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Abstract. Primitive inflation tilings of the real line with finitely many tiles of natural

length and a Pisot–Vijayaraghavan unit as inflation factor are considered. We present an

approach to the pure point part of their diffraction spectrum on the basis of a Fourier matrix

cocycle in internal space. This cocycle leads to a transfer matrix equation and thus to a

closed expression of matrix Riesz product type for the Fourier transforms of the windows

for the covering model sets. In general, these windows are complicated Rauzy fractals and

thus difficult to handle. Equivalently, this approach permits a construction of the (always

continuous) eigenfunctions for the translation dynamical system induced by the inflation

rule. We review and further develop the underlying theory, and apply it to the family of

Pisa substitutions, with special emphasis on the Tribonacci case.

1. Introduction

Inflation tilings of the of line with an inflation (or stretching) factor λ that is a Pisot–

Vijayaraghavan (PV) number are intimately related to cut and project sets. In the best case,

which is the topic of the famous Pisot substitution conjecture [45, 1], their vertex points (in

the geometric realisation with intervals of natural length) are regular model sets themselves,

and thus have pure point spectrum, equivalently in the dynamical or in the diffraction sense

[29, 8, 9]. More generally, they might have mixed spectrum, see [4, 5] and references therein

for examples, but the PV-nature of λ still implies that they lead to Meyer sets and thus have

non-trivial point spectrum [50, Sec. 5.10]; see also [49].

When analysing such inflation tilings, one quickly encounters covering model sets with

complicated windows, known as Rauzy fractals [41, 39], which are compact sets of positive

measure that are topologically regular (that is, they are the closure of their interior) and

perfect (that is, they have no isolated points), but display a fractal boundary and often also

a non-trivial fundamental group. While a lot is known about Rauzy fractals, see [44, 45, 39]

and references therein, it is not obvious how to calculate their Fourier transform in closed

form, which is needed to determine the diffraction intensities of the tiling system explicitly.

Phrased differently, but equivalently, this Fourier transform is also needed to calculate the

eigenfunctions of the corresponding dynamical system under the translation action of R;

compare [30, 9].

The purpose of this contribution is to reconsider this problem in a constructive and com-

putational way. In particular, our goal is to make the Fourier–Bohr coefficients or amplitudes

(and thus also the eigenfunctions) of such inflation tilings available, via a quadratic form with
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a matrix that can be written as an infinite matrix Riesz product. Since the latter turns out to

be compactly and rapidly converging, all quantities are efficiently computable. Here, we solve

the problem for inflation tilings of the real line with finitely many prototiles and an inflation

factor that is a PV unit. The extension to general PV numbers and to higher dimensions will

be treated separately, as this requires a bigger machinery, algebraically and analytically.

The paper is organised as follows. We begin by recalling the setting of inflation tilings of

the real line in Section 2. Then, in Section 3, we introduce the Minkowski embedding and

the description of our tilings (and point sets) in internal space, which leads to a contractive

iterated function system for the windows of the covering model sets. This is followed by the

introduction and analysis of an internal cocycle in Section 4, which leads to a matrix Riesz

product expression for the Fourier transform of the Rauzy windows, and thus also for the

spectral quantities we are after. In this context, in Section 5, we establish an important

connection between the Fourier–Bohr coefficients of PV inflation point sets and those of the

covering model sets, which emerges through a specific uniform distribution result. Then, in

Section 6, we embark on a number of illustrative examples from the family of Pisa substitutions

(including some based on cubic and quartic number fields), followed by an example of covering

degree 2 in Section 7 and a brief outlook.

2. Inflation tilings of the real line

Let us begin with the symbolic side of the problem, where we consider a primitive sub-

stitution % on a finite alphabet A = {a1, . . . , aN}. Here, the mapping ai 7→ %(aj) is usually

specified by the N -tuple
(
%(a1), . . . , %(aN )

)
. The substitution matrix of % is M , where Mij

counts the number of letters of type ai in %(aj); see [39, 40, 6] for general background and

results. We denote the characteristic polynomial of M by p(x), which is monic, but need not

be irreducible over Z in our setting, meaning that we can also include a variety of systems

with mixed spectrum.

Let λ = λPF be the Perron–Frobenius (PF) eigenvalue of M . As M is primitive by as-

sumption, we know that there are strictly positive left and right eigenvectors for λ, denoted1

by 〈u| and |v〉, which we assume to be normalised such that

〈1|v〉 = 〈u|v〉 = 1.

Here, 〈1| := 〈1, . . . , 1| is the row vector with N equal entries 1. In the substitution context,

the first condition thus ensures that the entries of |v〉 encode the relative letter frequencies in

the symbolic sequences defined by %, while the second condition implies that

(1) P := |v〉〈u|

1Since we will be using left and right eigenvectors throughout, we adopt Dirac’s bra-c-ket notation, where

〈u|v〉 then stands for the sesquilinear inner product in CN , which becomes bilinear when restricted to RN .
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is a projector of rank 1, so P 2 = P with P (RN ) = im(P ) = R |v〉, where all entries of

P ∈ Mat(N,R) are strictly positive. Now, let ‖.‖ be any matrix norm, not necessarily a

sub-multiplicative one. Then, the following property is standard; see [22, Thm. 8.5.1].

Fact 2.1. For a primitive, non-negative matrix M ∈ Mat(N,R) with PF eigenvalue λ, one

has limn→∞ λ
−nMn = P , with the projector P from (1). This convergence also entails that

0 < supn∈N ‖λ−nMn‖ <∞. �

Working with PV substitutions, we may as well profit from the underlying geometry by

turning the symbolic sequences into tilings; see [48, 6] for general background and [14, 15] for

the justification why this does not change the spectral type of our system. Here, we choose

intervals of natural length, meaning proportional to the entries of 〈u|, with control points on

their left endpoints. As all entries ui of 〈u| lie in Q(λ), one normally multiplies them with

their common denominator, so that they become elements of Z[λ]. For each sequence in the

symbolic hull defined by %, this leads to a multi-component or typed point set, Λ =
⋃
i Λi,

where the Λi emerge from the N distinct types of control points and now form pairwise

disjoint subsets of Z[λ].

Remark 2.2. Let us mention one consequence of the geometric setting. When `i = αui with

1 6 i 6 N are the chosen interval lengths, the average distance between neighbouring control

points in Λ is well defined, compare [6, Sec. 4.3], and reads

¯̀ =
N∑
i=1

vi `i = α〈u|v〉 = α,

so we get dens(Λ) = 1/α as the density of Λ, and dens(Λi) = vi dens(Λ) for 1 6 i 6 N . ♦

Next, we define the set-valued displacement matrix T = (Tij)16i,j6N , where the set Tij
consists of all relative (geometric) positions of tiles of type ai in the supertile2 %(aj); see

[3, 4, 5] for background. This gives rise to the Fourier matrix of % via B := |δT , so

Bij(k) =
∑
x∈Tij

e2πixk, k ∈ R ,

which is a trigonometric polynomial. Since card(Tij) = Mij , one has the inequality

(2) |Bij(k)| 6 Mij

for all i, j and all k ∈ R, where we get equality for k = 0 because B(0) = M .

Given B, we construct a cocycle (in the sense of [12, Sec. 2.1], over the dilation k 7→ λk)

from the Fourier matrix, via

(3) B(n)(k) := B(k)B(λk) · · ·B(λn−1k),

2Note that, by slight abuse of notation, we use % both for the symbolic substitution and for the geometric

inflation, where the meaning will always be clear from the context.
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so B(1)(k) = B(k) together with

(4) B(n+1)(k) = B(n)(k)B(λnk) = B(k)B(n)(λk)

for n > 1. Inductively, one can check that B(n)(k) is the Fourier matrix of %n, see [5, Fact 3.6],

with B(n)(0) = Mn.

Recall that a matrix norm ‖.‖ is called weakly monotone when ‖A‖ 6
∥∥|A|∥∥ holds for

all A ∈ Mat(N,C), where |A| denotes the matrix with entries |Aij |; see [26] for a general

exposition of monotonicity properties of vector and matrix norms. With this and Eq. (2), the

following property is immediate from Fact 2.1.

Fact 2.3. The entries of the cocycle (4) satisfy |B(n)
ij (k)| 6 (Mn)ij, for all i, j and all k ∈ R.

Consequently, if ‖.‖ is any weakly monotone matrix norm, ‖λ−nB(n)(k)‖ is uniformly bounded

on R, which means that

cB := sup
n∈N

sup
k∈R
‖λ−nB(n)(k)‖

is finite, with 0 < cB <∞. Moreover, for all i, j and all k ∈ R, one has

0 6 lim inf
n→∞

λ−n|B(n)
ij (k)| 6 lim sup

n→∞
λ−n|B(n)

ij (k)| 6 Pij ,

where the Pij are the matrix elements of the projector P from Eq. (1). This leads to more

specific results on cB depending on the matrix norm chosen. �

Let us from now on assume that λ is a PV unit of degree d 6 N . Since M is an integer

matrix and the equations for the left and right eigenvector to λ can thus be solved in the

field Q(λ), a natural object to consider is the Z-module L := Z[λ] = 〈1, λ, . . . , λd−1〉Z of rank

d. This is the main reason to choose the interval lengths (`1, . . . , `N ) for the tiling such that

Z[λ] comprises all possible coordinates of our control points (relative to one of them, which

may be placed at 0 without loss of generality). We assume that L is optimal relative to the

control point set in the sense that no proper submodule of L comprises all of those points

(otherwise, we change the natural interval lengths so that this is true). Next, we extract and

harvest some intrinsic geometric information from this setting.

3. Minkowski embedding and internal space

Let us recall the Minkowski embedding from [6, Sec. 3.4], now tailored to L = Z[λ]. Since

λ has degree d, this will lead to a lattice L in Rd as follows. There are r real algebraic

conjugates of λ, and s complex conjugate pairs, so d = r + 2s, which are defined via the

irreducible, monic polynomial in Z[x] that has λ as a root. This polynomial is a factor of

the characteristic polynomial p of M in our case. Consequently, there are r > 1 real field

isomorphisms κ1, . . . , κr, with κ1 = id, and s > 0 complex field isomorphisms σ1, . . . , σs,

together with their complex conjugates, σ̄1, . . . , σ̄s. In this setting, we can define a Z-linear

mapping Φ : Z[λ] −−→ Rd by

x 7→
(
x, κ2(x), . . . , κr(x),Re(σ1(x)), Im(σ1(x)), . . . ,Re(σs(x)), Im(σs(x))

)
,
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which extends to an Q-linear mapping on the field Q(λ). Clearly, each image point is of the

form Φ(x) = (x, x?) with x? ∈ Rd−1. The induced map ? : Q(λ) −−→ Rd−1 is called the ?-map

of the underlying cut and project scheme; compare [6, Sec. 7.2] or [35].

It is a standard result of algebraic number theory [36, Sec. I.5] that L := Φ(L) = Φ
(
Z[λ]

)
is

indeed a lattice in Rd, where we prefer the real version over the (algebraically) perhaps more

natural one with Rr×Cs because we will need Fourier transforms shortly. So, we obtain the

following Euclidean cut and project scheme, or CPS for short; see [6, Sec. 7.2] and references

therein for more.

(5)

R π←−−− R×Rd−1 πint−−−−→ Rd−1

∪ ∪ ∪ dense

π(L)
1−1←−−− L −−−→ πint(L)

‖ ‖
L

?−−−−−−−−−−−−−−−−−−→ L?

Here, π and πint denote the canonical projections. Such a CPS is abbreviated as (R,Rd−1,L).

To continue, observing that Rd = R×Rd−1, we also need the linear mapping Q on Rd−1

that is induced by the dilation x 7→ λx (acting on the first component) in internal space. It

is immediate from the structure of Φ and the CPS (5) that we get

(6) Q = diag
(
κ2(λ), . . . , κr(λ)

)
⊕

s⊕
i=1

(
Re(σi(λ)) − Im(σi(λ))

Im(σi(λ)) Re(σi(λ))

)
.

Clearly, Q ∈ Mat(d−1,R) is a normal matrix (so, [QT , Q] = 0) and a contraction, the latter

because λ is a PV number, so all its algebraic conjugates lie strictly inside the unit disc.

Since {1, λ, . . . , λd−1} is a Z-basis of Z[λ], a basis matrix B for L can be chosen from here,

with columns Φ(λi)T for 0 6 i 6 d−1. The dual matrix, B∗ := (B−1)T , is then a basis matrix

of the dual lattice,

L∗ := {y ∈ Rd : 〈x|y〉 ∈ Z for all x ∈ L}.
Clearly, dens(L∗) = dens(L)−1 = |det(B)|.

Remark 3.1. The Fourier module of the underlying point set or tiling can be extracted from

the first line of the dual basis matrix B∗ as

L~ =
〈
B∗1i : 1 6 i 6 d

〉
Z ,

which is the projection of L∗ to the first component.

There is an intrinsic way to define L~ as follows. With the Galois isomorphisms κi and σj
from above, one defines the number-theoretic trace on Q(λ) as

(7) tr(x) :=

r∑
i=1

κi(x) +

s∑
j=1

(
σj(x) + σj(x)

)
=

r∑
i=1

κi(x) + 2

s∑
j=1

Re
(
σj(x)

)
.

Then, one has L~ = {y ∈ Q(λ) : tr(xy) ∈ Z for all x ∈ L}, which bypasses the explicit

embedding step employed above, though it is of course equivalent to it.
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In our setting, the Abelian group L~ is the pure point part of the dynamical spectrum,

in additive notation, for the tiling dynamical system induced by the inflation rule, where the

dynamics is given by the translation action of R; see [9] for background. ♦

To continue, in the spirit of [28], see also [6, Ch. 4], we return to the displacement matrix

T of %. By definition, when considering the ai as tiles with natural length `i and left endpoint

in 0, one has the stone inflation

λai =
⋃

16j6N

⋃
t∈Tji

t+ aj .

More importantly, T enters the induced inflation action on the point sets via the iteration

(8) Λ′i =
⋃̇

16j6N

λΛj + Tij ,

with a suitable and admissible initial condition, such as the left endpoints of a legal pair

of intervals, one placed at 0 and the other at the fitting position to the left. The iteration

then produces the control point sets of the corresponding successive tile inflations. The dot

indicates that the union on the right-hand side of (8) is disjoint, while + stands for the

Minkowski sum of point sets; compare [6, Sec. 2.1].

Remark 3.2. Note that the iteration based on (8), viewed in the local topology, need not

converge to a single typed point set Λ =
⋃
i Λi. However, via a simple application of Dirichlet’s

pigeon hole principle, one can show that one converges to a finite cycle of such typed point

sets, starting from a fixed, admissible (or legal) initial configuration. Each member of this

cycle is equally well suited to define the (geometric) hull as an orbit closure under translations;

compare [6, Chs. 4 and 5] for details. ♦

Under the ?-map, (8) turns into an iteration of N finite (and hence closed) point sets

in Rd−1, and thus into an iterated function system (IFS) on
(
KRd−1

)N
, where KRm with

m ∈ N denotes the space of non-empty, compact subsets of Rm, equipped with the Hausdorff

(metric) topology; see [10] or [45, Sec. 4.6] and references therein for background. Here, the

multiplication by λ is replaced by the action of the contraction Q from (6), giving

(9) Wi =
⋃

16j6N

QWj + T ?ij =
⋃

16j6N

⋃
t∈Tij

QWj + t?

for 1 6 i 6 N . In this step, since the Wi are compact sets in Rd−1, the union on the right-

hand side need no longer be disjoint. By Banach’s contraction principle, there is a unique

solution to the IFS (9) within
(
KRd−1

)N
; see [10, Thm. 1.1 and Prop. 1.3]. It is a well-known

fact that the compact sets Wi can be Rauzy fractals with complicated topological structure

and boundary [44, 45]; see [39, Sec. 7.4] and references therein for background. Note that

Banach’s contraction principle also gives us that each set Λ?i lies dense in the set Wi, which

plays the role of a window for the CPS (5).
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Remark 3.3. Let us briefly mention that Eq. (9) gives rise to a dual inflation, via multiplying

from the left by Q−1, which is an expansive mapping. This results in

Q−1Wi =
⋃

16j6N

⋃
t∈Tij

Wj +Q−1t?,

where Q−1t? = (t/λ)?. Iterating this rule in internal space either leads to a tiling or to a

multiple cover of internal space, where the covering degree is constant almost everywhere.

This follows from [45, Cor. 5.81], which extends an earlier idea from [25]. ♦

Next, we recall a well-known result about the solution of the IFS (9), which can be seen as

a special case of [45, Prop. 4.99]. Since it is of crucial importance to our further arguments,

we also include a proof that is tailored to our setting. The latter considers primitive inflation

tilings of R, with a PV unit λ as inflation factor and natural lengths of the N intervals chosen

such that all control point positions lie in Z[λ], but in no proper submodule of it.

Lemma 3.4. Under our general assumptions, the solution (W1, . . . ,WN ) to the IFS (9) is

row-wise measure-disjoint, which means that, for each 1 6 i 6 N , any two distinct sets on

the right-hand side of (9) intersect at most in a Lebesgue-null set.

Moreover, there is a number η > 0 such that vol(Wi) = ηvi holds for all 1 6 i 6 N , where

vi is the relative frequency of the tiles of type i.

Proof. All Wi are compact sets, hence measurable, with vol(Wi) > 0. Let Λi be the set of

control points of type i for one of the typed point sets Λ =
⋃
i Λi that emerge from the limit

cycle of the iteration (8), as explained in Remark 3.2. By construction, due to the properties

of the ?-map, we then know that Λi ⊆ f(Wi) := {x ∈ L : x? ∈ Wi}, where Λi is linearly

repetitive, with dens(Λi) = vi dens(Λ) > 0. Consequently, by [24, Prop. 3.4], which is an

extension of the density result [43, Thm. 1] for regular model sets to the more general setting

of weak model sets, we know that

0 < dens(Λi) 6 dens
(
f(Wi)

)
6 dens(L) vol(Wi),

where dens refers to the (always existing) lower density of a point set. This estimate means

that we have vol(Wi) > 0 for all 1 6 i 6 N .

Now, due to a potential overlap of sets on the right-hand side of Eq. (9), one has

(10) vol(Wi) 6 |det(Q)|
N∑
j=1

card(Tij) vol(Wj), for 1 6 i 6 N.

Observing |det(Q)| = λ−1 and card(Tij) = Mij , this amounts to the vector inequality

M |w〉 > λ|w〉,

where |w〉 denotes the vector with entries vol(Wi) and the inequality holds for each component.

Since λ is the PF eigenvalue of M , which is primitive, and all entries of |w〉 are positive, we

see that |w〉 is a positive multiple of the right PF eigenvector of M .
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This means we have equality in (10), which implies the first claim, while the second is a

consequence of |w〉 being proportional to |v〉. �

All mappings that occur in our IFS (9) are of the form x 7→ Qx + u, and hence homeo-

morphisms of Rd−1. Invoking parts (i) and (iii) of [45, Prop. 4.99], one obtains the following

improvement of Lemma 3.4.

Proposition 3.5. Let (W1, . . . ,WN ) be the solution of the IFS (9). Then, under our as-

sumptions, each Wi ⊂ Rd−1 is a perfect, topologically regular set of positive Lebesgue measure.

Moreover, each boundary ∂Wi has Lebesgue measure 0. �

In view of this result, all f(Wi) are regular model sets for the cut and project scheme

(R,Rd−1,L), see [35, 6] for background, hence also f(W ) = with W =
⋃
iWi. The corre-

sponding dynamical system (X,R), where X is the orbit closure off(W ) in the local topology

and R acts by translation, has pure point spectrum, both in the diffraction and in the dy-

namical sense; see [6, 8, 9] and references therein. The same property holds for the systems

built from the translation orbit closure of any of the f(Wi).

Remark 3.6. If we consider the weighted Dirac comb ω =
∑

i hi δΛi
with hi ∈ C, the

Bombieri–Taylor property for primitive inflation rules [5, Thm. 3.23 and Rem. 3.24], which is

an extension of the results of [30] to the typed point sets emerging from a primitive inflation

rule, implies the existence of coefficients Ai(k), called scattering or diffraction amplitudes,

such that ω has the diffraction measure

(11) γ̂ω =
∑
k∈L~

I(k) δk with I(k) =
∣∣∣∑
i
hiAi(k)

∣∣∣2,
where L~ is the projection of L∗ into R as in Remark 3.1.

Now, assume in addition that f(W ◦i ) ⊆ Λi ⊆ f(Wi) holds for all 1 6 i 6 N , with the

Wi from the solution of (9). Then, our typed point set Λ =
⋃
i Λi consists of disjoint, regular

model sets. Consequently, by the general theory of model sets [35, 6], the amplitudes Ai(k)

for k ∈ L~ are given by

(12) Ai(k) =
dens(Λi)

vol(Wi)
}1Wi

(k?) =
dens(Λ)

vol(W )
}1Wi

(k?),

where 1K is the characteristic function of K and q. denotes inverse Fourier transform. For all

other k, one has Ai(k) = 0. As we shall see later, a more general connection is possible via

the Fourier–Bohr coefficients of Λ and its subsets; see Eq. (19) below for more. Note that the

validity of (12) is a consequence of the uniform distribution of Λ?i in Wi ; compare the detailed

discussions in [6, Sec. 7.1] and [43]. ♦

Though Eq. (12) looks nice, it is generally difficult to calculate }1Wi
directly, due to the

potentially fractal nature of the window boundaries. Let us thus turn to an alternative

approach of transfer matrix type that harvests the inflation nature of our point sets. In view
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of Lemma 3.4, Eq. (9) can now be rewritten as

(13) 1Wi
=

N∑
j=1

∑
t∈Tij

1QWj+t? ,

to be understood in the Lebesgue sense (rather than pointwise).

Theorem 3.7. Let (W1, . . . ,WN ) ∈ (KRd−1)N be the unique solution to the contractive

IFS (9). Then, Eq. (13) holds in the Lebesgue sense for every 1 6 i 6 N .

Moreover, when considering the compact set W =
⋃
iWi, one has

N∑
i=1

1Wi
(y) = mc(y) 1W (y),

where mc is a measurable function with supp(mc) = W and values in {1, 2, . . . , N} for y ∈W.

Proof. The validity of (13) in the Lebesgue sense is clear from Lemma 3.4.

Since all Wi are compact, the function mc is well defined for all y ∈W and also measurable

on W , as follows from a standard inclusion-exclusion argument with the (finitely many)

compact sets Wi. This also gives mc(y) ∈ {1, . . . , N} for each y ∈W. �

Remark 3.8. Under some additional conditions, mc is constant for almost every y ∈W, with

integer value mc. In this case, one has
∑N

i=1 vol(Wi) = mc vol(W ). This situation happens

whenever the inflation defines a model set, where mc = 1. Beyond this case, one can have

integer values of mc, possibly up to N − 1.

In general, however, mc need not be constant almost everywhere in the total window W,

as we shall see in the example from Eq. (24) in Section 7. This seems a significant difference

to the covering degree of internal space by the dual inflation mentioned in Remark 3.3. We

shall return to this point in Section 5. ♦

Let us now switch to an analysis of the system (13) of equations after (inverse) Fourier

transform, which turns it into a rescaling equation for an N -tuple of continuous functions.

4. Analysis of internal cocycle

Let us first recall a simple, but in our context vital, result on the inverse Fourier transform

of characteristic functions, which we prove for convenience.

Lemma 4.1. Let m ∈ N be fixed. Let K ⊂ Rm be compact and Q ∈ GL(m,R). Then, one

has the relation

­1QK+t(y) = |det(Q)| e2πi〈t|y〉
|1K(QT y),

which holds for all t, y ∈ Rm, with continuity in both variables.
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Proof. With the change of variable x = Qu+ t, one finds

­1QK+t(y) =

∫
QK+t

e2πi〈x|y〉 dx = |det(Q)| e2πi〈t|y〉
∫
K

e2πi〈Qu|y〉 du

= |det(Q)| e2πi〈t|y〉
∫
K

e2πi〈u|QT y〉 du = |det(Q)| e2πi〈t|y〉
|1K(QT y).

Continuity in y follows from the Fourier transform of an L1-function being continuous, see

[42, Thm. IX.7], while continuity in t is obvious. �

Fix m = d − 1 and let Q now be the linear map in internal space that is induced by the

dilation x 7→ λx in direct space, as given in (6). Set fi(y) := }1Wi
(y) and consider the vector

|f(y)〉 = |f1(y), . . . , fN (y)〉. Also, let B(y) be the internal Fourier matrix that emerges from

the (inverse) Fourier transform of the ?-image of the displacement matrix T , that is,

Bij(y) =
∑
x∈Tij

e2πi〈x?|y〉,

with y ∈ Rd−1. The matrix elements are again trigonometric polynomials, this time generally

multivariate. Now, with Lemma 4.1 and |det(Q)| = λ−1, one finds the following result of

transfer matrix type via an elementary computation; compare [38, Sec. 3.2] for a mathemat-

ically similar structure.

Proposition 4.2. Under inverse Fourier transform, Eq. (13) becomes

|f(y)〉 = λ−1B(y) |f(Ry)〉,

with R = QT and B(y) = }δT ?(y) as defined above, and all fi continuous. �

It is clear that limy→0B(y) = B(0) = M . Moreover, from the way it was constructed, we

know that R is a normal matrix and a contraction. Consequently, its spectral norm agrees

with its spectral radius, see [23, Sec. 2.3], and we have θ := ‖R‖2 = ρ(R) < 1. This leads to

the following property, where we use ‖.‖2 also for the 2-norm of vectors.

Lemma 4.3. For any ε > 0, there exists δ = δ(ε) > 0 such that

‖B(Rmy)−M‖2 < θmε

holds simultaneously for all ‖y‖2 < δ and all m ∈ N.

Proof. Since each element of B(y) is analytic, one has the expansions

Bij(y) = Mij + 〈uij |y〉+O
(
‖y‖22

)
near the origin, with uij = ∇Bij(0), which are N2 fixed vectors. Consequently, using

‖Rmy‖2 6 ‖Rm‖2‖y‖2 6 ‖R‖m2 ‖y‖2 = θm‖y‖2 and the Cauchy–Schwarz inequality, we get

|Bij(R
my)−Mij | 6 θm‖uij‖2‖y‖2 + θ2mO

(
‖y‖22

)
,

from which the claim follows by standard arguments. �



RAUZY FRACTALS AND POINT SPECTRUM OF 1D INFLATION TILINGS 11

Now, for n ∈ N, we can define an internal cocycle from the Fourier matrix via

B(n)(y) := B(y)B(Ry) · · ·B(Rn−1y),

with B(1) = B and B(n)(0) = Mn. In analogy to (4), we now have

(14) B(n+1)(y) = B(n)(y)B(Rny) = B(y)B(n)(Ry)

for all n > 1. Next, we want to consider the matrix function defined by

(15) C(y) := lim
n→∞

βnB(n)(y),

with β = |det(R)|, where βλ = 1 because λ is a unit. We thus need to establish that C(y)

is well defined as a limit, for every y ∈ Rd−1. To this end, we employ the 2-norm for vectors

and the corresponding operator norm, both denoted by ‖.‖2 as before.

Proposition 4.4. The sequence
(
βn(B(n)(y)−Mn)

)
n∈N of matrix functions is equicontinuous

at y = 0, which is to say that

∀ε > 0: ∃δ = δ(ε) > 0: ∀n ∈ N :
(
‖y‖2 < δ =⇒ βn‖B(n)(y)−Mn‖2 < ε

)
.

Proof. Since M is non-negative, the spectral radius of Mn is ρ(Mn) = λn, for all n ∈ N0. Let

us first consider the case that M is normal. Then, we can most easily work with the spectral

norm, because we have ‖Mn‖2 = ρ(Mn) = λn for n > 0, hence ‖Mn‖2 = ‖M‖n2 . Also, we get

‖B(y)‖2 6
∥∥ |B(y)|

∥∥
2
6 ‖M‖2

for all y in this case. This estimate holds because the spectral norm has the required mono-

tonicity property; compare [26, Thm. 1] or [22, Exc. 5.6.P42].

Now, harvesting the cocycle property (14), a simple telescopic argument leads to

B(n)(y)−Mn =
n−1∑
`=0

M `
(
B(R`y)−M

)
B(n−1−`)(R`+1y)

for n > 1, with B(0) := 1. Via the triangle inequality, using the above properties, one then

finds the estimate

‖B(n)(y)−Mn‖2 6 ‖M‖n−1
2

n−1∑
`=0

‖B(R`y)−M‖2 = λn−1
n−1∑
`=0

‖B(R`y)−M‖2 .

For ε > 0 and ‖y‖2 < δ, with β = λ−1 and the δ from Lemma 4.3, this gives∥∥βn(B(n)(y)−Mn
)∥∥

2
6 β

n−1∑
`=0

θ`ε 6
βε

1− θ

by a geometric series argument, which establishes the claim when M is normal.

For the general case, we employ a different sub-multiplicative matrix norm, which depends

on M and again satisfies ‖M‖ = ρ(M), hence ‖Mn‖ 6 ‖M‖n = λn. Following [23, Sec. 2.4],

one such norm can simply be constructed as follows. Consider the convex body

K = diag(v1, . . . , vN ){x ∈ CN : ‖x‖∞ 6 1},
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where the vi are the strictly positive entries of |v〉, the (frequency normalised) right PF

eigenvector of M , and define

‖x‖v := inf
{
α > 0 : x ∈ αK

}
= max

16i6N

|xi|
vi
.

This is a matrix norm on CN that is absolute, so ‖x‖v =
∥∥|x|∥∥

v
for all x ∈ CN , with |x|

denoting the vector with entries |xi|. Now, let ‖.‖K denote the matching operator norm on

Mat(N,C), as defined by

‖A‖K := sup
‖x‖v=1

‖Ax‖v ,

which is sub-multiplicative and satisfies ‖M‖K = ρ(M) = λ by construction. What is more,

it also satisfies the monotonicity property ‖A‖K 6
∥∥|A|∥∥

K
for all A ∈ Mat(N,C), again by

[22, Thm. 1]. Consequently, we still get ‖B(n)(y)‖K 6 ‖Mn‖K 6 ‖M‖nK for all y ∈ Cd−1 and

all n ∈ N.

Equipped with this matrix norm, we can repeat our previous telescopic argument, now

leading to the estimate

∥∥βn(B(n)(y)−Mn
)∥∥
K
6 β

n−1∑
`=0

∥∥B(R`y)−M
∥∥
K
.

From here, since the vector norms ‖.‖2 and ‖.‖v are equivalent, as are the matrix norms ‖.‖2
and ‖.‖K , we can adjust the choice of δ = δ(ε) to reach the same conclusion. �

Combining the equicontinuity of βnB(n)(y) at 0 from Proposition 4.4 with Fact 2.1, a

standard 2ε-argument gives the following consequence.

Corollary 4.5. Let P be the projector from (1) and B(n)(y) the internal cocycle. Then, for

all ε > 0, there exists δ ′ = δ ′(ε) > 0 such that

‖βnB(n)(y)− P‖2 < ε

holds for all n ∈ N and all y ∈ Rd−1 with ‖y‖2 < δ ′. �

Now, we are set to establish the convergence of our internal cocycle as follows.

Theorem 4.6. The scaled cocycle sequence
(
βnB(n)(y)

)
n∈N converges compactly on Rd−1.

Consequently, the matrix function C(y) from (15) is well defined and continuous.

Proof. Let K ⊂ Rd−1 be compact, choose ε > 0, and let δ = δ(ε) > 0 be as in Proposition 4.4.

We will establish the claim by showing that the sequence is uniformly Cauchy on K.

For p, q, r ∈ N, we employ the cocycle property from (14) to get

‖βp+qB(p+q)(y)− βp+q+rB(p+q+r)(y)‖2

6 ‖βpB(p)(y)‖2 ‖βqB(q)(Rpy)− βq+rB(q+r)(Rpy)‖2 ,
(16)
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where the first factor on the right is bounded by βp‖Mp‖2 and thus uniformly bounded by

a constant cB, as a consequence of Fact 2.3 used with the spectral norm. Via the triangle

inequality, the second factor on the right-hand side of (16) is bounded by

(17)
∥∥βq(B(q)(Rpy)−M q

)∥∥
2

+
∥∥βqM q − βq+rM q+r

∥∥
2

+
∥∥βq+r(B(q+r)(Rpy)−M q+r

)∥∥
2
.

Choose p large enough so that RpK is contained in the open ball of radius δ around 0, which

is possible because R is a contraction. Then, the first term in (17), as well as the last, is

bounded by ε. Since (βnMn)n∈N converges to P by Fact 2.1, where β = λ−1, the sequence is

Cauchy, so there is a q0 ∈ N such that the middle term in (17) is bounded by ε, for all q > q0

and r ∈ N. Consequently, (17) is bounded by 3ε for the chosen p, all q > q0, and all r ∈ N.

Via Fact 2.3, this gives an upper bound of 3cB ε to the left-hand side of (16). As this bound

is independent of y ∈ K, and ε > 0 was arbitrary, uniform convergence on K follows.

Since we have a compactly convergent sequence of matrix functions, each of which is ana-

lytic and thus certainly continuous, the last claim is obvious. �

Let us now analyse the matrix function C(y), where we know

C(0) = P

from Fact 2.1. Now, Eq. (14) implies that, for any fixed m ∈ N,

C(y) = lim
n→∞

βn+mB(n+m)(y) = C(y)βm lim
n→∞

B(m)(Rny) = C(y)βmMm,

because R is a contraction and B(m)(0) = Mm. With m = 1, this gives

C(y)M = λC(y),

as well as C(y) = C(y)P from taking the limit m → ∞. Each row of C(y) thus is a left

eigenvector of M for its eigenvalue λ, hence a y-dependent multiple of 〈u|, which means

(18) C(y) = |c(y)〉〈u|

with |c(0)〉 = |v〉. Observing that the window volumes are proportional to the entries of |v〉
by Lemma 3.4, so |f(0)〉 = η|v〉 for some η > 0, one has the following consequence.

Corollary 4.7. For any y ∈ Rd−1, the matrix C(y) from (15) has rank 1, and can be

represented as in (18). Moreover, with fi = }1Wi
, one has |f(y)〉 = η|c(y)〉 together with

|c(y)〉 = C(y)|v〉. �

In particular, this result makes the functions fi effectively computable from C.

Remark 4.8. Let us mention that the continuity of the functions fi is also clear from the

fact that each is the (inverse) Fourier transform of an L1-function, and fi decays at infinity by

the Riemann–Lebesgue lemma; see [42, Thm. IX.7]. What is more, since all Wi are compact,

we actually know that each fi has an analytic continuation to an entire analytic function of

d−1 variables, with a well-known growth estimate according to the Paley–Wiener theorem;

see [42, Thm. IX.12] for details. ♦
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5. Fourier–Bohr coefficients and uniform distribution

Here, we explain the general connection with the diffraction amplitudes mentioned earlier

in Remark 3.6. Given a typed point set Λ =
⋃
i Λi ⊂ R, its Fourier–Bohr (FB) coefficient

(or amplitude) at k ∈ R is defined as a volume-averaged exponential sum,

(19) AΛ(k) := lim
r→∞

1
2r

∑
x∈Λ
|x|6r

e−2πikx,

and similarly for the control point sets Λi with 1 6 i 6 N , provided the limits exist. This

is the case for point sets from primitive inflation rules, which are linearly repetitive and

thus uniquely ergodic [48, 27]. The definition entails that AΛ(0) = dens(Λ), and one gets∑N
i=1AΛi

(k) = AΛ(k) for all k ∈ R because the point sets Λi are disjoint by construction.

In general, we know from the embedding procedure that Λ?i = Wi. If Λi is also a model

set, the point set Λ?i is uniformly distributed (and even well distributed) in Wi; compare [43].

This uniform distribution occurs more generally, as we analyse next.

It is clear from Remark 3.8 and the example in Section 7 that the lift of Λ to internal space

will not be uniformly distributed in W in general. However, the situation is more favourable

for the individual point sets Λi. For any 1 6 i 6 N , consider the sequence (µ
(n)
i )n∈N of point

measures in internal space defined by

µ
(n)
i = 1

2n

∑
x∈Λi
|x|6n

δx? .

Clearly, one has supp(µ
(n)
i ) ⊂Wi by construction, and µi := limn→∞ µ

(n)
i exists (under weak

convergence), due to the strict ergodicity of the dynamical system defined by Λi. An explicit

argument for this convergence, based on the linear repetitivity of Λi, can be formulated

along the lines of the proof of [27, Thm. 5.1]. Here, µi is a positive measure on Rd−1 with

supp(µi) ⊆ Wi and total mass ‖µi‖ = dens(Λi). We say that Λi induces the measure µi in

internal space.

When Λi induces µi, a simple calculation (with a change of the summation variable) shows

that λΛi + t with t ∈ Z[λ] induces the positive measure

1
λ
δt? ∗ (Q.µi),

where Q is the contraction from (6) and Q.µ denotes the push-forward of a finite measure µ,

so
(
Q.µ

)
(ϕ) = µ(ϕ ◦Q) for ϕ ∈ C0(Rd−1). Equivalently, one can use

(
Q.µ

)
(E) = µ

(
Q−1(E)

)
with E an arbitrary Borel set.

Let us now assume that our typed point set Λ =
⋃
i Λi is a fixed point of the inflation

equation (8). This is no restriction as one can always achieve this via replacing % by a

suitable power; compare Remark 3.2. Then, our induced measures µ1, . . . , µN must satisfy

(20) µi = 1
λ

N∑
j=1

∑
t∈Tij

δt? ∗ (Q.µj),
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which defines a system of N linear equations. We can spell out one solution as follows, where

λL denotes Lebesgue measure on internal space.

Lemma 5.1. The absolutely continuous measures µi = giλL with Radon–Nikodym densities

gi =
dens(Λi)

vol(Wi)
1Wi

satisfy (20) together with ‖µi‖ = dens(Λi).

Proof. Observe that Q.(1Wi
λL) = |det(Q)|−11QWi

λL, which follows from a simple change of

variable calculation. Likewise, one has δt? ∗ 1Wi
= 1Wi+t?

, and inserting the ansatz into (20)

leads to

dens(Λi)

vol(Wi)
1Wi

=
N∑
j=1

∑
t∈Tij

dens(Λj)

vol(Wj)
1QWj+t? .

By construction, we have dens(Λi) = dens(Λ)vi, where vi is the relative frequency of points

of type i; compare Remark 2.2. On the other hand, we know from Lemma 3.4 that the N

window volumes satisfy vol(Wi) = ηvi for some fixed η > 0, which implies that

dens(Λi)

vol(Wi)
=

dens(Λ)

η

is independent of i, and the previous equation turns into the window equation (13), which is

satisfied in the Lebesgue sense.

The claimed normalisation is obvious. �

Now, we interpret the right-hand side of (20) as a linear mapping on
(
M+(Rd−1)

)N
, with

M+(Rd−1) denoting the finite, positive measures on Rd−1, equipped with the total variation

norm, ‖.‖. If (µ1, . . . , µN ) is an N -tuple of positive measures, its image is (µ′1, . . . , µ
′
N ) with

‖µ′i‖ =
∥∥∥ 1
λ

N∑
j=1

∑
t∈Tij

δt? ∗ (Q.µj)
∥∥∥ = 1

λ

N∑
j=1

∑
t∈Tij

∥∥δt? ∗ (Q.µj)
∥∥

= 1
λ

N∑
j=1

Mij

∥∥Q.µj∥∥ = 1
λ

N∑
j=1

Mij‖µj‖.

Consequently, when ‖µi‖ = αvi for all 1 6 i 6 N and some α > 0, the total mass of each µi
is preserved under the iteration because M |v〉 = λ|v〉. This leads to the following result.

Proposition 5.2. Let α > 0 be fixed and consider the space

Mα :=
{

(ν1, . . . , νN ) : νi ∈M+(Rd−1), ‖νi‖ = αvi
}
,

with |v〉 the right PF eigenvector of M . Then, Mα is invariant under the iteration of the

right-hand side of (20), and contains precisely one solution to Eq. (20), namely the one

defined by νi =
αvi

vol(Wi)
1Wi

λL for 1 6 i 6 N .
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Proof. The space Mα can be equipped with the Hutchinson metric, compare [10, Sec. 2]

and references therein, which turns it into a complete metric space. The iteration then is a

contraction, as is obvious from the estimate∥∥∥ 1
λ
δt? ∗ (Q.µj)

∥∥∥ = 1
λ

∥∥δt? ∗ (Q.µj)
∥∥ = 1

λ
‖Q.µj‖ = 1

λ
‖µj‖

where λ > 1; see [10, Sec. 5] for the remaining steps.

Now, the first claim is a consequence of Banach’s contraction principle, while the concrete

form of the solution follows from Lemma 5.1. �

If one starts the iteration with an arbitrary N -tuple of non-negative measures, not all 0,

there is a unique component of the total mass vector in the PF direction of M , which defines

the parameter α, and all other components decay exponentially fast.

Our main result of this section can now be formulated as follows.

Theorem 5.3. Let Λ =
⋃
i Λi be the typed point set of a primitive, unimodular PV inflation

rule as constructed above, and consider the natural CPS that emerges from the Minkowski

embedding. Then, each Λi induces a unique measure in internal space, namely

µi =
dens(Λi)

vol(Wi)
1Wi

λL ,

where the Wi are the solutions of the window IFS (9). This entails the statement that, for

all 1 6 i 6 N , the set Λ?i is uniformly distributed in Wi.

Proof. The IFS (20) for the distributions induced by the Λi on the compact sets Wi is con-

tractive on Mα, with α = dens(Λ), and the unique solution is the one stated.

Recalling the definition of the induced measures, weak convergence clearly is equivalent to

the uniform distribution of Λ?i in Wi. �

At this point, we can return to the connection between the FB coefficients and the Fourier

transform of the windows, even though the latter generally only code a covering model set.

Still, due to uniform distribution, for k ∈ L~, one obtains an explicit formula, namely

AΛi
(k) =

dens(Λi)

vol(Wi)
}1Wi

(k?),

together with AΛi
(k) = 0 for any k ∈ R\L~. If, in addition, the function mc from Remark 3.8

satisfies mc(y) = mc for a.e. y ∈W, one also gets

(21) AΛi
(k) =

dens(L)

mc

}1Wi
(k?).

Remark 5.4. If we interpret the Fourier–Bohr coefficient AΛ(k) as a function of Λ, one

obtains

At+Λ(k) = e−2πiktAΛ(k).

Consequently, whenever the coefficient does not vanish, this defines an eigenfunction of the

strictly ergodic dynamical system (Y,R), where Y is the hull of Λ obtained as the closure of

the translation orbit {t+Λ : t ∈ R} in the local topology; compare [6, Ch. 4]. The analogous
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connection exists with the AΛi for 1 6 i 6 N , not all of which can vanish simultaneously for

any given k ∈ L~. This explains why L~ is the pure point part of the dynamical spectrum (in

additive notation) and how the diffraction intensities are connected with the eigenfunctions;

see [9, 30] and references therein for more.

Both for regular model sets and for primitive inflation tilings, it is known that the eigenfunc-

tions are continuous on Y; see [30] and references therein. This also means that the dynamical

point spectrum for such systems is the same in the topological and in the measure-theoretic

sense. ♦

Whenever constant covering of the total window is satisfied in our setting, we have the

following consequence for the Fourier–Bohr coefficients.

Corollary 5.5. Assume that the total window covering is almost surely constant. Then, the

Fourier–Bohr coefficients, for k ∈ L~, are obtained as

AΛi
(k) = dens(Λ) ci(k

?),

and vanish for all other k. �

The corresponding diffraction intensities follow from Eq. (11). Note that the covering

degree does not show up in this relation. The intensity at any wave number k ∈ L~ can

be efficiently approximated by truncating the infinite product representation for C(k?) and

calculating the amplitudes as explained above.

At this point, we turn to some applications of the cocycle method to concrete inflation

systems on the real line.

6. Examples – the Pisa substitutions

Let us introduce an interesting family of primitive inflations as follows, based on the alpha-

bet A = {a1, . . . , ad} with d > 2. The explicit rule is given by ai 7→ a1ai+1 for 1 6 i 6 d− 1,

together with ad 7→ a1. In short, we have %d = (a1a2, a1a3, . . . , a1ad, a1). We call {%d : d > 2}
the family of Pisa substitutions. For d = 2, this is the classic Fibonacci rule, while d = 3 is

known as the Tribonacci substitution in the literature; see [39] and references therein.

Let us first collect some general results for this family. The substitution matrix reads

Md =



1 1 1 . . . 1 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
. . .

...

0 0 0 . . . 1 0


with det(Md) = (−1)d−1. Note that Md is not normal for d > 3, whence we need Proposi-

tion 4.4 in the generality stated and proved. The characteristic polynomial of Md is

pd(x) = xd − (1 + x+ x2 + · · ·+ xd−1).
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By [13, Thm. 2], pd is irreducible, with one root > 1, which is the PF eigenvalue λd of Md, and

all others inside the unit disc. So, λd is a PV unit of degree d, which satisfies limd→∞ λd = 2.

The discriminant of pd for d > 2 is given by

∆d = (−1)
d(d+1)

2
(d+ 1)d+1 − 2(2d)d

(d− 1)2
,

which is due to M. Alekseyev; see [47, A106273] for details.

The right PF eigenvector is denoted by |v〉 as before, where we now drop the dependence

on d for ease of notation. When normalised as 〈1|v〉 = 1, it reads

|v〉 =
(
λ−1, λ−2, λ−3, . . . , λ−d+1, λ−d

)T
.

The corresponding left PF eigenvector 〈u| is normalised such that 〈u|v〉 = 1, which gives

〈u| =
λd − λ

2λd − (d+ 1)λ+ (d− 1)

(
λ,

d−2∑
j=0

λ−j ,

d−3∑
j=0

λ−j , . . . , 1 + λ−1, 1

)
.

Here, the normalisation prefactor was simplified via the algebraic relation for λ from p(λ) = 0.

Note that the vector on the right-hand side is a canonical choice for the natural interval

lengths, which all lie in Z[λ]. The shortest interval then has length 1, and it is straightforward

to show that no proper submodule of Z[λ] contains all control point positions. Here, the

density of the resulting point set Λ is given by

dens(Λ) =
λd − λ

2λd − (d+ 1)λ+ (d− 1)
,

with limd→∞ dens(Λ) = 1
2 .

When working with the Z-module L = Z[λ], one can define the dual module L~ with

respect to the quadratic form tr(xy) as explained in Remark 3.1, namely

(22) L~ =
{
y ∈ Q(λ) : tr(xy) ∈ Z for all x ∈ L

}
.

For our family, one finds L~ = ϑL with

ϑ =

(
d λd−1 −

d−2∑
m=0

(m+ 1)λm
)−1

∈ 1
∆d

Z[λ].

We are now set to look at some special cases in more detail.

6.1. The Fibonacci tiling. For %2 = (ab, a), which we write with the binary alphabet

A = {a, b} for simplicity, the inflation tiling with interval lengths τ = 1
2(1 +

√
5 ) for a and

1 for b is well studied; see [6, Sec. 9.4.1] and references therein. For the standard fixed point

of the square of %2, with central seed a|a, one obtains the windows Wa = (τ − 2, τ − 1] and

Wb = (−1, τ−2], compare [6, Ex. 7.3], and can calculate their Fourier transforms immediately.

With sinc(z) = sin(z)
z , they read

}1Wa
(y) = eπiy(2τ−3) sinc(πy) and }1Wb

(y) = eπiy(τ−3)

τ
sinc

(
πy
τ

)
.
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Here, it does not matter whether we take open, half-open or closed intervals, as their charac-

teristic functions are equal as L1-functions. Consequently, this detail is spectrally invisible.

The internal Fourier matrix and cocycle for this example read

B(y) =

(
1 1

e2πiσy 0

)
and B(n)(y) = B(y)B(σy) · · ·B(σn−1y),

with3 σ = τ? = 1− τ , so |σ| = −σ. We find the relation

cb(y) = |σ|e2πiσyca(y)

expressing cb in terms of ca, while the latter is obtained as the limit

ca(y) = lim
n→∞

qn(y),

where the trigonometric polynomials qn are recursively defined by

qn+1(y) = |σ| qn(σy) + σ2e2πiσ2yqn−1(σ2y),

with initial conditions q1 = q0 = |σ|. From here, it is not difficult to check that

ca(y) = |σ|}1Wa
(y) and cb(y) = |σ|}1Wb

(y)

as it must. The convergence of the recursive formula for ca is exponentially fast. Though

there is no need for this alternative approach in this case, it provides a consistency check and

some additional insight on the recursive structure of the spectrum.

6.2. (Twisted) Tribonacci. Here, we compare two different substitution rules for d = 3,

which share the same substitution matrix M = M3. These are the Tribonacci substitution

%3 := (ab, ac, a) and its twisted counterpart, %′3 := (ba, ac, a). Note that further permutations

of letter positions do not define new hulls, as they are conjugate to one of these two. Both lead

to inflation systems that have fractal windows in their model set description, as they must

due to a result by Pleasants [37, Prop. 2.35], but the twisted version is much more tortuous;

see Figure 1 below, and compare [39, Figs. 7.5 and 7.8], where a different coordinate system is

used. The fundamental group of the windows in the twisted case is huge, while the windows

of the untwisted case are still simply connected, as also known from other examples such as

the inflation tiling that underlies the Kolakoski-(3, 1) sequence [11].

The field Q(λ) is cubic. For ease of notation, we define κ± =
(
19 ± 3

√
33
) 1

3 . With this,

we find that the PF eigenvalue is

λ = 1
3

(
1 + κ+ + κ−

)
≈ 1.839287.

The characteristic polynomial is cubic, p(x) = x3−x2−x−1, with discriminant ∆ = −44. The

remaining two eigenvalues form a complex conjugate pair α, α with |α|2 = λ−1 = λ2 − λ− 1.

This also gives λ−2 = λ(2−λ). Further, one finds Re(α) = (1−λ)/2 and Re(α2) = (3−λ2)/2,

3Here, σ is a number which should not be confused with the Galois isomorphisms from Section 3.
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while Im(α) = 1
2
√

3

(
κ+−κ−

)
and Im(α2) = (1−λ) Im(α). From the discriminant and Vieta’s

theorem, one also gets

Im(α) =

√
11

3λ2 − 2λ− 1
=

√
11

22

(
−4λ2 + 9λ+ 1

)
.

The natural tile lengths can be chosen as (λ, λ2 − λ, 1) ≈ (1.839, 1.544, 1), which means

that all control point positions lie in the rank-3 Z-module L = 〈1, λ, λ2〉Z , but in no proper

submodule. The lattice for the CPS, L, is obtained from the Minkowski embedding of L into

3-space. A canonical choice for the basis matrix of L and its dual, L∗, is then given by

B =

1 λ λ2

1 Re(α) Re(α2)

0 Im(α) Im(α2)

 and B∗ =
Im(α)√

11

λ
2 − λ− 1 λ− 1 1

2λ2 − λ 1− λ −1
3λ−λ2
2 Im(α)

3(λ2−1)
2 Im(α)

1−3λ
2 Im(α)


with det(B) = Im(α)(3λ2 − 2λ − 1) =

√
11. From the first line of B∗, one can now extract

the Fourier module in our setting from an independent calculation, which gives

L~ = ϑ 〈λ2 − λ− 1, λ− 1, 1〉Z = ϑL,

with ϑ = (3λ2−2λ−1)−1, in agreement with our general formula (22). The Abelian group L~

is also the dynamical spectrum (in additive notation) of our systems; compare Remark 3.1.

In fact, Tribonacci and twisted Tribonacci are metrically isomorphic by the Halmos–von

Neumann theorem, but have rather different eigenfunctions. Also, they are obviously not

mutually locally derivable (MLD) from one another; see [6, Sec. 5.2] for background. More-

over, they are not topologically conjugate either, as they can be distinguished via invariants

of gauge-theoretic origin [20].

Remark 6.1. The Hausdorff dimension of the fractal boundary of the Tribonacci windows

is known; compare [34] as well as [16, Ex. 4.2]. It can be calculated as a similarity dimension,

which here is given as the real solution sH to the equation |α|4sH + 2|α|3sH = 1. This gives

sH = 2
log(b)

log(λ)
≈ 1.093364,

where b is the positive real root of x4 − 2x− 1.

Likewise, for twisted Tribonacci, the Hausdorff dimension of the window boundary is given

by [16, Ex. 4.3]

sH = 2
log(b)

log(λ)
≈ 1.791903,

where b now is the positive real root of x6 − x5 − x4 − x2 + x − 1, as one derives from the

corresponding graph-directed IFS for the boundary; see also [45, Sec. 6.9].

The much larger Hausdorff dimension for the twisted case corresponds to a slower decay

of the Fourier transform; see [31, App. B] for an explicit one-dimensional example for which

the Fourier transform shows a power-law decay with exponent 1−dB, where dB is the fractal

dimension of the boundary, and [21] for an interesting asymptotic scaling analysis of such
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Figure 1. Rauzy fractals for the Tribonacci inflation (left panel) and its

twisted sibling (right panel), shown at the same scale. They are the win-

dows for the points of type a (blue), b (red) and c (green). The coordinate

axes are those emerging from the Minkowski embedding, with ticks indicating

unit distances.

coefficients. It would be useful to establish a general result along these lines, which is of

recent interest also with respect to a refinement of the notion of complexity [19]. ♦

If σ1 : Q(λ) −−→ Q(α) is the field isomorphism induced by λ 7→ α, one determines the

?-map of k ∈ L~ as k 7→ k? :=
(
Re(σ1(k)), Im(σ1(k))

)T
. For k = kp,q,r := ϑ(p + qλ + rλ2),

this gives

k?p,q,r =

(
1
44

(
(−p+ 4q + 17r)− (9p− 3q + r)λ+ (4p− 5q − 2r)λ2

)
1

4
√

11

(
(−p+ 2q + r) + 3(p+ q + r)λ− (3q + 2r)λ2

) )
,

where the integers p, q, r are known as the Miller indices of the corresponding Bragg peak in

crystallography.

In Figure 2, we compare the peaks of the pure point diffraction measure for the Tribonacci

point set and its twisted sibling. The support is the same, but the intensities show charac-

teristic differences. The latter are calculated as

I(p, q, r) =
(

5 + λ+ 2λ2

22

)2 ∣∣〈1|C(k?p,q,r)|v
〉∣∣2
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Figure 2. Diffraction intensities (Bragg peaks) for the Tribonacci point set

(upper part, blue) and for its twisted counterpart (lower part, red). Displayed

are the relevant peaks for k ∈ L~ ∩ [0, 10], with the intensity represented by

the length of the line. The left-most peak is located at the origin and has

height dens(Λ)2, where dens(Λ) = 1
22(5 +λ+ 2λ2) ≈ 0.618420. Selected peaks

are labelled by their Miller index triples.

with the appropriate matrix function C for the two cases. The peaks of the twisted case

are often smaller than their untwisted counterparts. Note also that an approximation of

the diffraction measure by exponential sums of large patches suffers from slow convergence,

in particular for the twisted version, as was previously observed and discussed for the plas-

tic number PV inflation [7]. This reference also contains an illustration of the full Fourier

transform of the plastic number Rauzy fractal, which shows similar features as our case at

hand.

6.3. The quartic case. Let us briefly consider %4 = (01, 02, 03, 0) on A = {0, 1, 2, 3}, where

Q(λ) is a quartic field. Beyond the PF eigenvalue λ ≈ 1.927562, M has one real root µ, with

µ ≈ −0.774804, and a complex conjugate pair α, α, with α ≈ −0.076379 + 0.814704i. For

the natural choice of interval lengths, (λ, λ2 − λ, λ3 − λ2 − λ, 1), the Fourier module becomes

L~ = ϑ 〈λ3 − λ2 − λ− 1, λ2 − λ− 1, λ− 1, 1〉Z = ϑZ[λ],

where

ϑ =
(
λ3 − 3λ2 − 2λ− 1

)−1
= 1

563

(
10 + 157λ− 103λ2 + 16λ3

)
.
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Figure 3. Illustration of the pure point diffraction spectrum for the d = 4

Pisa inflation, for k ∈ L~ ∩ [0, 10]. The left-most peak is located at 0 and

has height dens(Λ)2, with dens(Λ) = 1
563 (86 − λ + 15λ2 + 25λ3) ≈ 0.566343.

Selected peaks are labelled by their Miller index quadruples.

This follows from (22) and can be verified via the quadratic form tr(xy), observing tr(1) = 4

and tr(λm) = 2m − 1 for m ∈ {1, 2, 3}. In analogy to before, we parametrise k ∈ L~ by a

quadruple (p, q, r, s) of Miller indices.

The internal Fourier matrix reads

B(y) =


1 1 1 1

e(y) 0 0 0

0 e(y) 0 0

0 0 e(y) 0


with e(y) := exp

(
2πi(µy1 + Re(α)y2 + Im(α)y3)

)
. A calculation analogous to our previous

ones leads to the diffraction measure as illustrated in Figure 3. Let us briefly mention that,

using the methods from [45, Cor. 4.118 and Prop. 4.122], one can derive an upper bound of

2.327 for the Hausdorff dimension of the window boundaries [46]. It is no problem to twist

%4, as we did for the Tribonacci case, but we leave further details to the interested reader.

7. Twisted extensions of Fibonacci chains with mixed spectrum

Let us close with a simple system with mixed spectrum. It is based on the idea, taken

from [4], of a twisted extension of %F = (ab, a), which is %2 from Section 6.1, with a bar swap

symmetry. As such, it works with the extended alphabet A =
{
a, ā, b, b̄

}
, where we consider

% = (ab, āb̄, ā, a).

The natural interval lengths are those of the Fibonacci tiling, so τ for a and ā, as well as 1

for b and b̄. Also, by identifying a with ā and b with b̄, one sees that the system possesses

the Fibonacci tiling as a topological factor, where the factor map is 2 : 1 almost everywhere,

but not everywhere [20]. Consequently, we have a non-trivial point spectrum, together with

a continuous component. The latter, by an application of the renormalisation methods from

[5, 32, 33], must be singular continuous.
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The substitution matrix of % has spectrum {τ, 1− τ, 1
2(1± i

√
3 )}, and a reducible charac-

teristic polynomial. Only the factor with τ as a root is relevant, and one checks that the same

embedding as for the Fibonacci tiling can be used. Here, the embedding method produces

covering supersets, where the contractive IFS on (KR)4 reads

Wa = σWa ∪ σWb̄ , Wb = σWa + σ,

Wā = σWā ∪ σWb , Wb̄ = σWā + σ,

with σ = τ? as before. The unique solution with compact subsets of R is

Wa = Wā = [−σ2,−σ] = [τ − 2, τ − 1] and

Wb = Wb̄ = [−1,−σ2] = [−1, τ − 2],
(23)

as can easily be verified by direct computation. Here, we are in the situation that mc(y) = 2

for a.e. y ∈ [−1, τ − 1], and uniform distribution is preserved both in the individual windows,

by Theorem 5.3, and in the total window.

Note that the point sets Λ?a and Λ?ā are disjoint, but have the same closure, and analo-

gously for Λ?b and Λ?
b̄
. The right-hand sides of the window equations are measure-disjoint

by Lemma 3.4, which means that the cocycle approach can be applied, with the window

covering degree being mc = 2. Since uniform distribution is satisfied here by Theorem 5.3,

the FB coefficients from (19) can be calculated by means of (21). For weights hα ∈ C with

α ∈ {a, ā, b, b̄}, the pure point part of the diffraction reads

(γ̂)pp =
∑
k∈L~

∣∣∣∑
α
hαAα(k)

∣∣∣2 δk ,
with the additional part of the diffraction measure being singular continuous.

As was noticed by Gähler [20], one can employ a partial return word coding to arrive

at another inflation which defines a tiling system that is MLD with the above. Concretely,

consider the alphabet {A,B,C,D} and the inflation %′ = (AB,D,CA,C). Here, A and B

correspond to a and b, while C replaces āb̄ and D replaces each ā that is not followed by a b̄.

This gives the substitution matrix 
1 0 1 0

1 0 0 0

0 0 1 1

0 1 0 0


with the same eigenvalues as above. The natural interval lengths are (τ, 1, τ + 1, τ), in agree-

ment with the local derivation rule just stated.

The resulting window equations read

WA = σWA ∪ (σWC + σ2) , WB = σWA + σ , WC = σWC ∪ σWD , WD = σWB ,

which constitute a contractive IFS on (KR)4 with unique solution

WA = [τ − 2, τ − 1] , WB = [−1, τ − 2] , WC = [τ − 2, 2τ − 3] , WD = [2τ − 3, τ − 1].
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Figure 4. Illustration of the four windows for the primitive inflation rule

%̃ = (12, 13, 1, 0). Note that W0 ∪W1 = [−σ2,−σ] and W2 ∪W3 = [−1,−σ2],

while I = [−σ2,−σ3].

The total window is [−1, τ −1] as in the twisted Fibonacci example, but the window function

mc(x) now is a step function as induced by

(24) WB

WA

WC WD

−1

τ−2 τ−1

τ−2 τ−12τ−3

As was further analysed by Gähler [20], there is also a maximal topological pure point factor

such that the factor map is 2 :1 everywhere. Using the alphabet {0, 1, 2, 3}, this maximal pure

point factor is given by the inflation rule

%̃ = (12, 13, 1, 0),

where 0 and 1 stand for intervals of length τ , while those of type 2 and 3 have unit length.

The factor map can most easily be given as a block map, where words of length 2 at position

n are mapped to an element of the new alphabet at the same position, namely

(25) aa, āā 7→ 0 , ab, āb̄, aā, āa 7→ 1 , ba, b̄ā 7→ 2 , bā, b̄a 7→ 3,

and correspondingly for the tilings, where the resulting mapping is called a local derivation

rule; see [6, Sec. 5.2] for details.

Conversely, one proceeds in two steps. First, any given sequence from the (symbolic) hull

of %̃ is mapped to a sequence in {a, b}Z by 0, 1 7→ a and 2, 3 7→ b. In the second step, choose

one position and decide whether to place a bar on the letter or not. Then, the bar status of

the two neighbouring symbols is uniquely determined from the original block map (25), read

backwards. Inductively, this fixes the entire sequence. Since the only choice was the initial

bar, this shows that the block map (25) is globally 2 :1. Once again, this block map transfers

to a local derivation rule for the corresponding tilings.

The new inflation rule %̃ leads to a regular model set, with window equations

W0 = σW3 , W1 = σW0 ∪ σW1 ∪ σW2 , W2 = σW0 + σ , W3 = σW1 + σ.
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0.2

Figure 5. Illustration of |}1W1
(y)| (black curve) in comparison with the mod-

ulus of the Fourier transform of an interval of length τ+2
5 (grey curve), which

is the value at 0 for both functions.

Due to the factor map, we immediately know that W0 ∪W1 = Wa and W2 ∪W3 = Wb with

Wa and Wb from (23). The unique solution can be determined by first observing that each

Wi with i 6= 1 can be expressed in terms of W1. This gives a rescaling equation for W1 alone,

namely

W1 = σW1 ∪
(
σ3W1 + σ3

)
∪
(
σ4W1 + σ4 + σ2

)
= I ∪ g(W1),

where I = (W2 ∪W3)− σ = [−σ2,−σ3] and g(x) = σ4x+ σ4 + σ2.

This leads to W1 = I ∪ g(I) ∪ g(g(I)) ∪ . . . which results in the formula

(26) W1 =
⋃
n>0

(
σ4n[−σ2,−σ3] + σ(σ4n − 1)

)
,

while the other windows follow from here via affine mappings. All four windows are illustrated

in Figure 4, each comprising countably many disjoint intervals.

The explicit expression for W1 in (26) leads to the (inverse) Fourier transform of its char-

acteristic function in the form

(27) f1(y) = }1W1
(y) = −

∞∑
n=0

σ4n+1e−πi(2σ+2σ4n+σ4n+1)y sinc(πσ4n+1y)

with f1(0) = τ/
√

5 = τ+2
5 , which is the total length of the window W1; see Figure 5 for a

comparison of |f1| with the function
∣∣ τ+2

5 sinc
(
τ+2

5 πy
)∣∣.
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For the cocycle approach, we first note that the internal Fourier matrix reads

B(y) =


0 0 0 1

1 1 1 0

e2πiσy 0 0 0

0 e2πiσy 0 0


with B(0) = M as usual. The frequency-normalised right PF eigenvector is

|v〉 = 1
5(−1− 3σ, 1− 2σ, 3 + 4σ, 2 + σ)T ≈ (0.171, 0.447, 0.106, 0.276)T ,

where one has vol(Wi) = τ vi for the total window lengths. With C(y) = limn→∞|σ|nB(n)(y),

one gets f1(y) = τ 〈0, 1, 0, 0 |C(y)|v〉, where the convergence of the underlying matrix product

is exponentially fast. Here, one can then study the rate of convergence in comparison to the

alternative formula in (27).

8. Outlook

It is possible to extend our approach to inflation tilings in higher dimensions, if the inflation

multiplier is a PV unit. In fact, this is needed when dealing with direct product variations

(DPV) as considered in [17, 18, 2].

An extension to the non-unit case is also possible, but requires a larger machinery from

algebraic number theory, as developed in [45] for the treatment of the Pisot substitution

conjecture in the non-unit case.

Finally, also S-adic type inflations can be covered, provided that the participating inflation

rules are compatible in the sense that they share the same substitution matrix.
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[5] Baake M, Gähler F and Mañibo N, Renormalisation of pair correlation measures for primitive

inflation rules and absence of absolutely continuous diffraction, Commun. Math. Phys., in press;

arXiv:1805.09650.



28 MICHAEL BAAKE AND UWE GRIMM

[6] Baake M and Grimm U, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge Univer-

sity Press, Cambridge (2013).

[7] Baake M and Grimm U, Diffraction of a model set with complex windows, J. Phys.: Conf. Ser.,

in press; arXiv:1904.08285.

[8] Baake M and Lenz D, Dynamical systems on translation bounded measures: Pure point dynamical

and diffraction spectra, Ergod. Th. & Dynam. Syst. 24 (2004) 1867–1893;

arXiv:math.DS/0302061.

[9] Baake M and Lenz D, Spectral notions of aperiodic order, Discr. Cont. Dynam. Syst. S 10 (2018)

161–190; arXiv:1601.06629.

[10] Baake M and Moody R V, Self-similar measures for quasicrystals, in Directions in Mathematical

Quasicrystals, eds. Baake M and Moody R V, CRM Monograph Series, vol. 13, AMS, Providence,

RI (2000), pp. 1–42; arXiv:math.MG/0008063.

[11] Baake M and Sing B, Kolakoski-(3, 1) is a (deformed) model set, Can. Math. Bull. 47 (2004)

168–190; arXiv:math.MG/0206098.

[12] Barreira L and Pesin Y, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov

Exponents, Cambridge University Press, Cambridge (2007).

[13] Brauer A, On algebraic equations with all but one root in the interior of the unit circle, Math.

Nachr. 4 (1950/51) 250–257.

[14] Clark A and Sadun L, When size matters: Subshifts and their related tiling spaces, Ergod. Th. &

Dynam. Syst. 23 (2003) 1043–1057; arXiv:math.DS/0201152.

[15] Clark A and Sadun L, When shape matters: Deformation of tiling spaces, Ergod. Th. & Dynam.

Syst. 26 (2006) 69–86; arXiv:math.DS/0306214.

[16] Feng D-J, Furukado M, Ito S and Wu J, Pisot substitutions and the Hausdorff dimension of

boundaries of atomic surfaces, Tsukuba J. Math. 26 (2006) 195–223.

[17] Frank N P, A primer of substitution tilings of the Euclidean plane, Expo. Math. 26 (2008) 295–326;

arXiv:0705.1142.

[18] Frank N P and Robinson E A, Generalized β-expansions, substitution tilings, and local finiteness,

Trans. Amer. Math. Soc. 360 (2008) 1163–1177; arXiv:math.DS/0506098.

[19] Fuhrmann G and Gröger M, Constant length substitutions, iterated function systems and amor-

phic complexity, Preprint arXiv:1812.10789.

[20] Gähler F, private communication (2019).
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