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Lq(Lp)-THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS

PENGCHENG XIA, LONGJIE XIE, XICHENG ZHANG AND GUOHUAN ZHAO

Abstract. In this paper we show the weak differentiability of the unique

strong solution with respect to the starting point x as well as Bismut-Elworthy-

Li’s derivative formula for the following stochastic differential equation in Rd:

dXt = b(t, Xt)dt + σ(t, Xt)dWt, X0 = x ∈ R
d,

where σ is bounded, uniformly continuous and nondegenerate, ∇σ ∈ L̃
p1
q1 and

b ∈ L̃
p2
q2 for some pi, qi ∈ [2,∞) with d

pi
+ 2

qi
< 1, i = 1, 2, where L̃

pi
qi , i = 1, 2

are some localized spaces. Moreover, in the endpoint case b ∈ L̃
d;uni
∞ , we also

show the weak well-posedness.

Keywords: Krylov’s estimate, Lq(Lp)-estimates, Zvonkin’s transformation,

duality.

AMS 2010 Mathematics Subject Classification: 60H10, 60J60.

1. Introduction and main results

Consider the following stochastic differential equation (SDE) in Rd (d > 2):

dXt = b(t,Xt)dt+
√
2dWt, X0 = x, (1.1)

where (Wt)t>0 is a d-dimensional standard Brownian motion on some filtered prob-

ability space (Ω,F ,P; (Ft)t>0), and b is a time-dependent measurable vector field.

When b is bounded measurable, Veretennikov [16] proved the strong existence

and uniqueness of solutions for SDE (1.1). For T > 0 and p, q ∈ (1,∞), let

Lp
q(T ) := Lq([0, T ];Lp). When b ∈ Lp

q := ∩T>0L
p
q(T ) for some p, q ∈ [2,∞) with

d
p + 2

q < 1, by Girsanov’s transformation and some Lp
q -estimate for the associated

Kolmogorov equation, Krylov and Röckner [9] showed the strong well-posedness

for SDE (1.1) in the class of X that satisfies
∫ T

0 |b(t,Xt)|2dt < ∞ a.s. From then

on, there are increasing interests of studying the strong and weak well-posedness

for SDE (1.1) with singular or even distributional drifts, see [19, 23] and references

therein.

After [9], there are also a lot of works devoted to studying the properties of the

solution Xt(x, ω) for SDE (1.1) with singular coefficients. Among all, we mention

that when b is bounded measurable, Menoukeu etal [10] showed the weak differen-

tiability of Xt(x, ω) in x and the Malliavin differentiability of Xt(x, ω) with respect

to the sample point ω. When b ∈ Lp
q for some p, q ∈ [2,∞) with d

p + 2
q < 1 and in

the multiplicative noise case, the above regularities in x and ω were also shown in
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[22] by Zvonkin’s transformation. However, Zvonkin’s transformation used in [22]

can not be applied to the bounded drift b because the following PDE does not allow

an H2,∞-solution for b ∈ L∞ in general:

∂tu = ∆u+ b · u+ b, u(0) = 0.

It should be noticed that the weak differentiability of strong solutions in spatial

variables enables us to study the well-posedness of the associated stochastic trans-

port equation since it is closely related to SDE (1.1) through the stochastic inverse

flow induced by the strong solution, see [3, 11] and references therein. One of the

aim of this paper is to provide a unified treatment for the main results in [10] and

[22] and extends them to the case of local integrable coefficients.

On the other hand, in the critical case d
p + 2

q = 1 with p, q ∈ [2,∞), Beck

etal [1] claimed the existence and uniqueness of strong solutions to SDE (1.1)

for almost all starting point x. Recently, when b belongs to some Lorentz space

Lq,1(Lp) ⊂ Lq,q(Lp) = Lp
q for some p, q ∈ [2,∞) with d

p + 2
q = 1, still by Zvonkin’s

transformation, Nam [12] showed the existence and uniqueness of strong solutions

for SDE (1.1). When b ∈ Ld(Rd) is time-independent, Kinzebulatov and Semenov

[4] showed the existence of weak solutions for each starting point x ∈ Rd, but

the uniqueness is left open. Moreover, in the supercritical case b ∈ Lp
q for some

p, q ∈ [2,∞) with d
p +

2
q < 2, under an extra integrability assumption on (divb)−, in

a recent work [24], the last two authors of the present paper showed the existence

of weak solutions. Another goal of this paper is to show the existence and unique-

ness of weak solutions for SDE (1.1) with multiplicative noise in the endpoint case

b ∈ L̃d;uni
∞ , which is not covered by all of the above results.

In this paper, we shall consider the following SDE driven by multiplicative Brow-

nian noises:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x, (1.2)

where σ : R+×Rd → Rd⊗Rd and b : R+×Rd → Rd are Borel measurable functions.

The generator of this SDE is given by

L
σ,b
t f(x) := 1

2 (σ
ikσjk)(t, x)∂i∂jf(x) + bi(t, x)∂if(x). (1.3)

Here and below, we use Einstein’s convention that the repeated indices in a product

will be summed automatically. Throughout this paper, we assume that

(Hσ) lim|x−y|→0 supt ‖σ(t, x) − σ(t, y)‖HS = 0, and for some c0 > 1 and for all

(t, x) ∈ R+ × Rd,

c−1
0 |ξ|2 6 |σ(t, x)ξ|2 6 c0|ξ|2, ∀ξ ∈ R

d,

where ‖ · ‖HS stands for the Hilbert-Schmidt norm of a matrix.

Our first main result in this paper is:

Theorem 1.1. Assume (Hσ) and ∇σ ∈ L̃p1
q1 , b ∈ L̃p2

q2 for some pi, qi ∈ [2,∞) with
d
pi

+ 2
qi
< 1, i = 1, 2, where L̃p

q is defined by (2.2) below. Then for each x ∈ Rd,

there is a unique strong solution Xt(x) for SDE (1.2). Moreover, Xt(x) enjoys the

following properties:
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(i) (Krylov’s estimate) For any p, q ∈ (1,∞) with d
p + 2

q < 2 and T > 0, there is

a constant C > 0 such that for all x ∈ Rd and 0 6 t0 < t1 6 T , f ∈ L̃p
q(t0, t1),

E

(∫ t1

t0

f(s,Xs(x))ds
∣∣∣Ft0

)
6 C|||f |||

L̃
p
q(t0,t1)

,

where ||| · |||
L̃
p
q(t0,t1)

is defined by (2.2) below.

(ii) (Weak differentiability) For each t > 0, the mapping x 7→ Xt(x) is almost

surely weak differentiable and for any T > 0 and p > 1,

sup
x∈Rd

E

(
sup

t∈[0,T ]

|∇Xt(x)|p
)
<∞. (1.4)

(iii) (Derivative formula) For any t > 0 and ϕ ∈ C1
b (R

d), it holds that for Lebesgue-

almost all x ∈ Rd,

∇Eϕ(Xt(x)) =
1

t
E

(
ϕ(Xt(x))

∫ t

0

σ−1(s,Xs(x))∇Xs(x)dWs

)
. (1.5)

Remark 1.2. As we mentioned before, when ∇σ, b ∈ Lp
q for some p, q ∈ (2,∞)

with d
p + 2

q < 1, the above theorem has been obtained in [22]. Notice that b ∈ L∞ is

not covered by [22]. The novelty of our result here is that we are considering some

localized L̃p
q-spaces so that we still have the global properties (1.4) and (1.5). In

particular, we extend the main results in [10,11,22] to more general cases, and our

proofs are much simpler than [10].

Let C be the space of all continuous functions from R+ to Rd endowed with

the usual Borel σ-field B(C), and ωt the canonical process over C. For t > 0, let

Bt := Bt(C) be the natural filtration generated by {ωs : s 6 t}. All the probability

measures over (C,B(C)) is denoted by P(C). We introduce the following notion of

martingale solutions.

Definition 1.3. Given (s, x) ∈ R+×Rd, we call a probability measure Ps,x ∈ P(C)

a martingale solution of SDE (1.2) with starting point (s, x) if Ps,x(ωt = x, t 6 s) =

1, and for all f ∈ C2
b (R

d), Mf
t is a Bt-martingale under Ps,x, where

Mf
t (ω) := f(ωt)− f(x)−

∫ t

s

L
σ,b
r f(ωr)dr, t > s,

and L σ,b
r is defined by (1.3). All the martingale solution Ps,x of SDE (1.2) with

starting point (s, x) and coefficients (σ, b) is denoted by M σ,b
s,x .

Our second main result is the following weak well-posedness of SDE (1.2) in the

endpoint case b ∈ L̃
d;uni
∞ (see (2.3) below for the definition of L̃d;uni

∞ ).

Theorem 1.4. Assume (Hσ) holds and b ∈ L̃d;uni
∞ . Then for each (s, x) ∈ R+×Rd,

there is a unique martingale solution Ps,x ∈ M σ,b
s,x for SDE (1.2) which satisfies that

for any p, q ∈ (1,∞) with d
p + 2

q < 2 and T > 0, there is a constant C > 0 such

that for all x ∈ Rd and s 6 t0 < t1 6 T , f ∈ L̃p
q(t0, t1),

E
Ps,x

(∫ t1

t0

f(r, ωr)dr
∣∣∣Bt0

)
6 C|||f |||

L̃
p
q(t0,t1)

. (1.6)
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The proof of our main results relies on the Lp
q -maximal regularity estimate for

the following second order parabolic PDE in R+ × Rd:

∂tu = aij∂i∂ju+ f, u(0) = 0, (1.7)

where a(t, x) : R+ × Rd → Rd ⊗ Rd is a symmetric matrix-valued Borel function

and satisfies

(Ha) lim|x−y|→0 supt∈R+
‖a(t, x)− a(t, y)‖HS = 0 and for some c0 > 1 and for all

(t, x) ∈ R+ × Rd,

c−1
0 |ξ|2 6 aij(t, x)ξiξj 6 c0|ξ|2, ∀ξ ∈ R

d. (1.8)

More precisely, for any p, q ∈ (1,∞), we want to establish the following estimate:

‖∂tu‖Lp
q(T ) + ‖∇2u‖Lp

q(T ) 6 C‖f‖Lp
q(T ). (1.9)

Such type of estimate has been used in [19] to study the strong well-posedness of

SDEs with Sobolev diffusion coefficients. Notice that when p = q, it is a standard

procedure to prove (1.9) by freezing coefficient argument (cf. [22]). While for p 6= q,

it is non-trivial. When aij is independent of x, (1.9) was first proved by Krylov in

[8]. In the spatial dependent case, Kim [5] showed (1.9) only for p 6 q. Here we

shall drop this restriction by a duality method. In particular, we need to treat the

adjoint equation of (1.7) in Sobolev spaces with negative differentiability index, see

Theorem 3.3 below, which is of independent interest. Moreover, we also show the

estimate (1.9) in localized space L̃
p
q(T ).

This paper is organized as follows: In Section 2, we collect some preliminary

tools. Section 3 is devoted to the study of Lp
q -maximal regularity estimate for second

order parabolic equations. In Section 4, we prove our main theorems. Throughout

this paper we shall use the following conventions:

• The letter C denotes a constant, whose value may change in different places.

• We use A . B and A ≍ B to denote A 6 CB and C−1B 6 A 6 CB for

some unimportant constant C > 0, respectively.

• For any ε ∈ (0, 1), we use A . εB +D to denote A 6 εB + CεD for some

constant Cε > 0.

• N0 := N ∪ {0}, R+ := [0,∞), a ∨ b := max(a, b), a ∧ b := min(a, b),

a+ := a ∨ 0.

• ∇x := ∂x := (∂x1 , · · · , ∂xd
), ∂i := ∂xi := ∂/∂xi.

2. Preliminaries

First of all, we introduce some spaces and notations for later use. For (α, p) ∈
R × (1,∞), let Hα,p := (I − ∆)−α/2

(
Lp(Rd)

)
be the usual Bessel potential space

with norm

‖f‖α,p := ‖(I−∆)α/2f‖p,
where ‖·‖p is the usual Lp-norm in Rd, and (I−∆)α/2f is defined through Fourier’s

transform

(I−∆)α/2f := F−1
(
(1 + | · |2)α/2Ff

)
.

Notice that for n ∈ N and p ∈ (1,∞), an equivalent norm in Hn,p is given by

‖f‖n,p = ‖f‖p + ‖∇nf‖p.
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Let χ ∈ C∞
c (Rd) be a smooth function with χ(x) = 1 for |x| 6 1 and χ(x) = 0 for

|x| > 2. For r > 0 and z ∈ Rd, define

χr(x) := χ(x/r), χz
r(x) := χr(x− z). (2.1)

Fix r > 0. We introduce the following localized Hα,p-space:

H̃α,p :=
{
f ∈ Hα,p

loc (R
d), |||f |||α,p := sup

z
‖χz

rf‖α,p <∞
}
.

For T > 0, p, q ∈ (1,∞) and α ∈ R, we also define space-time function space

L
p
q(T ) := Lq

(
[0, T ];Lp

)
, H

α,p
q (T ) := Lq

(
[0, T ];Hα,p

)
,

and the localized space H̃α,p
q (T ) with norm

|||f |||
H̃

α,p
q (T ) := sup

z∈Rd

‖χz
rf‖Hα,p

q (T ) <∞. (2.2)

For q = ∞ and p ∈ [1,∞), we define L̃p;uni
∞ (T ) being all the functions f ∈ L̃p

∞(T )

with

lim
ε→0

sup
t∈[0,T ]

|||f(t, ·) ∗ ρε − f(t, ·)|||p =: lim
ε→0

κfT (ε) = 0, (2.3)

where (ρε)ε∈(0,1) is a family of mollifiers in R
d. For simplicity we shall write

H∞,p := ∩α>0H
α,p, H̃

α,p
q := ∩T>0H̃

α,p
q (T ), L̃

p
q := ∩T>0L̃

p
q(T ).

It is not hard to show that the definitions of H̃α,p and H̃α,p
q (T ) do not depend on

the choice of r and χ. In fact, we can prove that for any r, r′ > 0 (cf. [24]),

sup
z∈Rd

‖χz
rf‖Hα,p

q (T ) ≍ sup
z∈Rd

‖χz
r′f‖Hα,p

q (T ). (2.4)

Notice that

Lq([0, T ]; H̃α,p) ⊂ H̃
α,p
q (T ).

Now we list some easy properties about space H̃α,p
q (T ) for later use.

• The following Sobolev embedding holds: For any α > 0 , p, q ∈ [1,∞) and

p′ ∈ [p, pd
d−pα1pα<d +∞ · 1pα>d], there is a constant C > 0 such that

|||f |||
L̃
p′
q (T )

6 C|||f |||
H̃

α,p
q (T ). (2.5)

• For any f ∈ H̃α,p
q , it holds that for any T,R > 0 (cf. [24, Proposition 4.1]),

sup
ε

|||fε|||H̃α,p
q (T ) 6 C|||f |||

H̃
α,p
q (T ), lim

ε→0
|||(fε − f)χR|||H̃α,p

q (T ) = 0, (2.6)

where fε := f ∗ ρε is the usual mollifying approximation of f .

• Let p, q ∈ [2,∞) satisfy d
p + 2

q < 2. If u ∈ H̃2,p
q (T ) and ∂tu ∈ L̃p

q(T ), then

u ∈ C([0, T ]× Rd) (cf. [9, Lemma 10.2]).

For R ∈ (0,∞), we define the local Hardy-Littlewood maximal function by

MRf(x) := sup
r∈(0,R)

1

|Br|

∫

Br

f(x+ y)dy,

where Br := {x ∈ Rd : |x| < r} is the ball in Rd. We have the following results (cf.

[14] or [21]).
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Lemma 2.1. (i) For any R > 0, there exists a constant C = C(d,R) > 0 such that

for any f ∈ L∞(Rd) with ∇f ∈ L1
loc(R

d) and Lebesgue-almost all x, y ∈ Rd,

|f(x)− f(y)| 6 C|x− y|(MR|∇f |(x) +MR|∇f |(y) + ‖f‖∞). (2.7)

(ii) For any p > 1, q > 1 and R > 0, there is a constant C = C(R, d, p) > 0 such

that for all f ∈ L̃p
q(T ),

|||MRf |||L̃p
q(T ) 6 C|||f |||

L̃
p
q (T ). (2.8)

Proof. (i) If |x− y| 6 R, then by [21, Lemma 5.4] we have

|f(x) − f(y)| 6 C|x− y|(MR|∇f |(x) +MR|∇f |(y)).
If |x− y| > R, then

|f(x) − f(y)| 6 2|x− y| ‖f‖∞/R.
Thus (2.7) is true.

(ii) Noticing that for |y| 6 R, χR(x) = χR(x)χ3R(x+ y), by definition we have

‖χz
RMRfs‖pp =

∫

Rd

∣∣∣∣∣χR(x) sup
r∈(0,R)

1

|Br|

∫

Br

fs(x+ z + y)dy

∣∣∣∣∣

p

dx

6

∫

Rd

(
sup

r∈(0,R)

1

|Br|

∫

Br

χ3R(x+ y)|fs|(x + z + y)|dy
)p

dx

6 C‖χ3R · fs(·+ z)‖pp = C‖χz
3Rfs‖pp,

which in turn gives (2.8) by (2.4). �

The following freezing lemma is taken from [23, Lemma 4.1].

Lemma 2.2. Let φ be a nonzero smooth function with compact support. Define

φz(x) := φ(x − z). For any α ∈ R and p ∈ (1,∞), there exists a constant C > 1

depending only on α, p, φ such that for all f ∈ Hα,p,

C−1‖f‖α,p 6

(∫

Rd

‖φzf‖pα,pdz
)1/p

6 C‖f‖α,p. (2.9)

The following lemma was proven in [8] (see also [5, Lemma 2.5]).

Lemma 2.3. For k = 1, · · · , n, let ak : R → Rd⊗Rd be a measurable function and

satisfy that for some c0 > 1,

c−1
0 |ξ|2 6 aijk (t)ξiξj 6 c0|ξ|2, ∀(t, ξ) ∈ R× R

d,

For fixed α ∈ R, p ∈ (1,∞) and λ > 0, let uk ∈ Hα,p
p solve the following PDE in

the distributional sense:

∂tuk = aijk ∂ijuk − λuk + fk, u(0) = 0.

Then for any T > 0, there is a constant N = N(d, α, p, n, c0) > 0 independent of

T, λ such that
∫ T

0

n∏

k=1

‖∇2uk(t)‖pα,pdt 6 N

n∑

k=1

∫ T

0

‖fk‖pα,p
∏

ℓ 6=k

‖∇2uℓ(t)‖pα,pdt.
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3. L̃p
q-maximal regularity estimate for parabolic equations

Consider the following second order parabolic PDE in R+ × Rd:

∂tu = aij∂i∂ju+ bi∂iu− λu+ f, u(0) = 0, (3.1)

where λ > 0, a(t, x) : R+ × Rd → Rd ⊗ Rd and b(t, x) : R+ × Rd → Rd are Borel

measurable functions. The main aim of this section is to establish the following

L̃p
q-maximal regularity estimate for the above equation.

Theorem 3.1. Let p, q ∈ (1,∞). Assume (Ha) and one of the following conditions

holds:

(i) (Subcritical case) d
p + 2

q < 1 and for any T > 0, |||b|||
L̃
p
q(T ) 6 κbT <∞;

(ii) (Critical case) p ∈ (1, d) and b ∈ L̃d;uni
∞ .

Then for any f ∈ L̃p
q and λ > 1, there exists a unique strong solution u ∈ H̃2,p

q to

PDE (3.1), that is, for all t > 0 and Lebesgue almost all x ∈ Rd,

u(t, x) =

∫ t

0

(aij∂i∂j)u(s, x)ds+

∫ t

0

(bi∂iu)(s, x)ds− λ

∫ t

0

u(s, x)ds+

∫ t

0

f(s, x)ds.

Moreover, for any T > 0 and α ∈ [0, 2− 2
q ), there is a constant C > 0 only depending

on α, p, q, d, c0, T and the continuity modulus of a, as well as κbT in case (i), and

κbT (ε) in case (ii), where κbT (ε) is defined by (2.3), such that for any λ > 1,

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q (T ) 6 C|||f |||

L̃
p
q (T ). (3.2)

Remark 3.2. In critical case (ii), if b(t, x) = b(x) ∈ Ld(Rd) is time-independent,

then b ∈ L̃d;uni
∞ .

3.1. Smooth a and f . In this subsection, we study PDE (3.1) with b ≡ 0 and a

smooth enough, that is, a satisfies (Ha) and for all m ∈ N,

‖∇maij‖∞ <∞,

where ∇m stands for the m-order gradient. Given s < t, λ > 0 and ϕ, ψ ∈ C∞
b (Rd),

consider the following forward heat equation

∂tu = aij∂iju− λu, u(s) = ϕ, (3.3)

and backward (adjoint) heat equation

∂sw = λw − ∂ij(a
ijw), w(t) = ψ. (3.4)

Let u(t) and w(s) be the unique solutions of (3.3) and (3.4) respectively. We shall

simply write

Ts,tϕ := u(t), T ∗
s,tψ := w(s).

In other words, we have

∂tTs,tϕ = aij∂ijTs,tϕ− λTs,tϕ, ∂sT ∗
s,tψ = λT ∗

s,tψ − ∂ij(a
ijT ∗

s,tψ).

Le p > 1. By the chain rule and above equations, it is easy to see that for any

ϕ, ψ ∈ H∞,p ⊂ C∞
b (Rd),

〈Ts,tϕ, ψ〉 − 〈ϕ, T ∗
s,tψ〉 =

∫ t

s

dr〈Ts,rϕ, T ∗
r,tψ〉 = 0,
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where 〈f, g〉 :=
∫
Rd f(x)g(x)dx, which means that

〈Ts,tϕ, ψ〉 = 〈ϕ, T ∗
s,tψ〉. (3.5)

Fix T > 0 and p, q > 1. For f ∈ L
q
T (H

∞,p) := Lq([0, T ];H∞,p), define

u(t, x) :=

∫ t

0

Ts,tf(s, x)ds, w(s, x) :=

∫ T

s

T ∗
s,tf(t, x)dt. (3.6)

It is well known that u solves the following forward equation

∂tu = aij∂iju− λu+ f, u(t)|t60 = 0, (3.7)

and w solves the following backward equation

∂sw = λw − ∂ij(a
ijw)− f, w(s)|s>T = 0. (3.8)

We first prove the following a priori estimates by duality.

Theorem 3.3. Under (Ha), for any p, q ∈ (1,∞) and T > 0, there is a constant

C > 0 only depending on T, d, p, q, c0 and the continuity modulus of a such that for

any f ∈ L
q
T (H

∞,p) and λ > 0,

‖∇2uλ‖Lp
q(T ) 6 C‖f‖Lp

q(T ), (3.9)

‖∇2wλ‖H−2,p
q (T ) 6 C‖f‖

H
−2,p
q (T ), (3.10)

where uλ and wλ are solutions of (3.7) and (3.8), respectively. Moreover, for any

α ∈ [0, 2− 2
q ), we also have

‖uλ‖Hα,p
∞ (T ) 6 C(1 ∨ λ)α

2 −1+ 1
q ‖f‖Lp

q(T ), (3.11)

‖wλ‖Hα−2,p
∞ (T ) 6 C(1 ∨ λ)α

2 −1+ 1
q ‖f‖

H
−2,p
q (T ). (3.12)

Proof. For simplicity of notations, we drop the subscript λ and divide the proof

into five steps.

(i) We first claim that it suffices to prove (3.9) and (3.10) for p 6 q. Indeed, suppose

that q < p and let

r := p
p−1 < θ := q

q−1 .

By duality (3.5) and Hölder’s inequality, we have

‖∇2u‖Lp
q(T )

(3.6)
= sup

g∈L∞

T (C∞

c ),‖g‖Lr
θ
(T )61

∫ T

0

∫

Rd

(∫ t

0

Ts,tf(s, x)ds
)
∇2g(t, x)dxdt

= sup
g∈L∞

T (C∞

c ),‖g‖Lr
θ
(T )61

∫ T

0

∫ t

0

(∫

Rd

Ts,tf(s, x)∇2g(t, x)dx

)
dsdt

(3.5)
= sup

g∈L∞

T (C∞

c ),‖g‖Lr
θ
(T )61

∫ T

0

∫ t

0

(∫

Rd

f(s, x)T ∗
s,t∇2g(t, x)dx

)
dsdt

= sup
g∈L∞

T (C∞

c ),‖g‖Lr
θ
(T )61

∫ T

0

∫

Rd

f(s, x)

(∫ T

s

T ∗
s,t∇2g(t, x)dt

)
dxds

6 C sup
g∈L∞

T (C∞

c ),‖g‖Lr
θ
(T )61

‖f‖Lp
q(T )‖∇2g‖

H
−2,r
θ

(T ) 6 C‖f‖Lp
q(T ),

where the first inequality is due to (3.10) for p = r < θ = q.
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(ii) We only prove (3.10) and (3.12) for p 6 q since (3.9) and (3.11) are similar. By

Marcinkiewicz’s interpolation theorem (see [14]), it suffices to prove that for any

p > 1 and n ∈ N,
∥∥∇2w

∥∥
H

−2,p
np (T )

6 C‖f‖
H

−2,p
np (T ). (3.13)

Below we fix p > 1 and n ∈ N, and use the freezing coefficient argument to prove

(3.13). Let ζ be a nonnegative smooth function with support in the ball Bδ and∫
Rd ζ

pdx = 1, where δ > 0 is a small constant and will be determined below. For

z ∈ Rd, define

ζz(x) := ζ(x − z), az(s) := a(s, z)

and

wz(s, x) := w(s, x)ζz(x), fz(s, x) := f(s, x)ζz(x).

It is easy to see that

∂swz + ∂ij(a
ij
z wz)− λwz + gz = 0, wz(T ) = 0, (3.14)

where

gz := fz + ∂ij(a
ijw)ζz − ∂ij(a

ij
z wζz).

Moreover, by Fubini’s theorem and
∫
Rd ζ

p = 1, we have
∫

Rd

‖wz(s)‖ppdz =
∫

Rd

‖w(s)ζz‖ppdz = ‖w(s)‖pp. (3.15)

Below we drop the time variable for simplicity. Noticing that

gz = fζz − 2∂j(a
ijw)∂iζz − aijw∂ijζz + ∂ij((a

ij − aijz )wζz),

and by Lemma 2.2 with φz = ζz , ∂iζz , ∂ijζz respectively, we have

(∫

Rd

‖gz‖p−2,pdz

)1/p

6 C‖f‖−2,p + Cδ

∑

i,j

‖∂j(aijw)‖−2,p

+ Cδ

∑

i,j

‖aijw‖−2,p + ωa(δ)‖w‖p,
(3.16)

where

ωa(δ) := sup
t>0

sup
|x−y|6δ

|a(t, x)− a(t, y)|.

Let an(t, x) := a(t, ·)∗ρn(x) be the mollifying approximation of a. For every ε > 0,

we can take n large enough such that
∑

i,j

‖∂j(aijw)‖−2,p +
∑

i,j

‖aijw‖−2,p

. ‖aw‖−1,p 6 ‖anw‖−1,p + ‖(an − a)w‖−1,p

. ‖an‖2,∞‖w‖−1,p + ‖(an − a)w‖p
6 Cn‖w‖−1,p + ωa(

1
n )‖w‖p

. ‖w‖−2,p + ε‖w‖p,
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where the last step is due to the interpolation and Young’s inequalities. Hence, by

(3.16), for any ε ∈ (0, 1) and δ > 0 being small enough,

(∫

Rd

‖gz‖p−2,pdz

)1/p

. ‖f‖−2,p + ‖w‖−2,p + ε‖w‖p. (3.17)

(iii) For any s ∈ [0, T ], notice that by Lemma 2.2 again,

‖∇2w‖np
H

−2,p
np (s,T )

.

∫ T

s

(∫

Rd

‖∇2w(t)ζz‖p−2,pdz

)n

dt

.

∫ T

s

(∫

Rd

‖∇2(w(t)ζz)‖p−2,pdz

)n

dt

+

∫ T

s

(∫

Rd

‖∇w(t) · ∇ζz‖p−2,pdz

)n

dt

+

∫ T

s

(∫

Rd

‖w(t) · ∇2ζz‖p−2,pdz

)n

dt

.

∫ T

s

(∫

Rd

‖∇2wz(t)‖p−2,pdz

)n

dt

+

∫ T

s

‖∇w(t)‖np−2,pdt+

∫ T

s

‖w(t)‖np−2,pdt

.

∫ T

s

∫

Rnd

n∏

k=1

‖∇2wzk(t)‖p−2,pdz1 · · · dzndt

+

∫ T

s

‖w(t)‖np−1,pdt. (3.18)

Given z1, · · · , zn ∈ Rd and by Lemma 2.3, we have

∫ T

s

n∏

k=1

‖∇2wzk(t)‖p−2,pdt 6 N

n∑

k=1

∫ T

s

‖gzk(t)‖p−2,p

∏

ℓ 6=k

‖∇2wzℓ(t)‖p−2,pdt,

which together with (3.18) and (3.17) yields that for any ε ∈ (0, 1),

‖∇2w‖np
H

−2,p
np (s,T )

.

n∑

k=1

∫ T

s

∫

Rnd

‖gzk(t)‖p−2,p

∏

ℓ 6=k

‖wzℓ(t)‖ppdz1 · · · dzndt+ ‖w‖np
H

−1,p
np (s,T )

= n

∫ T

s

(∫

Rd

‖gz(t)‖p−2,pdz

)(∫

Rd

‖wz(t)‖ppdz
)n−1

dt+ ‖w‖np
H

−1,p
np (s,T )

(3.15)
= n

∫ T

s

(∫

Rd

‖gz(t)‖p−2,pdz

)
‖w(t)‖(n−1)p

p dt+ ‖w‖np
H

−1,p
np (s,T )

(3.17)

. ‖f‖np
H

−2,p
np (s,T )

+ ‖w‖np
H

−2,p
np (s,T )

+ ε‖∇2w‖np
H

−2,p
np (s,T )

,

where the last step is due to Hölder’s inequality and interpolation’s inequality.

Taking ε = 1/2, we get for any s ∈ [0, T ],

‖∇2w‖np
H

−2,p
np (s,T )

. ‖f‖np
H

−2,p
np (s,T )

+ ‖w‖np
H

−2,p
np (s,T )

. (3.19)
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(iv) Let Az
s,t :=

∫ t

s
az(r)dr and

P z
s,tf(x) :=

1

(2π)d/2 det(Az
s,t)

1/2

∫

Rd

e−〈(Az
s,t)

−1y,y〉/2f(x− y)dy.

Notice that the solution of equation (3.14) is explicitly given by

wz(s, x) =

∫ T

s

eλ(s−t)P z
s,tgz(t, x)dt.

By (1.8) and a standard interpolation technique, one sees that for any α ∈ [0, 2),

there is a constant C = C(α, d, p, c0) > 0 such that for all z ∈ R
d,

‖wz(s)‖α−2,p 6 C

∫ T

s

eλ(s−t)

(t− s)α/2
‖gz(t)‖−2,pdt.

Thus, for any α ∈ [0, 2), by (2.9) and Minkowski’s inequality we have

‖w(s)‖α−2,p .

(∫

Rd

‖wz(s)‖pα−2,pdz

) 1
p

6

∫ T

s

eλ(s−t)

(t− s)α/2

(∫

Rd

‖gz(t)‖p−2,pdz

) 1
p

dt

(3.17)

6

∫ T

s

eλ(s−t)

(t− s)α/2

(
‖f(t)‖−2,p + ‖w(t)‖−2,p + ‖∇2w(t)‖−2,p

)
dt. (3.20)

Now by (3.20) with α = 0 and (3.19) with n = 1, we have

‖w(s)‖p−2,p .

∫ T

s

(
‖f(t)‖p−2,p + ‖w(t)‖p−2,p + ‖∇2w‖p−2,p

)
dt

.

∫ T

s

(
‖f(t)‖p−2,p + ‖w(t)‖p−2,p

)
dt.

which by Gronwall’s inequality yields

‖w‖p
H

−2,p
∞ (T )

= sup
s∈[0,T ]

‖w(s)‖p−2,p . ‖f‖p
H

−2,p
p (T )

. ‖f‖p
H

−2,p
np (T )

.

Substituting this into (3.19) with s = 0 and noting ‖w‖
H

−2,p
np (T ) . ‖w‖

H
−2,p
∞ (T ), we

obtain (3.13).

(v) Finally, letting q′ = q
q−1 , for any α ∈ [0, 2− 2

q ), by (3.20) and Hölder’s inequality,

we have

‖w(s)‖qα−2,p .

(∫ T

s

eq
′λ(s−t)

(t− s)
q′α
2

dt

) q

q′∫ T

s

(
‖f(t)‖−2,p + ‖w(t)‖−2,p + ‖w(t)‖p

)q
dt

. (1 ∨ λ)(α
2 −1+ 1

q )q

∫ T

s

(
‖f(t)‖q−2,p + ‖w(t)‖q−2,p + ‖∇2w(t)‖q−2,p

)
dt

(3.9)

. (1 ∨ λ)(α
2 −1+ 1

q )q

(
‖f‖q

H
−2,p
q (T )

+

∫ T

s

‖w(t)‖q−2,pdt

)
, (3.21)

which yields by choosing α = 0 and Gronwall’s inequality that

‖w‖q
H

−2,p
∞ (T )

= sup
s∈[0,T ]

‖w(s)‖q−2,p . ‖f‖q
H

−2,p
q (T )

.

The proof is complete by substituting this into (3.21). �
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3.2. Proof of Theorem 3.1. By standard continuity method (cf. [7]), it suffices

to establish the a priori estimate (3.2). We divide the proof into three steps.

(i) (Case b ≡ 0) Fix T > 0 and p, q ∈ (1,∞). Let u ∈ H2,p
q (T ) and f ∈ Lp

q(T )

satisfy (3.1). Let ρn be a family of mollifiers in Rd. Define

un(t, x) := u(t, ·) ∗ ρn(x), an(t, x) := a(t, ·) ∗ ρn(x), fn(t, x) := f(t, ·) ∗ ρn(x).
It is easy to see that un satisfies

∂tun = aijn ∂ijun − λun + gn, un(0) = 0,

where

gn := fn + (aij∂iju) ∗ ρn − aijn ∂ijun.

Since an satisfies (Ha) uniformly in n and gn ∈ L
q
T (H

∞,p), for any α ∈ [0, 2− 2
q ),

by (3.7), (3.9) and (3.11), there is a C > 0 such that for each n ∈ N and λ > 1,

λ1−
α
2 − 1

q ‖un‖Hα,p
∞ (T ) + ‖∂tun‖Lp

q(T ) + ‖∇2un‖Lp
q(T )

6 C
(
‖fn‖Lp

q(T ) + ‖(aij∂iju) ∗ ρn − aijn ∂ijun‖Lp
q(T )

)
.

Letting n→ ∞ and by the property of convolutions, we obtain

λ1−
α
2 − 1

q ‖u‖Hα,p
∞ (T ) + ‖∂tu‖Lp

q(T ) + ‖∇2u‖Lp
q(T ) 6 C‖f‖Lp

q(T ). (3.22)

Next, let χz
r be defined by (2.1). Multiplying both sides of (3.1) by χz

r , we have

∂t(uχ
z
r) = aij∂ij(uχ

z
r)− λuχz

r + gzr ,

where

gzr := fχz
r + χz

ra
ij∂iju− aij∂ij(uχ

z
r).

For any α ∈ [0, 2− 2
q ), by (3.22) we have

λ1−
α
2 − 1

q ‖uχz
r‖Hα,p

∞ (T ) + ‖∂tuχz
r‖Lp

q(T ) + ‖∇2(uχz
r)‖Lp

q(T ) . ‖gzr‖Lp
q(T ).

Noticing that

aij∂ij(uχ
z
r)− χz

ra
ij∂iju = aiju∂ijχ

z
r + 2aij∂iu∂jχ

z
r ,

we have

‖gzr‖Lp
q(T ) . ‖fχz

r‖Lp
q(T ) + ‖uχz

2r‖Lp
q(T ) + ‖∇u · χz

2r‖Lp
q(T ).

Hence, for any α ∈ [0, 2 − 2
q ) and ε ∈ (0, 1), by taking supremum in z ∈ Rd and

using (2.4), we obtain that for all λ > 1,

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q (T )

. |||f |||
L̃
p
q(T ) + |||u|||

L̃
p
q(T ) + |||u|||

H̃
1,p
q (T ) . |||f |||

L̃
p
q (T ) + |||u|||

L̃
p
q(T ) + ε|||u|||

H̃
2,p
q (T ),

which implies by taking ε = 1/2 that

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q (T ) . |||f |||

L̃
p
q(T ) + |||u|||

L̃
p
q(T ).

In particular, for α = 0, we have

|||u(T )|||p . |||f |||
L̃
p
q(T ) +

(∫ T

0

|||u(s)|||qpds
)1/q

.
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By Gronwall’s inequality again, we obtain

|||u|||
L̃
p
∞(T ) 6 C|||f |||

L̃
p
q (T ),

and so, for any α ∈ [0, 2− 2
q ),

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q (T ) . |||f |||

L̃
p
q(T ). (3.23)

(ii) (b 6= 0: subcritical case) Let q1 ∈ ( 2p
p−d , q] and λ > 1. For any α ∈ [0, 2 − 2

q1
),

by (3.23), we have

λ1−
α
2 − 1

q1 |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q1

(T )

. |||f + bi∂iu|||L̃p
q1

(T ) 6 |||f |||
L̃
p
q1

(T ) + |||bi∂iu|||L̃p
q1

(T ). (3.24)

Let 1
q2

+ 1
q = 1

q1
. For any θ ∈ (dp , 1 − 2

q1
), by Hölder’s inequality and Sobolev’s

embedding (2.5), we have

|||bi∂iu|||L̃p
q1

(T ) 6 |||b|||
L̃
p
q (T )|||u|||H̃1,∞

q2
(T ) . |||u|||

H̃
1+θ,p
q2

(T ). (3.25)

Substituting this into (3.24) with α = 1 + θ, we get

λ
1
2−

θ
2−

1
q1 |||u|||

H̃
1+θ,p
∞ (T ) 6 C|||f |||

L̃
p
q1

(T ) + |||u|||
H̃

1+θ,p
q2

(T ).

In particular, if q1 < q, then q2 <∞ and by Gronwall’s inequality again, we obtain

|||u|||
H̃

1+θ,p
∞ (T ) 6 C|||f |||

L̃
p
q1

(T ) 6 C|||f |||
L̃
p
q(T ). (3.26)

The desired estimate now follows by (3.24), (3.25) with q1 = q and (3.26).

(iii) (b 6= 0: critical case) Let bn(t, x) := b(t, ·) ∗ ρ1/n(x). Since b ∈ L̃d;uni
∞ , by

definition (2.3) we have

lim
n→∞

sup
t∈[0,T ]

|||bn(t)− b(t)|||d = 0.

Let p < d and q ∈ (1,∞). For any ε ∈ (0, 1), by Sobolev’s embedding (2.5) and

letting n be large enough so that supt∈[0,T ] |||bn(t)− b(t)|||d 6 ε, we have

|||bi∂iu|||L̃p
q(T ) 6 |||(bin − bi)∂iu|||L̃p

q(T ) + |||bin∂iu|||L̃p
q(T )

6 sup
t∈[0,T ]

|||bn(t)− b(t)|||d|||∇u|||
L̃
pd/(d−p)
q (T )

+ ‖bn‖∞|||u|||
H̃

1,p
q (T )

6 ε|||u|||
H̃

2,p
q (T ) + C‖bn‖∞|||u|||1/2

L̃
p
q(T )

|||u|||1/2
H̃

2,p
q (T )

6 2ε|||u|||
H̃

2,p
q (T ) + C‖bn‖2∞|||u|||

L̃
p
q(T ).

Hence, for any α ∈ [0, 2− 2
q ), by (3.24) with q1 = q, we have

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||∂tu|||L̃p

q(T ) + |||u|||
H̃

2,p
q (T ) . |||f |||

L̃
p
q(T ) + ε|||u|||

H̃
2,p
q (T ) + |||u|||

L̃
p
q(T ),

which implies by taking ε = 1/2,

λ1−
α
2 − 1

q |||u|||
H̃

α,p
∞ (T ) + |||u|||

H̃
2,p
q (T ) . |||f |||

L̃
p
q (T ) + |||u|||

L̃
p
q(T ).

As above, by Gronwall’s inequality, we obtain the desired estimate.
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4. Subcritical case: Proof of Theorem 1.1

In this section we assume (Hσ) holds and for some pi, qi ∈ [2,∞) with d
pi
+ 2

qi
< 1,

i = 1, 2,

∇σ ∈ L̃
p1
q1 , b ∈ L̃

p2
q2 .

It is easy to see that (Ha) holds for

aij := σikσjk/2.

We prepare the following crucial lemma for latter use.

Lemma 4.1. Let Xt(x) be a solution of SDE (1.2) and p, q ∈ (1,∞) with d
p+

2
q < 2.

(i) (Krylov’s estimate) For any T > 0, there is a constant C > 0 such that for

any f ∈ L̃p
q(T ) and x ∈ Rd, 0 6 t0 < t1 6 T ,

E

(∫ t1

t0

f(s,Xs(x))ds
∣∣∣Ft0

)
6 C|||f |||

L̃
p
q(t0,t1)

. (4.1)

(ii) (Khasminskii’s estimate) For any γ ∈ R and f ∈ L̃p
q(T ), we have

E exp

(
γ

∫ T

0

|f(s,Xs)|ds
)
<∞. (4.2)

(iii) (Generalized Itô’s formula) Let p′, q′ ∈ [2,∞) with d
p′

+ 2
q′ < 1. For any

u ∈ H̃
2,p′

q′ (T ) with ∂tu ∈ L̃
p′

q′ (T ), we have

u(t,Xt) = u(0, x) +

∫ t

0

(∂su+ aij∂i∂ju+ bi∂iu)(s,Xs)ds

+

∫ t

0

(σij∂iu)(s,Xs)dW
j
s .

(4.3)

Proof. (i) By (3.2) and using completely the same argument as in [19, Theorem

5.7], we can prove the Krylov estimate (4.1).

(ii) Since d
p + 2

q < 2, we can choose q′ < q so that d
p + 2

q′ < 2. Thus by (4.1) and

Hölder’s inequality we have

E

(∫ t1

t0

f(s,Xs(x))ds
∣∣∣Ft0

)
6 C|||f |||

L̃
p

q′
(t0,t1)

6 C(t1 − t0)
1− q′

q |||f |||
L̃
p
q(T ),

which implies (4.2) by [19, Lemma 3.5].

(iii) Let un = (u ∗ ρn)(t, x) be the mollifying approximation. By Itô’s formula we

have

un(t,Xt) = un(0, X0) +

∫ t

0

(∂sun + aij∂ijun + bi∂iun)(s,Xs)ds

+

∫ t

0

(σij∂iun)(s,Xs)dW
j
s .

(4.4)

For R > 0, define a stopping time

τR := inf{t > 0 : |Xt| > R}.



Lq(Lp)-THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS 15

Let χR be defined by (2.1). By Itô’s isometric formula, we have

E

∣∣∣∣
∫ t∧τR

0

(σij∂i(un − u))(s,Xs)dW
j
s

∣∣∣∣
2

6 ‖σ‖2∞E

(∫ t∧τR

0

|∇(un − u)|2(s,Xs)ds

)

. E

(∫ t

0

χ2
R(Xs) · |∇(un − u)|2(s,Xs)ds

)

(4.1)

. |||χ2
R|∇(un − u)|2|||

L̃
p′/2

q′/2
(T )

= |||χR∇(un − u)|||2
L̃
p′

q′
(T )
,

which converges to zero by (2.6) as n→ ∞. Similarly, let 1
p := 1

p2
+ 1

p′
, 1
q := 1

q2
+ 1

q′ .

Since d
p + 2

q < 2, by (4.1) and Hölder’s inequality we have

E

(∫ t∧τR

0

|bi∂i(un − u)|(s,Xs)ds

)
6 E

(∫ t

0

χR(Xs) · |bi∂i(un − u)|(s,Xs)ds

)

. |||χRb
i∂i(un − u)|||

L̃
p
q(T ) 6 |||b|||

L̃
p2
q2

(T )|||χ2R∇(un − u)|||
L̃
p′

q′
(T )

n→∞→ 0,

and

lim
n→∞

E

(∫ t∧τR

0

|(∂s + aij∂i∂j)(un − u)|(s,Xs)ds

)
= 0.

By taking limits n→ ∞ for both sides of (4.4), we get on {t 6 τR},

u(t,Xt) = u(0, X0)+

∫ t

0

(∂su+a
ij∂i∂ju+ b

i∂iu)(s,Xs)ds+

∫ t

0

(σij∂iu)(s,Xs)dW
j
s .

Finally, letting R → ∞, we obtain the desired formula. �

Below, we fix a T > 0. Consider the following backward PDE:

∂tu+ aij∂i∂ju− λu+ bi∂iu+ b = 0, u(T ) = 0.

By Theorem 3.1, there is a unique solution u ∈ H̃2,p2
q2 (T ) such that for any α ∈

[0, 2− 2
q2
) and λ > 1,

λ1−
α
2 − 1

q2 |||u|||
H̃

α,p2
∞ (T ) + |||∂tu|||L̃p2

q2
(T ) + |||u|||

H̃
2,p2
q2

(T )
6 C|||b|||

L̃
p2
q2

(T ).

In particular, since d
p2

+ 2
q2
< 1, by (2.5) one can choose λ large enough so that

‖u‖∞ + ‖∇u‖∞ 6 1
2 . (4.5)

Define

Φ(t, x) := x+ u(t, x).

By (4.5), one sees that x 7→ Φ(t, x) is a C1-diffeomorphism and

‖∇Φ‖∞, ‖∇Φ−1‖∞ 6 2.

Moreover, we also have

∂tΦ + aij∂i∂jΦ+ bi∂iΦ = λu.

Define

σ̃(t, y) := (σij∂iΦ)(t,Φ
−1(t, y))
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and

b̃(t, y) := λu(t,Φ−1(t, y)).

By the generalized Itô formula (4.3), we have the following Zvonkin’s transformation

(see [19, Theorem 3.10]).

Lemma 4.2. Xt solves SDE (1.2) if and only if Yt = Φ(t,Xt) solves the following

SDE:

Yt = y +

∫ t

0

b̃(s, Ys)ds+

∫ t

0

σ̃(s, Ys)dWs with y := Φ(0, x). (4.6)

Now we can use the above lemma to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2, it suffices to show the conclusions for SDE

(4.6). Since the coefficients of SDE (4.6) are bounded and continuous, the existence

of a solution Yt is well known. By Yamada-Watanabe’s theorem, we only need to

prove the pathwise uniqueness for (4.6) and show (i)-(iii) for Y .

(i) is proven in Lemma 4.1.

(ii) For i = 1, 2, let Y
(i)
t be two solutions of SDE (4.6) with starting point yi, that

is,

Y
(i)
t = yi +

∫ t

0

b̃(s, Y (i)
s )ds+

∫ t

0

σ̃(s, Y (i)
s )dWs.

For p > 1, by Itô’s formula we have

|Y (1)
t − Y

(2)
t |2p = |y1 − y2|2p +

∫ t

0

|Y (1)
s − Y (2)

s |2pdAs +Mt, (4.7)

where Mt is a continuous local martingale given by

Mt :=

∫ t

0

2p|Zs|2p−2
[
σ̃(s, Y (1)

s )− σ̃(s, Y (2)
s )

]∗
(Y (1)

s − Y (2)
s )dWs,

where the asterisk stands for the transpose of a matrix, and At is defined by

At :=

∫ t

0

2p〈Y (1)
s − Y

(2)
s , b̃(s, Y

(1)
s )− b̃(s, Y

(2)
s )〉+ p‖σ̃(s, Y (1)

s )− σ̃(s, Y
(2)
s )‖2

|Y (1)
s − Y

(2)
s |2

ds

+

∫ t

0

2p(p− 1)|[σ̃(s, Y (1)
s )− σ̃(s, Y

(2)
s )]∗(Y

(1)
s − Y

(2)
s )|2

|Y (1)
s − Y

(2)
s |4

ds.

Notice that by Lemma 2.1,

|σ̃(s, x) − σ̃(s, y)| 6 C|x− y|
(
M1|∇σ̃(s, ·)|(x) +M1|∇σ̃(s, ·)|(y) + ‖σ̃‖∞

)
,

|̃b(s, x)− b̃(s, y)| 6 C|x− y|
(
M1|∇b̃(s, ·)|(x) +M1|∇b̃(s, ·)|(y) + ‖b̃‖∞

)
.
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Thus, by the definitions of b̃ and σ̃ we have

|At| .
∫ t

0

(
M1|∇b̃|(s, Y (1)

s ) +M1|∇b̃|(s, Y (2)
s ) + ‖b̃‖∞

)
ds

+

∫ t

0

(
M1|∇σ̃|2(s, Y (1)

s ) +M1|∇σ̃|2(s, Y (2)
s ) + ‖σ̃‖2∞

)
ds

+

∫ t

0

(
M1|∇σ̃|(s, Y (1)

s ) +M1|∇σ̃|(s, Y (2)
s ) + ‖σ̃‖∞

)
ds

. t
(
‖∇b̃‖∞ + ‖b̃‖∞ + ‖σ̃‖2∞ + ‖σ̃‖∞ + 1

)

+

∫ t

0

(
M1|∇σ|2(s, Y (1)

s ) +M1|∇σ|2(s, Y (2)
s )

)
ds

+

∫ t

0

(
M1|∇2u|2(s, Y (1)

s ) +M1|∇2u|2(s, Y (2)
s )

)
ds,

where we have used that |∇σ̃|(s, x) . |∇σ|(s, x) + |∇2u|(s, x).
On the other hand, by (2.8) we have

|||M1|∇σ|2|||
L̃
p1/2

q1/2
(T )

6 C||| |∇σ|2|||
L̃
p1/2

q1/2
(T )

= C|||∇σ|||2
L̃
p1
q1

(T )
<∞,

and

|||M1|∇2u|2|||
L̃
p2/2

q2/2
(T )

6 C||| |∇2u|2|||
L̃
p2/2

q2/2
(T )

= C|||∇2u|||2
L̃
p2
q2

(T )
<∞.

Thus, by Khasminskii’s estimate (4.2),

EeγAT <∞, ∀γ ∈ R.

Hence, by (4.7) and stochastic Gronwall’s inequality (cf. [13] or [19, Lemma 3.7]),

E

(
sup

t∈[0,T ]

|Y (1)
t − Y

(2)
t |p

)
6 C|y1 − y2|p, (4.8)

which in turn implies by [18, Theorem 1.1] that

sup
y∈Rd

E

(
sup

t∈[0,T ]

|∇Yt(y)|p
)
<∞.

Thus, by Lemma 4.2 we obtain (1.4). Moreover, by (4.8) we also have the pathwise

uniqueness.

(iii) Let σ̃n(t, y) := σ̃(t, ·) ∗ ρn(y) be the usual mollifying approximation. Let Y n
t

be the unique strong solution of the following approximation SDE:

dY n
t = b̃(t, Y n

t )dt+ σ̃n(t, Y
n
t )dWt, Y n

0 = y.

By the classical Bismut-Elworthy-Li’s formula (for example, see [17]), we have for

any h ∈ Rd and every bounded continuous function ϕ,

∇hEϕ
(
Y n
t (y)

)
=

1

t
E

[
ϕ
(
Y n
t (y)

) ∫ t

0

[
σ̃n
(
s, Y n

s (y)
)]−1∇hY

n
s (y)dWs

]
, (4.9)
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where ∇hY
n
t (y) := limε→0[Y

n
t (y + εh) − Y n

t (y)]/ε. On the other hand, by (Hσ)

and the property of convolutions, it is easy to see that

lim
|x−y|→0

sup
n

sup
t

‖σ̃n(t, x)− σ̃n(t, y)‖HS = 0,

and for n0 large enough,

(2c0)
−1|ξ|2 6 |σ̃n(t, x)ξ|2 6 2c0|ξ|2, ξ ∈ R

d.

Hence, Y n
t satisfies the Krylov estimate (4.1) with the constant C independent of

n. As a result of [19, Theorem 3.9], we have

lim
n→∞

E

(
sup

t∈[0,T ]

|Y n
t (y)− Yt(y)|

)
= 0.

Moreover, as in the proof of [22, (5.22)], we have

lim
n→∞

sup
y∈Rd

E

(
sup

t∈[0,T ]

|∇Y n
t (y)−∇Yt(y)|

)
= 0.

Now taking limits n→ ∞ for both sides of (4.9) yields that for every ϕ ∈ C1
b (R

d),

∇hEϕ
(
Yt(y)

)
=

1

t
E

[
ϕ
(
Yt(y)

) ∫ t

0

[
σ̃
(
s, Ys(y)

)]−1∇hYs(y)dWs

]
.

Finally, using ϕ ◦ Φ−1
t (y) in place of ϕ in the above formula, we obtain (1.5). �

5. Critical case: Proof of Theorem 1.4

In this section we assume that (Hσ) holds and b ∈ L̃d;uni
∞ . Let

bn(t, x) := b(t, ·) ∗ ρn(x), σn(t, x) := σ(t, ·) ∗ ρn(x).
By (2.3) and (2.6), it is easy to see that

sup
n
κbnT (ε) 6 CκbT (ε). (5.1)

Without loss of generality we assume s = 0 and consider the following approxima-

tion SDE:

dXn
t = bn(t,X

n
t )dt+ σn(t,X

n
t )dWt, Xn

0 = x.

We first prove the following crucial lemma about Krylov’s estimate.

Lemma 5.1. Let p ∈ (1, d) and q ∈ (1,∞) with d
p + 2

q < 2. For any T > 0, there

are constants θ = θ(p, q) > 0 and C > 0 such that for any f ∈ C∞
c (Rd+1), stopping

time τ 6 T/2 and δ ∈ (0, T/2),

sup
n

sup
x∈Rd

E

(∫ τ+δ

τ

f(s,Xn
s (x))ds

∣∣∣Ft0

)
6 Cδθ|||f |||

L̃
p
q (T ). (5.2)

Proof. By discretizing stopping time approximation (see [24, Remark 1.2]), it suf-

fices to prove that for any 0 6 t0 < t1 6 T and f ∈ C∞
c (Rd+1).

sup
n

sup
x∈Rd

E

(∫ t1

t0

f(s,Xn
s (x))ds

∣∣∣Ft0

)
6 C(t1 − t0)

θ|||f |||
L̃
p
q (T ). (5.3)
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Let un be the smooth solution of the following backward PDE:

∂tun + 1
2σ

ik
n σ

jk
n ∂i∂jun + bin∂iun + f = 0, un(t1, ·) = 0.

Then, by Itô’s formula we have

un(t1, X
n
t1) = un(t0, X

n
t0)−

∫ t1

t0

f(s,Xn
s )ds+

∫ t1

t0

σij
n ∂iun(s,X

n
s )dW

j
s .

Taking conditional expectation with respect to Ft0 , we obtain

E

(∫ t1

t0

f(s,Xn
s )ds

∣∣∣Ft0

)
= un(t0, X

n
t0) 6 ‖un(t0)‖∞.

Since d
p + 2

q < 2, we can choose q′ < q so that d
p + 2

q′ < 2. Thus by (5.1), (3.2),

(2.5) and Hölder’s inequality, there is constant C > 0 such that

E

(∫ t1

t0

f(s,Xn
s )ds

∣∣∣Ft0

)
6 C|||f |||

L̃
p

q′
(t0,t1)

6 C(t1 − t0)
1− q′

q |||f |||
L̃
p
q(T ),

which in turn gives (5.3). The proof is complete. �

By the above lemma, we can show the following tightness result for Xn.

Lemma 5.2. For each x ∈ Rd, let Pn
x be the law of Xn

· (x) in C. Then (Pn
x)n∈N is

tight.

Proof. Let T > 0 and τ 6 T be any bounded stopping time. Notice that for every

δ > 0,

Xn
τ+δ −Xn

τ =

∫ τ+δ

τ

bn(s,X
n
s )ds+

∫ τ+δ

τ

σn(s,Xs)dWs.

Let p ∈ (1, d) and q ∈ (1,∞) with d
p +

2
q < 2. By (5.2) and Burkhölder’s inequality,

there exists a θ > 0 such that for any δ ∈ (0, T ),

E|Xn
τ+δ −Xn

τ | 6 E

(∫ τ+δ

τ

|bn(s,Xn
s )|ds

)
+ CE

(∫ τ+δ

τ

|σn(s,Xs)|2ds
)1/2

6 Cδθ|||bn|||L̃p
q(2T ) + Cδ1/2

(2.6)

6 Cδθ|||b|||
L̃d
∞

(2T ) + Cδ1/2,

where C > 0 is independent of n. Thus by [23, Lemma 2.7], we obtain

sup
n

E

(
sup

s∈[0,T ]

|Xn
s+δ −Xn

s |1/2
)

6 C
(
δθ/2|||b|||1/2

L̃d
∞

(2T )
+ δ1/4

)
.

By Chebyshev’s inequality, we derive that for any ε > 0,

lim
δ→0

sup
n

P

(
sup

s∈[0,T ]

|Xn
s+δ −Xn

s | > ε

)
= 0,

which implies the tightness of Xn
· by [15, Theorem 1.3.2]. �

Now we can give the proof of Theorem 1.4.
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Proof of Theorem 1.4. Since (Pn
x)n∈N ⊂ P(C) is tight, let Px be any accumulation

point of (Pn
x)n∈N. By Krylov’s estimate (5.2), it is by now easy to show that Px is a

martingale solution of SDE (1.2), see for example, [23]. Moreover, (1.6) holds. We

shall only prove the uniqueness of martingale solutions. Let P
(i)
x ∈ M

σ,b
0,x , i = 1, 2

be any two martingale solutions of SDE (1.2) so that for any T > 0, there is a

constant C > 0 such that for all x ∈ R
d and 0 6 t0 < t1 6 T , f ∈ L̃

p
q(t0, t1),

E
P
(i)
x

(∫ t1

t0

f(s, ωs)ds
∣∣∣Bt0

)
6 C|||f |||

L̃
p
q (t0,t1)

. (5.4)

Let p ∈ (1, d) and q ∈ (1,∞) satisfy d
p +

2
q < 2. For T > 0 and f ∈ C∞

c ([0, T ]×Rd),

by Theorem 3.1, there is a unique solution u ∈ H̃2,p
q (T ) to the following backward

equation:

∂tu+ L
σ,b
t u+ f = 0, u(T ) = 0.

Let un(t, x) := u(t, ·) ∗ ρn(x) be the mollifying approximation of u. Then we have

∂tun + L
σ,b
t un + gn = 0, un(T ) = 0,

where

gn = fn + (L σ,b
t u) ∗ ρn − L

σ,b
t (u ∗ ρn).

For R > 0, define

τR := inf{t > 0 : |ωt| > R}.
By Itô’s formula, we have

E
P
(i)
x un(T ∧ τR, ωT∧τR) = un(0, x)− E

P
(i)
x

(∫ T∧τR

0

gn(s, ωs)ds

)
, i = 1, 2. (5.5)

Since

|||L σ,bu|||
L̃
p
q(T ) 6 ‖σ‖∞|||∇2u|||

L̃
p
q(T ) + |||b|||

L̃d
∞

(T ) · |||∇u|||L̃pd/(d−p)
q (T )

(2.5)

. |||u|||
H̃

2,p
q (T ),

by Krylov’s estimate (5.4) and (2.6), we have

lim
n→∞

E
P
(i)
x

(∫ T∧τR

0

(
(L σ,b

t u) ∗ ρn − L
σ,b
t (u ∗ ρn)

)
(s, ωs)ds

)

6 C lim
n→∞

|||χR((L
σ,bu) ∗ ρn − L

σ,b(u ∗ ρn))|||L̃q
p(T ) = 0,

where the cutoff function χR is defined by (2.1). Letting n → ∞ for both sides of

(5.5) and by the dominated convergence theorem, we obtain

E
P
(i)
x u(T ∧ τR, ωT∧τR) = u(0, x)− E

P
(i)
x

(∫ T∧τR

0

f(s, ωs)ds

)
, i = 1, 2,

which, by letting R → ∞ and noting u(T ) = 0, yields

u(0, x) = E
P
(i)
x

(∫ T

0

f(s, ωs)ds

)
, i = 1, 2.

This in particular implies the uniqueness of martingale solutions (see [15]). �
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