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Abstract

We analyze the optimal timing for the introduction of a new product in a duopoly.

Two incumbent firms are active on a homogeneous product market and one of these

firms has an option to additionally introduce a new product, thereby incurring costs

of product adoption. We assume that the innovator can commit on the time of

product introduction and numerically derive the optimal introduction time as well

as the associated Markov-perfect equilibria for investment in production capacities.

We find that depending on the initial capacities for the established product and the

size of the adoption costs, three scenarios are possible for the innovator: innovating

immediately, delaying introduction, and abstaining from product introduction. In

case of delayed introduction, the innovator strategically reduces capacities on the

established market prior to product introduction, whereas the dynamics of the non-

innovator’s capacity is ambiguous. Furthermore, in this case, the firm commits to

a market introduction time such that at the time of market introduction it has

incentives to further delay the product adoption.
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1 Introduction

Technological change is a crucial driver of industrial dynamics. Improved versions of

products appear regularly. Furthermore, product innovations lead to differentiated prod-

ucts and new submarkets arise. According to an empirical investigation by Chandy and

Tellis (2000), most of the product innovations has been achieved by established incum-

bents. Typical examples include Asus which has been active on the notebook market

and has introduced netbooks in 2007 or Apple’s introduction of the iPad in 2010 which

generated a huge submarket for tablet computers. For a firm competing with others

on a homogeneous market, a product innovation can be very valuable. Given that a

product innovation has been made, the innovator has to decide whether to introduce

a new product immediately, to delay the product introduction strategically, or not to

introduce at all1. Wang and Hui (2012) provide examples where the market introduction

of products has been delayed, e.g. DVD players and MP3-related products which could

have been introduced earlier.

To analyze the question how an incumbent should optimally choose its market in-

troduction strategy we consider two firms competing on an established homogeneous

market, and assume that one of the firms has the option to introduce a new product,

whereas the rival has to stick with producing the established product. Moreover, we

assume that the new product is horizontally and vertically differentiated, in particular

that it has a higher quality than the established product. Both firms are restricted by

production capacities which they adjust over time. The setting after the introduction of

the new product has been analyzed in Dawid et al. (2010). They find that not only the

innovator benefits but the non-innovator is better off as well in most cases, in particular

if the products are not too differentiated. The innovator strongly reduces capacities on

the established market in order to increase demand for the established product.

Adjustments of capacities of established products prior to a product innovation has

been studied in a stochastic setting in Dawid et al. (2017b) who consider a duopoly

where both firms can also invest in R&D in order to increase the probability of product

innovation (see Dawid et al. (2013) for an exogenous hazard rate). In contrast to those

approaches, we assume that the innovation has been made already and the time of

product introduction is an additional choice variable and hence is not directly linked to

1Several studies (Mansfield (1977), Åstebro (2003) and Åstebro and Simons (2003)) have found out

that a large fraction of product innovations is not brought to the market.
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the time of the successful completion of an R&D project. The separation of innovation

and introduction has been employed by Dawid et al. (2009), however only in a three-

stage model where continuous capacity adjustments are not taken into account and the

timing of product introduction could not be addressed.

The game we are considering is a multi-mode differential game where one of the firms

can induce a regime switch (in our context adding a second differentiated product to its

product range) at any time. This is in contrast to models where a regime switch occurs

when the state variable hits some critical threshold (see e.g. Reddy et al. (2015) and

Masoudi and Zaccour (2013)) or is governed by a stochastic process as in Dawid et al.

(2013, 2017b)).

In Gezer (2019) a related setting to that in this paper has been analyzed, however

abstracting from competition. An incumbent monopolist has the option to introduce an

new (substitute) product in addition to the one already offered. It is shown that the firm

might delay product introduction if it incurs adoption costs. By delaying the product

introduction, the monopolist benefits from discounted adoption costs, which has to be

paid as a lump sum at the time of product introduction. Furthermore, the monopolist

can increase the marginal value of the new product by decreasing established capacities.

Similar effects are also present in the duopoly considered in this paper, however strategic

interaction adds substantial new effects.

Optimal timing of innovation has been analyzed extensively in the optimal stopping

and real options literature (see e.g. Dutta et al. (1995), Hoppe and Lehmann-Grube

(2005) and Dixit and Pindyck (1994)). Recent contributions consider for stochastic

demand, both, optimal timing and capacity choice simultaneously (see e.g. Huberts

et al. (2019) and Huisman and Kort (2015)). The latter find in a setting with two

firms who have the option to enter a new market that firms invest earlier compared

to the monopoly setting. In particular, the first investor overinvests in order to delay

market entry of the second investor. The innovation of the present paper relative to this

literature is that it considers the dynamic adjustment of capacities before and after the

innovation, whereas mostly one-time investments have been treated in the real options

literature.

Optimal timing has been considered only in a few differential game models. Yeung

(2000) derives feedback Nash equilibria for games with endogenous time horizon by

restricting terminal values for state variables. Recently, Gromov and Gromova (2017)
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formalize the class of hybrid differential games and characterize a switching manifold

in the time-state space which is determined by a switching condition. They argue that

deriving feedback Nash equilibria for state-dependent switching is complicated and resort

to open-loop Nash equilibria, which in certain games, parametrized by initial conditions

yields feedback Nash equilibria.

In terms of timing, the most related contribution is Long et al. (2017) where in a differ-

ential game model with multiple regimes, the concept of piecewise-closed loop Nash equi-

libria (PCNE) is introduced. They derive necessary conditions for the optimal switching

time in a two player setting, where both players can induce a change of the regime of the

game. The timing decision is given implicitly by the state variable arriving at a certain

state which is derived by optimality conditions. However, in their setting, it is assumed

that firms commit to their switching time in the sense, that they would not alter that

time even if the other firm would deviate from its equilibrium control path. Hence, the

considered equilibrium is not fully Markov perfect with respect to the timing decision.

In our approach, we consider a case where the innovator can fully commit to its prod-

uct introduction time. Hence, the competitor cannot influence the timing of the product

introduction. An equilibrium is given if the choice of the product introduction time, T ,

maximizes the value of the game for the innovator while given this T , the investment

strategies played by both players constitute a Markov-perfect Nash equilibrium in the

classical sense. Note that the timing decision is made in the beginning of the game for

given initial capacities and hence it is an open-loop strategy whereas the continuous

control variables constitute a Markov perfect equilibrium using closed-loop strategies.

Characterizing a fully closed-loop equilibrium in which the introduction of the new prod-

uct is triggered if the state variable hits a switching manifold (to be optimally determined

by the innovator) is technically challenging and might lead to non-existence of equilibria

(see Long et al. (2017) for details).

From an economic perspective, the commitment to the product introduction time

might be due to a preannouncement. There is a huge literature on preannouncements

considering its effects on various interest groups such as consumers, competitors and

others. Preannouncements are made for various purposes (cf. Lilly and Walters (1997)).

They are used e.g. for building interest for the new product before the market launch

(Bao et al. (2005)), in order to stimulate consumers to delay purchases, in particular

to wait for a better product (Su and Rao (2010) or to deter entry of potential entrants
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or to induce a competitor to adjust capacities or to reposition (see Farrell and Saloner

(1986) and Heil and Robertson (1991)).

We use dynamic programming for solving for the optimal capacity investment strate-

gies and derive an optimality condition for the optimal timing which depends on the

time-derivative of the corresponding value function at the outset of the game. In that

respect our game might be interpreted as a two stage game, where in the first stage

only the innovator decides on the introduction time and in the second stage both firms

simultaneously choose their Markovian capacity investment strategies and apply them

either starting with only the established product or with both products in case that the

innovator introduces immediately.

We find that whenever it is optimal to delay the product introduction, the optimal

introduction time is increasing in adoption costs. Furthermore, we find that the optimal

introduction time increases in both initial capacities, i.e. the stronger the innovator or

the non-innovator on the established market, the later the product introduction. The

latter is in accordance with results of Dawid et al. (2017b) where R&D investments are

negatively affected by both firms’ capacities.

Additionally, we find that in a duopoly, the innovator introduces the product less often

compared to a monopoly scenario and, in case of product introduction she introduces

earlier compared to the monopoly. Thus, this paper contributes to the debate initiated

by Schumpeter and Arrow in the sense that we show that market concentration facilitates

product innovation but slows down the actual introduction of the new product.

In section 2, we provide the model and in section 3, we derive a general sufficient con-

dition for delaying the product introduction. Furthermore, we derive general necessary

conditions for optimal timing which has to hold at the outset of the game. In Section 4

we discuss the different dynamic patterns that can arise in equilibrium using numerical

methods. In Section 5 we give some concluding remarks.

2 Model

We consider a duopoly where both firms, denoted by firm A and B, produce a homoge-

neous established product, denoted as product 1. Due to product innovation, firm A has

the option to introduce a horizontally and vertically differentiated substitute product

with higher quality, denoted as product 2. We call this firm the innovator whereas the
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other firm, firm B is called the non-innovator. The innovator incurs lumpy costs F at

the time of introduction.

Both firms need to build and maintain production capacities, denoted by Kif , i =

1, 2, f = A,B, for every product they are offering. For simplicity, we assume that the

innovator can only start to invest in the capacity of the new product after introduction,

i.e. there are no capacities at the time of introduction for the new product, yet. In

line with large parts of the literature (see e.g. Dockner et al. (2000); Huisman and Kort

(2015)), it is assumed that capacities are always fully used. Production costs for given

capacities are normalized to zero. There is no inventory, i.e. production equals sales.

Before product introduction, i.e. for all t ≤ T , the linear inverse demand function for

the established product is given by

pm1
1 (K1A(t),K1B(t)) = 1−K1A(t)−K1B(t), (1)

whereas after product introduction, i.e. for all t ≥ T , the inverse demand system is given

by

pm2
1 (K1A(t),K1B(t),K2A(t)) = 1−

(
K1A(t) +K1B(t)

)
− ηK2A(t), (2)

and

pm2
2 (K1A(t),K1B(t),K2A(t)) = 1 + θ −K2A(t)− η

(
K1A(t) +K1B(t)

)
, (3)

where η with 0 < η < 1 measures the degree of horizontal and θ > 0, the degree of

vertical differentiation of the strategic substitutes.

There are two modes in the game:

• mode 1 (m1): The new product has been developed by the innovator and is ready

for market introduction which is common knowledge. However, only the estab-

lished product is sold.

• mode 2 (m2): The new product has been introduced to the market. Both products

are sold.

Capacity investment is costly with quadratic costs

C1(I1f (t)) =
γ1
2
I21f (t), f = A,B, (4)

and

C2(I2A(t)) =
γ2
2
I22A(t). (5)
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The capacity dynamics in m1 are

K̇1f = I1f − δK1f , f = A,B, (6)

for initial capacities

K1f (0) = Kini
1f , f = A,B, (7)

where δ > 0 measures the depreciation rate of the capacities. Inm2, there is an additional

state for the capacity of the new product which evolves in the same way according to

K̇2A = I2A − δK2A, (8)

K2A(t) = 0 ∀t ≤ T. (9)

As in Dawid et al. (2010), we allow the firms to intentionally scrap capacities (i.e.

investments might be negative) while capacities have to remain non-negative, i.e. K1f ≥

0 ∀ t, f = A,B, and K2A ≥ 0 ∀ t.

The innovator wants to determine the optimal time of product introduction T , i.e. the

time of transition from m1 to m2, and the optimal strategies for investment in capacities

before and after product introduction, whereas the non-innovator only determines the

optimal strategy for investing in her capacity for the established product. The discounted

stream of profits of the innovator is given by

JA =

∫ T

0
e−rt

(
pm1
1 (·)K1A − C1(I1A)

)
dt

+

∫ ∞
T

e−rt
(
pm2
1 (·)K1A + p2K2A − C1(I1A)− C2(I2A)

)
dt− e−rTF,

(10)

which is maximized with respect to T , I1A and I2A. For the non-innovator, it is given

by

JB =

∫ T

0
e−rt

(
pm1
1 (·)K1B − C1(I1B)

)
dt+

∫ ∞
T

e−rt
(
pm2
1 (·)K1B − C1(I1B)

)
dt, (11)

where the control variable of firm B is I1B.

3 Equilibrium Strategies

In this section, we will derive some sufficient and necessary conditions for the optimal

timing of the product introduction. It should be noted that those conditions hold gener-

ally for models where two firms’ controls affect the dynamics of a continuously evolving

state variable and one of the firms can induce a regime switch.
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(a) (b)

Figure 1: Value functions of m2 for K2A = 0. Parameters: r = 0.04, δ = 0.2, η =

0.5, θ = 0.1, γ = 0.1 .

For the sake of brevity, denote the capacity pair (K1A,K1B) by K. Let

φif (K,K2A, t,m), f = A, i = 1, 2 and f = B, i = 1

be the Markovian investment strategies of both firms in mode m and T = τ the timing

strategy of the innovator. Then, a strategy vector of the innovator is a pair ψA =

((φ1A, φ2A), τ) whereas the strategy of the non-innovator is given by ψB = φ1B. A

strategy profile (ψA, ψB) is an equilibrium if given τ , (φ1A, φ1B) constitutes a Markov

perfect equilibrium and τ maximizes the objective functional of the innovator.

In the case that the innovator introduces the improved product at some finite time

T , there will be a structural change of the model. Denote by V opt
f (K,K2A, t,m) the

value function of firm f in mode m where the switching time from m1 to m2 is selected

optimally by the innovator. Furthermore, denote by V m1
f (K) and V m2

f (K,K2A), f =

A,B, the value functions of the corresponding infinite horizon games where the mode

is fixed and hence does not change. This immediately gives V opt
f (K(t),K2A(t), t,m2) =

V m2
f (K(t),K2A(t)) for all t and V opt

f (K(T ),K2A(T ), T,m1) = V m2
f (K(T ),K2A(T ))−F ,

f = A,B for the switching time T since in m2, the mode does not change anymore.

The infinite horizon games are time-autonomous, and therefore we consider stationary

strategies. Hence the value functions of the infinite horizon games with fixed mode do

not explicitly depend on time. The subproblem of m2 is of linear-quadratic type which

can be solved easily by the dynamic programming approach. Due to the linear quadratic

structure of the game, the value functions have the following form
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V m2
f =Cm2

f +Dm2
f K1A + Em2

f K2
1A + Fm2

f K1B +Gm2
f K2

1B +Hm2
f K2A + Jm2

f K2
2A

+ Lm2
f K1AK1B +Mm2

f K1AK2A +Nm2
f K1BK2A, f = A,B.

(12)

Using this functional form, the HJB-equations can be reduced to a set of algebraic

equations which has to be satisfied by the coefficients of the quadratic value functions.

Coefficients can be found by standard numerical methods for a given parameter setting

(cf. Dawid et al. (2010) for a similar model with slightly different inverse demand

functions). Figure 1 illustrates the shape of the value functions in m2. By regarding the

value of the subproblem (minus adoption costs) as the salvage value of the finite time

horizon problem in mode m1, i.e.

S(K1A(T ),K1B(T )) = V m2
A (K1A(T ),K1B(T ), 0)− F , (13)

we can write the optimization problems of both firms in m1 as

max
T,I1A

∫ T

0
e−rt

(
p1K1A − C1(I1A)

)
dt

+e−rT
(
V m2
A

(
K1A(T ),K1B(T ), 0

)
− F

)
,

(14)

and

max
I1B

∫ T

0
e−rt

(
p1K1B − C1(I1B)

)
dt+ e−rTV m2

B

(
K1A(T ),K1B(T ), 0

)
. (15)

If an infinite time horizon is optimal, then the salvage value disappears and the value

of the game is simply given by V m1
f (·) for f = A,B and there is a unique stable steady

state (see Jun and Vives (2004)).

As discussed above, we assume that the innovator announces the date of product

introduction and has commitment power such that he cannot deviate from the announced

date even though ex post it would be better to do so. Thus, the non-innovator takes T as

given by the preannouncement and chooses his investment strategy in order to maximize

the value of the game. Technically speaking, we employ Markov (feedback) strategies

for the investment in capacities and open-loop strategies for the introduction time T .

Note that for any fixed T , the game in m1 is still of linear quadratic structure. Since

the problem in m1 has a finite time horizon the coefficients in the value function depend

on time and from the HJB-equations a set of Riccati equations for those coefficients is

obtained. We solve this system using standard numerical solvers. The corresponding

HJB-equations to be fulfilled are given in Appendix B. Denote the value function of the
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game starting in m1 and switching to m2 at a fixed T by Vf (K, t;T ), f = A,B, and the

corresponding profile of Markovian strategies in equilibrium by φ1f (K, t;T ), f = A,B.

Since the game is time-autonomous, i.e. t appears explicitly only in the discounting

term e−rt, we can consider equilibrium strategies which depend only on the remaining

time till T . This then also hold for the value function and we have Vf (K, t;T ) =

Vf (K, 0;T − t), f = A,B ∀ K and t ≤ T (cf. Caulkins et al. (2015)).

In particular, we have φ1f (K,T ;T ) = φ1f (K, 0; 0) and for finite T , we denote the right

hand side of the HJB-equation of firm A (equation (40) in Appendix B) at the switching

time by2

H(K) = pm1
1 (K)K1A − C(φ1A(K, 0; 0)) + V m2

A,K1A
(K, 0)(φ1A(K, 0; 0)− δK1A)

+ V m2
A,K1B

(K, 0)(φ1B(K, 0; 0)− δK1B).
(16)

Note that the optimal strategies φ1A and φ1B stem from m1 whereas derivatives of the

value function of m2 are considered. We assume that V (K, t;T ) is sufficiently smooth,

i.e. let V (K, t;T ) be continuously differentiable in K and t for all T . Then, the following

lemma gives a sufficient condition for delaying the product introduction.

Lemma 1. If for the initial capacities (K1A(0),K1B(0)) = Kini the inequality

H(Kini) > r(V m2
A (Kini, 0)− F ) (17)

holds, then the optimal time of product introduction T ∗ is positive, possibly infinite.

Proof. Consider the value for the innovator to stay for the duration of ε in m1 and

afterwards to switch to m2 under the equilibrium strategy φ = (φ1A, φ1B):

VA(K(0), 0; ε) =

∫ ε

0
e−rsFm1

A (K(s), φ(K(s), s; ε)ds+ e−rε(V m2
A (K(ε), 0)− F ). (18)

where Fm1
A (·) is the instantaneous profit function of the innovator in m1. For a finite time

horizon, since we consider non-stationary strategies, altering the terminal time would

yield different investments in m1 and hence different values for the terminal capacities.

Thus, for the sake of clarity, here we denote the capacity at t for terminal time T by

K1f (t, T ), f = A,B. K1A(ε, ε) can then be derived via the initial value K1A(0, ε) and

the investments from 0 until ε:

K1A(ε, ε) = K1A(0, ε) +

∫ ε

0
(φ1A(K(τ, ε), τ ; ε)− δK1A(τ, ε))dτ. (19)

2Actually, H(K) is the Hamiltonian where the co-state variable is replaced by the state derivatives

of the scrap value (cf. Pontryagin’s maximum principle with finite time horizon e.g. in Dockner et al.

(2000)).
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Its derivative with respect to ε is then given by

∂K1A(ε, ε)

∂t
+
∂K1A(ε, ε)

∂T
(20)

= φ1A(K(·), τ ; ε)− δK1A(·) +

∫ ε

0

∂φ1A(K(τ, ε), τ, ε)− δK1A(τ, ε)

∂T
dτ. (21)

In equation (18), subtracting VA(K(0), 0; 0) on both sides, dividing by ε and considering

the limit ε→ 0 yields

∂VA(K, 0, 0)

∂T
= pm1

1 (K)K1A(0, 0)− C(φ1A(K, 0; 0))

+ V m2
A,K1A

(K, 0)

(
K̇1A(0, 0) +

∂K1A(0, 0)

∂T

)
+ V m2

A,K1B
(K, 0)

(
K̇1B(0, 0) +

∂K1B(0, 0)

∂T

)
− r

(
V m2
A (K1A(0, 0),K1B(0, 0), 0)− F

)
(22)

where no time derivatives of V m2
A appear since we consider stationary strategies in m2.

Furthermore,
∂K1f (0, 0)

∂T
= 0, f = A,B (23)

and using inequality (17) we obtain

∂VA(K, 0, 0)

∂T
> 0, (24)

which proves that delaying the product introduction marginally is better than introduc-

ing immediately.

It follows from Lemma 1 that (17) being violated is a necessary condition for immediate

product introduction. It should be noted that it is, however, not possible to derive a

(local) sufficient condition for immediate introduction since marginally being worse-off

does not necessarily imply that immediate introduction is optimal. For some T > 0, the

corresponding value might still outweigh immediate introduction’s value.

From optimal control theory, it is known that for H(Kini) > r(V m2
A (Kini, 0)−F ), the

innovator prefers not introducing the product immediately but introducing whenever

H = r(V m2
A − F ) holds. Here, H = r(V m2

A − F ) is satisfied on a switching line (see

Appendix A). In an optimal control setting, the firm exerts control such that the state

arrives at the switching line and the switch occurs. However, in a game, the other player

can influence the time the switching line is reached because it controls the dynamics of

its own capacity. In an equilibrium where the strategy determining when to introduce
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the new product is of feedback type, e.g. Markovian, this gives rise to intricate strategic

effect to be considered. Here we assume however that firm A commits at t = 0 to the

time of product introduction (which might be infinity if the firm decides not to introduce

the product at all) rather than on a switching line in the state space and therefore these

issues do not arise. Also, by choosing T , firm A influences the investment strategy of firm

B. As it will turn out, this effect induces that in our setting in equilibrium the product

in general is not introduced at the point in time when the state is on the switching line.

In order to characterize the optimal time of product introduction T , i.e. the choice of

the time horizon of the game, which maximizes VA(K, 0, T ), we proceed as follows. We

consider a sufficiently large fixed time horizon and compute the optimal distance to the

terminal time where the firm wants the game to start. For this, we use a large T , which

is defined as follows.

Standard turnpike arguments (see McKenzie (1986) or Grüne et al. (2015)) yield that

for T →∞, the change in the value function becomes small since it is converging to the

(time-independent) value function of the infinite horizon game in mode m1, V
m1
f . For

an ε with 0 < ε �
∣∣V m2
A (Kini, 0)− V m1

A (Kini)
∣∣3 and an initial capacity Kini, a large T

satisfies ∣∣∣Vf (Kini, 0;T )− V m1
f (Kini)

∣∣∣ ≤ ε. (25)

We denote by T l(ε,Kini) the minimal T for which inequality (25) holds for all T ≥ T l.

Among all capacities which yield positive prices, we select the maximal T l which we

denote by TL(ε), i.e. TL(ε) := T l(ε,Kmax) where Kmax = arg maxK:p
m1
1 (K)≥0(T

l(ε,K)).

Using this notation, in the following proposition we characterize firm A’s choice of the

optimal time of product introduction.

Proposition 1. Let Vf (K, t;TL) be the value function of the game for a fixed large end

time TL(ε) for f = A,B. Let t∗ be the time argument maximizing VA for an initial pair

Kini = (Kini
1A ,K

ini
1B ), i.e.

t∗(Kini) = arg max
t∈[0,TL]

VA(Kini, t;TL). (26)

If t∗(Kini) > 0, then

T ∗(Kini) = TL − t∗(Kini), (27)

3Note that for higher choices of ε, inequality (25) might be satisfied for all T and hence would not

yield a large T .
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is the optimal time of product introduction for K(0) = Kini and the value function in

m1 for f = A,B and for initial capacities Kini is given by

V opt
f (K, 0, t,m1) = Vf (K, t;T ∗(Kini)). (28)

Furthermore, if t∗(Kini) = 0 for all T ≥ TL(ε) (i.e. for all TL(ε̃) with ε̃ ≤ ε), then

T ∗(Kini) =∞, (29)

is the optimal time of product introduction for K(0) = Kini and the value function is

given by

V opt
f (K, 0, t,m1) = V m1

f (K), f = A,B. (30)

Proof. Due to time invariance, the current value of the initial game defined on the time

interval [0, TL] at t∗ is equal to the current value at 0 of the game defined over [0, T ∗]

where T ∗ = TL − t∗. Hence, it is sufficient to derive the optimal distance to a fixed

terminal time where the innovator wants the game to start.

If t∗(Kini) > 0, i.e. t∗(Kini) is interior in [0, TL], then for all T ≥ TL, according

to inequality (25), t∗(Kini) (shifted by T − TL) is still an interior maximum. Hence,

TL − t∗(Kini) is the optimal distance to the terminal time TL.

If t∗(Kini) = 0 for all T ≥ TL(ε), then the maximizing argument is at the left boundary.

More precisely, for reducing ε and thereby increasing TL, t∗ = 0 remains optimal. Thus,

VA(Kini, t, T ) is monotonously increasing in T . Hence, T ∗ =∞ is optimal.

Essentially, from a family of value functions of the game for different values of T ,

i.e. for varying terminal times, the innovator has to select that one which maximizes his

profits for the initial capacity. So, the optimal time of product introduction can be found

via considering the value function for a fixed initial pair Kini and a fixed sufficiently large

terminal time and determining the optimal distance to the terminal time4. In the next

corollary, we provide necessary conditions for the slope of the time derivative of the value

function at the outset of the game.

4The idea of considering large values for the terminal time has been employed by several works, e.g.

in Grass (2012).
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Corollary 1. i) If immediate product introduction, i.e. a corner solution T ∗ = 0 is

optimal, then

lim
T→0

(
lim
t→T−

VA,t(K
ini, t;T )

)
≥ 0, (31)

and

H(Kini) ≤ r(V m2
A (Kini, 0)− F ). (32)

ii) If no product introduction, i.e. T ∗ =∞ is optimal, then

lim
T→∞

VA,t(K
ini, 0;T ) ≤ 0, (33)

iii) For an interior solution, i.e. 0 < T ∗ <∞ to be optimal we must have

VA,t(K
ini, 0;T ∗) = 0. (34)

Proof. i) For a corner solution T ∗ = 0, the maximizing argument of (26) is on the

right boundary, i.e. t∗ = TL. Thus,

lim
t→T−

VA,t(K
ini, t;T )≥ 0,

holds for all T > 0, which implies (31) . Furthermore, the HJB-equation under

T ∗ = 0 yields

rS(Kini)− VA,t(Kini, 0; 0) = H(Kini). (35)

As the limit of VA,t stays positive, we obtain (32).

ii) For a corner solution T ∗ =∞, the maximizing argument is on the left boundary, i.e.

t∗ = 0. This means Vt(K
ini, 0;TL) ≤ 0 for all TL. Thus, limT→∞ Vt(K

ini, 0;T ) ≤

0.

iii) follows directly from the first order condition if firm A.

Note that Corollary 1 yields necessary conditions only. In particular, condition (34)

might be satisfied for local maxima which are not globally optimal. To get an intuition

for this necessary optimality condition, consider the difference of the value of the game

for a fixed state variable vector when time moves from t to t+ ∆, ∆ > 0:

V (Kini, t+ ∆;TL)− V (Kini, t;TL). (36)
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Assuming firm A is free to choose between t + ∆ and t, (36) measures the change in

the value function in current-value terms. If (36) is positive, it is (locally) optimal

for the firm to choose a later starting point than t, and an earlier starting point, else.

As Kini is not affected by the choice of T ∗, maximizing with respect to the second

argument of the value function yields for fixed TL the (globally) optimal time-span

T ∗ = TL − t for firm A between the initial time and the time of product introduction,

which corresponds to the optimal time of product introduction of the free end time game.

The first order condition of the optimization of V (Kini, t;TL) with respect to t yields

(34). Since it is not feasible to provide an analytical characterization of the globally

optimal choice of T it s also not possible to to derive results about the dependence

of the introduction time and investment patterns in equilibrium. In order to get a

more complete picture of the dependence of the optimal introduction time, as well as

of the resulting equilibrium capacity dynamics, from initial capacities and key model

parameters, in the following section we compare the actual equilibrium solutions under

different parameter constellations using numerical methods.

4 Dynamics

In this section, we first examine the behavior of the firms for an exogenously given

product introduction time T . We then explore optimal timing and its dependence on

adoption costs and initial capacities. In case of delay, we analyze how capacities evolve

before introduction.

4.1 Exogenous Time Horizon

In order to depict optimal introduction time and the equilibrium investment paths, we

use the following default parameter setting (similar to the parameter setting of Dawid

et al. (2010))

r = 0.04, δ = 0.2, η = 0.5, θ = 0.1, γA = γB = 0.1, (37)

We start by analyzing the equilibrium investment strategies φf (K, t;T ), f = A,B, for a

large fixed time horizon TL = 3, fixed initial capacity Kini = (0.35, 0.35), and adoption

costs F = 1. In Figure 2 the investment strategies φ1f (Kini, 0, t,m1) in mode m1 are

depicted as functions of t ∈ [0, TL] The dashed line corresponds to the infinite horizon

15



T

0.5 1.0 1.5 2.0 2.5 3.0
t

-0.2

-0.1

0.1

I1A

I1A
inf

(a)

T
0.5 1.0 1.5 2.0 2.5 3.0

t

0.14

0.16

0.18

0.20

I1B

I1B
inf

(b)

Figure 2: Optimal investments of both firms in mode m1 at a fixed capacity Kini =

(0.35, 0.35) for F = 1 and TL = 3.

case in m1. Obviously, TL is large enough to resemble the infinite horizon investment

strategy at t = 0. In panel (a), we see that the innovator reduces his investments as time

approaches TL which is due to the decreased marginal value of the established capacity

when the innovator introduces the new product. For the non-innovator, we have an

interesting investment strategy which is non-monotone in t. Note that the marginal value

of its capacity is decreased in m2 as well. Hence, eventually investments decline. The

initial increase is due to the innovator’s decreasing willingness to invest. Moreover, there

is an intertemporal strategic effect, i.e. by increasing investment, via a higher capacity

and lower price in the future, a firm can even further reduce the future investment

of its competitor. As the innovator is affected on both markets by the established

capacity while the non-innovator is affected only at the established market (since it is

not producing product 2), the non-innovator has more influence on its competitor than

the other way around.

Figure 2 is also suitable to assess the changes in investment incentives if the innovator

(unexpectedly) preannounces the introduction of a new product at the capacity levels

(0.35, 0.35). Comparing the solid lines with the dotted ones, which correspond to invest-

ment level if no introduction of a new product is expected, we see that for the innovator,

the expectation of future product introduction yields a reduction of its investment in

capacities for the established product. For the non-innovator, it depends on the length

T till the announced time of product introduction. For T / 0.15, there is a negative

effect of the preannouncement on investment, whereas for higher T , investment of firm

B increases.
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Figure 3: Value function for the innovator for F = 2.94, Kini = (0.35, 0.35) and for

TL = 100.
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Figure 4: Value function for K1B = Km1,ss
1B ≈ 0.3697.

4.2 Endogenous Time Horizon

Employing the approach described in Section 3 and using Proposition 1, we are able to

derive the optimal T to be preannounced by the innovator. In particular, we calculate

the value function of firm A for a sufficiently large TL and then determine the optimal

distance to the terminal time. The approach is illustrated in Figure 3. It can be clearly

seen that for the considered parameter the product is optimally introduced after a very

short but positive delay of about TL − t∗ ≈ 0.12. Furthermore, it can be seen that

delaying the product introduction by more than 0.4 actually is dominated by immediate

product introduction.

Using this approach we can obtain the equilibrium value of T for each pair of initial

capacities and also the resulting value functions for both players. In Figure 4 we show

the equilibrium value function at t = 0 for firm A (black line) as well as the value

obtained under immediate introduction (blue line) and no introduction (red line) as a

function of Kini
1A for a given value of Kini

1B . More precisely, we set Kini
1B to the steady
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Figure 5: Optimal time to switch to m2 (Kini = (0.35, 0.35)).

state value of the infinite horizon game in m1, which we denote by Km1,ss
1B . Assuming

relatively low adoption costs (panel (a)) for low initial Kini
1A , the innovator introduces

immediately whereas for higher initial capacity, there is a gain by delaying the product

introduction.5 For even higher values of F not introducing becomes optimal for high

capacities and hence infinite solutions for T occur. There arises an indifference point,

where introducing after some delay and not introducing at all yield the same value for the

innovator.6 If adoption costs F become too high firm A either introduces immediately

or never (see Figure 4(b)).

The pattern sketched above can be clearly seen in Figure 5, which shows the optimal

product introduction time T as a function of adoption costs for given initial capacities.

For low adoption costs the firm wants to introduce the new product immediately, whereas

above some threshold F̄Kini , the firm chooses to introduce after some delay. This delay

is higher the higher F is. There is another threshold F̃Kini where the innovator abstains

totally from product introduction and stays with its established product. Thus, there is

a jump from some finite T to infinity at this threshold. Note that the thresholds depend

5The value functions of immediate and no switching intersect at a point where the slopes of the value

functions are very different and hence there is a kink. As usual in endogenous timing problems the

option of delaying ’smoothes’ the value function of firm A.
6In the literature, such indifference points separating different basins of attraction of the dynamics

under optimal investments are called Skiba points, see e.g. Skiba (1978); Haunschmied et al. (2003).

For a discussion of issues related to the existence of Skiba points under Markov Perfect Equilibria of

differential games see Dawid et al. (2017a). In general, the value functions have a kink at such Skiba

points since, depending on whether firm A plans to introduce the new product or not, equilibrium

investments are different. This means that equilibrium investment strategies exhibit jumps at this point

in the state space and accordingly the value functions exhibit a kink.
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Figure 6: Optimal trajectories for different initial capacities.

on initial capacities.

A qualitative description of optimal timing for different levels of initial capacities of

both firms is given in Figure 6. Each arrow in the figure depicts the equilibrium trajectory

of the capacities for the corresponding initial condition taking into account the time of

product introduction chosen by firm A in equilibrium. Here, the steady state of m1

lies in the interior of the area where firm A decides not to introduce the new product

(i.e. T =∞). Still, as can be seen in the figure, a trajectory starting in the are where in

equilibrium we have T =∞ might for some time run through the area in the state space

where T < ∞ would be chosen if the state at t = 0 were in this area. Clearly this is a

feature of the open-loop strategy for the timing choice. Moreover, there are parameter

settings where the steady state of m1 does not lie in the corresponding area such that

every trajectory starting in the T =∞ area would end up in another [0 < T <∞] area

where ex-post, the firm would like to introduce the product (possibly after some delay)

if there were no commitment.

Furthermore, we are interested in how the optimal time of product introduction is

influenced by the capacities of both firms. Regarding the capacity of the non-innovator,

one might expect that if the non-innovator is stronger on the established market, the

innovator has higher incentives to introduce the new product earlier in order to escape

competition. But there is another effect as well, namely higher capacity of the non-

innovator leads not only to a lower price of the established product but also to a lower

price of the new product in m2. In order to compensate for that, the innovator has

incentives to decrease its own capacity on the established market in m1 in order to

19



be ’more prepared’ when switching to m2. Figure 6 suggests that the latter effect is

stronger such that the stronger the competitor, the later the product introduction, i.e.

T is increasing in K1B. Moreover, the duration in m1 is increasing in the innovator’s

capacity as well. Note that for the parameters considered here, the switching line, which

separates the 0 < T <∞ from the T = 0 region, is never reached.

Another interesting observation is that for the innovator, for every initial capacity in

the delaying region, it is optimal to reduce capacity whereas for the non-innovator, the

dynamics of its capacity depends on initial capacities, in particular on K1B. If K1B is

relatively low, then its capacity increases, otherwise it decreases as well. Note that the

steady state value of the non-innovators capacity in m2 is higher than in m1. Thus, it

is very natural, that the non-innovator might increase its capacity already in m1.

Considering initial conditions with 0 < T < ∞ it could be expected that the change

in mode at T leads to a discontinuous adjustment of the investment of firm B, since at

t = T the there is a discontinuous change in its instantaneous profit function and it has

no influence on the choice of the product introduction time T . However, the investment

trajectory of the non-innovator, is continuous at all t ≥ 0, including at t = T , when

the new product is introduced. Intuitively, in our setting, where the switching time T is

fixed and known already at t = 0, firm B anticipates the marginal effect of investment

on profits in m2 even before T and therefore investment incentives do not jump at t = T .

Finally, we like to mention that in comparison to the monopoly case where the non-

innovator does not exist, which has been analyzed in Gezer (2019), we find the following

interesting pattern: The innovator introduces earlier, i.e. the delay in product innovation

is shorter but at the same time innovation occurs for a smaller range of costs of product

introduction, i.e. for some F the innovator would innovate in monopoly but not in

presence of a competitor even though the competitor is only active on the established

market. Thus, we see a connection between the Schumpeterian and Arrowian perspective

where market concentration facilitates innovation but decreases its speed.

5 Conclusion

In this paper, assuming commitment of the innovator with respect to the product in-

troduction time, we have characterized how adoption costs and initial capacities for

the established product influence the optimal timing of new product introduction in
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a dynamic duopoly market. In the interesting case of delay of product introduction,

the innovator reduces capacities of the established product before the new product is

introduced, whereas the dynamics of the non-innovator’s capacity depends on initial ca-

pacities. Furthermore, in our setting the innovator would always like to further delay

product introduction at the point in time where according to its initial commitment, the

new product is brought to the market. More generally, our analysis indicates conditions

for determining optimal mode transitions in multi-mode games under the assumption of

open-loop determination of the transition times combined with Markov perfect equilib-

rium profiles within each mode. A challenging and interesting topic for future research

clearly is the investigation of fully closed loop equilibria, where also the made transitions

are determined by feedback strategies of one (or several) players.

Appendix

Appendix A

As derived in Lemma 1, the innovator is indifferent between waiting marginally and

introducing the new product if and only if H = rS, which reduces to

1

2γ2

(∂V m2
A

K2A

)2
= rF. (38)

Rearranging equation (38) yields the switching line

K1B =

√
2rγ2F −Hm2

A −Mm2
A K1A

Nm2
A

. (39)

Appendix B

Given the terminal time T , the HJB-equations for non-stationary Markovian investment

strategies are given by

rVA(K1A,K1B, t)−
∂VA(K1A,K1B, t)

∂t
= max

I1A

[
p1K1A − C1(I1A) +

∂VA
∂K1A

(I1A − δK1A)

+
∂VA
∂K1B

(I∗1B − δK1B)
]

(40)

and

rVB(K1A,K1B, t)−
∂VB(K1A,K1B, t)

∂t
= max

I1B

[
p1K1B − C1(I1B) +

∂VB
∂K1A

(I∗1A − δK1A)

+
∂VB
∂K1B

(I1B − δK1B)
]

(41)
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with the transversality conditions

Vf (K1A(T ),K1B(T ), T ) = V m2
f (K1A(T ),K1B(T ), T ), f = A,B. (42)

Maximizing the right hand side of the HJB-equations yields

I1f =
1

γ

∂Vf
∂K1f

, f = A,B. (43)

Additionally, firm A has to select the optimal value for T maximizing its discounted

stream of profits. Due to the linear-quadratic structure of the game, we impose the

following form for the value function:

Vf = Cf (t) +Df (t)K1A+Ef (t)K2
1A+Ff (t)K1B +Gf (t)K2

1B +Lf (t)K1AK1B, f = A,B.

(44)

Due to the finite time horizon, we consider non-stationary Markovian strategies and

hence coefficients depend on time. Comparison of coefficients yields the following system

of 12 riccati differential equations which are solved by standard numerical methods:

rCA(t) =
DA(t)2 + 2FA(t)FB(t) + 2γ1C

′
A(t)

2γ1

rDA(t) =
γ1 +DA(t)(−γ1δ1 + 2EA(t)) + FB(t)LA(t) + FA(t)LB(t) + γ1D

′
A(t)

γ1

rEA(t) =
2EA(t)(−γ1δ1 + EA(t)) + LA(t)LB(t))

γ1
− 1 + E′A(t)

rFA(t) =
2FB(t)GA(t) + FA(t)(−γ1δ1 + 2GB(t)) +DA(t)LA(t) + γ1F

′
A(t))

γ1

rGA(t) =
GA(t)(−4γ1δ1 + 8GB(t)) + LA(t)2 + 2γ1G

′
A(t))

2γ1

rLA(t) =
2(−γ1δ1 + EA(t) +GB(t))LA(t) + 2GA(t)LB(t) + γ1(−1 + L′A(t))

γ1

rCB(t) =
2DA(t)DB(t) + FB(t)2 + 2γ1C

′
B(t)

2γ1

rDB(t) =
DB(t)(−γ1δ1 + 2EA(t)) + 2DA(t)EB(t) + FB(t)LB(t) + γ1D

′
B(t)

γ1

rEB(t) =
(−4γ1δ1 + 8EA(t))EB(t) + LB(t)2 + 2γ1E

′
B(t))

2γ1

rFB(t) =
γ1 + FB(t)(−γ1δ1 + 2GB(t)) +DB(t)LA(t) +DA(t)LB(t) + γ1F

′
B(t)

γ1

rGB(t) =
2GB(t)(−γ1δ1 +GB(t)) + LA(t)LB(t))

γ1
− 1 +G′B(t)

rLB(t) =
2EB(t)LA(t) + 2(−γ1δ1 + EA(t) +GB(t))LB(t) + γ1(−1 + L′B(t))

γ1

(45)

with transversality conditions Cf (T ) = Cm2
f , Df (T ) = Dm2

f , Ef (T ) = Em2
f , Ff (T ) =

Fm2
f , Gf (T ) = Gm2

f , Lf (T ) = Lm2
f , f = A,B.
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Åstebro, T. and Simons, K. (2003). ’Innovation Exit: Why Entrepreneurs Pull the Plug

on their Innovations. Proceedings of the DRUID Conference, Copenhagen, June, pages

12–14.

Bao, Y. K., Tellis, G. J., and Dawid, H. (2005). Strategic Preannouncements of Innova-

tions. Center for Empirical Macroeconomics, Working Paper No. 90.

Caulkins, J. P., Feichtinger, G., Grass, D., Hartl, R. F., Kort, P. M., and Seidl, A.

(2015). Skiba points in free end-time problems. Journal of Economic Dynamics and

Control, 51:404–419.

Chandy, R. K. and Tellis, G. J. (2000). The Incumbent’s Curse? Incumbency, Size, and

Radical Product Innovation. Journal of Marketing, 64(3):1–17.

Dawid, H., Keoula, M., and Kort, P. (2017a). Numerical Analysis of Markov-Perfect

Equilibria with Multiple Stable Steady States: A Duopoly Application with Innovative

Firms. Dynamic Games and Applications, 7:555–577.

Dawid, H., Keoula, M. Y., Kopel, M., and Kort, P. M. (2017b). Dynamic Investment

Strategies and Leadership in Product Innovation. Bielefeld Working Papers in Eco-

nomics and Management No. 03-2017.

Dawid, H., Kopel, M., and Dangl, T. (2009). Trash It or Sell It? a Strategic Analysis of

the Market Introduction of Product Innovations. International Game Theory Review,

11(03):321–345.

Dawid, H., Kopel, M., and Kort, P. M. (2010). Dynamic strategic interaction between an

innovating and a non-innovating incumbent. Central European Journal of Operations

Research, 18(4):453–463.

Dawid, H., Kopel, M., and Kort, P. M. (2013). R&D competition versus R&D co-

operation in oligopolistic markets with evolving structure. International Journal of

Industrial Organization, 31(5):527–537.

23



Dixit, A. K. and Pindyck, R. S. (1994). Investment under uncertainty. Princeton:

Princeton University Press.

Dockner, E. J., Jorgensen, S., Long, N. V., and Sorger, G. (2000). Differential Games

in Economics and Management Science. Cambridge University Press.

Dutta, P. K., Lach, S., and Rustichini, A. (1995). Better Late than Early: Vertical Differ-

entiation in the Adoption of a New Technology. Journal of Economics & Management

Strategy.

Farrell, J. and Saloner, G. (1986). Installed base and compatibility: Innovation, product

preannouncements, and predation. The American Economic Review, 76(5):940–955.

Gezer, S. (2019). Delaying Product Introduction: A Dynamic Analysis with Endogenous

Time Horizon. Journal of Economic Dynamics and Control, 102:96–114.

Grass, D. (2012). Numerical computation of the optimal vector field: Exemplified by a

fishery model. Journal of Economic Dynamics and Control, 36(10):1626–1658.

Gromov, D. and Gromova, E. (2017). On a Class of Hybrid Differential Games. Dynamic

Games and Applications, 7(2):266–288.
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