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Abstract

In this paper strong dissipativity of generalized time-fractional derivatives on
Gelfand triples of properly in time weighted Lp-path spaces is proved. In particular,
as special cases the classical Caputo derivative and other fractional derivatives ap-
pearing in applications are included. As a consequence one obtains the existence and
uniqueness of solutions to evolution equations on Gelfand triples with generalized
time-fractional derivatives. These equations are of type

d

dt
(k ∗ u)(t) +A(t, u(t)) = f(t), 0 < t < T,

with (in general nonlinear) operators A(t, ·) satisfying general weak monotonicity
conditions. Here k is a non-increasing locally Lebesgue-integrable nonnegative func-
tion on [0,∞) with lim

s→∞
k(s) = 0. Analogous results for the case, where f is re-

placed by a time-fractional additive noise, are obtained as well. Applications include
generalized time-fractional quasi-linear (stochastic) partial differential equations. In
particular, time-fractional (stochastic) porous medium and fast diffusion equations
with ordinary or fractional Laplace operators and the time-fractional (stochastic) p-
Laplace equation are covered.
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1 Introduction

In this paper (see Theorem 2.2 below) we prove existence and uniqueness of solutions to
non-local in time evolution equations of type

∂∗kt (u− u0) + A(t, u(t)) = f(t), 0 < t < T, (1.1)

on a separable real Hilbert space (H, 〈·, ·〉H), which is the pivôt space of a Gelfand triple

V ⊆ H(∼= H∗) ⊆ V ∗, (1.2)

where V is a reflexive Banach space with dual V ∗. Here T ∈ (0,∞), u0 is the initial
condition and

A(t, ·) : V −→ V ∗, t ∈ [0,∞),

are (in general nonlinear) weakly-monotone operators satisfying (H1)–(H4) in Section 2
below. Furthermore, f(t) ∈ V ∗, t ∈ [0,∞), and

∂∗kt u := ∂t(k ∗ u) :=
d

dt

∫ t

0

k(t− s)u(s) ds, t ∈ [0,∞), (1.3)

for k ∈ L1
loc([0,∞)), k ≥ 0, non-increasing and without loss of generality right-continuous.

Here we also refer to (2.2) below, which is the integral form of (1.1) and follows from (1.1)
under an additional assumption on k (see condition (k̃) in Section 2 below).

In [41] under more stringent conditions on A existence of solutions has been proved
in the special case where

k(t) := g1−β(t) :=
t−β

Γ(1− β)
, t ∈ [0,∞), β ∈ (0, 1), (1.4)

i.e., where ∂∗kt (u− u0) is the Caputo time-fractional derivative of u, has been treated. For
more examples of functions k, also called kernels in the literature, we refer to Section 6.

In [41], however, the stronger hypothesis that A(t, ·) : V −→ V ∗, t ∈ [0,∞), is mono-
tone (that is, C1 = 0 in (H2), see Section 2), was assumed, which excludes a number of
important applications. Apart from this and the more general non-local time derivatives
∂∗kt , which for distinction we call generalized time-fractional derivatives, in this paper
we give a new and easy proof of uniqueness of solutions to (1.1). The proofs both for
generalizing to weakly-monotone A(t, ·), t ∈ [0,∞), and for uniqueness turn out to be
consequences of a new result on (generalized) time-fractional derivatives in this paper.
This is that, we identify −∂∗kt as a generator of a C0-operator semigroup on a properly
in time weighted L2-space and prove that it is strongly dissipative (see Proposition 3.2
and Lemma 3.4 below, as well as their consequence Theorem 2.1). This together with its
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applications to uniquely solving (1.1) (see Theorem 2.2 and Section 4 below) can be con-
sidered as the main contribution of this work. In particular, our results are applicable to
the time-fractional generalized porous medium and fast diffusion equations with ordinary
or fractional Laplace operators

∂∗kt (u(t)− u0) + (−∆)α(|u(t)|r−1u(t)) = f(t, u(t))

and the time-fractional p-Laplace equation

∂∗kt (u(t)− u0)− div
(
|∇u(t)|p−2∇u(t)

)
= f(t, u(t)).

We refer to Section 7 for details and more general types of these equations, which our
results apply to and which are not covered by results in the literature.

As a consequence by a simple shift argument we obtain the unique solvability of the
stochastically perturbed variant of (1.1), namely

∂∗k1t (X(t)−X0) + A(t,X(t)) = ∂∗k2t

∫ t

0

B(s) dW (s), 0 < t < T, (1.5)

where W (t), t ≥ 0, is a cylindrical Brownian motion in some other separable Hilbert
space (U, 〈·, ·〉U) and B(s) : U −→ H is a Hilbert–Schmidt operator for every s ∈ [0,∞)

(see Theorem 2.3 below).
At this point we would like to stress that, since the operator A is allowed to be nonlin-

ear as e.g. a quasi-linear partial or pseudo differential operator (see Section 7 below for
examples), the classical probabilistic “inverse subordination method” (see [4, 5, 49, 56]
and also [19, 21] as well as the references therein) to solve equation (1.1) does not work.

Let us now explain our method of proof in more detail and in comparison with the
usual method in papers on time-fractional differential equations by other authors. The
first main point is that we do not solve (as is commonly done in the literature) the integral
equation corresponding to (1.1), that is, (2.2) below. This, by the way, would require an
additional condition on k (see Theorem 2.2(ii)). Instead, we solve equation (1.1) directly.
The reason is that for (2.2) we cannot exploit the weak monotonicity and coercivity as-
sumptions, (H2), (H3) respectively, on A, because of the convolution integral on the right
hand side of (2.2). Therefore, the idea to find a solution to (1.1) is to show that the map on
its left hand side, considered as a map from paths to paths, is surjective from V to V∗ in a
suitable Gelfand triple V ⊂ H ⊂ V∗ of Lp-path spaces, (see (2.3) below). It follows by the
assumptions (H1)-(H4) and assuming C1 = 0 in (H2), that, if A denotes the map on paths
given by A (see (2.5)), then A alone has this surjectivity property, because under these
conditions A : V → V∗ is maximal monotone and coercive. But it is a highly non-trivial
question, whether then also the sum A + ∂∗kt is surjective onto V∗. To prove the latter
we prove that ∂∗kt is the infinitesimal generator of a (linear) C0-semigroup (Uk

t )t≥0 on the
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pivot space H = L2([0,∞);H) of the Gelfand triple (2.3) (see Proposition 3.1 and 3.2),
which is given explicitly by (2.7). Here it is crucial to take the whole time interval [0,∞)

in the definition of H rather than just [0, T ], in contrast to what one would expect, because
one wants to solve (1.1) only for 0 < t < T . Since the restriction of (Uk

t )t≥0 to V is again
a C0-semigroup, by a non-standard (see Remark A.2(iii)) perturbation result (see Theo-
rem 4.1), we can conclude that on some specific domain Fk (=generalized time-fractional
Sobolev space) we have A+ ∂∗kt : Fk ⊂ V→ V∗ is surjective. For this, however, we need
that A is monotone (i.e. C1 in (H2) must be zero). To reduce our case (i.e. C1 ≥ 0) to this
case the strict dissipativity of −∂∗kt on the time weighted Gelfand triple Vγ ⊂ Hγ ⊂ V∗γ

(see (2.12) below), where dt is replaced by e−γtdt, γ > 0, proved in this paper (with ex-
plicit dissipativity constant ψk(γ), where ψk is the Bernstein function with Levy measure
Mk, whose distribution function is k; see Lemma 3.4 and (2.13)), becomes crucial. As
another consequence of the strict dissipativity of −∂∗kt we get uniqueness of solutions
to (1.1) in a very easy and standard way (see the end of the proof of Theorem 2.2(i) in
Section 4). To the best of our knowledge this proof is completely new in the case of gen-
eralized time-fractional derivatives, as is the result that the latter are all strictly dissipative
on appropriately time weighted Gelfand triples as above. In our paper [41] on the spe-
cial case, where in (1.1) ∂∗kt is the classical Caputo derivative ∂βt , β ∈ (0, 1), we also
proved existence of solutions to (1.1) (and not to its corresponding integral version (2.2))
by showing the surjectivity of the map on its right hand side, but as mentioned above,
under more stringent conditions on A. There, however, we could not prove uniqueness by
this approach because of the lack of strict dissipativity of the Caputo derivative, which we
only have now as a special case of one of the main results in this paper.

Next we would like to make some historical remarks, explain the motivation to study
equations as (1.1) and comment on the relation of our results with those in the literature.

Fractional calculus has a long history. Its origins can be traced back to the end of the
seventeenth century (cf. [60]), and it has been experiencing an impressive revival in the
last few decades. One of the main reasons is that scientists and engineers have established
a vast amount of new models (e.g. to describe anomalous diffusions) that naturally involve
time-fractional differential equations, which have been applied successfully, e.g. in me-
chanics (cf. [45]), bio-chemistry (cf. [25, 26]), electrical engineering (cf. [24]), medical
science (cf. [22]). For more applications and references we refer to [6, 31, 52, 53, 54, 65].

There is a lot of motivation from both Physics and Mathematics as regards the use
of generalized time-fractional derivatives (see e.g.[1, 33, 53, 54, 52]). Here we mention
a few examples. Starting from the seminal paper [12] the Caputo fractional derivative
was introduced to properly handle initial value problems, namely to model waves in vis-
coelastic media. Later on it was generalized to the so called distributed order derivative
(also called variable order derivative in [42]), see [13] and Example 6.3 below for details.
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Other successful applications of the distributed order derivative include the kinetic the-
ory (cf. [15, 16, 36, 37]) to describe ultra-slow diffusion or the theory of elasticity (see
[42]) for the description of rheological properties of composite materials. Inverse stable
subordinators arise (cf. [48, 50]) as scaling limits of continuous time random walks. In
[51] it was shown that under certain technical conditions the probability density of the
hitting time process E(t) (that is the inverse of a certain subordinator) solve a distributed
order time-fractional evolution equation. For more applications of the distributed order
derivative we refer the reader to [3, 14, 29, 35, 46, 47].

When dealing with a particular anomalous diffusion process, it is often difficult to
choose which model of the time-fractional diffusion equations is suitable for its mathe-
matical description. Thus a general framework of time-fractional derivatives is needed. In
[38], the author introduced a general fractional calculus for integral operators of convo-
lution type with an arbitrary nonnegative locally integrable kernel k. He considered the
initial value problem for both relaxation and diffusion equations with these general time-
fractional derivatives. Since then many authors applied the generalized time-fractional
derivative to solve in general linear fractional equations and nonlinear differential equa-
tions, see e.g. [43, 66, 41] and references therein. We want to remark that a huge amount
of the existing literature on this subject concentrates on the case of linear and semilinear
type equations. However, to the best of our knowledge, there are only very few results that
are applicable to the quasilinear case, to which the results in this paper have their main
new applications.

We should mention that time-fractional linear evolution equations in the Gelfand triple
setting have first been investigated in [67]. Later on the author also proved the global
solvability of a nondegenerate parabolic equation with time-fractional derivative in [68]
(cf. [1] for more general cases). However, these results cannot be applied to quasilinear
type equations like the porous medium or the p-Laplace equation. In [32] the authors in-
vestigate elliptic-parabolic integro-differential equations with L1-data. Their framework
includes the time-fractional p-Laplace equation. However, the authors in [32] only obtain
generalized solutions (i.e. entropy solutions). Therefore, the results of the current paper
generalize or complement the corresponding results in [32, 41, 66, 67, 68] within the
general setting of time-fractional quasilinear PDEs with weakly monotone coefficients.
In particular, the authors in [66] derive very interesting decay estimates for the solutions
of time-fractional porous medium and p-Laplace equations (by assuming the existence
of solutions), and the decay behaviour is notably different from the case with usual time
derivative. In [41], we give a positive answer to the question on the existence and unique-
ness of solutions to the time-fractional porous medium equations and p-Laplace equa-
tions, which are left open in [66]. The current work further extend the results in [41] to
both generalized fractional derivative and the weakly monotone case.
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Recently, there has been also growing interest in time-fractional stochastic partial
differential equations. For instance, the authors in [20, 34] investigate the L2-theory and
Sobolev space theory respectively for a class of semilinear SPDEs with time-fractional
derivatives, which can be used to describe random effects on transport of particles in me-
dia with thermal memory, or particles subject to sticking and trapping. In [27, 55], the au-
thors consider a space-time fractional stochastic heat type equation to model phenomena
with random effects with thermal memory, and they prove the existence and uniqueness
of mild solutions as well as some intermittency property. For a linear stochastic partial
differential equation of fractional order both in the time and space variables with a differ-
ent type of noise term, we refer to [18] (see also [2, 23]). In [17] the authors investigate
linear stochastic time-fractional partial differential equations for the type of heat equation
and wave equation.

The list of references quoted above is far from being complete, but show the enormous
interest in the subject. However none of them contains results on quasi-linear SPDEs
with fractional or generalized fractional time derivative, whereas these form a class of
equations to which the results of the present paper apply.

The rest of the paper is organized as follows. In Section 2 we present the main results
(Theorems 2.1, 2.2 and 2.3) on the existence and uniqueness of solutions to deterministic
and stochastic nonlinear evolution equations with generalized time-fractional derivatives.
Theorem 2.1 will be proved in Section 3. The proof of Theorem 2.2 is given in Section 4.
It relies on Theorem 2.1 and an abstract perturbation result (see Theorem 4.1). Since this
is not standard, for the convenience of the reader we include its proof in the Appendix of
this paper. Because of its importance we give a more detailed proof than the very sketchy
one in [41]. The proof of Theorem 2.3 will be given in Section 5 . Section 6 contains
examples of kernels k which appeared in literature. In Section 7 we apply the main results
to some concrete quasi-linear deterministic and stochastic PDEs.

2 Framework and main results

Let (H, 〈·, ·〉H) be a real separable Hilbert space identified with its dual space H∗ by the
Riesz isomorphism. Let V be a real reflexive Banach space, continuously and densely
embedded into H . Then we have the following Gelfand triple

V ⊆ H ∼= H∗ ⊆ V ∗.

Let V ∗〈·, ·〉V denote the dualization between V and its dual space V ∗ and let ‖ · ‖H , ‖ · ‖V ,
‖ · ‖V ∗ denote the respective norms. Then it is easy to show that

V ∗〈u, v〉V = 〈u, v〉H , u ∈ H, v ∈ V.
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Now, for T ∈ [0,∞) fixed, we consider the following general nonlinear evolution equa-
tion with generalized time-fractional derivative

∂∗kt (u− u0) + A(t, u(t)) = f(t), for dt-a.e. t ∈ [0, T ], (2.1)

where k ∈ L1
loc([0,∞);R, ds) =: L1

loc([0,∞)) (with ds = Lebesgue measure) satisfies
condition (k) below, f ∈ L1([0,∞);V ∗), ∂∗kt is as in (1.3), u0 ∈ V is the initial condition,
and we are seeking for solutions u ∈ L1([0,∞);V ). Therefore, the derivative d

dt
in the

definition (1.3) of ∂∗kt is understood in the weak sense. Consider the following conditions
on k:

(k) k ∈ L1
loc([0,∞)), k is nonnegative, non-increasing and (hence without loss of

generality) right continuous such that lim
s→∞

k(s) = 0.

(k̃) There exists k̃ ∈ L1
loc([0,∞)), nonnegative, such that

(k̃ ∗ k)(t) =

∫ t

0

k̃(t− s)k(s) ds = 1 for dt-a.e. t ∈ [0,∞).

Here and below we consider k and k̃ as functions on R defining them to be zero on
(−∞, 0). Obviously (k) and (k̃) hold for k as in (1.4).

If (k) and (k̃) hold, then (2.1) can be rewritten as

u(t) = u0 −
∫ t

0

k̃(t− s)A(s, u(s)) ds+

∫ t

0

k̃(t− s)f(s) ds for dt-a.e. t ∈ [0,∞).

(2.2)

This can be easily seen by first integrating (2.1) with respect to dt and using the fact that
the convolution with k∗ k̃ = k̃∗k is just integration with respect to dt. Defining ũ(t) to be
equal to the right hand side of (2.2) for every t ∈ [0,∞), we have that ũ is a dt-version of
u, hence still satisfies (2.2) with ũ(0) = u0. In this sense u has u0 as its initial condition.
Now let us specify the conditions on the map

A : [0,∞)× V −→ V ∗

which is first of all assumed to be B([0,∞)× V )/B(V ∗) measurable (where B(·) means
Borel σ-algebra of ·) and assumed to satisfy the following: There exist α ∈ (1,∞), δ ∈
(0,∞), C1, C2 ∈ [0,∞) and g ∈ L1([0,∞);R) such that for all t ∈ [0,∞), v, v1, v2 ∈ V

(H1) (Hemicontinuity) The map s 7→ V ∗〈A(t, v1 + sv2), v〉V is continuous on R.

(H2) (Weak Monotonicity)

V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V ≥ −C1‖v1 − v2‖2
H .
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(H3) (Coercivity)

V ∗〈A(t, v), v〉V ≥ δ‖v‖αV − C2‖v‖2
H − g(t).

(H4) (Growth)
‖A(t, v)‖

α
α−1

V ∗ ≤ g(t) + C2

(
‖v‖αV + ‖v‖2

H

)
.

We define the following spaces,

V = Lα([0,∞);V ) ∩ L2([0,∞);H),

H = L2([0,∞);H), (2.3)

V∗ = L
α
α−1 ([0,∞);V ∗) + L2([0,∞);H),

where ‖ · ‖V := max(‖ · ‖Lα([0,∞);V ), ‖ · ‖H) and for u ∈ V∗

‖u‖V∗ := inf
{
‖u1‖L α

α−1 ([0,∞);V ∗)
+ ‖u2‖H : u1 ∈ L

α
α−1 ([0,∞);V ∗), u2 ∈ H s.t. u = u1 + u2

}
.

Then for u0 = 0 (the case for general initial conditions u0 ∈ V will then follow easily as
we shall see below) the original equation (2.1) can be rewritten in the following form

∂∗kt u+ Au = f, (2.4)

where
A : V −→ V∗; (Au)(t) = A(t, u(t)), t ∈ [0,∞). (2.5)

It is easy to see that A : V −→ V∗ is weakly monotone, coercive and bounded on bounded
sets. Below we fix k and A as above.

To formulate our main results we furthermore need to define the following “shift to the
right” semigroup Ut, t > 0, on H. Below we extend every f ∈ H by f := 0 on (−∞, 0)

to a function f : R −→ H . For f ∈ H, t ≥ 0, define

Utf(r) := 1[0,∞)(r − t)f(r − t), r ∈ [0,∞). (2.6)

Then it is trivial to check that (Ut)t>0 is a strongly continuous (shortly: C0-)contraction
semigroup on H and it obviously can be restricted to a C0-semigroup on V (even in this
case consisting also of contractions on V). Now for k as above and µkt , t ≥ 0, as defined
in (3.5) below, we define for f ∈ H

Uk
t f :=

∞∫
0

Usf µ
k
t (ds) = f ∗ µkt , t ≥ 0, (2.7)

It is a well-known fact (see e.g. [44, Chap. II, Sect. 4b]), that (Uk
t )t>0 is also a C0-

semigroup of contractions on H. Let Λk with domain D(Λk,H) be its infinitesimal gen-
erator on H.
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Obviously, (Uk
t )t>0 can be restricted to a C0-semigroup on V (again consisting of

contractions). The generator of the latter is again Λk, but with domain

D(Λk,V) := {u ∈ D(Λk,H) ∩ V | Λku ∈ V}.

Then D(Λk,V) is dense in V, hence so is D(Λk,H) ∩ V.

By [64, Lemma 2.3], Λk : D(Λk,H) ∩ V −→ V∗ is closable as an operator from V

to V∗. We denote its closure again by Λk and the domain of the latter by Fk. Then Fk

is a Banach space with norm ‖u‖Fk := (‖u‖2
V + ‖Λku‖2

V∗)
1
2 , u ∈ Fk. We would like to

mention here that, as will be seen in the applications in Section 7, Fk is a generalization
of a space-time Sobolev space with generalized time-fractional derivative. It will turn out
(see Theorem 2.2 below) that it is the appropriate space in which equation (2.1) can be
solved.

Finally, we define a convenient domain of ∂∗kt , namely:

D(∂∗kt ) := {u ∈ V∗ | k ∗ u ∈ W 1,1((0, T );V ∗), ∀T ∈ (0,∞)}, (2.8)

where W 1,1((0, T );V ∗) denotes the standard Sobolev space of order 1 in L1([0, T ];V ∗).
We recall that for u ∈ L1([0,∞);V ∗) we set u ≡ 0 on (∞, 0), hence

(k ∗ u)(t) =

∫ t

0

k(t− s)u(s) ds. (2.9)

Then, obviously, for all T ∈ (0,∞)

k ∗ u = (1[0,T ]k) ∗ (1[0,∞)u) on [0, T ], (2.10)

where for p ∈ [1,∞) the function on the right hand side belongs to Lp(R;V ∗) if so does
1[0,∞)u, and is in C(R;V ∗), if in addition k ∈ Lp

′

loc([0,∞)), where p′ := p
p−1

.
For γ ∈ (0,∞), p ∈ [1,∞), and E = R, V, V ∗ or H we set

Lpγ([0,∞);E) := Lp([0,∞);E, e−γtdt), (2.11)

and define Vγ , Hγ , V∗γ as in (2.3) with Lebesgue measure dt replaced by e−γtdt.

Theorem 2.1. Suppose that k satisfies (k). Then:

(i) Fk ⊂ D(∂∗kt ) and

Λku = −∂∗kt u for all u ∈ Fk.

In particular, k ∗ u ∈ C([0,∞), H).
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(ii) (“strong dissipativity in Vγ ⊂ Hγ ⊂ V∗γ ”). For every γ ∈ (0,∞) and all u ∈ Fk∫ ∞
0

V ∗〈∂∗kt u(s), u(s)〉V e−γs ds ≥ 1

2
ψk(γ)

∫ ∞
0

‖u(s)‖2
He
−γs ds, (2.12)

where

ψk(γ) :=

∫
(0,∞)

(1− e−τγ)Mk(dτ) (> 0 !) (2.13)

andMk is the unique measure on ((0,∞),B(0,∞)) such that k(s) = Mk((s,∞)),
s ∈ (0,∞) (see the beginning of Section 3 for more details, in particular (3.3)).

The proof of Theorem 2.1 will be given in Section 3 below. We only mention here that
assertion (i) is easy to prove for sufficiently smooth functions. The point here is that it
holds for all u ∈ Fk. The proofs of the following two theorems are contained in Section 4
below.

Theorem 2.2. Suppose that T ∈ [0,∞), k satisfies (k) and A : [0,∞) × V −→ V ∗

satisfies (H1)–(H4). Furthermore, assume that for C1 from (H2) there exists γ ∈ (0,∞)

such that ψk(γ) > 2C1, which is always the case if lim
s→0

k(s) =∞. Then:

(i) For every u0 ∈ V and f ∈ V∗, (2.1) has a unique solution u such that u−u0ϕ ∈ Fk

for every ϕ ∈ Lα([0,∞);R) with ϕ ≡ 1 on [0, T + 1). In particular,

u− u0ϕ ∈ Lα([0,∞);V ); ∂∗kt (u− u0ϕ) ∈ L
α
α−1 ([0,∞);V ∗) (2.14)

and t 7→
∫ t

0
k(t− s)(u(s)− u0ϕ(s)) ds has a continuous H-valued dt-version.

(ii) If, in addition, (k̃) holds, then for dt-a.e. t ∈ [0, T ],

u(t) = u0 −
∫ t

0

k̃(t− s)A(s, u(s)) ds+

∫ t

0

k̃(t− s)f(s) ds. (2.15)

Furthermore, if k̃ ∈ Lαloc([0,∞)), t 7→ u(t) has a continuous V ∗-valued dt-version.

Now we turn to our last main result, namely the stochastic version of (2.1) and (2.2).
Suppose that U is a Hilbert space and W (t) is a U -valued cylindrical Wiener process
defined on a filtered probability space (Ω,F, (Ft)t≥0,P) with normal filtration Ft, t ≥ 0.
Now we consider stochastic nonlinear evolution equations with generalized time-fractional
derivative of type

∂∗k1t (X(t)− x0) + A(t,X(t)) = ∂∗k2t

∫ t

0

B(s) dW (s), 0 < t < T, (2.16)
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where x0 ∈ V and B : [0, T ] −→ LHS(U ;H) is measurable, here (LHS(U ;H), ‖ · ‖HS)

denotes the space of all Hilbert–Schmidt operators from U to H . Note that, if k1 satisfies
(k̃), the integral form of (2.16) is as follows

X(t) = x0 −
∫ t

0

k̃1(t− s)A(s,X(s)) ds+

∫ t

0

(k̃1 ∗ k2)(t− s)B(s) dW (s). (2.17)

For this we need to assume more about k1 and k2 from above, namely that they satisfy

(ks) (k) holds for k1 and k2, and k1 satisfies (k̃) such that k̃1 ∗ k2 ∈ L2
loc([0,∞)).

Note that the stochastic integral term in (2.16)

F (t) :=

∫ t

0

(k̃1 ∗ k2)(t− s)B(s) dW (s)

is well-defined if e.g. ‖B‖HS ∈ L∞loc([0,∞)), because then∫ t

0

(k̃1 ∗ k2)2(t− s)‖B(s)‖2
HS ds <∞.

If k1 = k2, then the stochastic integral term is even well-defined if merely ‖B‖HS ∈
L2

loc([0,∞)).

Theorem 2.3. Suppose that (ks) holds,A satisfies (H1)–(H4) andB ∈ L∞([0, T ], LHS(U ;H)).
Assume also that F ∈ V, dt⊗ P-a.e. (which is e.g. the case if B(t) is a Radonifying map
from U to V ). Then:

(i) For every x0 ∈ V the “shifted equation”

∂∗k1t (X(t)− F (t)− x0ϕ) + A(t,X(t)) = 0, dt-a.e. t ∈ [0, T ], (2.18)

has a unique (Ft)-adapted solution X such that X − F − x0ϕ ∈ Fk1 , P-a.s. for
every ϕ ∈ Lα([0,∞);R) with ϕ ≡ 1 on [0, T + 1). In particular,

X − F − x0ϕ ∈ Lα([0,∞);V ); ∂∗k1t (X − F − x0ϕ) ∈ L
α
α−1 ([0,∞);V ∗), P-a.s.

and t 7→
∫ t

0
k1(t − s)(X(s) − xϕ(s)) ds P-a.s. has a continuous H-valued dt-

version.

(ii) For dt-a.e. t ∈ [0, T ],

X(t) = x0 −
∫ t

0

k̃1(t− s)A(s,X(s)) ds+

∫ t

0

(k̃1 ∗ k2)(t− s)B(s) dW (s), P-a.s.

(2.19)

Furthermore, if k̃1 ∈ Lαloc([0,∞)), t 7→ X(t) P-a.s. has a continuous V ∗-valued
dt-version.
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Remark 2.4. In [41], we have investigated the case that ∂∗k1t = ∂βt , ∂
∗k2
t = ∂γt and A is

monotone. Then it is easy to see that the assumption (ks) is equivalent to γ < β + 1
2
. We

want to remark that the special case γ = β or γ = 1 has been intensively investigated
for some semilinear SPDE models (such as the stochastic heat equation or the stochastic
wave equation), see e.g. [2, 17, 18, 27, 55] and more references therein. It’s easy to see
that we can also have fractional Brownian motion or Lévy process as the noise in (2.16).

3 Generalized time-fractional derivatives as generators
of C0-semigroups and their strong dissipativity

In this section we prove Theorem 2.1, so assume that k satisfies (k). By Caratheodory’s
theorem there exists a σ-finite (nonnegative) measure Mk on ((0,∞),B((0,∞))) such
that

Mk((s,∞)) = k(s), s ∈ (0,∞). (3.1)

By Fubini’s theorem it is easy to show that∫
(0,∞)

τ ∧ 1 Mk( dτ) <∞. (3.2)

Define

C≥0 := {z ∈ C|Re z ≥ 0}

and

C>0 := {z ∈ C|Re z > 0}.

We define the following function ψk : C≥0 −→ C by

ψk(λ) :=

∫
(0,∞)

(1− e−λτ ) Mk( dτ), λ ∈ C≥0, (3.3)

which by (3.2) is well-defined and holomorphic on C>0, as well as continuous on C≥0

(see [62, p.25] for details). Hence the same is true for the function

λ 7→ e−tψ
k(λ), λ ∈ C≥0, (3.4)

for every t ∈ [0,∞). Furthermore for every t ∈ [0,∞), since tψk restricted to (0,∞) is a
nonnegative Bernstein function (see [62, Theorem 3.2]), there exists a unique probability
measure µkt on ([0,∞),B([0,∞)) such that∫

[0,∞)

e−λsµkt ( ds) = e−tψ
k(λ), λ ∈ (0,∞), (3.5)
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(see [62, Theorems 3.7 and 1.4]). Furthermore, since the Laplace transform

Lµkt (λ) :=

∫
[0,∞)

e−λsµkt ( ds) (3.6)

is defined for all λ ∈ C≥0 and is obviously holomorphic on C>0, as well as continuous on
C≥0, (3.5) implies that

Lµkt (λ) = e−tψ
k(λ) for all λ ∈ C≥0. (3.7)

In particular, we have for every t ∈ [0,∞) for the Fourier transform µ̂kt of µkt

µ̂kt (λ) : =

∫
(0,∞)

eiλsµkt ( ds) = e−tψ
k(−iλ) = e−t

∫
(0,∞)(1−e

iλτ )Mk( dτ), λ ∈ R. (3.8)

By (3.2) the function R 3 λ 7→ |ψk(−iλ)| is of at most linear growth.
Now let us consider the C0-semigroup (Uk

t )t≥0 on H with infinitesimal generator
(Λk, D(Λk,H)) introduced in Section 2. First we characterize this generator through its
Fourier transform and as a corollary we prove that it coincides with ∂∗kt on an operator
core.

Proposition 3.1. The generator (Λk, D(Λk,H)) of (Uk
t )t>0 (on H), defined in Section 2,

is given as follows

D(Λk,H) = {u ∈ H | r 7→ |ψk(−ir)|û(r) ∈ L2(R;HC)},

(Λku)∧(r) = −ψk(−ir)û(r), r ∈ R,

where HC denotes the complexification of H and û denotes the Fourier transform of u
considered as a function from R to H , i.e. u := 0 on (−∞, 0) and

û(r) :=

∫
R
eirsu(s) ds, r ∈ R.

Proof. Below we consider each µkt (ds) as a measure on all of R, by defining

µkt (A) := µkt (A ∩ [0,∞)), A ∈ B(R).

Let D := {u ∈ H | r 7→ |ψk(−ir)|û(r) ∈ L2(R;HC)}. Then for u ∈ D, because
u ∗ µkt ∈ L2(R;H) and µ̂kt is bounded, we have

1

t
(Uk

t u− u)∧(r) =
1

t

(∫ ∞
0

Usu µ
k
t (ds)− u

)∧
(r)

=
1

t

(∫
R
u(· − s) µkt (ds)− u

)∧
(r)

=
1

t
(u ∗ µkt − u)∧(r)

=
1

t
û(r)

(
e−tψ

k(−ir) − 1
)
−−→
t→0
−ψk(−ir)û(r)
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for dr-a.e. r ∈ R. But since for all r ∈ R and t > 0,

1

t

∣∣∣e−tψk(−ir) − 1
∣∣∣ ≤ 2|ψk(−ir)|,

the last convergence also holds in L2(R;HC). Hence D ⊂ D(Λk,H) and

(Λku)∧(r) = −ψk(−ir)û(r), r ∈ R. (3.9)

Because µ̂kt is bounded, one similarly checks that

Uk
t D ⊆ D ∀t > 0, (3.10)

and that (Λk, D) is closed as an operator from H to H. Since the function R 3 r 7→
|ψk(−ir)| is at most of linear growth, D is dense in H. Hence (3.9) implies (see [57,
Theorem X.49]) thatD is an operator core of (Λk, D(Λk,H)), i.e. D is dense inD(Λk,H)

with respect to the graph norm given by Λk. Consequently,D = D(Λk,H) and Λk is given
by (3.9).

Proposition 3.2. D(Λk,H) ⊂ Fk and for all u ∈ D(Λk,H)

Λku = − d

dt
(k ∗ u). (3.11)

Proof. First let u ∈ D0 := D(Λk,H)∩V∩D(∂∗kt )∩L∞([0,∞);H). Then for T ∈ (0,∞)

‖(k ∗ u)(t)‖V ∗ ≤ ess sups∈[0,T ] ‖u(s)‖V ∗
∫ t

0

k(s) ds for dt-a.e. t ∈ [0, T ], (3.12)

and the same inequality holds with ‖ · ‖H replacing ‖ · ‖V ∗ .
Again we consider all appearing functions, originally only defined on [0,∞), as func-

tions on all of R by defining them to be equal to zero on R \ [0,∞). As in the proof
of Proposition 3.1, one can check that D0 is dense in H and also that Uk

t (D0) ⊂ D0.
Concerning the latter we note that all spaces in the intersection defining D0 are obvi-
ously invariant under Uk

t except for D(∂∗kt ). To see that this is also true for the latter,
let u ∈ D(∂∗kt ). Then Uk

t u = u ∗ µkt ∈ L1([0,∞);V ∗) and for T ∈ (0,∞) there exist
h ∈ L1([0, T ];V ∗) and v ∈ V ∗ such that for r ∈ [0, T ]

(k ∗ u)(r) = v +

∫ r

0

h(τ) dτ.
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But again by setting h ≡ 0 on (−∞, 0) and using Fubini’s theorem

(k ∗ Uk
t u)(r) = (k ∗ u ∗ µkt )(r)

= v +

∫ ∞
0

∫ r−s

0

h(τ) dτ µkt (ds)

= v +

∫ ∞
0

∫ r−s

−s
h(τ) dτ µkt (ds)

= v +

∫ ∞
0

∫ r

0

h(τ − s) dτ µkt (ds)

= v +

∫ r

0

(h ∗ µkt )(τ) dτ, r ∈ [0, T ].

Since h ∗ µkt ∈ L1([0, T ];V ∗), this implies that Uk
t u ∈ D(∂∗kt ). Again applying Theorem

X.49 from [57] we obtain thatD0 is an operator core of (Λk, D(Λk,H)). Hence it remains
to prove (3.11).

Let us start with calculating the Laplace transform L of the right hand side of (3.11)
for any u ∈ D(∂∗kt )∩L∞([0,∞);V ∗). So let λ ∈ (0,∞). Then integrating by parts, using
(3.12) and Fubini’s Theorem we obtain

L

(
d

dt
(k ∗ u)

)
(λ) =

∫ ∞
0

e−λt
d

dt
(k ∗ u)(t) dt

= lim
T→∞

(
e−λT (k ∗ u)(T ) + λ

∫ T

0

e−λt(k ∗ u)(t) dt

)
= λ

∫ ∞
0

e−λt
∫ t

0

k(t− s)u(s) ds dt

= λ

∫ ∞
0

∫ ∞
s

k(t− s)e−λt dt u(s) ds

=

∫ ∞
0

e−λsu(s) ds λ

∫ ∞
0

Mk((t,∞))e−λt dt

= λ

∫ ∞
0

∫
(t,∞)

Mk( ds)e−λt dtLu(λ)

=

∫
(0,∞)

∫ s

0

λe−λt dtMk(ds)Lu(λ)

= ψk(λ)Lu(λ),

where we used (3.1) in the fifth inequality and (3.3) in the last inequality.
For the left-hand side of (3.11) and u ∈ D0 we find for all h ∈ H , λ ∈ (0,∞), because
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of (3.7)〈∫ ∞
0

Λku(r)e−λr dr, h

〉
H

= lim
t→0

1

t

∫ ∞
0

〈
Uk
t u(r)− u(r), h

〉
H
e−λr dr

= lim
t→0

1

t

(
L(〈u, h〉H ∗ µkt )− L(〈u, h〉H)

)
(λ)

= lim
t→0

1

t
(e−tψ

k(λ) − 1)L(〈u, h〉H)(λ)

= −ψk(λ) 〈Lu(λ), h〉H .

Hence, L(Λk(u))(λ) = −ψk(λ)Lu(λ) and (3.11) follows for u ∈ D0.
Now let u ∈ D(Λk,H). Then, since D0 is an operator core for (Λk, D(Λk,H)), there

exist un ∈ D0, n ∈ N, such that as n→∞

un −→ u and Λkun −→ Λku in H.

Let T ∈ (0,∞). Then as n −→∞ by (2.10) and, since (3.11) holds for un,

k ∗ un −→ k ∗ u

and

− ∂

∂t
(k ∗ un) −→ Λku

inL1([0, T ];V ∗). Hence, the last assertion follows by the completeness ofW 1,1([0, T ];V ∗).

After these preparations we can prove the first part of Theorem 2.1.

Proof of Theorem 2.1(i). Let u ∈ Fk. Then there exist un ∈ V ∩D(Λk,H), n ∈ N, such
that as n→∞

un −→ u in V and − ∂∗kt un = Λkun −→ Λku in V∗, (3.13)

where we used Proposition 3.2. Let T ∈ (0,∞). By (2.10), k∗un −→ k∗u inLα([0, T ];V ),
hence in L1([0, T ];V ∗), as n→∞ and for p := min {2, α

α−1
} the latter part of (3.13) im-

plies that ∂∗kt un, n ∈ N, are bounded in Lp([0, T ];V ∗). Hence the Cesaro mean of a
subsequence of (∂∗kt un)n∈N converges strongly in Lp([0, T ];V ∗), hence in L1([0, T ];V ∗).
Therefore, by completeness k ∗ u ∈ W 1,1((0, T );V ∗) and

Λku = − d

dt
(k ∗ u) on [0, T ] dt-a.e.

The last part of the assertion then follows by [7, Theorem 1.19, pp.25].

To prove Theorem 2.1(ii) we need some preparations.



Strong dissipativity of generalized fractional derivatives and quasi-linear (S)PDE 17

Lemma 3.3. Let γ ∈ (0,∞). Then for all u ∈ H, t ≥ 0,∫ ∞
0

‖Uk
t u(s)‖2

He
−γs ds ≤ e−ψ

k(γ)t

∫ ∞
0

‖u(s)‖2
He
−γs ds.

Proof. Let u ∈ H, t ≥ 0. Then∫ ∞
0

‖Uk
t u(s)‖2

H e
−γs ds =

∫ ∞
0

‖(u ∗ µkt )(s)‖2
H e
−γs ds ≤ L(‖u‖2

H)(γ) e−tψ
k(γ),

where we used Jensen’s inequality and (3.7) in the last step.

Lemma 3.4. Let γ ∈ (0,∞) and u ∈ D(Λk,H). Then∫ ∞
0

〈Λku(s), u(s)〉He−γs ds ≤ −1

2
ψk(γ)

∫ ∞
0

‖u(s)‖2
He
−γs dt.

Proof. Since

Λku = lim
ε→0

1

ε
(Uk

ε u− u) in H, hence in L2
γ([0,∞);H),

we have by Lemma 3.3 and the Cauchy–Schwarz inequality∫ ∞
0

〈Λku(s), u(s)〉He−γs ds

= lim
ε→0

1

ε

[∫ ∞
0

〈Uk
ε u(s), u(s)〉He−γs ds−

∫ ∞
0

〈u(s), u(s)〉He−γs ds

]
≤ lim

ε→0

1

ε

[
e−

ε
2
ψk(γ) − 1

] ∫ ∞
0

‖u(s)‖2
He
−γs ds

= −1

2
ψk(γ)

∫ ∞
0

‖u(s)‖2
He
−γs ds.

Now we can prove the second part of Theorem 2.1.

Proof of Theorem 2.1(ii). Let u ∈ Fk. By definition of (Λk,Fk) there exist un ∈ D(Λk,H)∩
V such that as n −→∞

un −→ u in V and Λkun −→ Λku in V∗.

Hence by Lemma 3.4∫ ∞
0

V ∗〈Λku(s), u(s)〉V e−γs ds = lim
n→∞

∫ ∞
0

V ∗〈Λkun(s), un(s)〉V e−γs ds

≤ lim
n→∞

−1

2
ψk(γ)

∫ ∞
0

‖un(s)‖2
He
−γs ds

= −1

2
ψk(γ)

∫ ∞
0

‖u(s)‖2
He
−γs ds,

since un −→ u in V as n → ∞, implies that un −→ u in H, hence in L2
γ([0,∞);H) as

n→∞. Hence the assertion follows by Theorem 2.1(i).
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4 Proof of main existence and uniqueness result: the de-
terministic case

In this section we proof Theorem 2.2, so assume that (k) and (H1)–(H4) hold.
As in [41] the proof heavily relies on a general perturbation result of operators A of

the type as in Theorem 2.2, which we briefly recall now.
As in [64] we consider a generator Λ, with domain D(Λ,H), of a C0-contraction

semigroup of linear operators on H whose restrictions to V form a C0-semigroup of linear
operators on V. The generator of the latter is again Λ, but with domain D(Λ,V) := {u ∈
V ∩D(Λ,H) | Λu ∈ V}. Then D(Λ,V) is dense in V, hence so is D(Λ,H) ∩ V. By [64,
Lemma 2.3], Λ : D(Λ,H) ∩ V −→ V∗ is closable as an operator from V to V∗. Denoting
its closure by (Λ,F) we obtain that F is a Banach space with norm

‖u‖F := (‖u‖2
V + ‖Λu‖2

V∗)
1
2 , u ∈ F.

Now we can formulate the following perturbation result.

Theorem 4.1. Let conditions (H1)–(H4) hold. Assume that in (H2) we have C1 = 0. Then
for every f ∈ V∗ there exists u ∈ F such that Au− Λu = f .

This result is a generalization of [64, Proposition 3.2]. We replace the strong mono-
tonicity assumption in [64, Proposition 3.2] by the classical monotonicity, i.e. (H2) with
C1 = 0, and consider a reflexive Banach space V, while this space was assumed to be a
Hilbert space in [64]. A rather concise proof in this more general case was given in [41].
Since this result is crucial for Theorem 2.2 and for the convenience of the reader we in-
clude a more detailed proof in the Appendix of this paper. Now we are prepared to prove
the second main result of this paper.

Proof of Theorem 2.2(i). Existence:
Case 1: u0 = 0.
Consider the operator

Ã := A+ C1I,

where I : V −→ V ∗, I(u) := u, u ∈ V , and let Ã be defined as A was for A. Then we
can apply Theorem 4.1 with A replaced by Ã and Λ replaced by Λk = −∂∗kt with domain
Fk (see Theorem 2.1(i)). Hence for every g ∈ H(⊂ V∗) there exists ug ∈ Fk such that

∂∗kt ug + Aug + C1ug = g + f in V∗. (4.1)

Define: HT := L2([0, T ];H). Then HT ↪→ H by the map i(g) =

{
g on [0, T ]

0 on (T,∞)
.

Consider the map H ⊃ HT 3 g 7→ C1ug�[0,T ] ∈ HT , where for a function h : [0,∞) −→
H we denote its restriction to [0, T ] by h�[0,T ].
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By (H2) and Theorem 2.1(ii) we have for all γ ∈ (0,∞); g1, g2 ∈ HT

1

2
ψk(γ)

∫ T

0

‖C1ug1(s)− C1ug2(s)‖2
He
−γs ds

≤ C2
1

∫ ∞
0

V 〈ug1(s)− ug2(s), ∂∗kt (ug1 − ug2) + A(s, ug1(s))− A(s, ug2(s))

+ C1(ug1(s)− ug2(s))〉V ∗e−γs ds

= C1

∫ T

0

〈C1ug1(s)− C1ug2(s), g1(s)− g2(s)〉He
−γs ds.

Hence by the Cauchy–Schwarz inequality(∫ T

0

‖C1ug1(s)− C1ug2(s)‖2
He
−γs ds

) 1
2

≤ 2C1

ψk(γ)

(∫ T

0

‖g1(s)− g2(s)‖2
He
−γs ds

) 1
2

.

We recall that by assumption

2C1

ψk(γ)
< 1,

which can always be achieved for large enough γ by (2.13), if Mk((0,∞)) = ∞, i.e. if
lim
s→0

k(s) =∞. Hence by Banach’s fixed point theorem there exists g ∈ HT

C1ug = g dt-a.e. on [0, T ].

But then by (4.1)

∂∗kt ug(t) + A(t, ug(t)) = f(t) for dt-a.e. t ∈ [0, T ],

so (2.1) holds for u0 = 0. Furthermore by construction ug ∈ Fk. In particular, (2.14)
holds for u0 = 0.
Case 2: u0 ∈ V .
Let ϕ be as in the assertion of the Theorem. Set x := u0 and define Ax as A, but with

Ax(t, v) := A(t, v + xϕ(t)), t > 0, v ∈ V,

replacing A. Then by Case 1 there exist ux ∈ Fk such that

d

dt
(k ∗ ux(t)) + Ax(t, ux(t)) = f(t) for dt-a.e. t ∈ [0, T ].

Define u := ux + xϕ. Then u− xϕ(= ux) satisfies (2.14) and

∂∗kt (u(t)− x) + A(t, u(t)) = f(t) dt-a.e. on (0, T )

and (2.1) is solved.
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The last part of assertion (i) of Theorem 2.2 follows by the last part of Theorem 2.1(i).
Uniqueness: Let u1, u2 be two solutions of (2.1) on [0, T ] such that u1−ϕu0, u2−ϕu0 ∈
Fk with ϕ as in the assertion. Then u1 − u2 ∈ Fk and by Theorem 2.1(ii)

0 =

∫ ∞
0

V 〈u1(s)− u2(s), ∂∗kt (u1(s)− u2(s)) + A(s, u1(s))− A(s, u2(s)〉V ∗e−γs ds

≥
(

1

2
ψk(γ)− C1

)∫ ∞
0

‖u1(s)− u2(s)‖2
He
−γs ds

≥ 0,

since by assumption ψk(γ) > 2C1. Hence u1 = u2.

Proof of Theorem 2.2(ii). That under assumption (k̃) equation (2.1) can be rewritten as
(2.15) was already explained in Section 2 of this paper. The last part of the assertion is an
elementary fact about convolutions in Lebesgue Lp-spaces.

5 Proof of the stochastic case

The proof of Theorem 2.3 follows from Theorem 2.2 by a simple shift argument (cf. [41]).

Proof of Theorem 2.3. Let u(t) = X(t)−F (t), then u(t) satisfies the following equation

∂∗k1t (u(t)− x) + A(t, u(t) + F (t)) = 0, 0 < t < T. (5.1)

Define
Ã(t, u) = A(t, u+ F (t)), u ∈ V.

Since F ∈ V dt⊗P-a.e., it is easy to see that Ã still satisfies (H1)–(H4). Hence assertion
(i) follows by Theorem 2.2(i). Assertion (ii) is then proved analogously to Theorem
2.2(ii).

The (Ft)-adaptedness of the solution follows by the proofs of Theorem 4.1 and Lemma
A.3. The last two assertions are obvious.

6 Examples of Kernels

In this section we give some examples of kernels k which satisfy both condition (k) and
(k̃) needed to apply Theorems 2.1, 2.2 and 2.3 in Section 2.

Example 6.1 (Fractional Caputo derivative). Let 0 < β < 1 be given and define the
function k on [0,∞) by

k(t) := g1−β(t) =
t−β

Γ(1− β)
, t ∈ [0,∞).
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Then k is nonnegative, nonincreasing function on [0,∞) and we have limt→0 k(t) = ∞
and limt→∞ k(t) = 0. It is well known that ∂∗kt (f − f(0)) corresponds to the Caputo
derivative of f and the problem stated in (1.1) has been treated in [41]. The associated
Lévy measure is absolutely continuous with respect to the Lebesgue measure and is given
by

Mk
β (dt) =

β

Γ(1− β)
t−(1+β) dt. (6.1)

It is simple to verify that k satisfies (k) and the corresponding k̃ ∈ L1
loc([0,∞)) is given

by

k̃(t) =
tβ−1

Γ(β)
, t ∈ [0,∞).

Hence condition (k̃) is satisfied. The pair (k, k̃) is called Sonine kernels and (k̃∗k)(t) = 1,
t ∈ [0,∞) is known as Sonine condition, see [63] and [61] for a survey.

Example 6.2 (Truncated β-stable subordinator, cf. Example 2.1-(ii) in [19]). A process
S(t), t ≥ 0 is called truncated β-stable subordinator if it is driftless and its Lévy measure
is

Mk
δ (dx) :=

β

Γ(1− β)
x−(1+β)11(0,δ](x) dx, δ > 0.

The kernel k defined by

k(t) := Mk
δ ((t,∞)) =

β

Γ(1− β)
11(0,δ](t)

∫ δ

t

x−(1+β) dx =
11(0,δ](t)

Γ(1− β)
(t−β − δ−β)

induces the following generalized time-fractional derivative

∂∗kt (f − f(0))(t) =
1

Γ(1− β)

d

dt

∫ t

(t−δ)+

(
(t− s)−β − δ−β

)
(f(s)− f(0)) ds.

Here for a ∈ R, a+ := max{a, 0}. This is the generalized time-fractional derivative
whose value at time t depends only on the δ-range of the past of f in contrast to the usual
case which depends on the history of f on (0, t). Notice that limδ→0 k(t) = 1

Γ(1−β)
t−β . We

have limt→0 k(t) = ∞ and limt→∞ k(t) = 0. Hence, k satisfies condition (k), but also
(k̃), because Mk

δ is absolutely continuous with respect to the Lebesgue measure. Hence
the existence of the kernel k̃ follows from the theory of complete Bernstein functions, see
Theorem 6.2 in [62].

Example 6.3 (Distributed order derivative). Let gβ as in (1.4) and define the kernel k by

k(t) :=

∫ 1

0

gβ(t) dβ, t ≥ 0.
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The corresponding generalized time-fractional derivative is called distributed order deriva-
tive and it may be written as

∂∗kt (f − f(0))(t) =

∫ 1

0

∂t(k ∗ (f − f(0))(t) dβ.

The kernel k is a nonincreasing, nonnegative function on [0,∞) which belongs toL1
loc([0,∞)).

Moreover, limt→0 k(t) = ∞ and limt→∞ k(t) = 0. The associated nonnegative kernel k̃
such that k̃ ∗ k = 1 has the form

k̃(t) =

∫ ∞
0

e−st

1 + s
ds

and we have k̃ ∈ L1
loc([0,∞)), so condition (k̃) is satisfied.

Example 6.4 (Exponential weight). For any γ ≥ 0, λ > 0 and 0 < β < 1 define the
kernel k by

k(t) := g1−β(t)e−λt =
t−β

Γ(1− β)
e−λt.

The kernel k is nonnegative, nonincreasing and k ∈ L1
loc([0,∞)), hence k satisfies con-

dition (k). We have limt→0 k(t) =∞ and limt→∞ k(t) = 0. The associated nonnegative k̃
such that k̃ ∗ k = 1 is given by

k̃(t) = γβ +
β

Γ(1− β)

∫ ∞
t

e−γs

s1+β
ds, t ∈ [0,∞).

The fact that k̃ ∗k = 1 may be checked by applying the Laplace transform to both sides of
the equation. Moreover, a simple integration shows that k̃ ∈ L1

loc([0,∞)), hence condition
(k̃) is satisfied.

Example 6.5 (Gamma subordinator). Let a, b > 0 be given and k the kernel defined by

k(t) := aΓ(0, bt), t ∈ [0,∞),

where Γ(ν, x) :=
∫∞
x
tν−1e−t dt is the upper incomplete gamma function. It follows from

the properties of Γ(ν, x) that k is a locally integrable, nonnegative, nonincreasing func-
tion on [0,∞) and we have limt→0 k(t) = ∞ and limt→∞ k(t) = 0. Hence, k satisfies
condition (k). The kernel k is related to the gamma subordinator (see for example [9,
Ch. III]) through its Laplace transform, namely the process with Laplace exponent equal
to

λ

∫ ∞
0

e−λtk(t) dτ = a log

(
1 +

λ

b

)
= a

∫ ∞
0

(1− e−λt)t−1e−bt dt, λ > 0,

where the second equality stems from the Frullani integral. Hence, the Lévy measure is
Mk

a,b(dt) = at−1e−bt dt. The existence of a positive k̃ ∈ L1
loc([0,∞)) such that k̃∗k = 1 is
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a consequence of the fact that Mk
a,b is absolutely continuous with respect to the Lebesgue

measure and the theory of complete Bernstein functions, see Theorem 6.2 in [62]. Hence
condition (k̃) is satisfied.

Example 6.6 (Multi-term derivative). Let 0 < β < 1 and 0 < α < 1 be given. Define the
kernel k by

k(t) := g1−β(t) + g1−α(t), t > 0.

The kernel k is completely monotone, that is k ∈ C∞((0,∞)) and (−1)nk(n)(t) ≥ 0 for
all t > 0 and n ∈ N ∪ {0}. The corresponding generalized time-fractional derivative ∂∗kt
is called multi-term fractional derivative. We have limt→0 k(t) =∞ and limt→∞ k(t) = 0.
It follows from Example 6.1 that the Lévy measure Mk

β,α defining k is the sum of two Lévy
measures of the type (6.1). It follows from Theorem 5.5 and Corollary 5.6 of [30] that
there exists a nonnegative kernel k̃ ∈ L1

loc([0,∞)) such that k̃ ∗ k = 1 and its Laplace
transform is

Lk̃(λ) =
1

λα + λβ
.

Hence, the kernel k satisfies both conditions (k) and (k̃). This example may be generalized
to kernels k(t) :=

∑n
j=1 aj

t−βj

Γ(1−βj) with aj > 0 and 0 < β1 < . . . < βn < 1.

7 Applications to quasi-linear (S)PDE

In this section we apply Theorems 2.2 and 2.3 to (stochastic) generalized porous medium
equations, (stochastic) generalized p-Laplace equations, and (stochastic) generalized fast-
diffusion equations (cf. [8, 40]) with time-fractional derivative. Here for simplicity we
mainly concentrate on the deterministic case, the extension to the stochastic case is straight-
forward.

7.1 Generalized porous medium equations

We introduce the model as in [58]. Let (E,B,m) be a separable σ-finite measure space
and (L,D(L)) a negative definite self-adjoint linear operator on L2(m) having discrete
spectrum. Let

(0 <)λ1 ≤ λ2 ≤ · · ·

be all eigenvalues of −L including multiplicities with unit eigenfunctions {ei}i≥1. Let H
be the dual space of the D((−L)

1
2 ) with respect to L2(m); i.e. H is the completion of

L2(m) under the inner product

〈x, y〉 :=
∞∑
i=1

1

λi
m(xei)m(yei),
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where m(x) :=
∫
E
xdm for x ∈ L1(m). Let

Ψ,Φ : [0,∞)× R→ R

be measurable, and be continuous in the second variable. We consider the following gen-
eralized porous medium equation with generalized time-fractional derivative

∂∗kt (Xt − x0) = LΨ(t,Xt) + Φ(t,Xt). (7.1)

To verify conditions (H1), (H2), (H3) and (H4) for A(t, v) := LΨ(t, v) + Φ(t, v),

we assume that for a fixed constant r ≥ 1,

|Ψ(t, s)|+ |Φ(t, s)| ≤ c(1 + |s|r), s ∈ R, t ≥ 0,

−m
(
(Ψ(t, x)−Ψ(t, y))(x− y)

)
+ m

(
(Φ(t, x)− Φ(t, y))(−L)−1(x− y)

)
≤ K‖x− y‖2

H − δ‖x− y‖r+1
r+1, t ≥ 0,

(7.2)

hold for some constants c,K, δ > 0 and all x, y ∈ Lr+1(m), where ‖ · ‖r+1 is the norm in
L1+r(m). Obviously, the assumptions above are satisfied provided Ψ(t, s) = h(t)|s|r−1s

and Φ(t, s) = g(t)s, t ∈ [0, T ], s ∈ R, with 0 < inf h ≤ suph <∞ and ‖g‖∞ <∞.

Example 7.1 Let V = L1+r(m) and V ∗ be the dual space of V with respect to H . Then it
is easy to see that (7.2) implies that (H1), (H2), (H3) and (H4) hold for (see [58, page
137])

A(t, v) := LΨ(t, v) + Φ(t, v).

Therefore, Theorem 2.2 is applicable to the time-fractional generalized porous medium
equation (7.1) if k satisfies (k), (k̃) respectively.

Remark 7.1. (i) Let r > 1 and ∆ be the Dirichlet Laplacian on an open domainD ⊂ Rd.
Let L = ∆ if D is bounded and, in addition, r ≤ 2d

d+2
, or L = −(−∆)α for some constant

α ∈ (0, d
2
) ∩ (0, 1] if D = Rd (the definition of V and H should be revised in the latter

case, see [58]). Let
Φ(t, s) = cs, Ψ(t, s) = s|s|r−1,

for some constant c ∈ R (see [58, Example 3.4] for possible more general cases). Then
the assertions in Theorem 2.2 hold.

(ii) Similarly, we could apply Theorem 2.3 to investigate the time-fractional stochastic
generalized porous medium equation

∂∗k1t (Xt − x0) =
{
LΨ(t,Xt) + Φ(t,Xt)

}
dt+ ∂∗k2t

∫ t

0

B(s)dW (s), (7.3)

where W (s), s ≥ 0, is cylindrical Brownian motion on H and B : [0,∞) → LHS(H) is
measurable and locally bounded.
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7.2 Stochastic generalized p-Laplace equations

Let D ⊂ Rd be an open bounded domain, m be the normalized volume measure on D,
and p ∈ [2,∞). Let H1,p

0 (D) be the closure of C∞0 (D) with respect to the norm

‖f‖1,p := ‖f‖p + ‖∇f‖p,

where ‖ · ‖p is the norm in Lp(m). Let H = L2(m) and V = H1,p
0 (D). By the Poincaré

inequality, there exists a constant C > 0 such that ‖f‖1,p ≤ C‖∇f‖p. Now we consider
the following time-fractional generalized p-Laplace equations

∂∗kt (Xt − x0) = div (Φ(t,∇Xt)) + f(t,Xt), (7.4)

where
Φ : [0,∞)× Rd → Rd; f : [0,∞)× R→ R

are measurable, and continuous in the second variable.
To verify conditions (H1), (H2), (H3) and (H4) for A(t, v) := div

(
Φ(t,∇v)

)
+

f(t, v), we assume that for a fixed p ∈ [2,∞),

|Φ(t, s)| ≤ K(1 + |s|p−1), s ∈ Rd, t ≥ 0,

m
(
(Φ(t, x)− Φ(t, y))(x− y)

)
≥ δ‖x− y‖pp, t ≥ 0,

m
(
(f(t, x)− f(t, y))(x− y)

)
≤ K‖x− y‖2

2, t ≥ 0,

|f(t, x)| ≤ K(1 + |x|p−1), t ≥ 0,

(7.5)

hold for some constants K, δ > 0 and all x, y ∈ Lp(m).

Example 7.2 Suppose that (7.5) holds, then (H1), (H2), (H3) and (H4) hold for (see
e.g. [28, Example 4.1])

A(t, v) := div (Φ(t,∇v)) + f(t, v).

Therefore, Theorem 2.2 is applicable to the time-fractional generalized p-Laplace equa-
tions (7.4), if k satisfies (k), (k̃) respectively.

Remark 7.2. (i) Obviously, the assumptions above are satisfied provided Φ(t, s) = h(t)|s|p−2s

and f(t, s) = f1(t)s − f2(t)|s|p−2s, t ∈ [0, T ], s ∈ R, with 0 < inf h ≤ suph < ∞ and
‖fi‖∞ <∞, which is the classical p-Laplace equation with polynomial type perturbation.

(ii) Similarly, we could apply Theorem 2.3 to the following time-fractional stochastic
generalized p-Laplace equations

∂∗k1t (Xt − x0) = (div (Φ(t,∇Xt)) + f(t,Xt)) dt+ ∂∗k2t

∫ t

0

B(s)dW (s), (7.6)

where W (s), s ≥ 0, is cylindrical Brownian motion on H , B : [0,∞) → LHS(H) is
measurable and locally bounded.
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7.3 Stochastic generalized fast-diffusion equations

Let (E,B,m), (L,D(L)), H (B and W (s), s ≥ 0,) be as in Example 7.1. Suppose that
r ∈ (0, 1) and Ψ : [0,∞)× R→ R is measurable, continuous in the second variable and
such that for some constant δ > 0,

(
Ψ(t, s1)−Ψ(t, s2)

)
(s1 − s2) ≥ δ|s1 − s2|2

(|s1| ∨ |s2|)1−r , s1, s2 ∈ R, t ≥ 0, (7.7)

sΨ(t, s) ≥ δ|s|r+1, sup
t∈[0,T ],s≥0

|Ψ(t, s)|
1 + |s|r

<∞, s ∈ R, t ≥ 0, (7.8)

where |s1−s2|2
(|s1|∨|s2|)1−r := 0 for s1 = s2 = 0.

We consider the following time-fractional generalized fast-diffusion equations

∂∗kt (X(t)− x0) = LΨ(t,X(t)) + h(t)X(t), (7.9)

where h ∈ C([0,∞)).
Let V = Lr+1(m) ∩ H with ‖v‖V := ‖v‖1+r + ‖v‖H . Then it is easy to show that

(H1)-(H4) hold for (see [58, Theorem 3.9] for a more general result)

A(t, v) := LΨ(t, v) + h(t)v, v ∈ V.

Example 7.3 Suppose that (7.7) and (7.8) hold, then the assertions in Theorem 2.2 hold
for (7.9), if k satisfies (k), (k̃) respectively.

Remark 7.3. (i) By the mean-valued theorem, one has for r ∈ (0, 1)

(s1 − s2)(s1|s1|r−1 − s2|s2|r−1) ≥ r|s1 − s2|2(|s1| ∨ |s2|)r−1, s1, s2 ∈ R.

So, a simple example of Ψ, so that (7.7) and (7.8) hold, is Ψ(t, s) = c s|s|r−1 for some
constant c > 0. This corresponds to the classical fast-diffusion equation.

(ii) Similar results also hold for the corresponding time-fractional stochastic equations

∂∗k1t (X(t)− x0) =
{
LΨ(t,X(t)) + h(t)X(t)

}
dt+ ∂∗k2t

∫ t

0

B(s)dW (s). (7.10)

A Appendix A. Proof of Theorem 4.1

For the proof of Theorem 4.1 we need some preparations. We recall the definition of
a pseudo-monotone operator, which is a very useful generalization of monotone operator
and was first introduced by Brézis in [10]. We use the notation “⇀” for weak convergence
in Banach spaces.
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Definition A.1. An operator M : V −→ V∗ is called pseudo-monotone if vn ⇀ v in V as
n→∞ and

lim sup
n→∞

V∗〈M(vn), vn − v〉V ≤ 0

implies for all u ∈ V

V∗〈M(v), v − u〉V ≤ lim inf
n→∞ V∗〈M(vn), vn − u〉V.

Remark A.2. (i) Browder introduced a slightly different definition of a pseudo-monotone
operator in [11]: An operator M : V −→ V∗ is called pseudo-monotone if vn ⇀ v in
V as n→∞ and

lim sup
n→∞

V∗〈M(vn), vn − v〉V ≤ 0

implies

M(vn) ⇀M(v) and lim
n→∞ V∗〈M(vn), vn〉V = V∗〈M(v), v〉V.

In particular, if M is bounded on bounded sets, then these two definitions are equiv-
alent, we refer to [39, 40].

(ii) We recall that as mentioned before our operator A : V −→ V∗ in (2.4) is coercive
and bounded as well as monotone if C1 = 0 in (H2), hence in particular pseudo-
monotone. If we add a continuous monotone linear operator Λ̃ : V −→ H to it, it is
easy to see that also A + Λ̃ is pseudo-monotone.

(iii) Despite the fact that, of course, (−Λ, D(Λ,H)) is maximal monotone as an operator
on H, the map −Λ: F ⊂ V → V∗ (or −Λk : F ⊂ V → V∗), may be not maximal
monotone. Hence we cannot apply [59] to conclude that A − Λ: F ⊂ V → V∗ is
maximal monotone. Otherwise, because by Theorem 2.1(ii) A − Λ is coercive, the
assertion of Theorem 4.1 would follow easily.

Lemma A.3. If M : V −→ V∗ is pseudo-monotone, bounded on bounded sets and coer-
cive, then M is surjective, i.e. for any f ∈ V∗, the equation Mu = f has a solution.

Proof. This is a classical result due to Brézis. For the proof we refer to [10] or [69,
Theorem 27.A].

Proof of Theorem 4.1. Step 1: Let α > 0 and consider the Yosida approximation Λα : V −→
V∗ defined by

V∗〈Λαu, ·〉V := αV∗〈αVαu− u, ·〉V,

where Vα = (α− Λ)−1, α > 0, is the resolvent of (Λ, D(Λ,H)) (on H).
We note that since αVα is a contraction on H, we have

V ∗〈Λαu, u〉V = 〈Λαu, u〉H ≥ 0 for all u ∈ V,
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hence by Remark A.2(ii) it follows that A−Λα is pseudo-monotone, coercive and bounded
on bounded sets. Therefore, by Lemma A.3 there exists uα ∈ V such that Auα−Λαuα =

f .

Step 2: Note that

V∗〈Auα, uα〉V ≤ V∗〈Auα − Λαuα, uα〉V = V∗〈f, uα〉V ≤ ‖f‖V∗‖uα‖V.

Hence, by the coercivity assumption (H3) we obtain that supα>0 ‖uα‖V <∞, and hence

sup
α>0
‖Auα‖V∗ <∞

by (H4).
Since for any v ∈ V

V∗〈Λαuα, v〉V = −V∗〈Auα − Λαuα, v〉V + V∗〈Auα, v〉V
= −V∗〈f, v〉V + V∗〈Auα, v〉V
≤ (‖f‖V∗ + ‖Auα‖V∗)‖v‖V,

we have supα>0 ‖Λαuα‖V∗ <∞.
By the apriori estimates above we know there exists a subsequence αn →∞ such that

uαn ⇀ u in V;

Auαn ⇀ h in V∗;

Λαnuαn ⇀ g in V∗.

So, it is easy to see that h− g = f .
By the strong continuity of the dual resolvent (V̂α)α>ω in V∗, we have for all v ∈ V∗

lim
n→∞ V∗〈v, αnVαnuαn〉V = lim

n→∞ V∗〈αnV̂αnv, uαn〉V = V∗〈v, u〉V,

and, therefore,
αnVαnuαn ⇀ u in V.

Since ΛαnVαnuαn = Λαnuαn , we also have

ΛαnVαnuαn ⇀ g in V∗.

Since Λ is linear and (Λ,F) is closed as an operator from V to V∗, this implies that u ∈ F

and Λu = g.

Step 3: Now we only need to show Au = h. Since uαn ⇀ u in V and for all v ∈ D(Λ,V)

lim sup
n→∞

V∗〈Λαnuαn , uαn〉V = lim sup
n→∞

(V∗〈Λαnuαn , uαn − v〉V + V∗〈Λαnuαn , v〉V)

≤ lim sup
n→∞

V∗〈Λαnv, uαn − v〉V + V∗〈Λu, v〉V

= V∗〈Λv, u− v〉V + V∗〈Λu, v〉V,
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where the inequality follows from V∗〈Λαn(uαn − u), uαn − u〉V ≤ 0, since each Λαn is a
contraction on H. Since D(Λ,V) is dense in (F, ‖ · ‖F), the above inequality extends to
all v ∈ F. In particular, we may take v = u, to obtain that

lim sup
n→∞

V∗〈Λαnuαn , uαn〉V ≤ V∗〈Λu, u〉V.

Therefore,

lim sup
n→∞

V∗〈Auαn , uαn − u〉V = lim sup
n→∞

V∗〈Λαnuαn + f, uαn − u〉V

= lim sup
n→∞

V∗〈Λαnuαn , uαn − u〉V

≤ V∗〈Λu, u− u〉V = 0.

So, we have
lim sup
n→∞

V∗〈Auαn , uαn〉V ≤ V∗〈h, u〉V.

Hence, by the pseudo-monotonicity, we have for any w ∈ V

V∗〈Au, u− w〉V ≤ lim inf
n→∞ V∗〈Auαn , uαn − w〉V

≤ lim inf
n→∞ V∗〈Auαn , uαn〉V − V∗〈h,w〉V

≤ V∗〈h, u− w〉V,

which implies Au = h since w ∈ V was arbitrary.
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