SCHAUDER THEOREMS FOR A CLASS OF (PSEUDO-)DIFFERENTIAL
OPERATORS ON FINITE AND INFINITE DIMENSIONAL STATE SPACES

ALESSANDRA LUNARDI AND MICHAEL ROCKNER

ABSTRACT. We prove maximal regularity results in Holder and Zygmund spaces for linear sta-
tionary and evolution equations driven by a class of differential and pseudo-differential operators
L, both in finite and in infinite dimension. The assumptions are given in terms of the semigroup
generated by L. We cover the cases of fractional Laplacians and Ornstein-Uhlenbeck operators with
fractional diffusion in finite dimension, and several types of local and nonlocal Ornstein-Uhlenbeck
operators, as well as the Gross Laplacian and its fractional powers, in infinite dimension.

1. INTRODUCTION

This paper is devoted to maximal regularity results in Holder and Zygmund spaces for linear
stationary and evolution equations driven by a class of differential and pseudo-differential operators
L, both in finite and in infinite dimension. The underlying space X is any separable real Banach
space, that may be either RY or infinite dimensional.

The operators L under consideration are the generators of the so called generalized Mehler
semigroups, namely semigroups of operators in the space Cp(X) of the continuous and bounded
functions from X to R that may be represented as

Puf(x) = /X [T+ )u(dy), >0, f € Cy(X). (L1)

Here T; is a strongly continuous semigroup of bounded operators on X, and {u; : ¢ > 0} is a family
of Borel probability measures in X such that py = do (the Dirac measure at 0 € X), ¢t — py is
weakly continuous in [0, +00) and

pirs = (peo Ty ') * s, t,5 > 0. (1.2)
Such a condition is necessary and sufficient for P, be a semigroup (namely, P,ys = P, o Ps for t,
s > 0), even in the space By(X) of the bounded, Borel measurable functions f : X — R.
Then for every f € Cy(X) the function (t,z) — P,f(x) is continuous in [0, +00) x X +— R, and
this allows to define a closed operator L in Cy(X) through its resolvent,

R\ L)f(z) = /000 e MPf(x)dt, A>0, feCy(X), z€X. (1.3)

L is called the generator of P, although it is not the infinitesimal generator in the standard sense
since P; is not strongly continuous in Cy(X), in general.

Though this paper’s results and techniques of proof are purely analytic, let us briefly recall
the probabilistic framework in which generalized Mehler semigroups occur. In fact, they are the
transition semigroups of solution processes to the following type of stochastic differential equations
(meant in the weak or mild sense) on X:

dX(t) = AX(t)dt +dY(t), t>0; X(0) =z, (1.4)
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where A : D(A) C X — X is the infinitesimal generator of T3, and Y (¢), ¢t > 0, is a Levy process
in X, i.e. a stochastic process in X with cadlag paths starting at 0, defined on a probability space
(Q,F,P), and having stationary and independent increments. It is characterized by a negative
definite function X : X* — C (where X* is the dual space of X), satisfying

/ G OEP(dy) = exp(—tA(E)), €€ X*, ¢ > 0. (1.5)
Q

Then the transition semigroup for the solution X (¢, z) of (1.5) (called “Ornstein-Uhlenbeck process
on X” in the case that Y (¢) is a Wiener process, and “Ornstein-Uhlenbeck process on X with jumps”
if Y(¢) is a more general Levy process) is given by P; as in (1.1), i.e., for f € By(X), x € X, t > 0,

/Q FX (1, 2) (@) B(dw) = Pf (z), (1.6)

where X (t,z), t > 0, denotes the (weak or mild) solution of (1.5) with X (0,z) = x P-a.s.
We then have an explicit formula for the Fourier transforms of u:, ¢ > 0, in terms of A and T3,
namely

(@) i= [ explig(o i) =exp (- [ AT &), cextezo Q)

where T} denotes the dual semigroup of 7.

There have been a number of papers on generalized Mehler semigroups and their related Ornstein-
Uhlenbeck processes with jumps. We refer e.g. to [9, 20, 30, 31, 33, 40, 41, 42, 48, 49, 54] and the
references therein.

Now let us come back to the main results of this paper, which are purely analytic. What we prove
are maximal Holder and Zygmund regularity results both for the stationary equation

Mu(z) — Lu(x) = f(x), z€X, (1.8)

namely for the function v = R(\, L)f defined in (1.3), and for the mild solutions of evolution
problems, given by

v(t,z) = P f(x) + /Ot Pi_sg(s, )(x)ds, 0<t<T, zeX, (1.9)

with continuous and bounded f, g

Of course, we need some “regularity” hypothesis on the measures p; in connection with the
semigroup T;. Specifically, we assume that there exists a Banach space H C X such that T;(H) C H,
and such that each u; is Fomin differentiable along T;(H), namely for every h € H, t > 0 there
exists By € L' (X, p1t) such that

a / Bun(@)f(2) pu(da), [ € CL(X). (1.10)
Moreover we assume that there exist C' > 0, w € R, # > 0 such that
C wt
IThllm < Ce! bl 1Benllor (x ) < —g—Iklla, t>0,heH. (1.11)

These assumptions are satisfied in several remarkable examples. We consider the following ones.

(a) In finite dimension, with X = H = R, they are satisfied by the heat semigroup with
6 = 1/2, by the semigroups generated by the powers —(—A)?® for s € (0, 1), and more generally by
Ornstein-Uhlenbeck semigroups with fractional diffusion,

L v (QD%0) (@) — (Bz, Vu(z)), = cRY,

Lu(z) = 5

2



where @) is any symmetric positive definite matrix, B is any matrix, and Tr*(QD?) is the pseudo-
differential operator with symbol (Q¢, €)%, s € (0,1). The semigroup T} is now e ', and the
measures iy are given by py(dz) = gi(v)dz, with g; € WHH(RY), so that py is Fomin differentiable
along all directions, and (1.11) holds with H = R" and 6 = 1/(2s). See Sections 4.1, 4.2.

(b) In infinite dimension they are satisfied by a class of smoothing (strong Feller) Ornstein-
Uhlenbeck semigroups, still with H = X, that includes the ones considered in [29], and by a class
of not strong Feller Ornstein-Uhlenbeck semigroups, that includes the classical Ornstein-Uhlenbeck
semigroup used in the Malliavin Calculus, and other non symmetric Ornstein-Uhlenbeck semigroups
such as in [59, 60]; here H is the Cameron-Martin space of a reference Gaussian measure y. In all
these cases the measures u; are Gaussian, and we have § = 1/2, see Section 5.1. In Section 5.2
we consider nonlocal perturbations of the generator of a specific strong Feller Ornstein-Uhlenbeck
semigroup and show that (1.10) and (1.11) also hold in such a case, still with H = X and 6 = 1/2.
Moreover, when X is a Hilbert space endowed with a centered Gaussian measure p and H is the
Cameron-Martin space of p, (1.10) and (1.11) are satisfied by the semigroup generated by the Gross
Laplacian G, again with § = 1/2, and by the semigroups generated by —(—G)® with s € (0,1) and
6 = 1/(2s), in which case the measures y; are mixtures of measures. See Section 5.3. In Section 5.4
we show that some nonlocal versions of the classical Ornstein-Uhlenbeck semigroup from Malliavin
calculus still satisfy our assumptions.

Our techniques are independent of the dimension of the state space X, and the most important
and newest part of the paper is in the infinite dimensional case. Indeed, several familiar tools
in finite dimension, such as Calderon-Zygmund theory, Fourier transform, and the uncountable
consequences of local compactness, are not available in infinite dimension, as well as any translation
invariant reference measure such as the Lebesgue measure.

Needless to say, maximal regularity results are very rare in infinite dimension. A few LP maximal
regularity results, with p € (1,+00), have been proved for certain Ornstein-Uhlenbeck stationary
equations; in these cases the solution to (1.8) belongs to a suitable W?2P space with respect to
an invariant Gaussian measure p whenever f € LP(X, u). After the pioneering Meyer inequalities
for the classical Ornstein-Uhlenbeck operator ([47], see also [5, Sect. 5.6]), maximal LP regularity
for a more general class of Ornstein-Uhlenbeck equations was proved in [21, 22, 46]. Concerning
non Gaussian measures, the only available results are for p = 2, about (nontrivial) perturbations of
certain Ornstein-Uhlenbeck equations ([26, 14]); here x is an invariant Gibbs (= weighted Gaussian)
measure. For p = 2 some of the above results have been extended to the case where the whole X
is replaced by a good domain O C X, with generalized Dirichlet or Neumann boundary conditions
([27, 28, 13, 15]).

Also the literature about maximal Holder regularity in infinite dimension is very scarce, dealing
mainly with Ornstein-Uhlenbeck equations or with equations driven by the Gross Laplacian, see e.g.
[29, 16, 18] and the references therein. More details are in Sections 5.1, 5.3. Moreover, Schauder
estimates for some nontrivial perturbations of a specific Ornstein-Uhlenbeck operator in the space
X = C([0,1]) were proved in [17].

In our general setting, P; is smoothing along H: for every f € Cy(X) and t > 0, P,f has

continuous Gateaux derivatives of any order along H, and for every (hq,...,hy,) € H™ we have
O f ()| <Cp 1+ ! ﬁHhH £l t>0,zeX (1.12)
Ohy ... 0k, | = 7\ ger ) LA ’

On the other hand, in general P;f is not Gateaux differentiable along other subspaces than H.
Therefore, any regularity result is expressed in terms of regularity along H. The Holder spaces
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that we use are in fact defined by

—h) =
C%<X>:{fecb<x>: ez = _ s e ) <+oo},

[fllee x) = [ fllee + [fleg (x)
for @ € (0,1). In the case H = X this is the usual space of bounded and a-Hélder continuous
functions from X to R.
The Schauder type regularity results for (1.8) are the following,

(i) If 1/0 ¢ N, for every A > 0 and f € Cy(X) the solution u to (1.8) belongs to C’IIJ/H(X), and
there is C'(\) independent of f such that Hu”cl/"(x) <IN floo-
H

(ii) If « € (0,1) and a+1/8 ¢ N, for every A > 0 and f € Cf(X) the solution u to (1.8) belongs
to 013+1/0(X) and there is C(\, ) independent of f such that ||u|]ca+1/9(x) < O\ o)l fllee x)-
H

Here, for 0 € (0,1) and k € N, C%"*(X) denotes the space of all continuous and bounded
functions from X to R that possess continuous and bounded Gateaux derivatives of any order < k
along H, and such that all the k-th order derivatives belong to C'¢(X), endowed with its natural
norm. If H = X this is the space of the k times Gateaux differentiable functions with continuous
and bounded Gateaux derivatives of any order < k, and such that all the k-th order derivatives are
a-Holder continuous.

The exponents 1/6 in (i), and « + 1/6 in (ii) are optimal, in the sense that they cannot be
replaced by 1/0 + ¢, o + 1/60 + € respectively, for any € > 0.

In the critical cases a + 1/0 = k € N (with a = 0 in statement (i), o € (0,1) in statement (ii))
we do not expect that the solution to (1.8) has bounded partial derivatives of order k, in general.
The simplest counterexample is given by the Laplacian in finite dimension. The heat semigroup
in RY has the representation (1.1) with T; = I, u;(dz) = (47t)~N/? exp(—|z|?/4t)dz, so that it
satisfies (1.10) and (1.11) with X = H = R and 6 = 1/2; however it is well known that for every
A > 0 the solution to AMu — Au = f with f € Cy(RY) is not twice continuously differentiable and
its first order derivatives are not Lipschitz continuous in general, if N > 1. They belong to the
Zygmund space Z!'(RY), namely they satisfy |Dyu(z 4+ 2h) — 2Dpu(x + h) + Dyu(z)| < C|h| for
every k =1,...,N, z, h € RV, with C independent of z and h. We extend this result to our
general setting, introducing the Zygmund spaces Z};(X) for n € N and showing that in the above
critical cases the solution to (1.8) belongs to Z%(X).

Similar results are proved for the mild solutions to Cauchy problems with continuous and bounded
data,

ve(t,x) = Lo(t, ) (x) + g(t,z), t€[0,T], z € X,
(1.13)
U(O’ ) =/

namely for the functions v defined by

v(t,x) = Pf(x) +/0 P_s9(s,-)(x)ds, te€][0,T], x € X,

with f € Cp(X), g € Cp([0,T] x X). Our assumptions are not strong enough to guarantee that v is
differentiable with respect to ¢, so it is just a mild solution and not a classical one. Moreover, time-
space Schauder estimates such as the standard ones for the heat equation are not available in general.
For instance, they are not available when L is the classical one-dimensional Ornstein-Uhlenbeck
operator Lu(z) = u”(z)—zu'(x), as a consequence of [25]. So, our Schauder and Zygmund regularity

results concern only space regularity. More precisely, we introduce the space C%a+k([0, T] x X) for
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a € (0,1), k € NU{0}, consisting of the bounded continuous functions g : [0,7] x X — R such that
g(t,-) € Ca+k( ) for every t € [0,T], [|g]l 0. 0.0tk (0, 7)x x) = SUPtef0,] llg(t, ')”C,‘?f’“(X) < 400, and if
0

k # 0, all the Gateaux derivatives & ¢g/0h; ...0h; with j < k and hy,...,h; € H are continuous in
[0,7] x X. We prove that

(i) If 1/6 ¢ N, for every f € 011{/9(X) and g € Cy([0,T] x X), the function v belongs to
cY: 1/0([0 T] x X), and there is C(T') independent of f and g such that HUHC?{,W < C(T)
(1o, + lglee)

(ii)) If « € (0,1) and o+ 1/0 ¢ N, for every f € C?IH/G(X) and g € C?f‘([(),T] x X) the
function v belongs to C'; OHrl/e([(),T] x X) and there is C(T, «) independent of f and g such that
ol gaessi oy ey < CO ) s ovi gy + et )

([0,T)x X)

In the critical cases a+1/60 € N we obtain Zygmund space regularity results, as in the stationary
case.
The proofs rely on estimates (1.12) and on the better estimates for o € (0, 1),

P, 1 -
| < oo (14 ) Ll ¢>0.2 € X, 7€ CRO0. (10
through a procedure that employs interpolation techniques such as in the recent paper [18] where
the classical Ornstein-Uhlenbeck operator in infinite dimension is considered.

Both in the stationary and in the evolution case the general results are applied to the above
mentioned examples, and yield old and new maximal regularity results. Comparisons with the
literature dealing with Holder and Zygmund maximal regularity for such examples are given in
Sections 4.1, 4.2, 5.1, 5.3. To give a complete account on all the contributions to Schauder theory
in finite dimension is beyond the scope of this paper.

Finally, we would like to explain the motivation to study Schauder estimates for this class of
partial (pseudo-) differential equations in infinitely many variables. The interest in such PDEs
has risen enormously in recent years, because they occur as forward and backward Kolmogorov
equations for stochastic PDEs, an area that has become one of the major directions of research
in probability theory and, in particular, in stochastic analysis. See e.g. [29, 16, 23, 7, 8] and the
references therein. Solving any of the two provides a way to obtain the time marginal laws of
the solution to the SPDE in a purely analytic way, without having to solve the SPDE itself. In
many important cases the time marginal laws determine the solutions to the SPDE completely
and the latter can be reconstructed from the former. Hence to understand such PDEs in infinite
dimensions becomes important and regularity results for their solutions mandatory. In particular,
because of the already mentioned lack of a Lebesgue measure on infinite dimensional spaces and
since high order Sobolev spaces are not embedded in spaces of continuous functions (even for
Gaussian measures), Schauder regularity appears to be more feasible here.

In the evolutionary case the class of PDEs considered in this paper are just (after time reversal)
the Kolmogorov backward equations corresponding to SPDEs of type (1.4), whose solutions are
infinite dimensional Ornstein-Uhlenbeck processes with Lévy noise, as explained above. These
have been used as model cases in many other aspects and are used in our paper as a model case to
understand Schauder theory in infinite dimension. It turns out that already in this case new and
typical infinite dimensional phenomena occur, as e.g. regularity of solutions can only hold along
subspaces, which are intrinsically linked to the type of noise in equation (1.4) and its relation to the
possibly unbounded operator A in its drift. This is expressed in pure analytical language through
the differentiability properties of the measures p; in relation to the semigroup generated by A; see
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conditions (1.10) and (1.11) above. Clearly, if one does not fully understand such phenomena in this
model case, one has no chance to develop a Schauder theory for more general Kolmogorov equations
in infinite dimension. The next step would then be to look at perturbations of the situation studied
in this paper, for example by adding a first order part to the Ornstein-Uhlenbeck type Kolmogorov
operators considered here, which is given by a nonlinear vector field in the Banach space X. This
is the object of a paper already in preparation by the two authors. A further step would then be
to perturb the higher order part in a “geometrically comparable” way, similarly to what is usually
done in finite dimension, in going from the Laplacian to strictly elliptic operators.

The structure of this paper is as follows. In Section 2 we mainly fix notations. In Section 3
we introduce our hypotheses, state and prove our main results described above. In particular, we
prove an explicit formula for the n-th Gateaux derivative of P,g for g € Cp(X) in Proposition 3.3.
Sections 4 and 5 are devoted to examples in finite and infinite dimensions respectively.

2. NOTATION AND PRELIMINARIES

Below, X, Y are Banach spaces. If we write X C Y this means that X is contained in Y with
continuous embedding. By £(X), £(X,Y) we denote the spaces of the linear bounded operators
from X to X, from X to Y, respectively.

Let By(X;Y) and Cp(X;Y) denote the space of all bounded Borel measurable (resp. bounded
continuous) functions F' : X — Y, endowed with the sup norm ||F|s = sup,cx [|[F(z)|y. If
X =R we set By(X;R) = Byp(X) and Cp(X;R) := Cp(X).

We use the standard notation for partial derivatives along elements of X: for any fixed v,
z € X and F : X — Y, we say that F' is differentiable along v at z if there exists the limit
limy_,o(F (x + tv) — F(x))/t. In this case the limit is denoted by OF (x)/0v.

In this paper we shall consider spaces of functions that enjoy regularity properties only along
certain directions. They are defined as follows.

Let H C X be a Banach space. If F': X — Y is differentiable along every h € H, and the
mapping h — OF/0h(x) belongs to L(H,Y), F is called H-Gateaux differentiable at x. Such a
mapping is called H-Gateaux derivative of F' at x, and denoted by Dy F(z). If in addition

i NE (@ +h) = F(z) = Dy F(z)(h) |y
1]l 2z —0 Livzs

=0,

F is called H-Fréchet differentiable at .

Note that in the case H = X, these are the usual notions of Gateaux and Fréchet differentiable
functions at x.

We shall consider also higher order derivatives. We identify £(H, L(H,R)) with the space of the
bilinear continuous functions from H? to R; more generally, denoting by £™(H) the space of all
n-linear continuous mappings from H™ to R, we identify £(H,L" Y(H)) with L"(H).

Let f: X — R be H-Gateaux (resp. H-Fréchet) differentiable at every z € X. If the mapping
Dypf: X — L(H,R) is in turn H-Gateaux (resp. H-Fréchet) differentiable at xq, its H-Gateaux
(resp. H-Fréchet) derivative belongs to £(H,L(H,R)) = L£2%(H) and is denoted by D% f(xo).
For n € N, n > 2, n times H-Gateaux (resp. H-Fréchet) differentiable functions are defined by
recurrence. If f: X — Risn—1 times H-Gateaux (resp. H-Fréchet) differentiable at every x € X,
and the mapping D?fl f: X — LY(H) is H-Gateaux (resp. H-Fréchet) differentiable at o,
we say that f is n times H-Gateaux (resp. H-Fréchet) differentiable at xg, and the derivative of
D?flf at x¢ is denoted by DY, f(zo).

The space C'},(X) consists of all continuous and bounded functions f : X — R having H-Gateaux
derivatives up to the order n, such that for every k = 1,...n and for every (hy,...,h;) € H, the
mapping X — R,  +— D& f(x)(h1,...,hx) is continuous and bounded. It is endowed with the
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norm
I £llep o) = 1 flloo + > sup | D £ (@)l cr oy,
1 rzeX

where, for every n-linear continuous function 7' : H* — R,

|T(h1, ..., ¢
1Paller - - el 1
We note that by the multilinear version of the uniform boundedness principle (see [52], [4]) we have

that if f € C(X), then indeed || f|lcn (x) < co. Furthermore, we remark that if f € C};(X), for
every x € X and h € H the function ¢t — f(x + th) is in C"(R), and we have

1Tl gr ey = sup{ hi € H\ {0}}.

(i) ifn=1, flx+h)— f(x)= /1 Dy f(x + oh)(h)do, and therefore
0
[f(x+h) = f(@)| < supyex [ Du f(y) ||z |7l a;
1
(i1) ifn>1, (DY f(x+n)— Dy (@) (hiy... hno1) = / D% f(z 4 ch)(hi, ..., hy_1,h)do.
0

(2.1)
For a € (0,1) we set

F h)—F
Co(X:Y) = {Fe Co(X;Y): [Flog(xy) = sup |F(x+ h) - @lly _ +OO}
zeX,he H\{0} HhHH

and we endow Cf;(X;Y") with the norm
[Fllce vy = 1F]lc + [Flog (x,v)

For a = 1, instead of Lipschitz continuity we shall consider a weaker condition, called Zygmund
continuity. We set

ZL(X,Y) =

F(z +2h) — 2F(z + h) + F(x
{FeC’b(X;Y): Flzy xy) = sup £ ) (z +h) + F(2)|y

< —1-00}
2€X, he H\{0} 1Al

and we endow Z1(X;Y) with the norm
1E |z x,y) = sup [F(@)lly + [Flz1xv)-
zeX

If H = X we drop the subindex H and we use the more standard notations C}'(X,Y’) for n € N,
CH(X,Y) for a € (0,1), ZH(X,Y).

IfY = R, weset O%(X;R) =: O (X) forn € N, C%(X;R) =: C%(X) fora € (0,1), Z5(X;R) =:
Z1,(X). Higher order Hélder and Zygmund spaces of real valued functions will also be used; they
are defined in a natural way, as follows.

For a € (0,1) and n € N we set

CH™M(X) == {f € C}{(X) : D} f € CH(X,L"(H))},
(2.2)
[fllcosnixy = Iflleg x) + [Pifleg oxenm)
7



and forn e N, n > 2,

Zp(X) ={f € Cy (X)) : Dy 'f € Zp(X, L1 (H))},
1 (2.3)
||f||Z;;(X) = ”f”c’;l(x); + [D?{_ f]Z}I(X,LH(H))

In the next lemma we collect some properties of the above defined spaces, that are easy extensions
of known properties in the case H = X, and that will be used later.

Lemma 2.1. Let X, Y be Banach spaces.
(i) For every a € (0,1) and F € CL(X;Y) we have
[Flea (xy) <2'7° 52)13 IDaE () Z vy HF”cb Xy (2.4)
(ii) If F : X — Y is H-Gateauz differentiable and Dy F is continuous at x € X, then F is

H-Fréchet differentiable at x.
(iii) If f € C%(X) we have

[f(z+2h) = 2f(x + h) + f(z)| < sup ID% f (W)l ez IBN7r,  © € X, he H. (2.5)
Yy

Proof. Let F € CL(X;Y). For every z € X, h € H, the function ¢ : R — Y, 9(t) := F(x + th) is
continuously differentiable, and ¢'(t) = Dy F(x + th)(h). Therefore we have

Fla+h) — F(z) = /0 ' DuF(e + oh)(h)do (2.6)
so that
[F(z+h) = F(z)lly < sup I1DaE ()| cmy)ylblla (2.7)

Of course, we also have
[F(z+h) = F(z)ly <2 sup 1E )y
ze

Consequently,

[1F(z+h) = Fx)lly < (Sg)}‘; IDEF (2)l ey IRl ) (2 sup IF(2)ly) =

and statement (i) follows.
Let us prove (ii). Using again (2.6) we get, for every h € H,

1
|F(@+ 1) - F(z) - DuF@ W)y = H | urta b - DuF) 1o

Y

< SUpyeq, ol p<lbly I1PEEF (@ +v) — DuF(2)||lox,v)llhll 0

so that, recalling that H C X, ||F(x + h) — F(z) — DgF(x)(h)|ly = o(||h||&) as ||h||g — 0, and F
is H-Fréchet differentiable at x.
Let now f € C%(X). Applying thrice (2.6), for every z € X and h € H we get

1
Fl@+2h) — 2f(z + ) + f(z) = /0 (Dif(@+ (1+ 0)h) — Dy f(z + oh))(h)do

//Dfo+ o)) (h, h)dr do

and estimating in an obvious way statement (iii) follows. U
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A Borel probability measure p in X is called Fomin differentiable along v € X if for every Borel
set A the incremental ratio (u(A + tv) — u(A))/t has finite limit as ¢ — 0. Such a limit is called
dyp(A); dyp is a signed measure and denoting the translated measure pi,(A) := u(A+v) by p, we
have
Msy — 1

—— —dupt
S

lim
s—0

‘ =0, (2.8)

where || - || denotes the total variation norm.
Moreover, d,pu is absolutely continuous with respect to . The density 3 € L'(X, i) is called
Fomin derivative or logarithmic derivative of u along v, and it satisfies

L ptan =~ [ seruan), fecio, (2.9)
X ov X
By [6, Thm. 3.6.8], this equality characterizes Fomin differentiability, in the sense that if (2.9)
holds for some 8 € L'(X, ;1) and for every f € C}(X), then y is Fomin differentiable along v.

If 1 is Fomin differentiable along two vectors v, w, then it is Fomin differentiable along any linear
combination of v and w, and we have dy, 4 wit = AMdypt + Aady,pt; therefore

Bﬁ\tlv—l—)\zw = /\161/; + )‘255;7 A1, A2 € R (210)

The proofs of these statements may be found in [6, Chapter 3]. We refer to [6] for the general
theory of differentiable measures u, and to the basic properties of the measures d,u.

3. SCHAUDER AND ZYGMUND REGULARITY

Under the only assumptions that 7; € £(X) and p; is a Borel probability measure for every t,
the operators P; defined in (1.1) map Cp(X) into itself and we have

[Peflloo < N[ flloos >0, f € Cp(X), (3.1)

The weak continuity of ¢ — i, yields that for every f € Cy(X) the function [0, +o00) x X, (¢, z) —
P, f(z) is continuous, by [9, Lemma 2.1]. Consequently, the operators F in right-hand side of
(1.3) are one to one, and since P, is a semigroup they satisfy the resolvent identity F'(\) — F'(u) =
(L —AN)F(N)F(p). By the general spectral theory, there exists a unique closed operator L : D(L) C
Cy(X) — Cp(X) such that F(\) = R(\, L). The domain D(L) is just the range of F(\), for every
A>0.

The leading assumptions of the paper are the following.

Hypothesis 3.1. For every t > 0 there exists a subspace {0} # H; C X such that pu; is Fomin
differentiable along every h € Hy.

According to the notation of Section 2, for every v € H; we denote by 4" the Fomin derivative
of ; along v.

Hypothesis 3.2. There exists a Banach space H C X, and constants M, C, 8 > 0, w € R such
that

() TWH)CH, |Tihlg < M|, t>0, heH,

3.2)
N Cet (
(i1) Ty(H) C Hy, |87l (x 00) < tTHhHHv t>0, heH.
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3.1. Properties of P, and estimates. The starting point of our analysis is the next proposition,
which shows that each P, is smoothing along suitable directions.

Proposition 3.3. (i) Let g € By(X) and t > 0. Then P.g is H-Gateauz differentiable with
bounded H-Gateaur derivative, and

DuPig(@)) =~ [ o(Tia+ 0B, 0) mldy), ¢>0, he M. (33)
(ii) Let g€ Cyp(X) andt >0, n € N. Then P,g € C}(X); for all hy,...,h, € H we have
Dy Pig(x)(h, ..., hy) (3.4)
= (=" /X o / 9(Tyx + Tn;lty1 +- Tiyn—l + Yn)

B;tt//nh (Yn) - BTt/ hy (W)t (dyn) - - - pyn(dyr),

and
UJ

D5 Peg ()| en () < Kn thHQHOO? (3-5)

with K,, == C™n?. If w > 0 a better estimate than (3.5) holds for large t, namely there
exists K, > 0 such that

I DY Pig(x) || gniary < Kjymax{1,t "}|glloc, t>0, 2 € X, g€ Cy(X). (3.6)
(iii) Let g € CL(X) and t > 0. Then

Dy Pig(z)(h) = /X 8((;fh) (Tix + y)ue(dy) = Py (8(2’fh)>($)’ t>0,z€ X, hec H. (3.7)

If even g € CF(X) for some n € N, then for allt >0,z € X and hj € H, j=1,...,n, we

have
g
D% P, (h,... D 9(T; Tihy, ..., Tihy d
(3.8)
and the function (t,x) — DY Pig(x)(hi, ..., hyn) is continuous in [0,400) x X. Moreover,
1Pl ciom (x)) < max{1, M"e™}, ¢>0, neN. (3.9)

Proof. (i) For every 2 € X, h € H and s # 0 we have

Pig(z +sh) — Pg(x) 1 /X(g(Ttac + sTyh 4+ y) — g(Tyw + y)) e (dy)

S S

- ! </X 9(Trx + 2) () sTyn(dz) — /Xg(thE +y)ﬂt(dy))

w

so that

big(x + sh) — Pg(x)
s

[ o495 ()| < Nl | LTI~

that vanishes as s — 0 by (2.8). Therefore, P;g is differentiable along h at x, with derivative

OP.g(x)/0h given by the right-hand side of (3.3). Such a derivative is linear in h by (2.10) and

by the linearity of T}, and by Hypothesis 3.2(ii) it modulus is bounded by ||g|lccCe“*t % ||h| 5.
10



Therefore, Pig is H-Gateaux differentiable at « and (3.3) holds. If g € Cy(X), then for every z,
xg € X,and h € H,

(D Pig(x) — DuPig(x0))(h)] < /X 9(Tix + y) — 9(Trxo + )| |85, ()] pe(dy) (3.10)

where the right-hand side vanishes as * — g by the Dominated Convergence Theorem. So,
Dy Pig(-)h is continuous on X, hence Pig € CH(X).

(ii) Now let us prove (3.4) for g € Cp(X), t > 0, by induction over n € N. We have just proved
(3.4) for n =1 above. Suppose that (3 4) holds for n € N. By the induction hypothesis applied to

the n-step equipartition 0 < +1 << Ghgpof [0, TH-I] for hy, ..., hn+1 € H we have

D}y Pog(x)(hy, .o, hn) = DY P o (P o _g)(x)(hy, ... hn)

n+1

S0 [ [ Pt T+ T )

ﬁ;://((::;;h (Yn) - - ﬁ;‘ﬁjjf”ﬁ’hl (Y1) e/ (1) (dYn) - -+ 11ty (nge1) (A1)

Since we already know that P%g € CL(X), by Hypothesis 3.2(ii), (2.7) and the Dominated
n+t

Convergence Theorem we can differentiate the right-hand side along h,,1 interchanging the partial
derivative with the multiple integrals, and using (3.3) we obtain

0
— (—1)(n+1) . - .. .
8hn+1DHRtg( x)(hi, ..., hy) = (—1) /X /Xg(Ttx—i—TnJrlyl—i— —|—Tmyn+z)

,8;://((:111)%“( )B:l;://::;l))hn( n) 5%//5:11;;11 (yl)ﬂt/(nﬂ)(dZ)Ht/(n+1)(dyn) T Mt/(n+1)(dy1)«

The right-hand side is just D} Pig(x)(h1, ..., hnt1), so that (3.4) holds for n + 1.

The continuity and boundedness on X of the map x +— D} P;g(x)(h1, ..., hy) is obvious by (3.4),
Hypothesis 3.2(ii) and the Dominated Convergence Theorem. Then also (3.5) follows immediately
by Hypothesis 3.2(ii).

Assume now that w > 0. Using (3.5) we get for 0 < ¢ <2

n eZw
1% Peg(@)llen ) < K g l19lloos

while for ¢ > 2, writing D}, P,g = D%, Pi(P;—19) and using (3.1) and (3.5) with ¢ = 1, we get
I1DiPeg(@)llen(rry < Kne?|[Pro1glloe < Kne“|lglloo-
Putting together such estimates, we get (3.6).
(iii) Now we prove (3.7). If g € CL(X), for every s # 0 and z € X, as before,
Pig(x + sh) — Pig(x) 9(Tyx + sTih +y) — g(Thx + y)
= /X e (dy)

S S

and the right-hand side converges to fX ot (Tie+y)pe(dy) = [ Dug(Tix+y)(h)u(dy) as s — 0,
by (2.7) and the Dominated Convergence Theorem. By the definition of P;, such limit coincides
If g € C}(X), formula (3.8) follows applying several times (3.7). The proof of the continuity
of (t,x) — D} Pig(x)(hi,...,hy) is similar to the proof of the continuity of (¢,z) — P, f(x) of [9,
Lemma 2.1]. Here is the argument:
11



Let tp —t € [0,400), 2, — = € X. Then,
DY Py, g(xg)(hi, ... hy) — DY Peg(x)(ha, ..., hy)

= / (Dig(Tywr + y)(To b, - - Tyhn) — Dirg(Tow + y)(Tihas - - - Tihn) )iy (dy)
X

+/ Dy g(Tiw + y)(Tiha, - . ., Tihn)) (p, (dy) — pe(dy)) =: Iy g + Lo
X

Since p, weakly converges to p; as k — oo and D} g(Tix + -)(Tiha, ..., Tihy) is continuous and
bounded, I} — 0 as k — oo. Still by the weak convergence, the measures f;, are uniformly tight,
namely for every ¢ > 0 there is a compact set K. C X such that u, (X \ K.) < ¢ for every k € N.
Splitting I; ;, into the sum of the integral over K and the integral over X \ K., and using the
uniform continuity of (¢, z) — D% g(2)(Tih, ..., Tihy) on compact sets, one gets limy_,oo I1 5 = 0,
too.

By (3.8) and Hypothesis 3.2(i) we have, for every natural number j <nandz € X, hy,...h; € H,

J J
|(DyPig(x))(h1, ... hy)| < sup 1D} 9 sy [ TITball e < M7 T T bl sup D39l s (a1
v =1 =1 v

which yields (3.9). O

Remark 3.4. Under our general assumptions we cannot prove that Dy P,g is continuous with
values in H* (and therefore that P.g is H-Fréchet differentiable, by Lemma 2.1(ii)) for every ¢ > 0
and g € Cp(X). (3.10) implies immediately that D P,g is continuous for every uniformly continuous
and bounded g, but we prefer to deal with merely continuous rather than uniformly continuous
functions.

If in addition the functions Bé,fzh belong to LP(X, i) for some p > 1, and for every ¢t > 0 there
exists Cy > 0 such that ||87/, || p(x ) < Ctl|h]|u for every h € H, using the Holder inequality in
the right-hand side of (3.10) and then the Dominated Convergence Theorem yields that Dy Pg
is continuous with values in H*. In this case, throughout the paper we could use stronger higher
order Hélder and Zygmund spaces, obtained replacing the condition of H-Gateaux differentiability
by H-Fréchet differentiability in the definition of the CF; spaces.

The behavior of P; in the Hélder spaces C%(X) and in the Zygmund spaces Z%(X) is coherent
with its behavior in Cp(X), as the next lemma shows.

Lemma 3.5. For every t > 0 and o € (0,+00), k € NU{0}, P, € L(C(X)) and there ewists
¢ =c(k+ a) >0 such that

||Ptf||clg+a(x) < C||f||01}€1+a(x)> t>0, fe C[]ir—i_a(X)- (3.11)
Moreover, for everyt >0 and k € N, P, € £L(Z%(X)) and there exists ¢ = c(k) > 0 such that
1Pfll ze x) < ellfllze ), £>0, f € Z(X). (3.12)

Proof. Let o € (0,1) and f € C%(X), t > 0. From the representation formula (1.1) and Hypothesis
3.2(i) we get, for every x € X and h € H,

Pf(+h) - Pf(@)| = \ [ @+ Tih+) = 1T+ )a(a) -
3.13

IN

[Flee ) ITehl|g < M@ [ floe cx) IR,
12



so that
1P flles x) < I flloo + M [floa x)-

This proves (3.11) for k = 0, in the case w < 0.
If fe CI;IJFO‘(X) for some k € N, we use (3.8) and again Hypothesis 3.2(i), that give, for every
re€ X and h, hy,...h € H,

(DEPf (2 +h) — DYy (@) (b, - )] =
_ ] [ (Db T+ Tih ) — Dy (T ) (T, iy

[0} k (0% Q)W
< [Df flog oxer (p 1Tk 15 Ty 1 Tehyllr < M¥Fee®F D fca con 1015 TTy =y 1

This estimate and (3.9) yield (3.11) for £ € N, in the case w < 0.
For w > 0 we argue as follows. For every f € C**%(X) with a € (0,1) and k¥ € NU {0} the
above estimates yield

[P fllemsacey < M fllgnray), <1,
while for t > 1 we write P;f = PiP,—1f, so that ||Ptf||cl’§+a(X) < HPIHL(Cb(X),CZ*”‘(X))||f”°° by

(3.1) (P1 belongs to L(Cy(X), CI]?O‘(X)) because it belongs to £(Ch(X), CI;I'H(X)) by Proposition
3.3, and C%TH(X) C CF(X)).
The proof of estimates (3.12) is similar, and it is left to the reader. 0

If f is H-Holder continuous estimates (3.5) may be improved near ¢ = 0. Such improvements
are crucial in the proof of our Schauder theorems.

Proposition 3.6. For every o € (0,1) and n € N there are constants K, o > 0 such that

wt

I1DE e f (@)l en ) < Koo [flegx), >0, zeX, feCp(X). (3.14)

t(n—a)o

Proof. The key step is to prove that (3.14) holds for n = 1. We use the same argument of [18]. Let
t>0, feC{(X), he H\ {0}. For every s > 0 we have

P, f(x + sh) —Ptf(l“)) n Pif(x + sh) — Pif(z)

S S

DyPif(z)(h) = (DHPtf(x>(h>—

Pif(x + sh) — Pif(x)
s

_ (i /0 (DuPf(@)(h) — DuPyf(s+ ah)(h))da) +

=: Ii(s) + I2(s).
To estimate [;(s) we remark that for every k € H, by (3.3) we have

|(DuPif(x+k)— DuPf(x))(h)] = ‘/X(f(Tt$ + Tik +y) — f(Tix +y)) By () e (dy)

th

< log oI Tk 18l 11 (x ) < [Flog oo M eIkl —

Using this estimate with k = och we get

laie

|I1(s)] < i/OS|DHBf(x+ah)(h)—DHPtf( )(h)|do < lct&

13
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On the other hand, by (3.13) we get
|I2(s)] < M s* | h||% [ flog, x)-
Summing up,
CM*~
Durfe)) < (e

+l)wt 4157 tga—l
. a+1)w HhH?{ + Meeowt g HhH?{)[f]C%(X)’ s> 0.

0

Choosing now s = t?e=“!/||h||z we get

cM® « 1 wt
|DHPtf(IE)(h)| < (Oé+ 1 + M >t(1a)06 ”hHH[f]C?I(X)’

which yields (3.14) for n = 1.
For n > 1 we have D}, P,f = D} P, /29, with g = P, /5 f. By (3.7),

T
Ohy -0l Ohy_1---0h1 >\ O(Ty/ahy)
so that (3.14) follows from (3.5) and (3.14) with n = 1. O

3.2. Schauder and Zygmund estimates: stationary equations. In this section we use the
smoothing properties of P; to deduce regularity results for the elements of D(L), namely for the
functions u given by (1.3) for some A > 0 and f € C(X). Estimate (3.1) yields immediately

1
lulloo < Sl flloo- (3.15)
The first (not optimal) regularity result is a standard consequence of Propositions 3.3 and 3.6.

Proposition 3.7. Given A >0 and f € Cy(X), let u= R(\,L)f.
(i) Let 8 < 1. For every n € N such that n < 1/0, v € C}(X). There exists C = C(\) > 0,
independent of f, such that
lullen (x) < Cllflloo (3.16)

(ii) Let a € (0,1) be such that o +1/0 > 1. For every f € C%(X) and for every n € N such
that n < a+1/0, uw € C}(X). There exists C = C(A\, «) > 0, independent of f, such that

luller o) < Cllfllee x) (3.17)
Proof. The proof is in two steps. First we consider the case A > w, and then, if w > 0, the case
A€ (0,w].
First step: A\ > w. Estimate (3.5) yields, for every k € {1,...,n},
wt
_ _ e
e M DEPS ()l griary < € AthWHf”m, t>0, € X, fecCyX), (3.18)

and if a € (0,1), (3.14) yields, for every k € {1,...,n},

ewt

e M| DE P f (@) || g gy < e—Ath,at(k_a)e [fleex), t>0, z€X, feCHX). (3.19)

The right-hand sides of (3.18) and (3.19) belong to L'(0, +0c) because A > w, and kf € (0,1) in
(3.18), (k— )8 € (0,1) in (3.19). Therefore u is n times H-Gateaux differentiable at every x € X,
and for every hy,...,hy € H with k € {1,...,n} we have

D¥u(z)(hy,... hy) = / e MDY P, f(x)(hy,. .., hy)dt.
0
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(3.18) and (3.19) imply respectively, for every x € X and k € {1,...,n},

0 ewt—)\t Kkr k6
Do) encoy < Ko [ St 1l < S T e

and
o0 gwt—At Ko J(1—(k—a)b)
I D)l gy < Kk,a/o et [flog x) < (’)\ )i [flog x),

for « > 0, f € CF(X) (here, T' is the Euler function). In both cases, since for every ¢ > 0
the function & — D% P, f(z)(h1,...,hy) is continuous by Proposition 3.3, estimates (3.18), (3.19)

and the Dominated Convergence Theorem imply that = +— D%u(z)(hy,...,hs) is continuous for
k=1,...,n. Therefore, u € C}LI(X) and

lulles, o, (ZK - ,la)ufuoo, (3.20)

so that (3.16) holds with C' =1+ Y_7_; KxI'(1 — k8) /(A — w)!~*?. In the case that a € (0,1) and
f e 0f(X), we get

(k- )
Julleg o0 < (ZKM e ) fleg o (3.21)

so that (3.17) holds with C' = 1/A + >3, K oT'(1 — (k — a)8) /(A — w)t= k=),

Second step: w > 0, A € (0,w].

In this case the statement follows from Step 1 by a perturbation argument. Indeed, since Au —
Lu = f, we have (w+ 1)u — Lu = (w+ 1 — XN)u+ f. The right-hand side belongs to Cy(X), and its
sup norm is bounded by ((w+1—A)/A+1)||f|leo, by (3.15). So, statement (i) follows from Step 1.

Concerning statement (ii), it is sufficient to prove that u € Cf(X), with [[ullce x) < C[/flce (x)
for some C' > 0, and to use Step 1 as above. This is a simple consequence of Lemma 3.5. Indeed,
using (3.11) with £ = 0 we get

o0

u(eh)—u(@)] < [ MBS rh)~Pf@)de < [Nl ogeodt = 5 IR oy cor
0 0 A
O

Notice that for n > 1/6 in case (i) and for n > a+1/6 in case (ii), the arguments used above do
not work, since the functions ¢ — ¢, t — t—("=9)% regpectively, are not integrable near 0, and
(3.18), (3.19) are not helpful to conclude that D} u(x) exists.

Optimal regularity results are provided by the next theorems. The first one deals with Holder
regularity, and the second one with Zygmund regularity.

Theorem 3.8. Let A >0, f € Cy(X) and let u= R(\, L)f. The following statements hold.
(i) If 1/0 ¢ N then u € 01/0( X). There exists C = C(\) > 0, independent of f, such that

w (X)
i) If « € (0,1) with a +1/0 ¢ N and f € C%(X) then u € Caﬂﬂ9 X) and there exists
H
C =C(\ ) >0, independent of f, such that

il g0y < Cll g cx- (3.23)
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Proof. Let n € NU{0} be the integral part of o+ 1/6, with o = 0 in the case of statement (i) and
€ (0,1) in the case of statement (ii). If n =0, u € C3(X) and (3.15) holds. If n > 0, we already
know, by Proposition 3.7, that u € C};(X), and that estimate (3.20) (resp. estimate (3.21)) holds.
We have to prove that D% u belongs to CEJFI/Q*H(X, L™(H)). Asin Proposition 3.7, it is sufficient
to consider the case A > w. If w > 0, the case A € (0,w] is recovered by the same argument used in
Step 2 of Proposition 3.7.
We treat separately the cases n > 0 and n = 0.
Let n = 0. This implies that § > 1 in statement (i), and (1 — «)f > 1 in statement (ii). For
every fixed h, we split u = ap, + by, where
Inll5”

anly) = /0 NP (y)dt, ba(y)

o
/||h||1/9 e MPf(y)dt, yeX. (3.24)

So, for every x € X we have

1/6 1/6

12117 127
oo +1) =@ < [ RS @en) = Bf@lar< [ 20 et = 20010
To estimate |by(x + h) — by (z)| we remark that by (2.1)(i) and (3.5) with n = 1 for every ¢t > 0

we have
wt

[1Pf(x+h) = Pif(x)] < sup IDaEf ()l a1 < K1i7||hHH||f||oo, (3.25)
Yy

which yields

lbn(z 4+ h) —bp(z)] < /hl/e e M| P f(x+h) — Ppf(x)|dt < / o 0 By Al el f oo
H
< 11 flloo-
Summing up, u € C}LI/G(X), and
oy < (24 527 ) Il

This estimate and (3.15) give (3.22) with C(A\) =2+ K;/(6 — 1) + 1/, in the case that 6 > 1.
If a« € (0,1) and f € CH(X) we use (3.13) and we get

1|
lan(x + k) — ap ()] < / NP (x4 h) — Pyf ()] dt
0
I ”1/9 —(/\—aw)t « a a a+1/0
< /O MBI Fles oot < MBS Flen -

To estimate |b,(x 4+ h) — by (z)| we use (3.14) with n = 1, that gives

wt

e
|1Pf(z + h) — P f(z) < sup 1P LS )l < Krorq—yg Il aFlog o, (3.26)
ye
which yields

a4+ 1) — b ()] < /°° e

K e O+a
o faan Il Fleg < e Bl og -

50 =1 - a)
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Summing up, we obtain u € C’aH/e(X), and

« Kl,a
[ulgaer/o ) < (M + W)[f]cg,()()-
This estimate, together with (3.15), yield (3.23), with C(A\) = M* + K1 /(1 —a)f —1)+1/), in
the case that « +1/60 < 1.

For n = [a + 1/60] > 1 the procedure is similar, just with different notations and constants.
We already know from Proposition 3.7 that u € C}(X), and we have to show that D}u €

C’IC;H/O*YL(X,L"(H)), with @ = 0 as far as statement (i) is concerned, and « € (0,1) as far as
statement (ii) is concerned.
For every fixed h, hy,..., hy, € H we split D}u(y)(hi, ..., hy) = an(y) + bp(y), where now

lIl13/°
an(y) = /0 MDY () (s o),y € X,
(3.27)

bly) = /”hnl/ee"\tD}‘IPtf(y)(hl,...,hn)dt, yeX.

Let us prove that statement (i) holds. In this case we have f € Cy(X), nf € (0,1), (n +1)0 > 1.
Recalling that w — A < 0, estimate (3.5) yields

1/6

Pl elw=2t
jan(@ +h) —an(@)] < lan(e+ )| + |an(z)| < 2K, / dtHHh il 1l
2Ky, n0)/0
< Tl /Huh el £ oo

To estimate |b,(x 4+ h) — by (z)| we apply (2.1)(ii) to the function P;f, and using (3.5) we get

D Pof (2 + 1) = Dy Pef ) lleniay < sup 1D P @)lenan Ibllr < Kn+1t(§_ﬁ)9\|f||oouh||H,
which yields (since w — A < 0) 529
b+ ) — by ()] < /” :W "t;“l’}l'HdtH ol oo < (1‘1’”‘/9 H .

Summing up we get
(Dyu(z + h) — Du(@))(ha, ..., ha)| < Cillblly " "H s 2211 1l (3.29)
j=1
with
C, = 2K, Kot

T—n0  (nr1)f—1

Therefore, D%u € Cp/’ ™(X; £"(H)) and [D7u]
(3.20) give (3.22) for n > 1.

CLO (i (1) < C1||fllco- This estimate and

17



Let us prove that statement (ii) holds. Now we have f € C'%(X) with a € (0,1), (n—«)8 € (0,1),
(n+1—«)f > 1. Estimate (3.14) yields

IalE’ gt n

lan(z +h) —an(z)] < lan(z + )| + |an(z)] < 2Km/ el H\lh Iz [fleg x
_ 2Kn,a (1-(n-a)9)/0 T
= mHhHH ]1_[1 1Rl [ flee (x)-
To estimate |b,(x 4+ h) — by (z)| we use again (2.1)(ii) and by (3.5) we get
n n n K, l,aewt
|1D}Pof(x+ h) — D Pof ()| gn iy < sup 1D P f ()l |1l o < m[ﬂcg()c)”h!!m
(3.30)
which yields
o n+1l,a
lbp(z + h) —bp(x)] < /||h||1/9 t("Jj ) dt ||h|| g H 1R lle [ fles (x)
K 1/0—n+a
< mrl—a)i ||h|| H 1Rl [ flee (x)-
Summing up we get
n n 1/60—n+a =
(DYl + h) — Diyu(a))(ha, ... hn)| < Collhll "~ T ksl [fleg ) (3.31)
with
2Kn,a Kn—l—l,oz

C2= 1—(n—a)9+(n+1—a)0—1'

n 1/6—n+ rn n . .
Therefore, Du € C’H/ “(X;L"(H)) and [DHU]C;I/Q_M&(X;U(H)) < Ca[flee (x)- This estimate
and (3.21) give (3.23) in the case n > 1. O

If 1/0 = k € N we do not expect that u € Cl/e( X) whenever f € Cy(X). The simplest
counterexample is X = H = RY with N > 1, L = A. In this case (3.2) is satisfied with § = 1/2
(see Sect. 4.1) and it is well known that the equation M — Au = f has not solutions in CZ(RY)
(and even not in Cf (RY) with Lipschitz gradient) for every f € C,(RY). The best regularity result
in this scale of spaces is in Zygmund spaces.

Theorem 3.9. Let A >0, f € Cyp(X) and let u= R(\,L)f. Then

(i) If1/0 =k € N, u € Z%(X), and there exists C = C()\) > 0, independent of f, such that
[ull zt (x) < Cllflloo- (3.32)
(ii) If a € (0,1) and a +1/0 = k € N, for every f € C%(X) the function u belongs to Z¥(X),

and there exists C = C'(\, «) > 0, independent of f, such that

lull 2i (x) < Cllflleg x)- (3.33)
Proof. We proceed as in the proof of Theorem 3.8, with due modifications. So, it is enough to
prove that the statement holds if A > w. The case where w > 0 and X € (0,w] will follow as in Step

2 of Proposition 3.7.
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First we prove statements (i) and (ii) in the case k = 1.
We already know that u € Cy(X), with |lulloc < || fllec/A. To show that u € Z4(X), for every

fixed h € H we consider again the functions a;, and by, defined in (3.24), such that u = ay, + by,.
Let us prove statement (i), in the case § = k = 1. For every x € X we have

Il
lan(x + 2B) — 2ap(x + h) + an(z)] < / e M|P,f(x + 2h) — 2P f(z + h) + P f(x)] dt
0

Ikl
< 4A N fllodt = 41 2] £ | o-

To estimate by, (x + 2h) — 2bp(z + h) + bp(x) we use (2.1) twice, that gives

1 1
Pof(z+2h) — 2P f(x+ h) + Puf(x) = /0 DuPuf(z+ (14 o)) (h)do — /0 DuPuf(x+ oh)(h)do

= /01 /01 D} Pif(z + (1 + o)) (h, h)dT do
so that, by (3.5) with n = 2,
Iﬂf@+2m—ﬂﬂf@+h%+ﬂfwﬂSsgﬂD%Bf@MwmmW%Slﬁi:VM&M%»(3M)
Therefore,

|br(x + 2h) — 2bp(z + h) + bp(x)] < /ZO e M| P, f(x 4 2h) — 2P, f(x + h) + P, f(x)| dt

IN

S ¢ ewt )
tﬂelﬁﬁmemﬁémmmwm.
H

Summing up,
lu(z + 2h) — 2u(z + h) + u(z)| < (44 Ko)[[h]| g | f o,

so that u € Z};(X) and (3.32) holds with C' = 1/A + 4 + K». So, statement (i) is proved for 6 = 1.
Concerning statement (ii), when a +1/6 =1 and f € C(X) we have by (3.13)

lap(x + 2h) — 2ap(z + h) + ap(x)]

1/6

121l
< /0 e M(|Pf (x + 2h) — Pof(x + h)| + |Pof(x + h) — Pif(x)]) dt

eIl
<2 [ et flog ool < 200° [l flog o
while (3.34) has to be replaced (using (3.14) with n = 2) by

K. aewt
|Pif(x+2h)=2P, f(z+h)+ Fif(z)] < sup 1D3 Pef W)lle2 g IR 17 < ﬁ[f]og(X)HhH%{’ (3.35)
Y
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and therefore, recalling that (2 — )0 =146,

|br(z + 2h) — 2bp(x + h) + by (2)| < /001/9 e M|Pof(x + 2h) — 2P.f(x + h) + Pof(2)| dt
h H

[e%¢] B ewt ](Qa
< /||h||1/" e AtK2,at(2_7a)9[f]Cg(X)HhH%ﬂJlt <= [floe (x)-

Summing up,

e+ 20) = 2u(e + )+ u(o)] < (220% + 522 ) [llnlfleg oo,

so that u € Z4(X) and (3.33) holds with C' = 1/ +2M% + K» /0. So, statement (ii) is proved
fora+1/6 =1.

In the case that £ > 1 (we recall that & = 1/6 in statement (i), kK = a+1/6 in statement (ii)), we
know from Proposition 3.7 that u € C%!(X) and that estimates (3.16), (3.17) hold with n = k — 1.
What we have to prove is that D’;_flu € Z'(X,LF1(H)), and to estimate its Z! norm in terms of
f. To this aim, fixed any h, hq,...,hx_1 € H, for every y € X we split Dz_lu(y)(hl, cooyhg—1) as
an(y) + br(y), where now

an(y) = /”h”w e Dy Pif(y)(ha, .. heor)dt, y € X,
’ (3.36)
bn(y) = /||:|1/0 e NDEIP F(y)(ha, ... b)) dt, y € X,
So, for every x € X we have
|(DEu(x 4 2h) — 2D u(x + h) + D u(@)) (R, .o hyr)| <
= |ap(z + 2h) — 2ap(x + h) + ap(z)| + |ba(z + 2h) — 2bp(x + h) + by ()] 337
By the definition of a; we get
lan(x 4+ 2h) — 2ap(x + h) + ap(x)]
I (3.38)

< / e M|(DEP f(x + 2h) — 2DE7I P f(x + h) + DY Pf () (b, - o hy1) dt,
0

To estimate the right-hand side we observe that

(D Pif(x + 2h) — 2D% 7 Py f (x4 h) + D Pof () (hay -+ 1)

k— k-1
< dsupyex | D Pof )l en g TT521 s,

which is bounded by 4Kj_jewtt— (k=1 H;:ll |hillzllfllo thanks to (3.5), and by 4Kk 1, €
~(k=1-0)f Hf;ll IRl [flce (x) thanks to (3.14) if f € Cf(X) with o € (0,1). Therefore, the
right-hand side of (3.38) is bounded by

dtH 1Pl 1 flloe = AR E—1 [|A] H 1Pl 11Nl
j=1
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if k =1/6, and by

1/6 k—1

1Ml ™ 4K, la
/0 1) dtHHh el fleg ) = 4(k = ) Ki-vallllm TT IRl fleg )
j=1

if f e C¥(X) with a € (0, 1) and k = a + 1/6. Moreover, by the definition of b;, we get
|br.(z + 2h) — 2bp(z + h) + bp(z)

> k—1 k—1 k—1 (3.39)
S/ 170 e N|(DY Pif (w4 2h) = 2Dy Pof (@ + h) + D Pf (@) (hay - hyey) dt
h

To estimate the right-hand side we recall that for every ¢t > 0, x € X, h € H, by (2.5) we have
(D} 'Pyf(z + 2h) — 2D5 ' P f (x4 2h) + Dy ' Pof (2)) (R, - . o himt)]

< supyex 1D Pof (9) ez 1PN TIGZ1 (1Rl

which is respectively bounded by Kjje?tt=(++D0|h)|2, Hf;ll |\l flloo due to (3.5), and by
Kpy1,aet™EF1=00 02 TTEZH (Bl [ flog (x) if f € Cf(X), due to (3.14). Therefore, the right-
hand side of (3.39) is bounded by

k—1

< Ky
? T dt||h||% H 1Bl Flloe = EEgqa Il TT 111 e )l £ lloos
DA ket

if kK =1/6, and by

00 K, k—1 k—1
+1,a o _
/thge (o) dtl!hHH]l_[th illalflog ) = (k—a)

if f € Cfy(X) with a € (0,1) and k = o+ 1/6. Summing up, the left-hand side of (3.37) is bounded
by

[flee (x)s
j=1

k—1
k(4K + K1) [T Ihgllall flloo 1211,
j=1
if 1/60 = k, and by
k—1
(k = @) (4Kk-1,0 + Kri1,0) [ [ 1l flog oIk,
j=1
if f € O%(X) with a € (0,1) and a + 1/6 = k. In both cases, this implies that D*lu €
Z4 (X, L*Y(H)) (so that u € Z% (X)) with Zygmund seminorm bounded by k(4Ky—1+Kg11)| f]lcoin
the first case, and by (k — @)(4Kk—1,a + Kg+1,0)[flog (x), in the second case. Such estimates and
(3.16), (3.17) with n = k — 1 yield (3.32) and (3.33), respectively. O

3.3. Schauder and Zygmund estimates: evolution equations. This section deals with mild
solutions to Cauchy problems,

v(t,x) = Lo(t,z) + g(t,x), te€[0,T)], z € X,
(3.40)
U(O’ ) =/
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where L is the operator defined in (1.3), and f : X — R, g : [0,7] x X +— R are bounded continuous
functions. Mild solutions are defined by

o(t,z) = Pof(x / Pryg(s,)(@)ds, te[0,T], z € X, (3.41)

We already know that (¢,z) — P;f(x) is continuous and bounded in [0, +00) x X; if in addition
f € C%(X) for some n € N all the derivatives 9*/0h; ...0h(P,f) with k& < n enjoy the same
property, by Proposition 3.3. We still have to study the function

t
o(t,x) := / Pi_sg(s,-)(x)ds :/ Psg(t —s,-)(z)ds, tel0,T], v € X, (3.42)

with g € Cy([0,T] x X). Our final aim are maximal regularity results in Holder and Zygmund
spaces with respect to the x variable, so we introduce the relevant functional spaces.

Definition 3.10. Let T' > 0, o > 0. We denote by C’%a([O,T] x X) the space of the bounded
continuous functions g : [0,T] x X + R such that g(t,-) € CH(X) for every t € [0,T] and

”gHC%a([QT]X)() = tes[%%] Hg(t, ')HCI‘?I(X) < +00,

and moreover, if o > 1, for every (hi,...,hy) € H*, with k < [a], the functions (t,z)
(0kg/Ohy ...0hy)(t,x) are continuous in [0,T] x X.

For k € N we denote by Z?I’k([O,T] x X) the space of the bounded continuous functions g :
[0,7] x X — R such that g(t,-) € Z5(X) for every t € [0,T] and

19l 0% = sup |lg(t, )l zx (x) < +o0,
Z5"([0,T]x X) +€[0,7] Z(X)

and, if k> 2, g € CYF1([0,T] x X).
If H = X we drop the subindex H, setting Cl?’a([O,T] xX) = Cgéa([O,T} xX), Zl?’k([O,T] xX) =
Z%%([0,7] x X).

The next proposition is the evolution counterpart of Proposition 3.7.

Proposition 3.11. For every g € Cp([0,T] x X) the function vy defined in (3.42) is continuous,
and we have

[volloe < T'llglloe- (3.43)
Moreover the following statements hold.

(i) Let @ < 1. For every n € N such that n < 1/6, vy € C%n([O,T] x X). There ezists
C = C(T) > 0, independent of g, such that

loollan oy < Cllllo: (3.44)

(ii) Let a € (0,1) be such that a +1/0 > 1. For every f € C{;(X) and for every n € N such
that n < a4+ 1/6, vy € C%n([O,T] x X). There exists C = C(T,«a) > 0, independent of g,
such that

HUOHC?;”([O,T]xX) < C||g||0%a([07T]XX) (3.45)

Proof. Fix t, tp € [0,T] and z, xg € X. If t > ty we have

[vo(t, ) — vo(to, zo)| < /0 i |Pi—sg(s,)(x) — Piy—s9(s,-)(zo)| ds + [ [Pr—sg(s,")(x)| ds.

to
Since for every s > 0 the function (t,x) — P;_sg(s,-)(x) is continuous in [s,+0c0) x X, and
|Pi—sg(s,)(x) — Piy—s9(s,-)(z0)| < 2||g||co, by the Dominated Convergence Theorem the first in-

tegral vanishes as t — t9, * — 9. The second integral is bounded by (t — #9)||g|lec, SO that it
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vanishes too as t — to, © — zo. If t < tg we split vo(t,z) — vo(to,x0) = fg(Pt,sg(s,-)(x) -
Pry—s9(s,)(xo))ds + ftto Pi,—s9(s,-)(x0) ds and we argue in the same way. So, vy is continuous.
Estimate (3.43) is immediate.

Concerning statements (i) and (ii), the proof of the fact that vo(¢,-) € C}(X) for every ¢ € [0, T7,
and that

k
0"y t
Ohy ...0hy

is quite analogous to the corresponding proof of Proposition 3.7, and it is omitted. Estimates (3.44)
and (3.45) follow as well as in the proof of Proposition 3.7.

It remains to prove that (t,x) + D¥wvo(t,-)(z)(h1,. .., hg) is continuous in [0,7] x X for every
ke{l,...,n}, hi,...hy € H, and this is similar to the proof of the continuity of vy. For t > ¢y €
[0,T] and z, 9 € X we split #f’ghk(t,w) - %(to,xo) = I + I, where

t
—/ DY Py g(s,) (@), .. hi)ds, ke{l,....nhte[0,T], x € X,
0

L = /0 O(DI;{Ptfsg(s, x) — DJIEJ[PI‘/Ong(S7 N@o))(ha, ..., hi) ds,

t
Iy = | D}P_g(s,-)(@)(hi,...,ht)ds.

to
Concerning I, by Proposition 3.3 for every s € [0, T the function (¢, z) — D% Pi—sg(s,)(x)(h1, . .., hg)
is continuous in (s, 4+00) x X, moreover for 0 < s < tp we have
|D];{Pt—sg(5’ )(x) - D%Pto—sg(s) ~)($0))(h1, SRR hk)’ < @(5)7

where ¢(s) = 2K max{e“”, 1}(to — 5)*||glloc [Tj=1 I2sllz if g € Cy([0,T] x X) by (3.5), and
o(s) = 2Kj o max{ewT, 1}H(to — 8)7(1670‘)9HQHC%O‘([QT]X)() H?:1 \hjlle if g € C?I’a([O,T] x X) by
(3.14). Both in case of statement (i) and of statement (ii), ¢ € L'(0,9) and the Dominated
Convergence Theorem yields that I vanishes as t — tg, * — .

Moreover we have |I5] < ftto Y(s)ds, where ¥(s) = Ky max{e“T, 1}(t — 5)7* | g|lco H§:1 |\hjll & if

—(k— k .

g € Cp([0,T]xX) by (3.5), and ¥(s) = Ky o max{e“’T, 1}H(t—s) (k a)eHg”c%a([o,T}xx) Hj:l 2]l & if
g€ C%a([O,T] x X), by (3.14). So we get |I| < C(t—to)*~* in the first case, |Is| < C(t—to) 1~ k=)0
in the second case; in both cases Is vanishes as t — tg, * — xg.

Ift <ty €0, T] and z, g € X we split DYuvo(t,)(z)(h1,. .., hg) — D&vo(to, ) (wo)(ha,. .., k)
as al;ove, replacing fo , fto by fo’ ft , respectively, and arguing in the same way. This ends tfg
proof.

Theorem 3.12. Let f € Cp(X), g € Cp([0,T] x X) and let v be defined by (3.41). The following
statements hold.

(i) If 1/60 ¢ N and f € C}{/Q(X), g € Cy([0,T] x X), then v € Y 1/9([0,T] x X). There exists
C =C(T) > 0, independent of f and g, such that

vl oo myesey < O lor + Nl (3.46)

(i) If @ € (0,1) and a + 1/6 ¢ N, f € C5™(X) and g € C%((0,T) x X), then v €
Cgl’a+1/9([0,T] x X). There exists C = C(T,«) > 0, independent of f and g, such that

oll g0 oy < UL lgsoro gy + Nl (3.47)

Proof. Both for & = 0 and for « € (0,1), for f € C?IH/Q(X) the function (¢,z) — P;f(x) belongs

to C%QJFI/Q([O,T] x X). Indeed, by Proposition 3.3(iii), it belongs to C’%n([O,T] x X) with n =
23



[a+1/6], while Lemma 3.5 yields P, f € C?IH/Q(X) for every t < T, and supg<y<r HPtfHC?IJrl/G(X) <

CHfHC;‘I""l/Q(X)'
Therefore it is sufficient to prove that the statements hold in the case f = 0, namely when
v = vg. Taking proposition 3.11 into account, it remains to be checked that for every ¢t € [0,7],
u(t,-) € 01/9( X) in case of statement (i), vo(¢,-) € C’ZH/Q(X) in case of statement (ii), with Holder
norm bounded by a constant independent of ¢t. The proof is quite similar to the proof of Theorem
3.8. Let n € NU {0} be the integral part of o+ 1/6, with o = 0 in the case of statement (i) and
€ (0,1) in the case of statement (ii); we treat separately the cases n > 0 and n = 0.
Let n = 0. For every fixed h, we split v = ay, + by, where for every t € [0,T], y € X

Il At :
ap(t,y) = / Psg(t —s,y)ds,  bu(t,y) = /” W Psg(t — s,y) ds. (3.48)
0 h
So, for every z € X and ¢ € [0,7T] we have
[
an(t,z +h) — ap(t.z)] < / |Pyg(t — 5,0+ h) — Pog(t — s,2)| ds
0

a7’ 18
< /O g lloedt = 20114 19l

It ||h||}° > t, we have by (t,z + h) — by(t,z) = 0. If |3}

we use (3.25), which yields

< t to estimate |by(t,z + h) — by (t, x)|

¢
|bp(t,x + h) —bp(t, )] < /||h||1/9 |Psg(t — s,z + h) — Psg(t — s,2)|ds
H

IN

> 1/9
/” o o il < = l9]lc-

Summing up, v(t, )601/9( X), and

K
[vo(t, ’)]C}/@( x) > <2 Tz )HgHoo, 0<t<T.

This estimate and (3.43) give (3.46) with C(T) =2+ K /(0 — 1) + T, in the case that § > 1.
Ifae(0,1),a+1/0<1 and g € C?{’O‘([O,T] x X), we use (3.13) and we get

I3 At
lan(t,z + h) — an(t, )| < / Pag(t — 2+ ) — Paglt — s,2)| ds
0
1Rl ° At
< ; e MR %lg(t — s, )]og (x)ds
<

aw o a+1/0
max{e®T, 1M [|R) 57 sup [g(r, )eg x)-
0<r<T
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As before, if ||| }/? > t we have by (t, 2 + h) — by (£, ) = 0. If |||}/

br(t,x)| we use (3.26), that yields

< t, to estimate |by(t,x +h) —

t K aews
b (t,x + ) = bp(t,z)| < /nh||1/9 8(11;&)9 [9(t — 5, e (x)ds [l
H

K 1/6+
S llnly

< max{e®? 1} —L* s e (x)-
< max{e }( — )i = o_?ET[g(T )]s (x)

Summing up, we obtain v(t,-) € CO‘H/G(X), and

K
[vo(t, ‘)]CZH/G(X) < max{e®T, 1} (Ma + (1_(;);_1> OE}ET[Q(E Neex), 0<t<T.
This estimate, together with (3.43), yields (3.23), with C(T') = T +max{e®*T, 1}(M*+ K} o/((1—
a)f — 1)), in the case that a +1/6 < 1.

Let us consider now the case n > 0. By Proposition 3.11 we already know that vy € C?:,’n([O, T] x
X). It remains to prove that D}, v(t, ) is H-Holder continuous with values in £"(H ), with exponent
1/60 — n as far as statement (i) is concerned, and with exponent o + 1/6 — n as far as statement
(ii) is concerned. Once again, this is done as in Theorem 3.8, splitting every partial derivative
D¥o(t,y)(hi, ..., hn) = ap(t,y) + by(t,y), where now we set

Al At
ap(t,y) := /0 DY Psg(t — s, )(y)(hi,...,hy)ds, t€][0,T], y€ X, (3.49)

t
bu(t,y) = /”h”w D% Psg(t — s,)(y)(h1,...,hp)ds, t€[0,T], y€ X. (3.50)

Let us consider statement (i). We recall that in this case we have g € Cp([0,T] x X), nf € (0,1),
(n+1)8 > 1. Estimate (3.5) yields

AN ows

lan(t,x +h) —an(t,2)] < lan(t, 2 + )|+ |an(t, 2)] < 2Kn/ dSH 17511 £ 119l oo
0

< max{e T 1} |h||( )/ H 121 1|9l co-

To estimate |by,(¢,x + h) — by (t, )| when ||h||11q/9 < t we use (3.28), which yields
t n
KnJrlews
_ < nalr )
e h) ol < [ T I L sl
w Ky 0—n
< max{e 1l H el gl

Summing up we get

n n 0—n s
(D3vo(t, « + h) = Do (t,2)) (ke )| < Csllally " T Iksllallflloe, 0<t<T,

J=1
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with

2K K,
C3 = max{e*T 1} < - il > .

1-nf (n+1)0—1
Therefore, [D}vo(t, -)]C;I/f;fn < O3] f]loo for every t € [0,T]. This estimate and (3.43) give
(3.46) for n > 1.

Let us consider statement (ii). Now we have g € C%’a([(), T)xX) witha € (0,1), (n—a)f € (0,1),
(n+1—«)f > 1. Estimate (3.14) yields

(X347 (H))

1/0
|Rllz " At ews

s(n—a)o [g(t -5 ')]C%(X)ds :[[1 Hh]”H
j=

lap(t,x + h) — ap(t,z)| < 2Kn,a/
0

2K, —(n— =
_ wT n,o (1-(n—a)0)/0 '
= max{e al}mHhHH H 17|l 22

To estimate |by, (¢, + h) — by (t, x)| for Hh”ge < t we use (3.30), which yields

su T, )|oe .
i OSTIS)T[g( )]CH(X)

Kn—i—l,aews

b (t, 2 + ) — by(t,7)] < /

o st ey 90t = 5o cods [0l [T bl
1212 u

Kni 1/0—n+a

< le h
< max{e 1) ol

H Al sap [g(r, ‘)]Cg;(X)o
j=1 0<r<T
Summing up we get
n n 1/60—n+a a
[(Dvo(t, @+ h) = Digvo(t, ) (hn, - hn)| < Cullbl| " I Ihsller sup [g(r)eg )
=1 ==

with

2K, K
Cy = max{ewT, 1} ( e ntla ) )

1—(n—a)0+ m+1—a)f—1
Therefore, [D}vo(t, ')]C}I/e’"M(X;L"(H)) < Cylflce (x) for every t € [0,T]. This estimate and (3.43)
give (3.47) in the case n > 1. O

Theorem 3.13. Let f € Cy(X), g € Cp([0,T] x X) and let v be defined by (3.41). The following
statements hold.

(i) If1/0 =k € N and f € Z%(X), then v € Z%k([O,T] x X) and there exists C = C(T) > 0,
independent of f and g, such that

[0l 20 ozpy < CUL Nzt cx) + lglloo) (3.51)

(ii) fae (0,1), a+1/0 =k €N, f € Z5(X) and g € CH*([0,T] x X), then v € Z%*([0,T] x
X), and there exists C = C(T,«) > 0, independent of f and g, such that

1ol 2o oz < CULNLzt ) + Il oy (3.52)

Proof. We know by Lemma 3.5 that for every f € Z%(X) the function (t,z) — P;f(x) belongs to
Zg;’“([o, T| x X), and estimate (3.12) holds. So it is enough to prove that the statements hold for
f =0, in which case v = vy defined by (3.42).
First we prove statements (i) and (ii) in the case k = 1.
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By Proposition 3.11 we already know that vy € Cp([0,T] x X), with [|vo|lec < T||g|lec- To show

that vo(t, ) € Z}(X) for every t € [0, 7], for every fixed h € H we consider again the functions ay,
and by, defined in (3.48), such that vo = ay, + by,.
Let us prove statement (i), in the case § = k = 1. For every x € X we have

lap(t, x + 2h) — 2ap(t,x 4+ h) 4+ ap(t, x)|
Al g At
< / [Psg(t — s,-)(x + 2h) = 2Psg(t — s,-)(x + h) + Psg(t — s,-)(x)| dt
0

1]l
<4 /0 lgllsodt = 41A 2119l o-

We recall that by (t,x + 2h) — 2b,(t,z + h) + bp(t,z) = 0 if ||h||g > t. To estimate by (¢, = + 2h) —
2bp(t,x 4+ h) + by (t, x) if ||h||g < t we use (3.34), that yields

|bh(t’x + Qh) - Qbh(ta xz+ h) + bh(t7x)‘

< / Pag(t — 5, ) (@ + 2h) — 2Psglt — 5,-)(x + h) + Pag(t — 5,)(x)| ds

hllg
t wsS
e
< " KQST||9||oo|h||%{dsSmax{e2“’T,1}K2”h|\H||g||oo‘
H

Summing up,
[v(t, @ + 2h) — 2u9(t, & + ) + wvo(t, )| < (4 + max{e“T, L} K)|[ 2 rlg]loo-

so that vy € ZL(X) and (3.51) holds with C = T +4 + max{e*T, 1} K». So, statement (i) is proved
for # = 1. Concerning statement (ii), when a+1/0 =1 and g € C%a([O, T] x X) we have by (3.13)

lan(t,x 4+ 2h) — 2ap(t,x + h) + ap(t, z)|

Ihll3° At
< / |Psg(t —s,-)(x +2h) — 2Psg(t — s,-)(x + h) + Psg(t — s,-)(x)| ds
0
13 At .
< 2/0 M“e**[g(t — s,")]og (x) Pl Fdt < 2max{e™ ,1}M“||h||H03u<pT[g(r, g (x)

while to estimate |by(t,x + 2h) — 2b,(t,x + h) + by (t, z)| for Hh||g€ < t we use (3.35), that gives
(recalling that (2 —a)f =1+ 6),

b (t,  + 2R) — 2by(t, 2 + h) + bp(t, )]

< /” Pag(t — 5,-)(x + 2h) — 2Pug(t — 5, )@ + ) + Paglt — 5,-)(x)| ds

- ]
hll}

t ews K2
< K. a9 o t— . o h 2 ds < wT 1 N2a h ) . .
< /||h||§,/‘9 20 = 9 — 5 )leg o [l ds < max{e™, 13—l ||H0;1£T[g(r, s (x)
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Summing up,

lvo(t, x 4+ 2h) — 2vo(t,x + h) + vo(t, z)| <

K
< <2max{ew 1M 4 max{eT, 1} =22 ) Il sup [a(r. Yoy o).
_,r_

so that u € Z}5(X) and (3.33) follows. So, statement (ii) is proved for a +1/6 = 1.

In the case that k > 1 (we recall that k = 1/6 in statement (i), K = o + 1/6 in statement (ii)),
Proposition 3.11 yields vy € C’?{’k_l([O,T] x X). We have to prove that [D];{_lvo(t, Nz (x,cv-1(m)
is bounded by a constant independent of ¢t. To this aim, fixed any h,hi,...,hx_1 € H, for every
t€[0,7] and y € X we split DX ug(t,y)(hi, ..., he_1) as an(t,y) + bu(t, y), where now

1/6

113
an(t,y) = /0 D’;;lpsg(t —5,)W)(h,..., hy_1)ds

bilt,y) = / DI Pg(t — 5, ) (y) (has - -, 1) ds.

hHl/é
We have
|ah(t7 r+ 2h) - 2ah(t7 z+ h) + ah(ta J))|
I3 nt k—1 k—1
< / (D} " Psg(t —s,-)(x + 2h) — 2D} " Psg(t — s,-)(x + h)
0

—i—D’f{_lPsg(t —s,4)(x))(h1,..., hg—1)|dt,
and arguing as in the proof of Theorem 3.9, we see that the right-hand side is bounded by

Al 4Kk kel kel
1
/0 e ds H 1l llgllo < max{e“", 14k Kpallh]l TT 175119l
7=1

if k =1/6, and by

IR e AKL 10 k-l
/0 2 m[g(t_sf]cg(X)dSH sl e

k—1
< max{e", 1}4(k — a) Kp—vallh]m [T 0y HHosup [9(r:)]leg 00,
7=1

if g € C%°([0,T] x X) with a € (0,1) and k = a + 1/6. I ||h]|}/°

|bh(t7x + 2h) - 2bh(t7 T+ h) + bh(ta 33‘)| <

< t, we estimate

t
/” o e M|(DE Pog(t — s, + 2h) — 2D M Pyg(t — s,x + h) + D Pog(t — s,2)) (1, ..., hy_1)| dt
h

and arguing again as in the proof of Theorem 3.9 we see that the right-hand side is bounded by

k—1 k—1

t
K1 .
/”h||1/96 S(kjl ds ”h”HH 5]zl glloe < max{e“”, 1} kK| Rl H k1119l oo
H j 1
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t
ws Kk‘-i—l,a )
/h;{" ‘ W[Q(t = s,)]eg (x)ds|h| 7 l_Il 12| 1

k—1
< max{e“", 1}(k — @) Kirvallblla [T 0 HHOSHP lg(r, )]s (x)»
7j=1
ifg e COO‘([O T) x X) with a € (0,1) and k = a+1/0. Summing up, we estimate [D¥ 'vo(t,-)(z +
2h) — 2D ug(t, ) (z + h) + DY tug(t, ) ()] (ha, - . hy_1) by
k—1
max{e“”, 1Hk(4Ky—1 + K1) [T IRl llgllso 1A,
j=1
if 1/6 = k, and by
k—1
max{e*”, 1}(k — @) (4K} 1,0 + Krs1,0) [ ] 17 HHoiup [g(r, )eg o llRll;
Jj=1 =
if g € Cloja([O,T] x X) with o € (0,1) and a + 1/ = k. This implies that vy(t,-) € Z5(X)
with Zygmund seminorm bounded by max{e“”, 1}k (4Kj_1 + Ki11)||f||oo in the first case, and by
max{e“T 1} (k — a)(4Ky_1.0 + Kit1,0)[floe x|l in the second case. Such estimates and (3.12)
yield (3.51) and (3.52), respectively. O

4. EXAMPLES IN FINITE DIMENSION

In this section X = RY and T; = e!? for every ¢, where B is any N x N matrix, so that

P f(x / f(ePx+y)u(dy), t>0, feCyRY), 2R, (4.1)

The measures u; are given by
pe(dy) = gi(y)dy, t> 0 (4.2)
where the nonnegative functions g; € L' (RY) satisfy gi15(2) = [an 9s(z —e*By)gi(y)dy for t, s > 0,
a.e. © € RN, and gtll L1 mavy = 1, for every ¢t > 0. If B = 0 this condition is simply gi1s = gt * gs
for s, t > 0.
Hypotheses 3.1 and 3.2 are satisfied with H = H; = RY provided ¢; is weakly differentiable in
all directions and
g

sup tf Dy

t>0

<400, k=1,...,n. (4.3)

L1(RN)

4.1. The Laplacian and the fractional Laplacian. Strictly speaking, the results of this section
are contained in the ones of both sections 4.2 and 5.3, but we prefer to isolate them because checking
our assumptions is particularly simple in this case and does not involve the technicalities needed
in the more complicated situations of the next sections.

We recall that the heat semigroup is given by (1.1), with T; = I for every ¢ (namely, B = 0) and
ui(dz) = gi(x)dz, where g; is the Gaussian kernel

g(x) = mvae T TE RN, t >0,

that satisfies (4.3) with § = 1/2. The operator L is the realization of the Laplacian in C,(R" ), whose

domain is {f € Co(RN)Nps1 W, O’CP(RN ): Af € Cp(RM)}. Schauder and Zygmund regularity results
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have several independent proofs by now, the present approach was outlined in [45]. Concerning the
fractional Laplacian —(—A)*, s € (0,1), Schauder and Zygmund regularity results for stationary
equations are already available. The first proof of the Schauder estimates seems to be in [55,
Cor. 2.9]. Up-to-date references may be found in the survey paper [56]; for more general classes
of pseudodifferential operators including the fractional Laplacian see [32, 39] and the references
therein. However, a proof through our approach is very simple. Indeed, the associated semigroup
is given by the classical subordination formula,

@) = [ T fn o, t>0, 2 € RY,
0

where T}, is now the heat semigroup, and nt(s) is the inverse Laplace transform of A\ — e *°. Setting

nl) = 77§s), we get

ngs) (o) =t~V 30), t o> 0.
Moreover, () is smooth in (0, +-00), it has positive values and it belongs to L (0, 4-00)NW (0, +00).
This is easily seen modifying the integral that defines n(*), to get (see e.g. [62])

7 (o) = 1/ e~ 77 00s(5™) gin (r® sin(sw))dr, o > 0. (4.4)
T Jo

Therefore, e=*=2)° takes the form (4.1), with B = 0 and
pe(dy) = ps,i(y)dy,

where
1
p37t (y) = tl/s

| setwn®e i, yerY, 10 (4.5)
0
By homogeneity, we get

psi(y) =t N @p (7Y )y) >0, y e RY,

and such equality easily yields that ¢ — pu; is weakly continuous in [0, +00). Moreover,

) _ o0 o
aiykps,t(y) =t (N+1)/(2 )aiykps,l(t 1/(2 )y)a t> 07 ) € RNa

which implies

)
9l ay = e / O ) ‘d _1/es)
/RN ou” ,t(y)’ Y v [ou? a( y)| dy

From the representation formula (4.5) we get
0 . o—lzl?/4¢
zpe
/0 e (€) d

0
Lo ampa)|a== [, 26 (4E)
Y (S |22 /4¢ R (3
= || Selamgy o e Stmte = 2 [T e

0z,
The last integral is finite, since 7®) is bounded and it belongs to L'(0,+00). Therefore, there is
C > 0 such that

0 0
7ps,1(z)

dz.
6zk N

N RN

dz

0 C
— <——0=, t>0,k=1,...,N,
H 8ykp87t L1(RN) = t1/(29)
so that Hypotheses 3.1 and 3.2 are satisfied with X = H = RY and w = 0, § = 1/(2s). Theorems
3.8 and 3.9 yield
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Theorem 4.1. Let f € C4(RY) and A >0, s € (0,1)\ {1/2}. Then the equation
M+ (—A)u = f (4.6)
has a unique solution u € CgS(RN), and there is C' > 0, independent of f, such that

lullczs mvy < Ol floo-

If s = 1/2, equation (4.6) has a unique solution in Z'(RN), and there is C > 0, independent of f,
such that

[ull 71 @y < Cll flloo-
If in addition f € C&(RN) with a € (0,1) and a + 2s ¢ {1,2}, then u € C{T**(RN) and there is
C > 0, independent of f, such that
g ey < Cll ey
Ifa+2s=ke{1,2}, then u € ZF(RN) and there is C > 0, independent of f, such that
[ull ze @y < Cllfllep @y
Theorems 3.12 and 3.13 yield
Theorem 4.2. Let s € (0,1), a € [0,1) be such that a + 2s ¢ {1,2}, and let f € CP}T?5(RYN),
g€ Cl?’a([(),T] x RN) D, The mild solution to
’Ut(t,.CE) + (—A)S’U(t’ )(.’L’) = g(t,x), 0<t<T, zve RNa
(4.7)
U(O,CC) :f($)7 .’L’GRN7
belongs to Cg’a+2s([O,T] x RN), and there is C > 0, independent of f and g, such that
||UHc£va+25([0,T]><RN) < C(||f”oba+2S(RN) + ||g||CS’°‘([0’T]XRN))'

Let s € (0,1), a € [0,1) be such that a +2s := k € {1,2}. Then for every f € ZF(RY),
g€ Cg’o‘([O,T} x RN) the mild solution to (4.7) belongs to Zg’k([O,T] x RN), and there is C > 0,
independent of f, such that

HUHZSJC(RN) < C(”f”z{j(RN) + HgHCl?’D‘([QT]X]RN))'

In the non-fractional case s = 1 the first part of the theorem is known since many years ([38]).
For s € (0,1) it seems to be new.

4.2. Ornstein-Uhlenbeck operators with fractional diffusion. Ornstein-Uhlenbeck operators
are expressed by

(Lu)(w) = 5(THQD*w)(x) — {Bx, Vu(x), =€ RY,
where @) is a symmetric nonnegative definite matrix and B is any matrix. Under ellipticity or
hypoellipticity conditions (respectively, det @@ > 0 or det f(f e*BQe™B"ds > 0 for every t > 0) we
already have maximal Holder and Zygmund regularity results, first proved in [25] in the elliptic
case and then in [44] in the hypoelliptic case.
Here we consider modified Ornstein-Uhlenbeck operators which are the object of very recent
studies (e.g., [36, 3, 19]), heuristically given by

1
(Lu)(z) = i(TTS(QD2u))(LL’) — (Bz,Vu(x)), =€ RN,
with s € (0,1) and Q > 0. Tr*(QD?) is the pseudo-differential operator with symbol —(Q¢, £)*.

(WFor o = 0 we mean C>°([0,T] x RY) = C,([0,T] x RY).
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The realization of £ in L2(RY) has been studied in [3] even in the hypoelliptic case, using
smoothing properties of the relevant semigroup, expressed through Fourier and inverse Fourier
transform as

- 1 t * i~ *
P.f = etTrB exp <_2/ ]Ql/zeTB . |28d7_> f(etB .)’ t >0,
0
where ~ denotes the Fourier transform F,
fie) = @p©) = [ 0.

Now we rewrite P; in the form (4.1). Applying the inverse Fourier transform we get, for every
f e L2RY),

Ptf — etTTBSF—l (eXp (_; /t |Ql/2€TB* ) ‘QSdT>> " 3:—1(3_r~f(€tB*.>)
0

where .
TGN = g [ 9O e = T g ),
so that
— — — _1 t101/27B* (254
Pf@) = [ FePa e tiygt (BT ) gy
— etTTB (e—th o Z)gy—l (e_%fot |Q1/2573*,|25d7_) (eth) da
RN
= [ S Pt gz,
RN
with
g(z) = eTBF1 (e—%fé |Q1/2eTB*~PSdT) (—e'Bz) = g1 (e—%fé |Q1/2e<fff>3*~|25df) (—2)
1 1 [t 91/2,—0B* ¢|2s ;
— —3 Jo 1Q'2e77B ¢ do —i(€ 2)
= e 2Jo e dg,
(2m)N /RN
so that P, is represented in the form (1.1), with p;(dz) := gi(x)dx.
Setting

(pt(f) _ e_% fOt |Q1/26—0‘B*§|23d0’ f c RN,

we have g; = (2m) "V TF(¢s). Since @(€) = exp(— f(f)\(e*"B*f)dU), where A(€) = |QY2¢)*/2 is a
continuous negative definite function such that A(0) = 0, then p is a probability measure, see e.g.
[33, sect. 2.1]. Moreover, since the function (t,&) — ;(€) is continuous in [0, +00) x RV, with
vo(&) = 1 for every &, by the Lévy Theorem ¢ — i is weakly continuous, and it weakly converges to
S0 as t — 0. Therefore, P, is well defined in Cy(RY) and satisfies our assumptions with 6 = 1/(2s)
provided there exist dg;/0xy € L'(RY), for each k = 1,... N, and there are C > 0, w € R such
that [|0g:/0wk| 1 myy < Ct=1/(29) et for every t > 0. This is shown in the next lemma.

Lemma 4.3. g, € WU (RY) for every t > 0, and we have

sup 11/ || 99t <400, k=1,...,N, (4.8)
0<t<1 Oxy LY(RN)
sup 9t <400, k=1,...,N. (4.9)
t>1 axk Ll(]RN)
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Proof. The main step is to prove that g, € WHH(RY) for every ¢ € (0,1] and that (4.8) holds. The
remaining part of the statement will be a consequence, thanks to the algebraic relations among the
functions g;.

It is convenient to rewrite g; as

_ 1 1 C L [HQY2e 7B 25 do i1/ gy o 1 x
) = 5755 g o ¢ = () (410

where

- 1 1 (t|Hl/2,—cB* |2s 1 -
= 7?( - f ‘Q € | da) = :}( 9 t Oa
gt L e 2t o L (¢1) >
with &; = (¢)}/t. Our aim is now to show that g; is C!, and that SUDte(0,1] 10Gt/ 0z k|| 1wy < +00.
In this case, by (4.10) g; is C' too, and dg;/dxy(x) = t~N+D/(29) g5, /ox;, (+~1/(39) ), which yields
(4.8).

To prove that g; is continuously differentiable and it has L' derivatives it is enough to show that
€ — &@i(€) belongs to LY(RY) N H™(RYN) for every k = 1,..., N, with m > N/2. Indeed, in this
case Og;/0ry, = iF 1) with

J.

1/t

Ye(§) = &epe(§),

and
%
oxy,

1

/RN F (@) |de = —— |Fe(—2)|da

dz )

-1 x $2m/271 x
= G L T )

< L Fa+l e / B S
= (emN T LR\ Jav 1+ [2[2)m

< Cnl¥tll gmmny-

So, the rest of the proof of the differentiability of g; for ¢t € (0,1] and of (4.8) is devoted to show that
Yy € LYRY) N H™(RY) with m > N/2, and with H™ norm bounded by a constant independent
of t. As a first step, we observe that there exists ¢ > 0 such that

Pie) <e* 0<t<1, ceRY. (4.11)

Indeed, let Mp > 0, wp € R be such that ||e!?"|| < Mpe“Bt for every t > 0. For every £ € RV and
o € [0,1] we have £ = 7B Q~1/2Q'/2e=75"¢, so that ||€|| < Mpews?||Q~ 12| |QY/2e~7B"¢||, and
therefore ||QY/2e~7B"¢|| > ||€||/x, with x = min o] Mpe“sT||Q~1/?|. Estimate (4.11) holds with
c = 1/(2x%); it implies that ¢ € LY(RY) N L?(RY), with L! and L? norms bounded by constants
independent of .

To estimate the derivatives of ¥y we write it as ¢y (&) = el t©) | where

t
ft(é) = _;t/o |Q1/26_UB*€|2st', 5 c ]RN

The function (o, €) := |QY/2e=7B"¢|?* belongs to C=(R x (RV\ {0})), and therefore f; € C (RN \
{0}) for every ¢t > 0, and for every multi-index o we have

1 t —oB* s
Daft:_%/0 DY(|QY2e=7B" . 12%)do.
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Since for every o € R the function (o, -) is homogeneous with degree 2s, its j-th order derivatives
are homogeneous with degree 2s — j; therefore for every multi-index o and £ # 0 we have

Dg6(0,€)| = | D26 <a, , €)

and consequently, for every t € (0, 1],

€771 < max{| DgO(o, y)| : [yl = 1}]e[>1,

. 1 1 _ .
1D f(€)| < 5 sup |DgO(0,€)| < = max{|[Dgo(o,y)| : o € [0,1], |y| = 1}|¢[*7Iol =: K¢~ ol
2 p<o<1 2

For every multi-index o, D®%; = D%/ is a linear combination of functions such as et D f, .. ...
D% f, where j € {1,...,|a|}, a1,...,; € Nand ) «a; = |a|. By the above estimates,
S EOIDNF(E) - DY fi(€) < K[ - Ko, 6774 Gu(€)

and therefore
|l

IDG(E)] < D ¢jlePimlalemell® g £,

j=1
with suitable coefficients c;. It follows that for every e € (0, c) there exists c. o) > 0 such that
~ —el¢|?s _
DGO < e jage™ [P g # 0. (4.12)

Now, D%y () is equal to D@ (€) plus a linear combination of derivatives of ¢, of order |a| — 1.
Therefore,

- 2s — — 2s — ~ _ 2s _
1D (€)] < o jape” K17 g2l Cemelel g 2omlalig) = O, eI g 2ol

Consequently, D, € L%(RYN) provided ¢ — e <& |g|2s—lal+1 ¢ [2(RN) which is satisfied if
2(2s—|a|+1) > —N. It follows that ¢ € H™(R") if 2(2s—m+1) > —N, namely m < 2s+1+N/2.
We recall that we need m > N/2. Since 2s+1 > 1, the interval (N/2,2s5+1+N/2) contains at least
one integer m. For such m, ¢ € H™(R") and [|¢o¢[| gm @ny is bounded by a constant independent
of t € (0,1], so that (4.8) follows.

To prove (4.9) we argue as in the proof of estimates (3.6), (3.11) for large t. We use the semigroup
property P, o P = P,y for t, s > 0, which may be rewritten as

Grvs(z) = /N gs(z — e*SBy)gt(y)dy, t, s>0, zeRN.
R

In particular, for ¢t > 1 we get

g(z) = /RN g1(z — e_By)gt,l(y)dy, r e RY.

From the first part of the proof we know that g; is continuously differentiable. So, g; is continuously
differentiable and for every k =1,..., N we have

99 891(

- 1(y)dy, =z eRY,
Gl N G e PY)gi-1(y)dy, =

which implies (recalling that [|g:—1[/,1(rr) = 1)

Jo=

og

39t H
L1(RN) Oy,

8$k

t>1,
Lt RN

and (4.9) follows.
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Applying Theorems 3.8 and 3.9 we extend the results of Theorem 4.1.
Theorem 4.4. Let f € Co(RY) and A >0, s € (0,1)\ {1/2}. Then the equation
A —Lu=f (4.13)
has a unique solution u € CfS(RN), and there is C' > 0, independent of f, such that

ull ozs vy < Cllflloo-
If s = 1/2, equation (4.13) has a unique solution in Z'(RY), and there is C > 0, independent of
f, such that

ull 21y < C[[flloo-
If in addition f € C&(RN) with o € (0,1) and a + 2s ¢ {1,2}, then u € C{T25(RN) and there is
C > 0, independent of f, such that

ullgasaeey < Cllfllopam)
If a+2s =k e {1,2}, then u € ZF(RN) and there is C > 0, independent of f, such that
[ull z2 @y < Cllfllep @ay-
Applying Theorems 3.12 and 3.13 we extend the results of Theorem 4.2.

Theorem 4.5. Let s € (0,1), a € [0,1) be such that a + 2s ¢ {1,2}, and let f € CP}T?(RN),
g€ Cl?’a([(),T] x RN). The mild solution to
vi(t, x) = Lo(t,-)(x) + g(t,x), 0<t<T, xRN,
(4.14)
U(O,%) :f(l‘), xERN7
belongs to C’g’a+2s([0,T] x RN), and there is C > 0, independent of f and g, such that
||UHC£’D‘+25([(]7T]><RN) < C(”f”c’?+25(RN) =+ ||g||Cl?’a([0’T]XRN))'

Let s € (0,1), a € [0,1) be such that o + 2s := k € {1,2}. Then for every f € ZF(RY),
g e Cg’a([O,T] x RN) the mild solution to (4.14) belongs to Zl?’k([O,T] x RN), and there is C > 0,
independent of f, such that

ol g0 vy < CULF Nz + o o gy

The results of Theorem 4.4 seem to be new. A part of them, in the case a € (0,1), s > 1/2,
1 < a+2s < 2, was proved in [50] for a similar operator £, with Bx replaced by b(x) in the drift,
be CZ?(RN;RN). Concerning Theorem 4.5, in the case that « € (0,1), s < 1/2, o+ 2s € (1,2), a
similar result has been recently obtained in [19] for a more general class of operators with suitable
nonlinear and time dependent drift coefficients.

5. EXAMPLES IN INFINITE DIMENSION

5.1. Ornstein-Uhlenbeck operators. In this section we deal with the case that X is an infinite
dimensional separable Banach space and the measures j; are Gaussian and centered (i.e. with zero
mean).

For the general theory of Gaussian measures in Banach spaces we refer to [5]. In particular,
we recall that every centered Gaussian measure « is Fomin differentiable along every h in the
Cameron-Martin space H, and the Fomin derivative 3; belongs to LP(X,~) for every p € [1,+00)
and satisfies

y 1 o2z /2 .\
185l e (x ) = Nir R|€| e v 7dE =: ¢p|h||m,, (5.1)
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with ¢; = /2/7.

The first Schauder type theorems in the literature are in [11], [29, Ch. 6], concerning smoothing
Ornstein-Uhlenbeck operators in a Hilbert setting. We recall that if X is a Hilbert space, for every
centered Gaussian measure - with covariance @, the relevant Cameron-Martin space H, is the
range of Q'/2, with norm hlla, = |Q~/2h|| where Q~1/2 is the pseudo-inverse of Q'/2.

The assumptions to obtain (in all directions) smoothing Ornstein-Uhlenbeck semigroups are the
following.

Hypothesis 5.1. X is a separable Hilbert space, A : D(A) C X — X is the infinitesimal generator
of a strongly continuous semigroup e, and Q € L(X) is a self-adjoint nonnegative operator, such
that the operators defined by

t
Qi = /0 e AQes ds, t>0 (5.2)

have finite trace for every t > 0. Moreover, et maps X into Qtl/z(X) for every t > 0.

The relevant Ornstein-Uhlenbeck semigroup is given by

Pf(a / F(z + m(dy), | e By(X), x € X, (5.3)

where

- N(Oa Qt)v t> Oa
is the Gaussian measure in X with mean 0 and covariance Q);. In this case P; is strong Feller,
namely it maps B,(X) into Cp(X). In fact, it maps By(X) into CF(X) for every k € N ([29, Thm.
6.2.2]). Our L is a realization of the operator £ defined by

Lu(z) = %T&"(QDQu(:r)) (@, AVu(z)), (5.4)

see [29, Sect. 6.1].

Under Hypothesis 5.1, Hypothesis 3.1 is satisfied with H = X, H; = Qi/ 2(X ), and Hypothesis
3.2(i) holds, since e*4 is a strongly continuous semigroup on X. But also Hypothesis 3.2(ii) is
satisfied provided there exist w € R, C', M, 6 > 0 such that

C ewt

—1/2 tA
HQt /et ||L(X)§ t@ 3

t> 0. (5.5)

A
Indeed, in this case for every h € X and ¢t > 0, p > 1 we have [|85%, || 2o (x ) < cplle! hHQtl/Q(X) <

cpCe?'t=?||h||, thanks to (5.1) and (5.5). Taking p = 1 yields that Hypothesis 3.2(ii) is satisfied;
taking p > 1 by Remark 3.4 the space derivatives in the statements of next Theorems 5.2 and 5.3
are Fréchet derivatives instead of mere Gateaux derivatives.

Examples where (5.5) is satisfied are in [29] (see Appendix B and Example 6.2.11). One of them
is considered in the next subsection.

The corresponding Schauder and Zygmund regularity results in the stationary case are the fol-
lowing.

Theorem 5.2. Let Hypotheses 5.1 and (5.5) hold, and assume that 1/0 ¢ N. For every f € Cp(X)
and A > 0, the equation

A — Lu=f (5.6)
has a unique solution u € CJ/Q(X), and there is C' > 0, independent of f, such that
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If Hypotheses 5.1 and (5.5) hold and 1/6 € N, equation (5.6) has a unique solution in ZY/%(X),
and there is C' > 0, independent of f, such that

[wll z170(x) < Cliflloo-
If in addition f € C*(X) with a € (0,1) and a+1/0 ¢ N, then u € C:H/Q(X) and there is C' > 0,
independent of f, such that
lull gorre ) < Clliflegx)-
Ifa+1/0 =k €N, thenu € Zf(X) and there is C > 0, independent of f, such that
lull 22 x) < Cllifllep x)-

The Schauder part of this result was stated in [11], [29, Sect. 6.4.1] in the case Q = I, A of
negative type, and 6 = 1/2; see also [24] for further estimates in such a case. It was extended in
[16] to Ornstein-Uhlenbeck semigroups arising as transition semigroups of some stochastic PDEs,
with X = L2(9), Q being a bounded open set in RY. In this case, 4 is the realization of a second
order elliptic differential operator in X and 6 = 1/2.

In the evolution case Theorems 3.12 and 3.13 yield

Theorem 5.3. Let Hypotheses 5.1 and (5.5) hold, and let T > 0. For every f € Cyp(X), g €
Cy([0,T] x X) let v be the mild solution to

v(t,x) = Lo(t,z) + g(t,x), te€[0,T], x € X,

U(Ov ) =f

(i) If 1/0 ¢ N and f € C’;/G(X) then v € Cg’l/e([O,T] x X). There exists C = C(T) > 0,
independent of f and g, such that

||U||C'E’1/9([O,T]><X) < C(Hf”cv;/'g(x) + ||g||00)

(ii)) If « € (0,1) and a +1/0 ¢ N, f € C?H/G(X) and g € C*([0,T] x X) then v €
Cg’a+1/0([O,T] x X). There exists C = C(T,«) > 0, independent of f and g, such that

||UHC£’Q+1/9([O,T]><X) < C(Hf‘|cr§¢+1/9(X) + ||gHC’£’(’([07T]><X))‘

Let us go back to the case where X is a Banach space. The classical Ornstein-Uhlenbeck semi-
group,

Pf(z) = /X fete VI e yu(dy), t>0, feCy(X), z€ X, (5.7)

where p is any centered Gaussian measure in X, is not strong Feller. It is smoothing only along
the directions of the Cameron-Martin space H,,. However, by the changement of variables z =
V1 — e 2ty in the integral it may be rewritten in the form (1.1), with 7y = eI and y; = p o
(V1 —e2t])~1 which is the centered Gaussian measure in X with covariance Q; = (1 —e~2%)Q, if
Q@ : X* — X is the covariance of u. For the case where u is non-Gaussian see Subsection 5.4 below.

The generator L of P; is a realization of div,Vp,, where div, is the Gaussian divergence and
Vg, is the gradient along H,,, see [5, Sect. 5.8].

As we mentioned at the beginning of the section, y; is Fomin differentiable along every h € H,,,
and Hypothesis 3.1 is satisfied with H; = H,,,. Since (); is a multiple of (), the elements of H,,
coincide with those of H,,, but the norms of these spaces are different, and precisely we have

|hllf,, heH,, t>0.
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The semigroup 7; = e~*I maps obviously H,, into itself and into H,, for every ¢ > 0; moreover by
(5.1) we have

t

2, 2 et ce”
alsresn = 21 M, =y 2l < bl >0, he B,

with ¢ = (2/7)"/2sup;~(t'/?/v/1 —e~2. Therefore, Hypothesis 3.2 is satisfied with H = H,,
w=—1,0=1/2. Applying Theorems 3.8 and 3.9 gives the same results of [18], namely

Theorem 5.4. Let A >0, f € Cy(X), and set H = H,,. Then the unique solution to
Au—Lu=f
belongs to Z%(X), and there is C > 0 such that
Jell 22 ) < Cl oo
If in addition f € C%(X) with 0 < a < 1, u belongs to O3 *(X), and there is C > 0 such that
||U||c§{+a(x) < Cllflleg x)-
Let now T >0, f € Z4(X), g € Cp([0,T] x X). Then the mild solution to
v(t,x) = Lo(t,z) + g(t,x), te€0,T], z € X,

U(Oa ) = f’
belongs to Z3* ([0, T)x X)), and there exists C = C(T) > 0 such that HUHZ%%[O,T]XX) < C(lIf1l 2z, x)+

19ll0)-
If in addition f € C3*(X), g € C’Iof‘([O,T] x X) with o € (0,1), then v € C’%’Ha([O,T] x X)
and there exists C = C(T,a) > 0 such that ||’UHC§)J,2+0¢([07T}XX) < C(Hf”()fja(x) + HgHCQI’O‘([O,T]xX))'

Theorem 5.4 can be extended to the wider class of Ornstein-Uhlenbeck operators considered in
[59, 34]. Here, A: D(A) C X — X is the infinitesimal generator of a strongly continuous semigroup
et and Q € £L(X*, X) is a non-negative (namely, z*(Qz*) > 0 for every z* € X*) and symmetric
(namely, y*(Qx*) = 2*(Qy*) for every z*, y* € X*) operator. Moreover, the operators @); defined
through a Pettis integral,

t
Qix” ::/ Qe v ds, xF e X*, t> 0,
0

are assumed to be the covariances of centered Gaussian measures p; in X. We recall that if X is a
Hilbert space, Q) is the covariance operator of a Gaussian measure if and only if its trace is finite.
If X is just a Banach space, (necessary and) sufficient conditions for @; to be the covariance of a
Gaussian measure are in [60, Thm. 7.1]. References for sufficient conditions are also in [61, Remark
2.

Here we choose as H the reproducing kernel Hilbert space Hg associated to the operator @, see
[34] and [58, Chapter II1]. If B € £(H, X) and Q = BB*, P, defined by (1.1) with T; = ¢*4 is the

transition semigroup of a stochastic evolution equation,

dX(t) = AX (t)dt + BdWg(t), t >0,

X(0)==x

where W (t) is a cylindrical Wiener process with Cameron-Martin space H, see [10] for precise

definitions and more details. Moreover, it was proved in [34, Thm. 6.2] that the semigroup P; is

strongly continuous in the mixed topology on Cj(X), which is the finest locally convex topology on
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Cy(X) which agrees on every bounded set with the topology of uniform convergence on compact
sets.

Hypothesis 3.1 is satisfied with T; = ¢4, H = Hg ([34, Thm. 3.4]) if there exists w € R such
that for every z* € D(A*) we have (A* —wl)z*(Qz*) < 0, or equivalently if for every z* € X* the
function t + [|i*e™“(e!4)*z*| g is nonincreasing in [0, +00) (here i is the embedding i : H ~ X).
In this case, by [34, Thm. 3.5], all the Cameron-Martin spaces H,, coincide and have equivalent
norms for every t > 0, and e*4 maps H into H e With

A A
4l < 7 / e AR5 ds, ¢ > 0.
Therefore, if M, w are such that ||etA||L(H) < Me*t for t > 0, we get
M X
< e WO b g, t>o0.
Recalling (5.1), we obtain that Hypothesis 3.2 is satisfied with = 1/2 and w replaced by max{w, 0}.

The statements of Theorem 5.4 hold in this case too. Notice that, still by (5.1) and Remark 3.4,
the space derivatives in the statements are in fact Fréchet derivatives.

A
le" Al a1, <

5.2. Nonlocal Ornstein-Uhlenbeck operators. As mentioned in the introduction, semigroups
of type (1.1) arise as transition semigroups of Ornstein—Uhlenbeck processes with Levy noise (see
[33], [40], [41]) in finite or infinite dimensional state spaces, i.e., a stochastic process X (t), t > 0,
solving a stochastic differential equation on X of type

dX(t) = AX(t)dt + dY (1),

where Y (t), t > 0, is a Levy process. We have seen examples of this type to which our results
apply in finite dimensions in Subsection 4.2. In this subsection we shall discuss such a “nonlocal”
example in infinite dimensions. More precisely, in the situation of the previous subsection we take
X = L%(0,1) := L%((0,1),dt), where dt denotes Lebesgue measure on (0,1). Let A be the Laplace
operator A on L?(0,1) with Dirichlet boundary conditions. Since we do not want to use too much
theory of Levy processes (see [1, 43, 53]), we just mention here that such a process is determined
by a negative definite function A: L?(0,1) — C, which in our case we take concretely to be

Aa) = ll2l3a + ellelZio, @ € L2(0,1), (5.8)

where ¢ > 0 and s € (0,1). The first summand corresponds to the Wiener process part and the
second to the pure jump part of Y (¢), ¢ > 0, in its Levy-Ito-decomposition (see [1, 43, 53]). The
corresponding transition semigroup of X (t), ¢ > 0, is then given by

Puf(@)= [ S0t ) mldn), £ 0. f € BLA0,1), = € 12(0.1),
where pi;, t > 0, are probability measures with pg = dyp and with Fourier transforms given by

fit() ::/ TR0 1y (dy)
L2(0,1)

A
—exp{ / "2+l asuLzold}

for t > 0 and = € L?(0,1); see Section 8 in [41].
In fact, it follows from the proof of Proposition 8.1 in [41] that there exists probability measures
pé on L2(0, 1) such that

(5.9)

t
ﬂf(m):exp{—/ocﬂe || % Ol)dr} t>0,
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while exp{— fg ler2z2, 0,1) dr} is the Fourier transform of the Gaussian measure Ny ,, where

t
Q= 2/ B dr = (“A)MI - P2, 1>, (5.10)
0

has finite trace, because the eigenvalues \i, k € N, of A are proportional to —k2. Therefore,

Furthermore, it follows immediately from the proof of Proposition 8.1 in [41] that the functions in
(5.9) are equicontinuous in 0 with respect to the Sazonov topology on L?(0, 1) (namely, the topology
generated by the seminorms z + Tz, where T is any Hilbert-Schmidt operator in L?(0,1)). This
implies that ¢ — p; is weakly continuous (see e.g. Proposition 1.1 in [58, Chap. IV.1.2]).

The generator L of P, is a realization in C,(L?(0,1)) of the operator £ that reads as

Lu(x) = / (z(a;, AY)r2001) — /\(y)> e @20 v(dy), (5.12)
£2(0,1)

for all smooth cylindrical functions u such that u =  for some probability measure v on L2(0,1).
We refer to [40] for details and a rigorous analysis.

Clearly, if ¢ = 0, p; is the Gaussian measure N(0, Q¢) above, which is given by (5.2) with @ = 27
and A = A. In this case, ¢! maps L?(0, 1) into Qtl/z(LQ(O, 1)), and by elementary spectral theory
we get

—1/2 Cc
;" "l e(r2(0,1)) < a7z >0

so (5.5) holds. So, P; is just the semigroup (5.3) with @ = 2I and A = A, and £ has the
representation (5.4).

For ¢ > 0 we can apply our approach to our realization L of the operator £ in (5.12). So, let
us check our Hypotheses 3.1 and 3.2 with H = X = L?(0,1), H; = 622/2(L2(07 1)), and 0 = 1/2.
Obviously the only thing to check is Hypothesis 3.2(ii).

Let us start with proving the Fomin differentiability of y; along e!h, for every h € L?(0,1) and
t > 0. By the previous subsection we know that N(0,Q;) is Fomin differentiable along e/“h for
every t >0 and h € L?(0,1), with

N(0,Q+) ¢ 2
HﬁetAh ' HLl(L2(O,1),N(O,Qt)) S W”hH[ﬁ(OJ), t> 0, h S L (0, 1)

Now (5.11) and the following lemma ensure that Hypothesis 3.2(ii) also holds for the measures i,
still with 0 = 1/2.

Lemma 5.5. Let u, v be probability measures on a separable Banach space X, such that u is Fomin
differentiable along v € X. Then u * v is Fomin differentiable along v and

185 o oy < 188 1
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Proof. Let f € C}(X). Then, defining Ad: X x X — X by Ad(z,y) :=z+yandm : X x X — X
by mi(x,y) = x, we have

O gusev) = /X /X %(m +y) pldr)v(dy)

XBU
_ / / f(@ +y) B () p(dx)v(dy)
X JX
= [ [ 1) B [82 0 m | o) utdevta)
X JX

_ / £(2) B [55 om ‘ Ad = z} (% v)(d2),
X

where E, g, [0 | o(g)] denotes the conditional expectation of ¢ € L'(X x X, u ® v) with respect to
the sigma-algebra generated by g : X x X — X. Furthermore,

/X ‘E,@V [5{f om ‘ Ad = z] ‘ (nxv)(dz) < /XEM(@,,[‘B{)‘ o Wl} ‘ Ad = z} (nxv)(dz)
_ /X/XIEN@),,[W{,L om| | o(Ad)] dn o v
— | It dn
X
The statement follows, with 8, (2) = E,qy [B{f om ’ Ad = z} O

Applying Theorems 3.8 and 3.9 yields
Theorem 5.6. For every f € Cy(L?(0,1)) and X > 0, the equation
A — Lu=f (5.13)
has a unique solution u € Zg(LQ(O, 1)), and there is C > 0, independent of f, such that
Hu”ZbQ(LQ(O,l)) <O flloo-

If in addition f € C{(L*(0,1)) with o € (0,1), then u € CEJFQ(X) and there is C > 0, independent
of f, such that

||U||cb2+a(L2(o,1)) < CHf||C’g(L2(O,1))'
Applying Theorems 3.12 and 3.13 yields

Theorem 5.7. Let T > 0. For every f € Cy(L?(0,1)), g € Cy([0,T] x L?(0,1)), let v be the mild
solution to
v(t,x) = Lo(t,x) + g(t,z), t€[0,T], € L*0,1),

v(0,-) = f.
(i) If f € Z2(L*(0,1)) and g € Cy([0,T] x L*(0,1)), then v € Zy*([0,T] x L*(0,1)), and there
exists C = C(T') > 0, independent of f and g, such that

HU‘|Z£’12([0,T}XL2(0,1)) < C(HfHZlf(B(o,l)) + HQHOO)
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(ii) If @ € (0,1) and f € CF(L*(0,1)), g € CP*([0,T] x L*(0,1)), then v € Cy*T*([0,T) x
L?(0,1)). There exists C = C(T, ) > 0, independent of f and g, such that

HUHCS’””‘([O,T}><L2(0,1)) < C<”ch§+2a(L2(o,1)) - Hg”cg’o‘([o,T]><L2(0,1)))'

5.3. The Gross Laplacian and its powers. Here X is a separable Hilbert space and @ € £(X)
is a self-adjoint positive operator with finite trace. The semigroup P; is defined by (1.1) with
T, = I for every t > 0, and p; = N(0,tQ) is the centered Gaussian measure in X with covariance
t(Q). Therefore we have

P f(z /fx—i—yutdy /fx—i-\/z) (dz), feCyX), t>D0. (5.14)

with 4 = g1 = N(0,Q). That P, is a semigroup (namely, (s x ps = pers for every s, t > 0) is a
consequence of standard properties of Gaussian measures, e.g. [5, Prop. 2.2.10]. The operator L
defined in (1.3) is a realization of the differential operator

1
Lu(x) = §Tr (QD*u(x)).
See [35], [29, Ch. 3] and the references therein. We choose as H; the Cameron-Martin space of p.
So, Hypothesis 3.1 is satisfied. Moreover we take H = H; = the Cameron-Martin space of u. We
have H; = QY/?(X) = H for every t > 0, with norm depending on ¢,

Ib|la, = \hl|lg, heH, t>0.

t1/2’
Consequently, by (5.1),

||B§L‘:h”LP(X,Mt t1/2 HhHH7 h e H7 t> 07 (515)

and taking p = 1, Hypothesis 3.2 is satisfied with § = 1/2, w = 0. Therefore Theorems 3.8 and
3.9 yield that the statement of Theorem 5.4 holds in this case too, and in this case too the space
derivatives in the statement are Fréchet derivatives, by (5.15) and Remark 3.4.

The Schauder part of Theorem 5.4 in the stationary case was already stated in [12, 29]; see also
[2] for a related result.

Now let us consider the powers (—L)* with s € (0,1). As in the finite dimensional case (see
(4.5)) we define it as minus the generator of the subordinated semigroup S; of P; on Cp(X) with
subordinator {nts)( )dr, t > 0}, where as in Subsection 4.1, nﬁs)( ), > 0, is given as the inverse
Laplace transform of [0, oo) S A e

Sif(x) = /O (P f) (@) (0)do = / / F a4 u)N(0,0Q)(dy) 1 (0)do = /X Flaty)mldy), t > 0,

where P, is the semigroup in (5.14), and the measures v; are defined by

wo(B) = 60(B) / N0, 0Q) (B (o da—/ N0, Q)(B/o 2 (0)do, t> 0, B € B(X),

(5.16)
where B(X) denotes the Borel o-algebra of X. According to the terminology of [6, Ch. 4], v is
called “mixture of measures”.

Lemma 5.8. t — vy is weakly continuous in [0,+00). The generator of Sy is the operator whose
resolvent is given by

sin(sm) [ £
sinlem) /0 R L) 7 smeompomy s %6 A0 (5.17)
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Proof. Let us check that ¢ — 14 is weakly continuous. For every f € Cp(X) and ¢ > 0 we have

/ f(@)v(dz) / /m N(0, 0Q)(dx)n,” (0)do = / / F25 Y22 Ny o (dz)n'® (1)dr

For ty > 0 the right-hand side goes to [, f « f(@)ve,(dz) as t — tg, by the Dominated Convergence

Theorem. The same holds for ¢y = 0, recalhng that f ) (r)dr = 1.
Concerning the second assertion, using (4.4) for every A > 0 and f € Cy(X) we get

& ° > t_l/s © —1/s s
/ e NS f(x)dt = / e M / P, f(z) / et eos(sm) gin (15 sin(s) ) dr do dt
0 0 0 T Jo

= 1/ d¢ </ e AHE® cos(sm) iy (4¢3 sin(sw))dt/ ng(m)e_0§d0>
T Jo 0 0

sin(sw) [ £*
= R(E, L d
T /0 (& L)f () A2 — 265 cos(sm) + €25 ¢
(the last equality follows from [ e sin(bt)dt = b/(b* + a?)). O

We recall that if L is the infinitesimal generator of a bounded strongly continuous semigroup in
a Banach space, formula (5.17) coincides with the Kato representation formula for the resolvent of
—(—=L)* for s € (0,1), which may be taken as a definition of —(—L)* ([37]). In our case P, is a
contraction semigroup in Cy(X) but it is not strongly continuous, whereas it is strongly continuous
in BUC(X). Therefore, the operator whose resolvent is given by (5.17) is an extension to Cy(X)
of —(—Ly)*®, where Ly is the part of L in BUC(X), and it may be called —(—L)?, although our
case is not covered by the standard theory of powers of (noninvertible) operators.

The following easy lemma will be used here and in the following.

Lemma 5.9. Let v be a probability measure in a Banach space X that is Fomin differentiable along
some h, and let ¢ > 0. Then the measure v, == v o (cI)™' (namely, v.(A) = v(A/c)) is Fomin
differentiable along h, and

0 orw =25 (L), w-aeyex;
(5.18)

. v 1 v
(@) 1Byl (x o) = E||5h||L1(X,u)-

Proof. For every f € C}(X) and t > 0 we have

/Xg;:(y)uc(dy)—/xg;:(CZ)V(dZ)—/Xiaah (e )(z) v(d2)

=< [ sest@mta) = [ rw (L) vl

and (5.18)(i) follows. Moreover,
v (Y
()

y 1
18N o (x w0y = /
CJx
which is (5.18)(ii). O

Proposition 5.10. Let H = Q'/2(X), T, = I for every t > 0. The measures v, defined in (5.16)
satisfy Hypothesis 3.2, with w =0 and 0 = 1/(2s).
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Proof. We have to check that 1, is Fomin differentiable along every h € H, and that there exists
C > 0 such that

y C
||5ht‘|L1(X7Vt) < RYEOR t>0, he H. (5.19)
Setting as before 1 := N(0,tQ) = po (tY2I)~1, = N(0,Q) we get from Lemma 5.9

1 y
W) = b (). t>0 heH yeX.

Consequently, we get

[ Grwmtan = [ SH) [ x0.0Qn 0)is = [ [ G @in0.0Q)mi 0)ds
= [ [ w55k (52) neldnn oo - /X F(w)w(dy)

where the measures ; are defined by

) = [T ([ ot () wetan)) i o),
_ /0 - ﬁ ( /A o B,’f(z),u(dz)) 1P (0)do, A e B(X).

Now we prove that each ~; is absolutely continuous with respect to v4. This will be done showing
that the positive and negative parts of +; are respectively given by

= [T ( /. /01/2(ﬁ5)+(z)u(d2)> W (o)o, AeB(X), (520)

= [T ( /. /UU;ﬁs)(z)u(dz)) W (o)do, A€ BX). (521)

Such representations yield that both fyj and vy, are absolutely continuous with respect to v, because
for every v4-negligible A we have by definition [j* (A)o/?)n, )( )do = 0, and since nﬁs) (0) >0
for every o > 0 we get u(A/o'/?) =0 for a.e. o > 0 and therefore 7 (A) =, (A) = 0.

By [5, Sect. 2.10] there exists a p-version fy of ﬁ,‘: which is linear on a full measure subspace of
X. We set

Xt i={reX: folx) >0}, X ={recX: fo(x) <0},
and we check that X = XU X~ is a Hahn decomposition of (X, v;), namely Xt N X~ = ) (which
is obvious) and
HANXT) >0, w(ANX") <0, AecB(X).

Indeed, for every A € B(X) we have

<1

WANXY) = /0 s ( /(m%mw;;)*(z)u(dz)) 1 (0)do

_ [ (s)
- | s ( /(Ameal/Qfo(z)ﬂ(dZ)> 2 (@)do.

Since fp is linear on a p-full measure subspace, then for every o > 0 the sets X1/ ol/2 and Xt

may differ only by a p-negligible set. Therefore, fo(z) > 0 for p-a.e. z € Xt /o'/2, so that
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f(AmX+)/o_1/2 fo(2)p(dz) > 0 and therefore v(ANX ') > 0. The same argument yields v(ANX ") <
0, and (5.20), (5.21) follow.

Therefore, 7 is absolutely continuous with respect to 14 and its density is the Fomin derivative
Bt of v, along h. Let us estimate its L' (X, ;) norm. We have

18211t (xny = S {H;Hm [ 1Bt § € LX)\ {0}} ,

and for every f € L*°(X, 1) we have

[ sz wmtan = [ st = [ 1) [ 50 () netdnn? @)io
- [ (i [ e s ) ol @)do

~ s LENE
< [ el s @) < ekl [ 0l o),

/0 S12' (0)do _/0 1/277 (ﬁ) do = s f, 12 dr.
Therefore, (5.19) follows with C' = [ n(7) )1 2dr. O

where

Thanks to Lemma 5.8 and Proposition 5.10 we can apply Theorems 3.8 and 3.9, that give
Theorem 5.11. Let f € Cyp(X) and X >0, s € (0,1) \ {1/2}. Then the equation
A+ (—L)’u=f (5.22)
has a unique solution u € C%f(X), and there is C > 0, independent of f, such that
[ullcz: (x) < Cllf lloo-

If s = 1/2, equation (5.22) has a unique solution in Z};(X), and there is C > 0, independent of f,
such that

lull 21, (x) < Cllflloo-

If in addition f € C%(X) with o € (0,1) and a + 2s ¢ {1,2}, then u € C%*(X) and there is
C > 0, independent of f, such that

||“Hcg[+23(x) < CHfHC;‘I(X)
If a+2s =k € {1,2}, then u € Z¥(X) and there is C > 0, independent of f, such that
lull ze x) < Clliflleg x)
Applying Theorems 3.12 and 3.13 we obtain

Theorem 5.12. Let s € (0,1), o € [0,1) be such that o + 2s ¢ {1,2}, and let f € C%5(X),
g€ C%a([O,T] x X) @, The mild solution to
vt @) + (=L)%(t, ) (x) + g(t,z), 0<t<T, zeX,
(5.23)
v(0,2) = f(z), =e€X,

)For o = 0 we mean C%°([0,T] x X) = C([0, T] x X).
45



belongs to C’?ja+28([0,T] x X), and there is C > 0, independent of f and g, such that
”UHC%QHS([(),T]XX) < C(HfHC?IHS(X) + HgHCga([QT]XX))-

Let s € (0,1), a € [0,1) be such that a + 2s =: k € {1,2}. Then for every f € Zk(X),
g € C?{’a([O,T] x X) the mild solution to (5.23) belongs to Z?jk([O,T] x X)), and there is C' > 0,
independent of f, such that

[0l 2oy < CUF Lz 00 + 19l ooz

5.4. Non-Gaussian classical Ornstein-Uhlenbeck semigroups. In this section, as announced
earlier, we come back to (5.7), more precisely to its non-Gaussian analogue considered in [33, Sect.
7], for which the semigroup P; is given by

Pz /fe 24 (1= e PYYPy)u(dy), ¢>0, f€Cy(X), z € X, (5.24)

where p is a suitable Borel probability measure in a Hilbert space X. P, may be written in the
form (1.1), with T; = e~'I and

pe =pol(l—ePHYe=t ¢ >o. (5.25)

If 1 is a centered Gaussian measure and p = 2, P; is the classical Ornstein-Uhlenbeck semigroup
considered before in (5.7). For P, to be a semigroup, p cannot be any Borel measure: indeed, we
need that condition (1.2) is satisfied. It is satisfied provided

fi(a) = e NP g e x*
and A\ : X* — C is a negative definite function, which is Sazonov continuous, and such that
Ata) =tPA(a), a€ X*, t>0.

The weak continuity of ¢ — p; follows immediately from the equality [y f(y)u(dy) = [+ f
e PHYYPy)u(dy), for every f € Cyp(X) and t > 0.

We fix now a Banach space H C X such that p is Fomin differentiable along every h € H. (H
may be the whole space D(u) of all h € X such that p is Fomin differentiable along h, or a smaller
space continuously embedded in D(u)). In the case where X is e.g. a separable real Hilbert space,

an easy example for such a probability measure p with D(u) D Q%(X ) is the measure v; defined
n (5.16) with ¢ = % and s = & (recall that v; in (5.16) also depends on s); in this case it is easy to

check that A(a) = (Qa,a)?/?/2 and it is convenient to take H = Q%(X) .

Going back to the general case , Ty = e~ I maps obviously H into itself. Moreover, by Lemma 5.9
pe is Fomin differentiable along every h € H and we have ||3,* || 11 (x ) = (1 —e_pt)_l/p||»8;’f||L1(X,u).
Therefore, for every t > 0 and h € D(u) we have

€7t €7t

187,121 (X o) = m”ﬁﬁ”ﬂ(xﬂ) = mHhHD(M) tl/thHD )

with C' = sup,.qt'/P(1 — e P)~1/P. Since H is continuously embedded in D(y), Hypothesis 3.2 is
satisfied with w = —1, # = 1/p and our approach applies. Hence Theorems 3.8 and 3.9 hold for the
generator L of the semigroup in (5.24), with 6 = 1/p, as well as Theorems 3.12 and 3.13.
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