ→0

E

[
sup

t∈[0,T ]
‖Xε,δ

n (t) − Xε
n(t)‖2

]
→ 0. (22)

For fixed n1, n2, ε we get from (21) using (22) by the lower-semicontinuity of norms
that

E

[
sup

t∈[0,T ]
‖Xε

n1(t) − Xε
n2‖2

]
≤ lim inf

δ→0
E

[
sup

t∈[0,T ]
‖Xε,δ

n1 (t) − Xε,δ
n2 ‖2

]

≤ 1

2
E

[
‖xn10 − xn20 ‖2

]
. (23)

Since xn10 , xn20 → x0 for n1, n2 → ∞ we deduce from (23) that for any fixed ε there
exists an {Ft }-adapted process Xε ∈ L2(�;C([0, T ];L2)) such that

lim
n→∞E

[
sup

t∈[0,T ]
‖Xε(t) − Xε

n(t)‖2
]

→ 0. (24)

In the next step, we show that the limiting process Xε is a SVI solution of (3). We
subtract the process

dZ(t) = −G(t) dt + Z(t) dW (t) ,

with Z(t) = z0 from (7) and obtain

d
(
Xε,δ
n (t) − Z(t)

) = (−Aε,δXε,δ
n (t) + G(t)

)
dt + (

Xε,δ
n (t) − Z(t)

)
dW (t).

The Itô formula implies

1

2
E

[
‖Xε,δ

n (t) − Z(t)‖2
]

= 1

2
E

[
‖Xε,δ

n (0) − z0‖2
]

− E

[∫ t

0
〈Aε,δXε,δ

n (s), Xε,δ
n (s) − Z(s)〉 ds

]

+ E

[∫ t

0

(
G(s), Xε,δ

n (s) − Z(s)
)
ds

]
+ E

[∫ t

0
‖Xε,δ

n (s) − Z(s)‖2 ds
]

. (25)
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We rewrite the second term on the right-hand side in above inequality as

E

[∫ t

0
〈Aε,δXε,δ

n (s), Xε,δ
n (s) − Z(s)〉 ds

]

= E

[∫ t

0
δ(∇Xε,δ

n (s),∇(Xε,δ
n (s) − Z(s))) ds

]

+ E

⎡
⎣∫ t

0

⎛
⎝ ∇Xε,δ

n (s)√
|∇Xε,δ

n (s)|2 + ε2
,∇(Xε,δ

n (s) − Z(s)
)
⎞
⎠ ds

⎤
⎦

+ E

[∫ t

0
λ(Xε,δ

n (s) − gn, Xε,δ
n (s) − Z(s)) ds

]
.

The convexity of Jε along with the Cauchy–Schwarz and Young’s inequalities imply
that

E

⎡
⎣∫ t

0
(

∇Xε,δ
n (s)√

|∇Xε,δ
n (s)|2 + ε2

,∇(Xε,δ
n (s) − Z(s))) ds

⎤
⎦

+ E

[∫ t

0
λ(Xε,δ

n (s) − gn, Xε,δ
n (s) − Z(s)) ds

]

≥ E

[∫ t

0
Jε(X

ε,δ
n (s)) − Jε(Z(s)) ds

]

+ E

[∫ t

0

λ

2
‖Xε,δ

n (s) − gn‖2 − λ

2
‖Z(s) − gn‖2 ds

]
.

By combining two inequalities above with (25) we get

1

2
E

[
‖Xε,δ

n (t) − Z(t)‖2
]

+ E

[∫ t

0
Jε(X

ε,δ
n (s)) ds + λ

2
‖Xε,δ

n (s) − gn‖2 ds
]

+ δ

2
E

[∫ t

0
‖∇Xε,δ

n (s)‖2) ds
]

≤ 1

2
E

[
‖Xε,δ

n (0) − Z(0)‖2
]

+ E

[∫ t

0
Jε(Z(s)) ds + λ

2
‖Z(s) − gn‖2 ds

]

+ δ

2
E

[∫ t

0
‖∇Z(s)‖2) ds

]
+ E

[∫ t

0

(
G(s), Xε,δ

n (s) − Z(s)
)
ds

]

+ E

[∫ t

0
‖Xε,δ

n (s) − Z(s)‖2 ds
]

. (26)

The lower-semicontinuity of Jε in BV (O) with respect to convergence in L1, cf. [1],
and (22), (24) and the strong convergence gn → g in L

2 imply that for δ → 0 and
n → ∞ the limiting process Xε ∈ L2(�;C([0, T ];L2) satisfies (18).
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To conclude that Xε is a SVI solution of (3) it remains to show that Xε ∈
L2(�; L1((0, T ); BV (O))). Setting G ≡ 0 in (17) [which implies Z ≡ 0 by (17)]
yields

1

2
E

[
‖Xε(t)‖2

]
+ E

[∫ t

0
Jε,λ(X

ε(s)) ds

]

≤ 1

2
E

[
‖x0‖2

]
+ E

[∫ t

0
Jε,λ(0) ds

]
+ E

[∫ t

0
‖Xε(s)‖2 ds

]
. (27)

On noting that (cf. Definition 2.3 or [7, proof of Theorem 1.3])

Jε,λ(X
ε) ≥Jλ(X

ε),

and Jε,λ(0) = ε|O| + λ
2‖g‖2, we deduce from (27) that

1

2
E

[
‖Xε(t)‖2

]
+ E

[∫ t

0
Jλ(X

ε(s)) ds

]

≤ 1

2
E

[
‖x0‖2

]
+ E

[∫ t

0
ε
(
|O| + λ

2
‖g‖2

)
ds

]
+ E

[∫ t

0
‖Xε(s)‖2 ds

]
.

Hence, by the Tonelli and Gronwall lemmas it follows that

1

2
E

[
‖Xε(t)‖2

]
+ E

[∫ t

0
Jλ(X

ε(s)) ds

]

≤ CT exp(T )
(
E

[
‖x0‖2

]
+ |O| + λ‖g‖2

)
. (28)

Hence Xε ∈ L2(�;C([0, T ];L2))∩ L2(�; L1((0, T ); BV (O))) is a SVI solution of
(3) for ε ∈ (0, 1].

In the next step we show the uniqueness of the SVI solution. Let Xε
1, X

ε
2 be two

SVI solutions to (3) for a fixed ε ∈ (0, 1] with initial values x0 ≡ x10 , x
2
0 and g ≡

g1, g2, respectively. Let {x2,n0 }n∈N ⊂ L2(�,F0;H1
0) be a sequence, s.t. x

2,n
0 → x20 in

L2(�,F0;L2) and {g2,n}n∈N ⊂ H
1
0 be a sequence, s.t. g

2,n
0 → g2 in L

2 for n → ∞
and let {Xε,δ

2,n}n∈N,δ>0 be a sequenceof variational solutions of (7) (for fixed ε > 0)with

x0 ≡ x2,n0 , g ≡ g2,n . We note that the first part of the proof implies that Xε,δ
2,n → Xε

2

in L2(�;C([0, T ];L2) for δ → 0, n → ∞. We set Z = Xε,δ
2,n,G = Aε,δ(Xε,δ

2,n) in
(18) and observe that

1

2
E

[
‖Xε

1(t) − Xε,δ
2,n(t)‖2

]
+ E

[∫ t

0
Jε,λ(X

ε
1(s)) ds

]

≤ 1

2
E

[
‖x1 − x2,n0 ‖2

]
+ E

[∫ t

0
Jε,λ(X

ε,δ
2,n(s)) ds

]

+ E

[
δ

∫ t

0

(
∇Xε

1(s) − ∇Xε,δ
2,n(s),∇Xε,δ

2,n(s))
)
ds

]
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+ E

⎡
⎣∫ t

0

⎛
⎝∇Xε

1(s) − ∇Xε,δ
2,n(s),

∇Xε,δ
2,n(s)√

|∇Xε,δ
2,n(s)|2 + ε2

⎞
⎠ ds

⎤
⎦

+ E

[∫ t

0
λ
(
Xε
1(s) − Xε,δ

2,n(s), X
ε,δ
2,n(s) − g2,n

)
ds

]

+ E

[∫ t

0
‖Xε

1(s) − Xε,δ
2,n(s)‖2 ds

]

:= I + I I + I I I + I V + V + V I . (29)

The term I I I is estimated using Young’s inequality as

I I I = δE

[∫ t

0

(
∇Xε

1(s) − ∇Xε,δ
2,n(s),∇Xε,δ

2,n(s))
)
ds

]

≤ CE

[∫ t

0
δ
2
3 ‖Xε

1(s) − Xε,δ
2,n(s)‖2 + δ

4
3 ‖	Xε,δ

2,n(s))‖2 ds
]

.

By the convexity (12) we estimate

I V = E

⎡
⎣∫ t

0

⎛
⎝∇Xε

1(s) − ∇Xε,δ
2,n(s),

∇Xε,δ
2,n(s)√

|∇Xε,δ
2,n(s)|2 + ε2

⎞
⎠ ds

⎤
⎦

≤ E

[∫ t

0

√
|∇Xε

1(s)|2 + ε2 −
√

|∇Xε,δ
2,n(s)|2 + ε2 ds

]
.

Next, we obtain

V = λE

[∫ t

0

(
Xε
1(s) − Xε,δ

2,n(s), X
ε,δ
2,n(s) − g2,n

)
ds

]

≤ λ

2
E

[∫ t

0
‖Xε

1(s) − g2,n‖2 − ‖Xε,δ
2,n(s) − g2,n‖2 ds

]
.

After substituting I I I–V into (29) we arrive at

1

2
E

[
‖Xε

1(t) − Xε,δ
2,n(t)‖2

]
+ λ

2
E

[∫ t

0
‖Xε

1(s) − g1‖2 ds
]

≤ 1

2
E

[
‖x10 − x2,n0 ‖2

]
+ λ

2
E

[∫ t

0
‖Xε,δ

2,n(s) − g1‖2 ds
]

+ CE

[∫ t

0
δ
2
3 ‖Xε

1(s) − Xε,δ
2,n(s)‖2 + δ

4
3 ‖	Xε,δ

2,n(s))‖2 ds
]

× λ

2
E

[∫ t

0
‖Xε

1(s) − g2,n‖2 ds
]

− λ

2
E

[∫ t

0
‖Xε,δ

2,n(s) − g2,n‖2 ds
]

+ E

[∫ t

0
‖Xε

1(s) − Xε,δ
2,n(s)‖2 ds

]
. (30)
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Theconvergences (22), (24) imply the convergence Xε,δ
2,n → Xε

2 in L
2(�;C([0, T ];L2))

for δ → 0, n → ∞. We note that for δ → 0 the fourth term on the right-hand side of
(30) vanishes due toLemma3.2.Hence, by taking the limits for δ → 0,n → ∞ in (30),
using the strong convergence g2,n → g2 in L2 for n → ∞ , the lower-semicontinuity
of norms and (22), (24) we obtain

E

[
‖Xε

1(t) − Xε
2(t)‖2

]
≤ CE

[
‖x10 − x20‖2

]

+ λ

2
E

[∫ t

0
‖Xε

1(s) − g2‖2 + ‖Xε
2(s) − g1‖2

−‖Xε
1(s) − g1‖2 − ‖Xε

2(s) − g2‖2 ds
]

+ E

[∫ t

0
‖Xε

1(s) − Xε
2(s)‖2 ds

]

≤ C

(
E

[
‖x10 − x20‖2

]
+ E

[∫ t

0
‖Xε

1(s) − Xε
2(s)‖2 ds

]
+ ‖g1 − g2‖2

)
,

for all t ∈ [0, T ]. After applying the Tonelli and Gronwall lemmas we obtain (20).
��

Our second main theorem establishes existence and uniqueness of a SVI solution to
(1) in the sense of Definition 3.1. The solution is obtained as a limit of solutions of
the regularized gradient flow (3) for ε → 0.

Theorem 3.2 Let 0 < T < ∞ and x0 ∈ L2(�,F0;L2), g ∈ L
2 be fixed. Let {Xε}ε>0

be the SVI solutions of (3) for ε ∈ (0, 1]. Then Xε converges to the unique SVI
variational solution X of (1) in L2(�;C([0, T ];L2)) for ε → 0, i.e., there holds

lim
ε→0

E

[
sup

t∈[0,T ]
‖Xε(t) − X(t)‖2

]
= 0. (31)

Furthermore, the following estimate holds

E

[
‖X1(t) − X2(t)‖2

]
≤ C

(
E

[
‖x10 − x20‖2

]
+ ‖g1 − g2‖2

)
for all t ∈ [0, T ] ,

(32)

where X1 and X2 are SVI solutions of (1) with x0 ≡ x10 , g ≡ g1 and x0 ≡ x20 , g ≡ g2,
respectively.

Proof of Theorem 3.2 WeconsiderL2-approximating sequences {xn0 }n∈N ⊂ L2(�,F0;
H

1
0) and {gn}n∈N ⊂ H

1
0 of the initial condition x0 ∈ L2(�,F0;L2) and g ∈ L

2,

respectively. For n ∈ N, δ > 0 we denote by Xε1,δ
n , Xε2,δ

n the variational solutions of
(7) with ε ≡ ε1, ε ≡ ε2, respectively. By Itô’s formula the difference satisfies
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1

2
‖Xε1,δ

n (t) − Xε2,δ
n (t)‖2

= −δ

∫ t

0
‖∇(Xε1,δ

n (s) − Xε2,δ
n (s))‖2 ds

−
∫ t

0

⎛
⎝ ∇Xε1,δ

n (s)√
|∇Xε1,δ

n (s)|2 + ε21

− ∇Xε2,δ
n (s)√

|∇Xε2,δ
n (s)|2 + ε22

,∇(Xε1,δ
n (s) − Xε2,δ

n (s))

⎞
⎠ ds

− λ

∫ t

0
‖(Xε1,δ

n (s) − Xε2,δ
n (s)‖2 ds +

∫ t

0
‖Xε1,δ

n (s) − Xε2,δ
n (s)‖2 dW (s)

+
∫ t

0
‖Xε1,δ

n (s) − Xε2,δ
n (s)‖2 ds. (33)

We estimate the second term on the right-hand side of (33) using the convexity (12)

⎛
⎝ ∇Xε1,δ

n (s)√
|∇Xε1,δ

n (s)|2 + ε21

− ∇Xε2,δ
n (s)√

|∇Xε2,δ
n (s)|2 + ε22

,∇(Xε1,δ
n (s) − Xε2,δ

n (s))

⎞
⎠

=
⎛
⎝ ∇Xε1,δ

n (s)√
|∇Xε1,δ

n (s)|2 + ε21

,∇(Xε1,δ
n (s) − Xε2,δ

n (s))

⎞
⎠

+
⎛
⎝ ∇Xε2,δ

n (s)√
|∇Xε2,δ

n (s)|2 + ε22

,∇(Xε2,δ
n (s) − Xε1,δ

n (s))

⎞
⎠

≥
∫
O

√
|∇Xε1,δ

n |2 + ε21 −
√

|∇Xε2,δ
n |2 + ε21 dx

+
∫
O

√
|∇Xε2,δ

n |2 + ε22 −
√

|∇Xε1,δ
n |2 + ε22 dx . (34)

Next, we observe that

∫
O

(√
|∇X

ε1,δ
n |2 + ε21 −

√
|∇X

ε1,δ
n |2 + ε22

)
dx

=
∫
O

(√
|∇X

ε1,δ
n |2 + ε21 −

√
|∇X

ε1,δ
n |2 + ε22

)(√
|∇X

ε1,δ
n |2 + ε21 +

√
|∇X

ε1,δ
n |2 + ε22

)
√

|∇X
ε1,δ
n |2 + ε21 +

√
|∇X

ε1,δ
n |2 + ε22

dx

=
∫
O

|∇X
ε1,δ
n |2 + ε21 − |∇X

ε1,δ
n |2 − ε22√

|∇X
ε1,δ
n |2 + ε21 +

√
|∇X

ε1,δ
n |2 + ε22

dx

=
∫
O

(ε1 + ε2)(ε1 − ε2)√
|∇X

ε1,δ
n |2 + ε21 +

√
|∇X

ε1,δ
n |2 + ε22

dx

≤
∫
O

|ε1 − ε2|
⎛
⎝ ε1√

|∇X
ε1,δ
n |2 + ε21

+ ε2√
|∇X

ε1,δ
n |2 + ε22

⎞
⎠ dx ≤ C(ε1 + ε2).
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Using the inequality above, we get

∫
O

√
|∇Xε1,δ

n |2 + ε21 −
√

|∇Xε2,δ
n |2 + ε22 dx

+
∫
O

√
|∇Xε2,δ

n |2 + ε22 −
√

|∇Xε1,δ
n |2 + ε22 dx

≥ −
∣∣∣∣∣∣
∫
O

√
|∇Xε1,δ

n |2 + ε21 −
√

|∇Xε1,δ
n |2 + ε22 dx

∣∣∣∣∣∣

−
∣∣∣∣∣∣
∫
O

√
|∇Xε2,δ

n |2 + ε21 −
√

|∇Xε2,δ
n |2 + ε22 dx

∣∣∣∣∣∣
≥ −C(ε1 + ε2).

Substituting (34) along with the last inequality into (33) yields

1

2
‖Xε1,δ

n (t) − Xε2,δ
n (t)‖2 ≤C(ε1 + ε2)

+
∫ t

0
‖Xε1,δ

n (s) − Xε2,δ
n (s)‖2 dW (s)

+
∫ t

0
‖Xε1,δ

n (s) − Xε2,δ
n (s)‖2 ds. (35)

After using the Burkholder–Davis–Gundy inequality for p = 1, the Tonelli and Gron-
wall lemmas we obtain that

E

[
sup

t∈[0,T ]
‖Xε1,δ

n (t) − Xε2,δ
n (t)‖2

]
≤ C(ε1 + ε2). (36)

We take the limit for δ → 0 in (36) for fixed n and ε1, ε2, and obtain using (22) by
the lower-semicontinuity of norms that

E

[
sup

t∈[0,T ]
‖Xε1

n (t) − Xε2
n (t)‖2

]
≤ lim inf

δ→0
E

[
sup

t∈[0,T ]
‖Xε1,δ

n (t) − Xε2,δ
n (t)‖2

]

≤C(ε1 + ε2). (37)

Hence, by (24) and the lower-semicontinuity of norms, after taking the limit n → ∞
in (37) for fixed ε1, ε2 we get
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E

[
sup

t∈[0,T ]
‖Xε1(t) − Xε2(t)‖2

]
≤ lim inf

n→∞ E

[
sup

t∈[0,T ]
‖Xε1

n (t) − Xε2
n (t)‖2

]

≤C(ε1 + ε2). (38)

The above inequality implies that {Xε}ε>0 is a Cauchy Sequence in ε. Consequently
there exists a unique {Ft }-adapted process X ∈ L2(�;C([0, T ];L2))with X(0) = x0
such that

lim
ε→0

E

[
sup

t∈[0,T ]
‖Xε(t) − X(t)‖2

]
= 0. (39)

This concludes the proof of (31).
Next, we show that the limiting process X is the SVI solution of (1), i.e., we show

that (19) holds. We note that (28) implies that

sup
ε∈(0,1]

E

[∫ t

0
Jλ(X

ε(s) ds

]
≤ C . (40)

Hence using (39), (40) we get by Fatou’s lemma and [2, Proposition 10.1.1] that

lim inf
ε→0

E

[∫ t

0
Jλ(X

ε(s)) ds

]
≥ E

[∫ t

0
Jλ(X(s)) ds

]
.

By Theorem 3.1 we know that Xε satisfies (18) for any ε ∈ (0, 1]. By taking the limit
for ε → 0 in (18), using the above inequality and (39) it follows that X satisfies (19).
Finally, inequality (32) follows after taking the limit for ε → 0 in (39), by (20) and
the lower semicontinuity of norms. ��

4 Numerical approximation

We construct a fully-discrete approximation of the STVF Eq. (1) via an implicit time-
discretization of the regularized STVF Eq. (3). For N ∈ N we consider the time-step
τ := T /N , set ti := iτ for i = 0, . . . , N and denote the discrete Wiener increments
as 	iW := W (ti ) − W (ti−1). We combine the discretization in time with a the
standard H

1
0-conforming finite element method, see, e.g., [4,5,7]. Given a family of

quasi-uniform triangulations
{
Th
}
h>0 of O into open simplices with mesh size h =

maxK∈Th {diam(K )} we consider the associated space of piecewise linear, globally
continuous functions Vh = {vh ∈ C0(O); vh |K ∈ P1(K ) ∀K ∈ Th} ⊂ H

1
0 and set

L ≡ dimVh for the rest of the paper. We set Xh
0 := Phx0, gh := Phg, where Ph is

the L2-projection onto Vh .
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The implicit fully-discrete approximation of (3) is defined as follows: fix N ∈ N,
h > 0 set X0

ε = xh0 ∈ Vh and determine Xi
ε,h ∈ Vh , i = 1, . . . , N as the solution of

(
Xi

ε,h, vh

)
=
(
Xi−1

ε,h , vh

)
− τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
,∇vh

⎞
⎠

− τλ
(
Xi

ε,h − gh, vh
)

+
(
Xi−1

ε,h , vh

)
	iW ∀vh ∈ Vh . (41)

To show convergence of the solution of the numerical scheme (41) we need to
consider a discretization of the regularized problem (7). Given x0 ∈ L2(�,F0;L2),
g ∈ L

2 and n ∈ N we choose xn0 := Pnx0 ∈ Vn , gn := Png ∈ Vn in (7). Since
Vn ⊂ H

1
0 the sequences {xn0 }n∈N ⊂ L2(�,F0;H1

0), {gn}n∈N ∈ H
1
0 constitute H

1
0-

approximating sequences of x0 ∈ L2(�,F0;L2), g ∈ L
2, respectively.We set xh,n

0 :=
Phxn0 , g

h,n := Phgn , where Ph is the L
2-projection onto Vh . The fully-discrete

Galerkin approximation of (7) for fixed n ∈ N is then defined as follows: fix N ∈ N,
h > 0 set X0

ε,δ,n,h = xh,n
0 and determine Xi

ε,δ,n,h ∈ Vh , i = 1, . . . , N as the solution
of

(
Xi

ε,δ,n,h, vh

)
=
(
Xi−1

ε,δ,n,h, vh

)
− τδ

(
∇Xi

ε,δ,n,h,∇vh

)
− τ

⎛
⎝ ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇vh

⎞
⎠

− τλ
(
Xi

ε,δ,n,h − gh,n, vh

)
+
(
Xi−1

ε,δ,n,h, vh

)
	i W ∀vh ∈ Vh . (42)

The next lemma, cf. [15, Lemma II.1.4] is used to show P-a.s. existence of discrete
solutions {Xi

ε,h}Ni=1, {Xi
ε,δ,n,h}Ni=1 of numerical schemes (41), (42), respectively.

Lemma 4.1 Let h : RL → R
L be continuous. If there is R > 0 such that h(v)v ≥ 0

whenever ‖v‖RL = R then there exist v̄ satisfying ‖v̄‖RL ≤ R and h(v̄) = 0.

In order to show {Fti }Ni=1-measurability of the random variables {Xi
ε,h}Ni=1,

{Xi
ε,δ,n,h}Ni=1 we make use of the following lemma, cf. [6,9].

Lemma 4.2 Let (S, �) be a measure space. Let f : S × R
L → R

L be a function
that is �-measurable in its first argument for every x ∈ R

L , that is continuous in its
second argument for every α ∈ S and moreover such that for every α ∈ S the equation
f (α, x) = 0 has an unique solution x = g(α). Then g : S → R

L is �-measurable.

Belowwe show the existence, uniqueness and measurability of numerical solutions
of (41), (42). We state the result for the scheme (42) only, since the proof also holds
for δ = 0 (i.e. for (41)) without any modifications.

Lemma 4.3 Let x0 ∈ L2(�,F0;L2), g ∈ L
2 and let L, n, N ∈ N be fixed. The for

any δ ≥ 0, ε > 0, i = 1, . . . , N , there exist Fti -measurable P-a.s. unique random
variables Xi

ε,δ,n,h ∈ Vh which solves (42).
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Proof of Lemma 4.3 Assume that theVh-valued randomvariables X0
ε,δ,n,h, . . . , X

i−1
ε,δ,n,h

satisfy (42) and that Xk
ε,δ,n,h is Ftk -measurable for k = 1, . . . , i − 1. We show that

there is a Fti measurable random variable Xi
ε,δ,n,h , that satisfies (41). Let {ϕ�}L�=1 be

the basis of Vh . We identify every v ∈ Vh with a vector v̄ ∈ R
L with v = ∑L

�=1 v̄�ϕ�

and define a norm on R
L as ‖v̄‖RL := ‖v‖

H
1
0
. For an arbitrary ω ∈ � we repre-

sent Xω ∈ Vh as a vector X̄ω ∈ R
L and define a function h : � × R

L → R
L

component-wise for � = 1, . . . , L as

h(ω, X̄ω)� := (Xω − Xi−1
ε,δ,n,h(ω), ϕ�) + τδ(∇Xω,∇ϕ�) + τ

(
∇Xω√|∇Xω|2 + ε2

,∇ϕ�

)

+ τλ(Xω − gh,n, ϕ�) − (Xi−1
ε,δ,n,h(ω), ϕ�)	iW (ω).

We show, that for each ω ∈ � there exists an X̄ω such that h(ω, X̄ω) = 0. We note
the following inequality

h(ω, X̄ω) · X̄ω

= (Xω − Xi−1
ε,δ,n,h(ω), X) + τδ‖	Xω‖2 + τ

(
∇Xω√|∇Xω|2 + ε2

,∇Xω

)

+ τλ(Xω − gh,n, Xω) − (Xi−1
ε,δ,n,h(ω), Xω)	iW (ω)

≥ ‖Xω‖2 − (Xi−1
ε,δ,n,h(ω), Xω) + τ

(
∇Xω√|∇Xω|2 + ε2

,∇Xω

)

− (Xi−1
ε,δ,n,h(ω), Xω)	iW + τλ‖Xω‖ − τλ(gn, Xω)

≥ ‖Xω‖
(
‖Xω‖ − ‖Xi−1

ε,δ,n,h(ω)‖ − ‖Xi−1
ε,δ,n,h(ω)‖|	iW (ω)| − ‖gh,n‖

)
.

On choosing ‖Xω‖ = Rω large enough, the existence of Xi
ε,δ,n(ω) ∈ Vh for each

ω ∈ � then follows by Lemma 4.1, since h(ω, ·) is continuous by the semicontinuity
of the operator Aε,δ , which follows from hemicontinuity and and monotonicity of Aε,δ

for δ ≥ 0, ε > 0, see [12, Remark 4.1.1]. TheFti -measurability follows by Lemma 4.2
for unique Xi

ε,δ,n .

Hence, it remains to show that Xi
ε,δ,n,h is P-a.s. unique. Assume there are two

different solution X1, X2, s.t. h(ω, X1(ω)) = 0 = h(ω, X2(ω)) for ω ∈ �. Then by
the convexity (12) we observe that

0 = (h(ω, X1(ω)) − h(ω, X2(ω))
) · (X1(ω) − X2(ω)

)
= (1 + τλ)‖X1(ω) − X2(ω)‖2 + τδ‖∇(X1 − X2)(ω)‖2

+ τ

(
∇X1(ω)√|∇X1(ω)|2 + ε2

− ∇X2(ω)√|∇X2(ω)|2 + ε2
,∇X1(ω) − ∇X2(ω)

)

≥ (1 + τλ)‖X1(ω) − X2(ω)‖2 + τδ‖∇(X1 − X2)(ω)‖2 .

Hence X1 ≡ X2 P-a.s. ��
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We define the discrete Laplacian 	h : Vh → Vh by

− (	hwh, vh) = (∇wh,∇vh) ∀wh, vh ∈ Vh . (43)

To obtain the required the stability properties of the numerical approximation (42) we
need the following lemma.

Lemma 4.4 Let 	h be the discrete Laplacian defined by (43). Then for any vh ∈ Vh,
ε, h > 0 the following inequality holds:

−
(

∇vh√|∇vh |2 + ε2
,∇(	hvh)

)
≥ 0 . (44)

Proof of Lemma 4.4 Let {ϕ�}L�=1 be the basis ofVh consisting of continuous piecewise
linear Lagrange basis functions associated with the nodes of the triangulation Th .
Then any vh ∈ Vh has the representation vh = ∑L

�=1(vh)�ϕ�, where (vh)� ∈ R, � =
1, . . . , L and analogically 	hvh = ∑L

�=1(	hvh)�ϕ�, with coefficients (	vh)� ∈
R, � = 1, . . . , L . From (43) it follows that

L∑
�=1

(	vh)� (ϕ�, ϕk) = −
L∑

�=1

(vh)� (∇ϕ�,∇ϕk) = −
∑
K∈Th

L∑
�=1

(vh)� (∇ϕ�,∇ϕk)K ,

(45)

where we denote (v,w)K := ∫
K v(x)w(x)dx for K ∈ Th .

We rewrite (45) with the mass matrix M := {M}i,k := (ϕi , ϕk) and the stiffness
matrix A := {A}i,k := (∇ϕi ,∇ϕk) and AK := {AK }i,k := (∇ϕi ,∇ϕk)K as

	h v̄h = M−1Av̄h = M−1
∑
K∈Th

AK v̄h , (46)

where 	h v̄h ∈ R
L is the vector ((	hvh)1, . . . , (	hvh)L)T and v̄h ∈ R

L is the vector
((vh)1, . . . , (vh)L)T . Since Vh consists of functions, which are piecewise linear on

the triangles K ∈ Th , (|∇vh |2 + ε2)− 1
2 is constant on every triangle T . We note, that

the matrices M and M−1 are positive definite. We get using the Young’s inequality

−
(

∇vh√|∇vh |2 + ε2
,∇(	hvh)

)
= −

∑
K∈Th

(|∇vh |2 + ε2)
− 1

2
K (∇vh,∇(	h∇vh))K

= −
∑
K∈Th

L∑
k,�=1

(|∇vh |2 + ε2)
− 1

2
K (vh)�(	hvh)k (∇ϕ�,∇ϕk)K

= −
∑
K∈Th

(|∇vh |2 + ε2)
− 1

2
K v̄Th AT

K	h v̄h
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=
∑

K ,K ′∈Th
(|∇vh |2 + ε2)

− 1
2

K v̄Th AT
K M−1AK ′ v̄h

= 1

2

∑
K ,K ′∈Th

(|∇vh |2 + ε2)
− 1

2
K v̄Th AT

K M−1AK ′ v̄h

+ 1

2

∑
K ,K ′∈Th

(|∇vh |2 + ε2)
− 1

2
K ′ v̄Th AT

K M−1AK ′ v̄h

= 1

2

∑
K ,K ′∈Th

v̄Th AT
K M−1AK ′ v̄h

(
(|∇vh |2 + ε2)

− 1
2

K + (|∇vh |2 + ε2)
− 1

2
K ′

)

≥ 1

2

∑
K ,K ′∈Th

√
(|∇vh |2 + ε2)

− 1
2

K v̄Th AT
K M−1AK ′ v̄h

√
(|∇vh |2 + ε2)

− 1
2

K ′

≥ 0 ,

since M−1 is positive definite. ��
In the next lemma we state the stability properties of the numerical solution of the

scheme (42) which are discrete analogues of estimates in Lemmas 3.1 and 3.2.

Lemma 4.5 Let x0 ∈ L2(�,F0;L2) and g ∈ L
2 be given. Then there exists a constant

C ≡ C(E
[‖x0‖L2

]
, ‖g‖L2) > 0 such that for any n ∈ N, τ, h > 0 the solution of

scheme (42) satisfies

sup
i=1,...,N

E

[
‖Xi

ε,δ,n,h‖2
]

+ 1

4
E

[
N∑

k=1

‖Xk
ε,δ,n,h − Xk−1

ε,δ,n,h‖2
]

+ τδE

[
N∑

k=1

‖∇Xk
ε,δ,n,h‖2

]
+ τλ

2
E

[
N∑

k=1

‖Xk
ε,δ,n,h‖2

]
≤ C , (47)

and a constant Cn ≡ C(E[‖xn0‖
H
1
0
], ‖gn‖

H
1
0
) > 0 such that for any τ, h > 0

sup
i=1,...,N

E

[
‖∇Xi

ε,δ,n,h‖2
]

+ 1

4
E

[
N∑

k=1

‖∇(Xk
ε,δ,n,h − Xk−1

ε,δ,n,h)‖2
]

+ τδE

[
N∑

k=1

‖	h X
k
ε,δ,n,h‖2

]
≤ Cn . (48)

Proof of Lemma 4.5 We set vh = Xi
ε,δ,n,h in (42), use the identity 2(a − b)a = a2 −

b2 + (a − b)2 and get for i = 1, . . . , N
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1

2
‖Xi

ε,δ,n,h‖2 + 1

2
‖Xi

ε,δ,n,h − Xi−1
ε,δ,n,h‖2 + τδ‖∇Xi

ε,δ,n,h‖2

+ τ

⎛
⎝ ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇Xi

ε,δ,n,h

⎞
⎠

= 1

2
‖Xi−1

ε,δ,n,h‖2 − τλ
(
‖Xi

ε,δ,n,h‖2 −
(
gh,n, Xi

ε,δ,n,h

))

+
(
Xi−1

ε,δ,n,h, X
i
ε,δ,n,h

)
	iW . (49)

We take expected value in (49) and on noting the properties of Wiener increments
E [	iW ] = 0, E

[|	iW |2] = τ and the independence of 	iW and Xi−1
ε,δ,n,h we

estimate the stochastic term as

E

[(
Xi−1

ε,δ,n,h, X
i
ε,δ,n,h

)
	iW

]

= E

[(
Xi−1

ε,δ,n,h, X
i
ε,δ,n,h − Xi−1

ε,δ,n,h

)
	iW

]
+ E

[(
Xi−1

ε,δ,n,h, X
i−1
ε,δ,n,h

)
	iW

]

≤ E

[
1

4
‖Xi−1

ε,δ,n,h − Xi
ε,δ,n,h‖2 + ‖Xi−1

ε,δ,n,h‖2|	iW |2
]

+ E

[
‖Xi−1

ε,δ,n,h‖2
]
E [	iW ]

= 1

4
E

[
‖Xi

ε,δ,n,h − Xi−1
ε,δ,n,h‖2

]
+ τE

[
‖Xi−1

ε,δ,n,h‖2
]
.

We neglect the positive term

⎛
⎝ ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇Xi

ε,δ,n,h

⎞
⎠ ≥ 0 ,

and get from (49) that

1

2
E

[
‖Xi

ε,δ,n,h‖2
]

+ 1

4
E

[
‖Xi

ε,δ,n,h − Xi−1
ε,δ,n,h‖2

]
+ τδE

[
‖∇Xi

ε,δ,n,h‖2
]

+ τλ

2
E

[
‖Xi

ε,δ,n,h‖2
]

≤ 1

2
E

[
‖Xi−1

ε,δ,n,h‖2
]

+ τE
[
‖Xi−1

ε,δ,n,h‖2
]

+ τλ‖gh,n‖2 .

We sum up the above inequality for k = 1, . . . , i and obtain

1

2
E

[
‖Xi

ε,δ,n,h‖2
]

+ 1

4
E

[
i∑

k=1

‖Xk
ε,δ,n,h − Xk−1

ε,δ,n,h‖2
]

+ τδE

[
i∑

k=1

‖∇Xk
ε,δ,n,h‖2

]
+ τλ

2
E

[
i∑

k=1

‖Xk
ε,δ,n,h‖2

]
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≤ 1

2
E

[
‖xn0‖2

]
+ τE

[
i∑

k=1

‖Xk−1
ε,δ,n,h‖2

]
+ Tλ‖gh,n‖2 . (50)

By the discrete Gronwall lemma it follows from (50) that

sup
i=1,...,N

E

[
‖Xi

ε,δ,n,h‖2
]

≤ exp(2T )
(
E

[
‖x0‖2

]
+ 2Tλ‖g‖2

)
.

We substitute the above estimate into the right-hand side of (50) to conclude (47). To
show the estimate (48) we set vh = 	h Xi

ε,δ,n,h in (42) use integration by parts and
proceed analogically to the first part of the proof. We note that by Lemma 4.4 it holds
that

⎛
⎝ ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇	h X

i
ε,δ,n,h

⎞
⎠ ≥ 0. (51)

Hence we may neglect the positive term and get that

1

2
E

[
‖∇Xi

ε,δ,n,h‖2
]

+ 1

4
E

[
i∑

k=1

‖∇(Xk
ε,δ,n,h − Xk−1

ε,δ,n,h)‖2
]

+ τδE

[
i∑

k=1

‖	h X
k
ε,δ,n,h‖2

]

+ τλ

2
E

[
i∑

k=1

‖∇Xk
ε,δ,n,h‖2

]
≤ 1

2
E

[
‖∇xn0‖2

]

+ τE

[
i∑

k=1

‖∇Xk−1
ε,δ,n,h‖2

]
+ Tλ‖∇gn‖2 .

and obtain (48) after an application of the discrete Gronwall lemma. ��
We define piecewise constant time-interpolants of the numerical solution

{Xi
ε,δ,n,h}Ni=0 of (42) for t ∈ [0, T ] as

X
ε,δ,n
τ,h (t) := Xi

ε,δ,n,h if t ∈ (ti−1, ti ] (52)

and

X
ε,δ,n
τ−,h (t) := Xi−1

ε,δ,n,h if t ∈ [ti−1, ti ) . (53)
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We note that (42) can be reformulated as

(
X

ε,δ,n
τ,h (t), vh

)
+
〈∫ θ+(t)

0
Aε,δX

ε,δ,n
τ,h (s) ds, vh

〉

=
(
X0

ε,δ,n, vh

)
+
(∫ θ+(t)

0
X

ε,δ,n
τ−,h (s) dW (s), vh

)
for t ∈ [0, T ], (54)

where θ+(0) := 0 and θ+(t) := ti if t ∈ (ti−1, ti ].
Estimate (47) yields the bounds

sup
t∈[0,T ]

E

[
‖Xε,δ,n

τ,h (t)‖2
]

≤ C, sup
t∈[0,T ]

E

[
‖Xε,δ,n

τ−,h (t)‖2
]

≤ C,

δE

[∫ T

0
‖∇X

ε,δ,n
τ,h (s)‖2 ds

]
≤ C . (55)

Furthermore, (55) and (11) imply

E

[∫ T

0
‖Aε,δX

ε,δ,n
τ,h (s)‖2

H−1 ds

]
≤ C . (56)

The estimates in (55) imply for fixed n ∈ N, ε, δ > 0 the existence of a subsequence,

still denoted by {Xε,δ,n
τ,h }τ,h>0, and a Y ∈ L2(�× (0, T );L2)∩ L2(�× (0, T );H1

0)∩
L∞((0, T ); L2(�;L2), s.t., for τ, h → 0

X
ε,δ,n
τ,h ⇀Y in L2(� × (0, T );L2),

X
ε,δ,n
τ,h ⇀Y in L2(� × (0, T );H1

0),

X
ε,δ,n
τ,h ⇀∗Y in L∞((0, T ); L2(�;L2)). (57)

In addition, there exists a ν ∈ L2(�;L2) such that X
ε,δ,n
τ,h (T )⇀ν in L2(�;L2) as

τ, h → 0 and the estimate (56) implies the existence of a aε,δ ∈ L2(�×(0, T );H−1),
s.t.,

Aε,δX
ε,δ,n
τ,h ⇀aε,δ in L2(� × (0, T );H−1) for τ, h → 0. (58)

The estimates in (55) also implies for fixed n ∈ N, ε, δ > 0 the existence of a

subsequence, still denoted by {Xε,δ,n
τ−,h }τ>0, and a Y− ∈ L2(� × (0, T );L2), s.t.,

X
ε,δ,n
τ−,h ⇀Y− in L2(� × (0, T );L2) for τ, h → 0. (59)
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Finally, the inequality (50) implies

lim
τ→0

E

[∫ T

0
‖Xε,δ,n

τ,h (s) − X
ε,δ,n
τ−,h (s)‖2 ds

]
= lim

τ→0
τE

[
N∑

k=1

‖Xk
ε,δ,n − Xk−1

ε,δ,n‖2
]

≤ lim
τ→0

Cτ = 0 . (60)

which shows that the weak limits of Y and Y− coincide.
The following result shows that the limit Y ≡ Xε,δ

n , i.e., that the numerical solution
of scheme (42) converges to the unique variational solution of (7) for τ, h → 0. Owing
to the properties (10), (11) the convergence proof follows standard arguments for the
convergence of numerical approximations of monotone equations, see for instance
[9], [6], and is therefore omitted. We note that the convergence of the whole sequence

{Xε,δ,n
τ,h }τ,h>0 follows by the uniqueness of the variational solution.

Lemma 4.6 Let x0 ∈ L2(�,F0;L2) and g ∈ L
2 be given, let ε, δ, λ > 0, n ∈ N be

fixed. Further, let X ε,δ
n be the unique variational solution of (7) for xn0 = Pnx0, gn =

Png and X
ε,δ,n
τ,h , X

ε,δ,n
τ−,h be the respective time-interpolant (52), (53) of the numerical

solution {Xi
ε,δ,n,h}Ni=1 of (42). Then X

ε,δ,n
τ,h , X

ε,δ,n
τ−,h converge to Xε,δ

n for τ, h → 0 in the

sense that the weak limits from (57), (58) satisfy Y ≡ Xε,δ
n , aε,δ ≡ Aε,δY ≡ Aε,δXε,δ

n
and ν = Y (T ) ≡ Xε,δ

n (T ). In addition it holds for almost all (ω, t) ∈ � × (0, T ) that

Y (t) = Y (0) +
∫ t

0
Aε,δY (s) ds +

∫ t

0
Y (s) dW (s),

and there is an L
2-valued continuous modification of Y (denoted again as Y ) such

that for all t ∈ [0, T ]

1

2
‖Y (t)‖2 = 1

2
‖Y (0)‖2 +

∫ t

0
〈Aε,δY (s),Y (s)〉 + 1

2
‖Y (s)‖2 ds

+
∫ t

0
(Y (s),Y (s)) dW (s). (61)

The strong monotonicity property (10) of the operator Aε,δ implies strong conver-
gence of the numerical approximation in L2(� × (0, T );L2).

Lemma 4.7 Let x0 ∈ L2(�,F0;L2) and g ∈ L
2 be given, let ε, δ, λ > 0, n ∈ N be

fixed. Further, let X ε,δ
n be the variational solution of (7) for xn0 = Pnx0, gn = Png

and X
ε,δ,n
τ,h be the time-interpolant (52) of the numerical solution {Xi

ε,δ,n,h}Ni=1 of (42).
Then the following convergence holds true

lim
τ,h→0

‖Xε,δ
n − X

ε,δ,n
τ,h ‖2L2(�×(0,T );L2)

→ 0. (62)
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Proof of Lemma 4.7 The proof follows along the lines of [6,9]. We sketch the main
steps of the proof for the convenience of the reader.

We note that X
ε,δ,n
τ,h satisfies (cf. proof of Lemma 4.5)

e−κT
E

[
‖Xε,δ,n

τ,h (T )‖2
]

≤ E

[
‖xn0‖2

]
− κ

∫ T

0
e−κs

E

[
‖Xε,δ,n

τ,h (s)‖2
]
ds

− 2E

[∫ T

0
e−κs〈Aε,δX

ε,δ,n
τ,h (s), X

ε,δ,n
τ,h (s)〉 ds

]

+ E

[∫ T

0
e−κs‖Xε,δ,n

τ,h (s)‖2 ds
]

+ κ

∫ T

0
e−κs |Rτ (s)| ds, (63)

where Rτ (t) := E

[∫ θ+(t)

t
2〈Aε,δX

ε,δ,n
τ,h (s), X

ε,δ,n
τ,h (s)〉 − ‖Xε,δ,n

τ,h (s)‖2 ds
]
.

We reformulate the third term on the right-hand side in (63) as

E

[∫ T

0
e−κs〈Aε,δX

ε,δ,n
τ,h (s), X

ε,δ,n
τ,h (s)〉 ds

]

= E

[∫ T

0
e−κs〈Aε,δX

ε,δ,n
τ,h (s) − Aε,δXε,δ

n (s), X
ε,δ,n
τ,h (s) − Xε,δ

n (s)〉 ds
]

+ E

[∫ T

0
e−κs〈Aε,δXε,δ

n (s), X
ε,δ,n
τ,h (s) − Xε,δ

n (s)〉 + 〈Aε,δX
ε,δ,n
τ,h (s), Xε,δ

n (s)〉 ds
]

.

We substitute the equality above into (63) and obtain for κ ≥ 1 that

e−κT
E

[
‖Xε,δ,n

τ,h (T )‖2
]

+ 2E

[∫ T

0
e−κs〈Aε,δX

ε,δ,n
τ,h (s) − Aε,δXε,δ

n (s), X
ε,δ,n
τ,h (s) − Xε(s)〉 ds

]

≤ E

[
‖xn0 ‖2

]

− 2E

[∫ T

0
e−κs〈Aε,δXε,δ

n (s), X
ε,δ,n
τ,h (s) − Xε,δ

n (s)〉 + 〈Aε,δX
ε,δ,n
τ,h (s), Xε,δ

n (s)〉 ds
]

+ κ

∫ T

0
e−κs |Rτ (s)| ds.

We observe that
∫ T
0 e−κs |Rτ (s)| ds → 0 for τ . Hence, by the lower-semicontinuity

of norms using the convergence properties from Lemma 4.6 and the monotonicity
property (10) we get for τ, h → 0 that

123



Stoch PDE: Anal Comp

e−κT
E

[
‖Xε,δ

n (T )‖2
]

+ 2λ lim
τ,h→0

E

[∫ T

0
e−κs‖Xε,δ,n

τ,h (s) − Xε,δ
n (s)‖2 ds

]

+ 2δ lim
τ,h→0

E

[∫ T

0
e−κs‖∇(Xε,δ,n

τ,h (s) − Xε,δ
n (s)

)‖2 ds
]

≤ E

[
‖xn0‖2

]
− 2E

[∫ T

0
e−κs〈Aε,δXε,δ

n (s), Xε,δ
n (s)〉 ds

]
. (64)

It is not difficult to see that (61) for Y ≡ Xε,δ
n implies

e−κT
E

[
‖Xε,δ

n (T )‖2
]

= E

[
‖xn0‖2

]
− 2E

[∫ T

0
e−κs〈Aε,δ(s)Xε,δ

n , Xε,δ
n (s)〉 ds

]

− κ

∫ T

0
e−κs

E

[
‖Xε,δ

n (s)‖2
]
ds + E

[∫ T

0
e−κs‖Xε,δ

n (s)‖2 ds
]

. (65)

We subtract the equality (65) from (64) and obtain for κ ≥ 1

λ lim
τ,h→∞E

[∫ T

0
e−κs‖Xε,δ,n

τ,h (s) − Xε,δ
n (s)‖2 ds

]
≤ 0.

Hence, we conclude that X
ε,δ,n
τ,h → Xε,δ

n in L2(�; L2((0, T );L2). ��
Remark 4.1 It is obvious from the proof of Lemma 4.7 that the strong convergence in
L2(� × (0, T );L2) remains valid for λ = 0 due to (10) by the Poincaré inequality.

Next lemma guarantees the convergence of the numerical solution of scheme (42)
to the numerical solution of scheme (41) for δ → 0.

Lemma 4.8 Let x0 ∈ L2(�,F0;L2) and g ∈ L
2 be given. Then for each n ∈ N there

exists a constant C ≡ C(T ) > 0, Cn ≡ C(E[‖xn0‖
H
1
0
], ‖gn‖

H
1
0
) > 0 such that for

any N ∈ N, δ > 0, n ∈ N, h, ε ∈ (0, 1] the following estimate holds for the difference
of numerical solutions of (41) and (42):

max
i=1,...,N

E

[
‖Xi

ε,h − Xi
ε,δ,n,h‖2

]
≤ C(Cnδ + E

[
‖xh0 − xh,n

0 ‖2
]

+ λ‖gh − gh,n‖2).

We note that the n-dependent constantCn in the estimate above is due to the a priori
estimate (48), for H1

0-regular data x0, g it holds that Cn ≡ C(E[‖x0‖H1
0
], ‖g‖

H
1
0
) by

the stability of the discrete L2-projection Ph : H1
0 → Vh in H1

0.

Proof of Lemma 4.8 We define Zi
ε,h := Xi

ε,h − Xi
ε,δ,n,h . From (41) and (42) we get

(
Zi

ε,h, vh

)
=
(
Zi−1

ε,h .vh

)
− τδ

(
	h X

i
ε,δ,n,h, vh

)

− τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
, vh

⎞
⎠− τ

⎛
⎝ ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇vh

⎞
⎠
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− τλ
(
Zi

ε,h, vh

)
− τλ

(
gh − gh,n, vh

)

+
(
Zi−1

ε,h , vh

)
	iW .

We set vh = Zi
ε,h and obtain

(
Zi

ε,h − Zi−1
ε,h , Zi

ε,h

)
= − τδ

(
	h X

i
ε,δ,n,h, Z

i
ε,h

)

− τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
− ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇Zi

ε,h

⎞
⎠

− τλ‖Zi
ε,h‖2 − τλ

(
gh − gh,n, Zi

ε,h

)

+
(
Zi−1

ε,h , Zi
ε,h

)
	iW .

We note that

(
Zi

ε,h − Zi−1
ε,h , Zi−1

ε,h

)
= 1

2
‖Zi

ε,h‖2 − 1

2
‖Zi−1

ε,h ‖2 + 1

2
‖Zi

ε,h − Zi−1
ε,h ‖2 ,

and by the Cauchy–Schwarz and Young’s inequalities

τδ
(
	h X

i
ε,δ,n,h, Z

i
ε,h

)
≤ τδ2

2λ
‖	h X

i
ε,δ,n,h‖2 + τλ

2
‖Zi

ε,h‖2,

τλ
(
gh − gh,n, Zi

ε,h

)
≤ τλ

2
‖gh − gh,n‖2 + τλ

2
‖Zi

ε,h‖2.

From the convexity (12) it follows that

−τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
− ∇Xi

ε,δ,n,h√
|∇Xi

ε,δ,n,h |2 + ε2
,∇(Xi

ε,h − Xi
ε,δ,n,h)

⎞
⎠ ≤ 0.

Hence, we obtain that

1

2
‖Zi

ε,h‖2 + 1

2
‖Zi

ε,h − Zi−1
ε,h ‖2

≤ 1

2
‖Zi−1

ε,h ‖2 + τδ2

2λ
‖	h X

i
ε,δ,n,h‖2 + τλ

2
‖gh − gh,n‖2 +

(
Zi−1

ε,h , Zi
ε,h

)
	iW .

(66)
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We estimate the last term on the right-hand side above as

(
Zi−1

ε,h , Zi
ε,h

)
	iW =

(
Zi−1

ε,h , Zi
ε,h − Zi−1

ε,h

)
	iW + ‖Zi−1

ε,h ‖2	iW

≤ 1

2
‖Zi

ε,h − Zi−1
ε,h ‖2 + 1

2
‖Zi−1

ε,h ‖2|	iW |2 + ‖Zi−1
ε,h ‖2	iW ,

and substitute the above identity into (66)

1

2
‖Zi

ε,h‖2 + 1

2
‖Zi

ε,h − Zi−1
ε,h ‖2

≤ 1

2
‖Zi−1

ε,h ‖2 + τδ2

2λ
‖	h X

i
ε,δ,n,h‖2 + τλ

2
‖gh − gh,n‖2 + 1

2
‖Zi

ε,h − Zi−1
ε,h ‖2

+ 1

2
‖Zi−1

ε,h ‖2|	iW |2 + ‖Zi−1
ε,h ‖2	iW .

Next, we sum up the above inequality up to i ≤ N and obtain

1

2
‖Zi

ε,h‖2 ≤ 1

2
‖Z0

ε,h‖2 + τδ2

2λ

i∑
k=1

‖	h X
k
ε,δ,h‖2

+ 1

2

i∑
k=1

‖Zk−1
ε,h ‖2|	kW |2 +

i∑
k=1

‖Zk−1
ε,h ‖2	kW

+ Tλ

2
‖gh − gh,n‖2.

After taking expectation in the above and using the independence properties ofWiener
increments and the estimate (48) we arrive at

1

2
E

[
‖Zi

ε,h‖2
]

≤ 1

2
‖Z0

ε,h‖2 + τδ2

2λ
E

[
i∑

k=1

‖	h X
k
ε,δ,n,h‖2

]
+ τ

2

i∑
k=1

E

[
‖Zk−1

ε,h ‖2
]

≤Cnδ + 1

2
E

[
‖Z0

ε,h‖2
]

+ τ

2

i−1∑
k=0

E

[
‖Zk

ε,h‖2
]

+ Tλ

2
‖gh − gh,n‖2.

with Cn ≡ C(‖xn0‖
H
1
0
, ‖gn‖

H
1
0
). Finally, the Discrete Gronwall lemma yields for

i = 1, . . . , N that

E

[
‖Zi

ε,h‖2
]

≤ exp(T )

(
Cnδ + 1

2
E

[
‖xh0 − xh,n

0 ‖2
]

+ Tλ

2
‖gh − gh,n‖2

)
. (67)

which concludes the proof . ��
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We define piecewise constant time-interpolant of the discrete solution {Xi
ε,h}Ni=0 of

(41) for t ∈ [0, T ) as

X
ε

τ,h(t) = Xi
ε,h if t ∈ (ti−1, ti ]. (68)

We are now ready to state the secondmain result of this paper which is the convergence
of the numerical approximation (41) to the unique SVI solution of the total variation
flow (1) (cf. Definition 3.1).

Theorem 4.1 Let X be the SVI solution of (1) and let X
ε

τ,h be the time-interpolant (68)
of the numerical solution of the scheme (41). Then the following convergence holds
true

lim
ε→0

lim
τ,h→0

‖X − X
ε

τ,h‖2L2(�×(0,T );L2)
→ 0. (69)

Proof of Theorem 4.1 For x0 ∈ L2(�,F0;L2) and g ∈ L
2 we define the H

1
0-

approximating sequences {xn0 }n∈N ⊂ H
1
0, x

n
0 → x0 ∈ L2(�,F0;L2), {gn}n∈N ⊂ H

1
0,

n ∈ N, gn → g ∈ L
2 via the L

2-projection onto Vn ⊂ H
1
0. We consider the solu-

tions Xε, Xε,δ
n of (3), (7), respectively, and denote by Xε

n the SVI solution of (3) for

x0 ≡ xn0 , g ≡ gn . Furthermore, we recall that the interpolant X
ε,δ,n
τ,h of the numerical

solution of (42) was defined in (52).
We split the numerical error as

1

5
‖X − X

ε

τ,h‖2L2(�×(0,T );L2)

≤ ‖X − Xε‖2L2(�×(0,T );L2)
+ ‖Xε − Xε

n‖2L2(�×(0,T );L2)

+ ‖Xε
n − Xε,δ

n ‖2L2(�×(0,T );L2)
+ ‖Xε,δ

n − X
ε,δ,n
τ,h ‖2L2(�×(0,T );L2)

+ ‖Xε,δ,n
τ,h − X

ε

τ,h‖2L2(�×(0,T );L2)

=: I + I I + I I I + I V + V . (70)

By Theorem 3.1 it follows that

lim
ε→0

I = lim
ε→0

‖X − Xε‖2L2(�×(0,T );L2)
= 0.

To estimate the second term we consider the solutions Xε
n of (3) with x0 ≡ xn0 and

g ≡ gn . From (20) we deduce that

lim
n→∞ I I = lim

n→∞ ‖Xε − Xε
n‖2L2(�×(0,T );L2)

= 0 .

We use (22) to estimate the third term as

lim
δ→0

I I I = lim
δ→0

‖Xε
n − Xε,δ

n ‖2L2(�×(0,T );L2)
= 0 .
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The fourth term is estimated by Lemma 4.7

lim
τ,h→0

I V = lim
τ,h→0

‖Xε,δ
n − X

ε,δ,n
τ,h ‖2L2(�×(0,T );L2)

= 0.

For the last term we use Lemma 4.8

lim
n→∞ lim sup

δ→0
V = lim

n→∞ lim sup
δ→0

‖Xε,δ,n
τ,h − X

ε

τ,h‖2L2(�×(0,T );L2)
= 0.

Finally, we consecutively take τ, h → 0, δ → 0, n → ∞ and ε → 0 in (70) and use
the above convergence of I − V to obtain (69). ��
Remark 4.2 We note that the convergence analysis simplifies in the case that the prob-
lem data have higher regularity. For x0, g ∈ H

1
0 it is possible to show that the problem

(3) admits a unique variational solution [which is also a SVI solution of (3) by unique-
ness] by a slight modification of standard monotonicity arguments. This is due to the
fact that the operator (8) retains all its properties for δ = 0 except for the coercivity.
The coercivity is only required to guarantee H1

0-stability of the solution, nevertheless
the stability can also be obtained directly by the Itô formula on the continuous level,
cf. Lemma 3.2, or analogically to Lemma 4.5 on the discrete level, even for δ = 0.
Consequently, for H1

0-data the convergence of the numerical solution X
ε

τ,h can be
shown as in Theorem 4.1 without the additional δ-regularization step.

We conclude this section by showing unconditional stability of scheme (41), i.e., we
show that the numerical solution satisfies a discrete energy law which is an analogue
of the energy estimate (27).

Lemma 4.9 Let x0, g ∈ L
2 and T > 0. Then there exist a constant C ≡ C(T ) such

that the solutions of scheme (41) satisfy for any ε, h ∈ (0, 1], N ∈ N

sup
i=1,...,N

1

2
E

[
‖Xi

ε,h‖2
]

+ τE

[
N∑
i=1

Jε(X
i
ε,h) + τλ

2
‖Xi

ε,h − gh‖2
]

≤ C

(
1

2
E

[
‖x0‖2

]
+ T |O| + λ

2
‖g‖2)

)
. (71)

Proof of Lemma 4.9 We set vh ≡ Xi
ε,h in (41) and obtain

1

2
‖Xi

ε,h‖2 + 1

2
‖Xi

ε,h − Xi−1
ε,h ‖2

+ τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
,∇Xi

ε,h

⎞
⎠+ τλ(Xi

ε,h − gh, Xi
ε,h)

= 1

2
‖Xi−1

ε,h ‖2 + (Xi−1
ε,h , Xi

ε,h)	iW . (72)
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Using the the convexity of Jε along with the identity

(Xi−1
ε,h , Xi

ε,h)	iW = (Xi−1
ε,h , Xi

ε,h − Xi−1
ε,h )	iW + ‖Xi−1

ε,h ‖2	iW ,

we get from (72) that

1

2
‖Xi

ε,h‖2 + 1

2
‖Xi

ε,h − Xi−1
ε,h ‖2 + τJε(X

i
ε,h) + τλ

2
‖Xi

ε,h − gh‖2

≤ τJε(0) + τλ

2
‖gh‖2 + 1

2
‖Xi−1

ε,h ‖2 + 1

2
‖Xi

ε,h − Xi−1
ε,h ‖2

+ 1

2
‖Xi−1

ε,h ‖2|	iW |2 + ‖Xi−1
ε,h ‖2	iW . (73)

After taking the expectation and summing up over i in (73), and noting that Jε(0) =
ε|O| we obtain

1

2
E

[
‖Xi

ε,h‖2
]

+ τE

[
i∑

k=1

Jε(X
k
ε,h) + λ

2
‖Xk

ε,h − gh‖2
]

≤ 1

2
E

[
‖x0‖2

]
+ T

(
ε|O| + λ

2
‖g‖2

)
+ τ

2
E

[
i−1∑
k=0

‖Xk
ε,h‖2

]
.

Hence (71) follows after an application of the discrete Gronwall lemma. ��

5 Numerical experiments

We perform numerical experiments using a generalization of the fully discrete finite
element (41) on the unit squareO = (0, 1)2. The scheme for i = 1, . . . , N then reads
as

(
Xi

ε,h, vh

)
=
(
Xi−1

ε,h , vh

)
− τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
,∇vh

⎞
⎠

− τλ
(
Xi

ε,h − gh, vh
)

+ μ
(
σ(Xi−1

ε,h )	iW
h, vh

)
∀vh ∈ Vh,

X0
ε,h = xh0 , (74)

where gh, xh0 ∈ Vh are suitable approximations of g, x0 (e.g., the orthogonal projec-
tions onto Vh), respectively, and μ > 0 is a constant. The multiplicative space-time
noise σ(Xi−1

ε,h )	iWh is constructed as follows. The termWh is taken to be aVh-valued
space-time noise of the form

	iW
h(x) =

L∑
�=1

ϕ�(x)	iβ� ∀ x ∈ D ,
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Fig. 1 The function g (left) and the noise ξh (right)

where β�, � = 1, . . . , L are independent scalar-valued Wiener processes and {ϕ�}L�=1
is the standard ‘nodal’ finite element basis ofVh . In the simulations below we employ
three practically relevant choices of σ : a tracking-type noise σ(X) ≡ σ1(X) = |X −
gh |, a gradient type noise σ(X) ≡ σ2(X) = |∇X | and the additive noise σ(X) ≡ σ3 =
1; in the first case the noise is small when the solution is close to the ‘noisy image’ gh ,
in the gradient noise case the noise is localized along the edges of the image. We note
that the fully discrete finite element scheme (74) corresponds to an approximation of
the regularized Eq. (3) with a slightly more general space-time noise term of the form
μσ(Xε)dW .

In all experiments we set T = 0.05, λ = 200, x0 ≡ xh0 ≡ 0. If not mentioned
otherwise we use the time step τ = 10−5, the mesh size h = 2−5 and set ε = h = 2−5,
μ = 1. We define g ∈ Vh as a piecewise linear interpolation of the characteristic
function of a circle with radius 0.25 on the finite element mesh, see Fig. 1 (left), and
set gh = g + ξh ∈ Vh with ξh(x) = ν

∑L
�=1 ϕ�(x)ξ�, x ∈ O where ξ�, � = 1, . . . , L

are realizations of independentU(−1, 1)-distributed randomvariables. If not indicated
otherwise we use ν = 0.1; the corresponding realization of ξh is displayed in Fig. 1
(right).

We choose ε = h = 2−5, μ = 1, σ ≡ σ1 as parameters for the ‘baseline’ experi-
ment; the individual parameters are then varied in order to demonstrate their influence
on the evolution. The time-evolution of the discrete energy functional Jε,λ(Xi

ε,h),

i = 1, . . . , N for a typical realization of the space-time noise Wh is displayed in
Fig. 2; in the legend of the graph we state parameters which differ from the parameters
of the baseline experiment, e.g., the legend ‘sigma2, mu = 0.125’ corresponds to
the parameters σ ≡ σ2, μ = 0.125 and the remaining parameters are left unchanged,
i.e., ε = h = 2−5. For all considered parameter setups, except for the case of noisier
image ν = 0.2, the evolution remained close to the discrete energy of the determinis-
tic problem [i.e., (74) with μ = 0]. The energy decreases over time until the solution
is close to the (discrete) minimum of Jε,λ; to highlight the differences we display a
zoom at the graphs. We observe that in the early stages (not displayed) the energy of
stochastic evolutions with sufficiently small noise typically remained below the energy
of the deterministic problems and the situation reversed as the solution approached
the stationary state.

In Fig. 3 we display the solution at the final time computed with σ ≡ σ1, ε = h for
h = 2−5, 2−6, respectively, and σ ≡ σ2, ε = h = 2−5; graphically the results of the
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Fig. 2 Evolution of the discrete energy: σ ≡ σ1, h = 2−5, ε = h, h
2 , μ = 1, 2 (left); σ ≡ σ1, σ2, σ3,

σ ≡ σ1, h = 2−5, ε = 2h, σ = σ1, ε = h = 2−6 and ν = 0.2 (middle and right)

Fig. 3 From let to right: the solution for σ ≡ σ1 with ε = h = 2−5, σ ≡ σ1 with ε = h = 2−6 and σ ≡ σ2
with ε = 2−5

remaining simulations did not significantly differ from the first case. The displayed
results may indicate that the noise σ2 yields worse results than the noise σ1 and
σ2; however, for sufficiently small value of μ the results would remain close to the
deterministic simulation as well. We have magnified noise intensity μ to highlight the
differences to the other noise types (i.e., the noise is concentrated along the edges of
the image). We note that the gradient type noise σ2 might be a preferred choice for
practical computations, cf. [14].
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