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1 Introduction

The Kantorovich problem of optimal transportation was posed in 1942 in [10]. This
problem can be formulated as a linear optimization problem on a convex domain:
�nd an optimal measure with given projections, provided that the optimality is
measured by a cost function.

In [11], an interesting modi�cation of this problem was posed and solved. This
modi�cation includes pointwise constraints on the densities of admissible measures.
In the set of all measures with given projections whose densities are bounded by a
certain given function, it is required to �nd an optimal measure. It was shown in
[11] that the local nondegeneracy of the cost function implies that an optimal plan
is extreme and, as a consequence, unique. In other words, an optimal plan is an
extreme point of a convex set. Later, in [12], the same authors proposed a simpli�ed
proof of the uniqueness of the optimal plan based on a speci�c characterization of
extreme points of a convex set and appropriate perturbations. Duality issues were
considered by the same authors in [13] and [14].

The cited papers deal with the case of measures on the �nite-dimensional space
Rn or on the torus with Lebesgue measure. In the case of two marginals the optimal
transportation problem with a density constraint in in�nite-dimensional spaces was
studied by the author n [6]. In the present paper, we study the case of many
marginals.

The present paper is organized as follows. The Kantorovich problem with a
density constraint and many marginals is posed in Section 2i. The existence of a
solution to this problem is proved in Section 3. In Section 2 we obtain a new theorem
which is the main tool in our proofs. In this section we also characterize the set of
extreme points of the set of admissible densities with �xed projections and a density
constraint. Section 5 is devoted to conditions on the cost function su�cient for the
uniqueness of the solution. In Section 6 we prove that an optimal plan is an extreme
point of the set of admissible densities. The uniqueness of a solution of the problem
in question is an almost immediate corollary of this fact. For more information on
this problem, see [5]� [17]. Also note that a somewhat di�erent modi�cation of the
Kantorovich problem with additional linear constraints is considered in [18].
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2 Statement of the problem

Suppose we are given a natural number n and n probability spaces Xi, i 6 n,
equipped with σ-algebras Ai and probability measures µi. Let X =

∏n
i=1Xi be the

product space equipped with the product measure µ =
⊗n

i=1 µi and let χ ∈ L1(X,µ)
be a nonnegative integrable function. Let Γχ(µ) be the class of densities h with
respect to µ which determine probability measures on X whose marginals on Xi are
µi for all i 6 n, and satisfy the condition h 6 χ. It is obvious that the class Γχ(µ)
is a convex set.

Given a cost function c ∈ L∞(µ) we consider the linear functional on Γχ(µ)
de�ned by

Ic(h) =
∫

X
ch dµ. (1)

We pose the following optimal transportation problem with a density constraint:
minimize the functional (1) on the convex set of densities h in the class Γχ(µ). A
function for which the minimum is attained is called an optimal plan.

3 Existence of solutions

The �rst main result of the paper is as follows.

Theorem 3.1. The functional Ic attains its minimum on Γχ(µ).

Proof. We shall endow L1(µ), with a topology in which the class Γχ(µ) is compact
and the functional Ic is continuous. The existence of a solution of the optimization
problem will then follow from the general fact that a continuous function attains its
minimum on a compact set.

For this purpose, we endow L1(µ) with the weak topology. The class Γχ(µ)
is uniformly integrable, because all functions in Γχ(µ) are bounded by the same
integrable function. Therefore, Γχ(µ) has compact closure in the weak topology of
L1(µ) (see [4, Theorem 4.7.18]). To prove the compactness of the class Γχ(µ), it
su�ces to show that it is closed. By the convexity of Γχ(µ), it su�ces to verify that
it is closed with respect to the norm.

Let {hk} be a sequence of densities in Γχ(µ) which converges in norm to a
function h∞ ∈ L1(µ). We must verify that h∞ ∈ Γχ(µ), i.e., the measure with
density h∞ has projections µ1, . . . , µn and h∞ and is majorized by the function χ
almost everywhere with respect to the measure µ. The latter is obvious. The former
follows from the fact that, for all functions ϕ ∈ L∞(µ), we have

lim
k→∞

∫
X
hkϕdµ =

∫
X
h∞ϕdµ. (2)

Substituting ϕ = ψ · 1
X̂i

into (2), where ψ ∈ L∞(µi) and

X̂i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn,

we see that the projection of the measure with density h∞ on Xi is µi. This implies
that Γχ(µ) is closed with respect to the norm and, hence, in the weak topology.

The functional Ic is continuous in the weak topology by de�nition. Thus, we
have proved the existence of an optimal plan.
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4 Ñharacterization of extreme points of Γχ(µ)

In this section we show that each function h ∈ Γχ(µ) that is an extreme point of
the convex class Γχ(µ) can be represented as 1Wχ for some Lebesgue measurable set
W ⊂ X. Recall that a function h ∈ Γχ(µ) is called an extreme point of the convex
set Γχ(µ) if h is not the midpoint of a line segment in Γχ(µ).

Let us now use the notation ej = (0, . . . , 1, . . .) for the in�nite-dimensional ele-
ment whose jth component is equal to 1 and whose other components are zero. Let
T denote the space T = ([0; 1]∞)n equipped with the Borel σ-algebra and Lebesgue
measure.

Lemma 4.1. Suppose we are given a Lebesgue measurable set U ⊂ T of positive mea-

sure. Then, for each su�ciently small δ > 0 and each set of variables (t1i1 , . . . , t
n
in

),
there exist rational numbers (we call them rational shifts) ϕ1, . . . , ϕn ∈ (−δ; δ)\{0}
and a Lebesgue measurable set V ⊂ U of positive measure such that for every point

(v1, . . . , vn) in the set V all 2n points of the form

(v1 + ε1ϕ1ei1 , . . . , v
n + εnϕnein) ∈ U

for each ∀ j 6 n εj ∈ {0; 1}.

Proof. We �x a set of variables (t1i1 , . . . , t
n
in

). Let a = {an}∞n=1 be a sequence of real
positive numbers each of which does not exceed 1/3. Consider the compact set

Ka = [a1; 1− a1]× [a2; 1− a2]× . . .× [an; 1− an]× . . . ∈ [0; 1]∞.

Choosing an appropriate sequence a, we can assume that the Lebesgue measure∏∞
k=1(1 − 2ak) of this compact set is arbitrarily close to 1. Consider the compact

set K = (Ka)n ∈ T . Note that the Lebesgue measure of the set K can be also
made arbitrarily close to 1. We �x a sequence a for which the Lebesgue measure of
E = K ∩ U is positive.

The shift of the set E with respect to the variable t1i1 by ϕ is denoted by

E(ϕ) = {(t1, . . . , tn) ∈ T : (t1 − ϕei1 , . . . , tn) ∈ E}.

Let δ = min(ai1 , . . . , ain)/2. We show that there exists a shift ϕ1 ∈ (−δ; δ)\{0} such
that λ(E ∩ E(ϕ1)) > 0. There are countably many rational shifts in the interval
(−δ; δ)\{0}; therefore, we can number them by positive integers, i.e., let qi denote
the ith number (i ∈ N). If there exist two numbers qi, qj such that qi > qj and
λ(E(qi) ∩ E(qj)) > 0, then λ(E ∩ E(qj − qi)) > 0. Suppose for each pair of shifts
qi, qj such that qi > qj we have

λ(E(qi) ∩ E(qj)) = 0, λ(E ∩ E(qi)) = 0, λ(E ∩ E(qj)) = 0.

Since λ(E) is positive, there is a natural numberM such thatM ·λ(E) > 1. Consider
M di�erent rational shifts q1, q2, . . . , qM ∈ (−δ; δ)\{0}. On the one hand, we have

F =
M⋃
i=1

E(ϕi) ⊂ T,

hence λ(F ) ≤ 1. On the other hand, λ(F ) = M · λ(E) > 1. This contradiction
proves the existence of a shift ϕ1 such that λ(E ∩ E(ϕ1)) > 0.

Now let us consider the set E ∩ E(ϕ1) of positive measure λ. An analogous
reasoning implies the existence of a shift ϕ2 ∈ (−δ; δ)\{0} such that the set E∩E(ϕ1)
and its shift

E(ϕ1, ϕ2) = {(t1, . . . , tn) ∈ T : (t1, t2 − ϕ2ei2 , . . . , tn) ∈ E ∩ E(ϕ1)}
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with respect to the variable t2i2 by ϕ2 have positive Lebesgue measure. We repeat
this process n − 2 times with the remaining variables and obtain a set W ∈ T of
positive measure.

For any natural k 6 n we divide the ikth interval [0; 1] in the kth space [0; 1]∞

in the space T = ([0; 1]∞)n into Nk equal disjoint half-intervals of length less than
ϕ1/5, namely,

[0; 1] =
[
0;

1
Nj

)
∪

Nj−1⋃
k=1

[ k

Nj
;
k + 1
Nj

)
∪ 1.

Note that

W =
N1⊔

k1=1

. . .

Nn⊔
kn=1

Wk1...kn

⊔
W0,

where Wk1...kn contains all points of W whose component xj
ij
belongs to the kjth

half-interval in jth space and W0 is the remaining set of zero Lebesgue measure. It
is clear that, for some numbers K1, . . . ,Kn such that K1 ≤ N1, . . . ,Kn ≤ Nn, the
Lebesgue measure λ(WK1...Kn) is positive. The setWK1...Kn is the desired one. All 2n

shifts of the set WK1...Kn are disjoint subsets of U of positive Lebesgue measure.

A similar assertion holds under more general assumptions. Before discussing this
assertion, we recall the de�nition of a point isomorphism.

De�nition 4.1. Let (X,A, µ) and (Y,B, ν) be two measurable spaces with nonneg-
ative measures. A point isomorphism J of these spaces is a one-to-one mapping of
X onto Y such that J(A) = B and µ ◦ J−1 = ν.

De�nition 4.2. Spaces (X,A, µ) and (Y,B, ν) are said to be isomorphic mod0 if, for
some sets F ∈ Aµ, F

′ ∈ Bν with µ(F ) = ν(F ′) = 0, there exists a point isomorphism
J of the spaces X\F and Y \F ′ endowed with the restrictions of the measures µ and
ν and the σ-algebras Aµ and Bν .

Lemma 4.2. Suppose we are given n Souslin spaces (X1, µ1), . . . , (Xn, µn) with

nonatomic Borel probability measures and a µ-measurable set U ⊂ X of positive

measure. Then there exists a nonzero function ξ ∈ L1(µ) supported on U such that∫
X1×···×Xi−1×Xi+1×···×Xn

ξ dµ1 ⊗ . . .⊗ µi−1 ⊗ µi+1 ⊗ . . .⊗ µn = 0

µi-almost everywhere for any i 6 n.

Proof. According to [4, Theorem 9.2.2], the space (Xi, µi) is isomorphic mod0 to the
space ([0; 1], λ) for any i 6 n, where λ is Lebesgue measure. In other words, for any
i 6 n there exist sets X ′

i ⊂ Xi and Ii ⊂ [0; 1] with µi(X ′
i) = 1 and λ(Ii) = 1 and

a point isomorphism Ji between the spaces X ′
i and Ii endowed with the restrictions

of the measures µi and λ. For notational simplicity we shall consider the spaces
I =

∏n
i=1 Ii, X

′ =
∏n

i=1X
′
i, I

′ =
∏n

i=1 I
′
i and the isomorphism J =

∏n
i=1 Ji.

We have the following chain of relations:

µ(U) = µ(U ∩X ′) = λ⊗ . . .⊗ λ(J(U ∩X ′)).

The set V = J(U ∩X ′) of positive Lebesgue measure lies in the space (I, λ). Follow-
ing the line of reasoning in Lemma 4.1, for the Lebesgue measurable set V ⊂ I of
positive measure and a su�ciently small δ > 0, we construct sets V1, V2, . . . , V2n ⊂ V
of positive measure obtained by shifts of the set V in the space I.
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Note that there is a correspondence between the sets V1, V2, . . . , V2n ⊂ V and the
vertices of the n-dimensional hypercube. Therefore, these sets can be enumerated
by binary sequences of length n so that any two sets that di�er by shifts with respect
to the variable from the jth space correspond to binary sequences which di�er only
in the jth coordinate.

For every j 6 n, let s(j) be the sum of all elements of the binary sequence
corresponding to the set Vj . Consider the sets

Vodd =
⋃

j6n, s(j) is odd

Vj ,

Veven =
⋃

j6n, s(j) is even

Vj .

The function ζ ∈ L1(I, λ⊗ . . .⊗ λ) de�ned by

ζ(t1, . . . , tn) : =


+1 if (t1, . . . , tn) ∈ Vodd,

−1 if (t1, . . . , tn) ∈ Veven,

0 otherwise,

satis�es the condition∫
I1×···×Ii−1×Ii+1×···×In

ξ d(λ⊗ . . .⊗ λ) = 0

for every i 6 n.
Consider the sets U1, U2, . . . , U2n ⊂ X ′ of positive measure µ that are the preim-

ages of V1, V2, . . . , V2n under the mapping J : X ′ → I and the function ξ ∈ L1(X ′, µ)
de�ned by

ξ(x1, . . . , xn) = ζ(J1(x1), . . . , Jn(xn)).

In other words,

ξ(x1, . . . , xn) : =


+1 if (x1, . . . , xn) ∈ Uodd,

−1 if (x1, . . . , xn) ∈ Ueven,

0 otherwise,

where the sets Uodd, Ueven are the preimages of Vodd, Veven.
It is easy to see that the function ξ is well de�ned and nonzero on a set of positive

measure µ, the support of ξ is contained in U and the chain of relations∫
[0;1]n−1

ζ(t1, . . . , tn)λ(dt2, . . . , dtn)

=
∫

[0;1]n−1

ζ(t1, . . . , tn)µ2 ◦ J−1
2 (dt2) . . . µn ◦ J−1

n (dtn)

=
∫

X′
2×...×X′

n

ζ(J1(x1), . . . , Jn(xn)) dµ2 . . . dµn =
∫

X′
2×...×X′

n

ξ(x1, . . . , xn) dµ2 . . . dµn

=
∫

X2×...×Xn

ξ(x1, . . . , xn) dµ2 . . . dµn = 0

holds µ1-almost everywhere. Similar statements hold for other marginals. Thus, ξ
is the desired function.

Lemma 4.2 provides a characterization of extreme points of Γχ(µ).
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Theorem 4.1. Suppose we are given n Suslin spaces with nonatomic Borel proba-

bility measures (X1, µ1),. . . , (Xn, µn). A density h ∈ Γχ(µ) is an extreme point of

the set Γχ(µ) if and only if h = 1Wχ for a µ-measurable set W ⊂ X.

Proof. The condition h ∈ Γχ(µ) implies the inequalities 0 6 h 6 χ. If h is an
extreme point, then these inequalities cannot be simultaneously strict on a set U ⊂ X
of positive measure. Indeed, suppose that such a set U exists. Then, for some ε > 0,
the set

Uε = {x ∈ X : ε < h(x) < χ(x)− ε}

has positive measure as well. According to Lemma 4.2, for the set Uε there exists a
function ξ ∈ L1(µ) supported on Uε such that∫

X1×···×Xi−1×Xi+1×···×Xn

ξ dµ1 ⊗ . . .⊗ µi−1 ⊗ µi+1 ⊗ . . .⊗ µn = 0

µi-almost everywhere for any i 6 n.
The inequalities ε < h < χ− ε hold on the support of the function ξ. Therefore,

both functions h± = h ± εξ belong to Γχ(µ). They do not coincide with h and are
distinct. Since the function h = (h+ +h−)/2 is a convex combination of h+ and h−,
it follows that h is not an extreme point of Γχ(µ). This contradiction shows that
the extreme point h of the set Γχ(µ) has the form 1Wχ.

Conversely, each function h = 1Wχ, whereW ⊂ X is a Lebesgue measurable set,
is an extreme point of Γχ(µ). Indeed, suppose that h = 1Wχ can be represented as
a convex combination h = (h1 + h2)/2, where h1, h2 ∈ Γχ(µ). Since both functions
h1, h2 are nonnegative, they must vanish at all points at which h vanishes. In other
words, h1,2 = 0 outside the set W . Since h1,2 ≤ χ, these functions must coincide
with χ at those points at which h does. This means that h1,2 = χ on W . Thus,
h1 = h2 = h; hence the function h = 1Wχ is an extreme point of Γχ(µ).

5 Ñonditions on the cost function

The uniqueness of the solution requires much stronger conditions on the involved
objects. Hereinafter we assume that for every i 6 n the space Xi is [0; 1]∞ equipped
with the Borel σ-algebra Ai and a nonatomic Borel probability measure µi.

We also assume that the function c ∈ L∞(µ) is such that the mixed partial
derivative of order n

∂i1,...,inc =
∂nc

∂x1
i1
. . . ∂xn

in

exists for each set of variables (x1
i1
, . . . , xn

in
), where 1 6 ik 6 ∞ for any k 6 n.

Next, we assume that for some �xed number N ∈ N
⋃
∞ there exist at most

countably many disjoint open sets {Gk}N
k=1, Gk ⊂ X, such that the following condi-

tions are satis�ed:
(C1) each set Gk has positive Lebesgue measure;
(C2) the union of all sets in {Gk}N

k=1 has full Lebesgue measure;
(C3) for every k ≤ N there exists a set of variables (x1

k1
, . . . , xn

kn
) such that the

function ∂k1,...,knc is either strictly positive or strictly negative on Gk.

6 Uniqueness of a solution

Now we show that an optimal plan is an extreme point of the set Γχ(µ).
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Theorem 6.1. Suppose we are given a cost function c on the the space X satisfying

conditions (C1)�(C3), a nonnegative constraint-function χ ∈ L1(µ), and the set

Γχ(µ) is nonempty. Then any function h that is an optimal plan is an extreme point

of the set Γχ(µ).

Proof. Suppose that h ∈ Γχ(µ) is not an extreme point of the set Γχ(µ). We prove
the theorem by constructing a perturbation of the function h which decreases the
value of the functional Ic. By Theorem 4.1 we have h 6= 1Wχ. Hence

U = {x ∈ X : 0 < h(x) < χ}

is a set of positive measure. Therefore, for su�ciently small ε > 0 we have

Uε = {x ∈ U : ε < h(x) < χ− ε}

is a set of positive measure as well.
By condition (C2) on the cost function c,

µ(X\(
N⊔

k=1

Gk)) = 0.

Therefore, the intersection of Uε with one of the sets Gk is a set of positive measure.
We denote this set by G. Condition (C3) associates this set with a set of variables
(x1

k1
, . . . , xn

kn
) such that the mixed derivative of order n of the cost function ∂k1,...,knc

is either positive or negative everywhere on G. Let σ denote the sign of ∂k1,...,knc on
G. We also need the sets

Gδ = {x ∈ G : (x1 + α1ek1 , . . . , x
n + αnekn) ∈ G ∀ 0 < |α1|, . . . , |αn| < δ}.

For su�ciently small δ the sets Gδ are nonempty, because G is open. These sets
form a nested sequence, i.e., Gδ2 ⊂ Gδ1 if δ1 < δ2. Since G is open, it follows that
each point in G belongs Gδ for a su�ciently small δ, hence

⋃
δ→0G

δ = G. Therefore,
for a su�ciently small δ0, the intersection G

δ0 ∩ Uε has positive measure.
By using Lemma 4.2, for Gδ0 ∩ Uε, the set of variables (x1

k1
, . . . , xn

kn
), and the

number δ0/2, we construct a set of positive measure V ⊂ Gδ0 ∩ Uε and shifts
ϕ1, . . . , ϕn ∈ (−δ; δ)\{0} such that all 2n shifts of the set V with respect to the
variables x1

k1
, . . . , xn

kn
are pairwise disjoint subsets of Gδ0 ∩ Uε. Moreover, all 2n

shifts of the set V are contained in G. By using Lemma 4.2, we construct a pertur-
bation ξ with values 1 è −1 such that for every i 6 n the equality∫

X1×···×Xi−1×Xi+1×···×Xn

ξ dµ1 ⊗ . . .⊗ µi−1 ⊗ µi+1 ⊗ . . .⊗ µn = 0

holds µi-almost everywhere. Let Σ denote the sign of
∏

i6n ϕi. The function ξ has
support in Uε, where ε < h < χ− ε. Therefore, the function

hε = h+ (−1)n+1σεΣξ

belongs to Γχ(µ) and does not coincide with h. The value of the functional Ic on
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the function ξ is equal to

Ic(ξ) =
∫

X
cξ dµ

=
∫

V

∑
(i1,...,in)∈[0;1]n

(−1)i1+...+inc(x1 + i1ϕ1ek1 , . . . , xn + inϕnekn) dµ

= ϕ1

∫
V

∫ 1

0

∑
(i2,...,in)∈[0;1]n−1

(−1)i2+...+in+1×

× ∂c

∂xk1

(x1 + s1ϕ1ek1 , . . . , xn + inϕnekn) ds1 dµ

=
∏
i6n

ϕi

∫
V

∫ 1

0
. . .

∫ 1

0
(−1)n×

× ∂nc

∂xk1 . . . ∂xkn

(x1 + s1ϕ1ek1 , . . . , xn + snϕnekn)ds1 . . . dsn dµ.

Since V ⊂ Gδ0 , it follows that the derivative of the cost function has the sign σ
everywhere on the domain of integration. Therefore,

sgn(Ic(ξ)) = (−1)nσΣ.

Let us observe that the change of the value of the functional generated by the
perturbation (−1)n+1σεΣξ equals

Ic(hε)− Ic(h) = (−1)n+1σεΣIc(ξ),

hence Ic(hε) < Ic(h), which contradicts the optimality of h. Thus, the optimal plan
h is an extreme point of the set Γχ(µ).

Corollary 6.1.1. Under the conditions of Theorem 6.1, the optimal plan h is unique.

Proof. If both h0 and h1 minimize Ic on Γχ(µ), then, since the functional Ic is linear
and the set Γχ(µ) is convex, it follows that the function h1/2 = (h0+h1)/2 minimizes
Ic as well. By Theorem 6.1, each of the three functions h0, h1 and h1/2 is an extreme
point of the set Γχ(µ). Hence, by Theorem 4.1, we have h0 = 1W0χ, h1 = 1W1χ, and
h1/2 = 1W1/2

χ for some Lebesgue measurable sets W0,W1,W1/2 ⊂ X. Therefore,
h0 = h1 = h1/2, which completes the proof.
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