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ABSTRACT. In this paper we show the weak differentiability of the unique
strong solution with respect to the starting point = as well as Bismut-Elworthy-
Li’s derivative formula for the following stochastic differential equation in R%:

dX; = b(t, X¢)dt + o(t, X )dWs, Xo =z € RY,
where o is bounded, uniformly continuous and nondegenerate, Vo € ]Ijgll and
b € LE2 for some p;, q; € [2,00) with % + q%_ < 1,i=1,2, where ]LZZ,Z' =1,2
are some localized spaces. Moreover, in the endpoint case b € L‘ég““‘, we also
show the weak well-posedness.

Keywords: Krylov’s estimate, L9(LP)-estimates, Zvonkin’s transformation,
duality.
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1. INTRODUCTION AND MAIN RESULTS
Consider the following stochastic differential equation (SDE) in R¢ (d > 2):
dX, = b(t, X,)dt +V2dW,, Xy =z, (1.1)

where (W;)i>0 is a d-dimensional standard Brownian motion on some filtered prob-
ability space (Q, .7, P; (%#,)i>0), and b is a time-dependent measurable vector field.
When b is bounded measurable, Veretennikov [16] proved the strong existence
and uniqueness of solutions for SDE (1.1). For T" > 0 and p,q € (1,00), let
L2(T) := L([0,T]; LP). When b € LP := NgsoLE(T) for some p,q € [2,00) with
% + % < 1, by Girsanov’s transformation and some L}-estimate for the associated
Kolmogorov equation, Krylov and Rockner [9] showed the strong well-posedness
for SDE (1.1) in the class of X that satisfies fOT |b(t, X;)|?dt < oo a.s. From then
on, there are increasing interests of studying the strong and weak well-posedness
for SDE (1.1) with singular or even distributional drifts, see [19,23] and references
therein.

After [9], there are also a lot of works devoted to studying the properties of the
solution X;(z,w) for SDE (1.1) with singular coefficients. Among all, we mention
that when b is bounded measurable, Menoukeu etal [10] showed the weak differen-
tiability of X;(x,w) in z and the Malliavin differentiability of X;(z,w) with respect
to the sample point w. When b € L for some p, g € [2,00) with g + % < 1 and in
the multiplicative noise case, the above regularities in  and w were also shown in
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[22] by Zvonkin’s transformation. However, Zvonkin’s transformation used in [22]
can not be applied to the bounded drift b because the following PDE does not allow
an H?>-solution for b € L> in general:

Ou=Au+b-u+b, u0)=0.

It should be noticed that the weak differentiability of strong solutions in spatial
variables enables us to study the well-posedness of the associated stochastic trans-
port equation since it is closely related to SDE (1.1) through the stochastic inverse
flow induced by the strong solution, see [3,11] and references therein. One of the
aim of this paper is to provide a unified treatment for the main results in [10] and
[22] and extends them to the case of local integrable coefficients.

On the other hand, in the critical case % + % = 1 with p,q € [2,00), Beck
etal [1] claimed the existence and uniqueness of strong solutions to SDE (1.1)
for almost all starting point x. Recently, when b belongs to some Lorentz space
LOY(LP) € LT(LP) = 1Lk for some p, q € [2,00) with % + % =1, still by Zvonkin’s
transformation, Nam [12] showed the existence and uniqueness of strong solutions
for SDE (1.1). When b € L%(R?) is time-independent, Kinzebulatov and Semenov
[4] showed the existence of weak solutions for each starting point z € R?, but
the uniqueness is left open. Moreover, in the supercritical case b € L for some
p,q € [2,00) with %—i—% < 2, under an extra integrability assumption on (divb)~, in
a recent work [24], the last two authors of the present paper showed the existence
of weak solutions. Another goal of this paper is to show the existence and unique-
ness of weak solutions for SDE (1.1) with multiplicative noise in the endpoint case
be nggu“i, which is not covered by all of the above results.

In this paper, we shall consider the following SDE driven by multiplicative Brow-
nian noises:

dXt = b(t, Xt)dt + O'(t, Xt)th, XO =T, (12)

where o : Ry xR — R@R? and b : Ry x R? — R? are Borel measurable functions.
The generator of this SDE is given by
LI f(x) = S0 0T (t, 2)0;0; f (x) + bi(t,2)0; f (). (1.3)

Here and below, we use Einstein’s convention that the repeated indices in a product
will be summed automatically. Throughout this paper, we assume that
(H7) lim,_y—osupy |lo(t,z) — o(t,y)[lms = 0, and for some ¢y > 1 and for all

(t,.’I]) S R+ X Rd,

co ' [E* <lolt )¢ < olg?, V€ ERY,
where || - || gs stands for the Hilbert-Schmidt norm of a matrix.

Our first main result in this paper is:

Theorem 1.1. Assume (H?) and Vo € Iigll,b € IDZ; for some p;, q; € [2,00) with
p% + % <1,i=1,2, where Eﬂg is defined by (2.2) below. Then for each v € R?,
there is a unique strong solution X.(x) for SDE (1.2). Moreover, X.(z) enjoys the
following properties:
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(i) (Krylov’s estimate) For any p,q € (1,00) with % + % <2 and T >0, there is
a constant C > 0 such that for allz € R and 0 <ty <t1 < T, f € ng(to,tl),

ty
B ([ 16 XD 7 ) < g

to
to,t1) 15 defined by (2.2) below.

(ii) (Weak differentiability) For each t > 0, the mapping x — Xi(x) is almost
surely weak differentiable and for any T >0 and p > 1,

where | - Iz,

sup E [ sup |[VXi(2)]P | < . (1.4)
reR4 t€[0,T]

(i4i) (Derivative formula) For anyt > 0 and ¢ € CL(R?), it holds that for Lebesgue-
almost all z € R?,

VEo(X(z)) = %E (@(Xt(x))/o Ul(S,XS(ZE))VXS(ZE)dWS> . (1.5)

Remark 1.2. As we mentioned before, when Vo,b € Ll for some p,q € (2, 00)
with % + % < 1, the above theorem has been obtained in [22]. Notice that b € L>° is
not covered by [22]. The novelty of our result here is that we are considering some
localized Iﬁg—spaces so that we still have the global properties (1.4) and (1.5). In
particular, we extend the main results in [10,11,22] to more general cases, and our
proofs are much simpler than [10].

Let C be the space of all continuous functions from R, to R? endowed with
the usual Borel o-field B(C), and w; the canonical process over C. For ¢t > 0, let
B; := B¢(C) be the natural filtration generated by {ws : s < ¢t}. All the probability
measures over (C, B(C)) is denoted by #2(C). We introduce the following notion of
martingale solutions.

Definition 1.3. Given (s,x) € Ry xR%, we call a probability measure P, , € 2(C)
a martingale solution of SDE (1.2) with starting point (s,x) if Ps z(we = 2,1 < s) =
1, and for all f € C2(RY), M{ is a B;-martingale under P,.,, where

¢
M (@) = S~ f@) ~ [ 270 (dr, ¢,
and L7 is defined by (1.3). All the martingale solution Py, of SDE (1.2) with
starting point (s,x) and coefficients (o,b) is denoted by MY

Our second main result is the following weak well-posedness of SDE (1.2) in the
endpoint case b € LE™ (see (2.3) below for the definition of L&),

Theorem 1.4. Assume (H?) holds and b € Jigguni. Then for each (s,x) € Ry xR?,
there is a unique martingale solution P, , € ///Sf’gf for SDE (1.2) which satisfies that
for any p,q € (1,00) with % + % < 2 and T > 0, there is a constant C' > 0 such

that for all z € R and s <tg <t < T, f € ﬂg(to,tl),

ty
EFs.e (/ flr,w,)dr
to

i) < Clf gy (16)
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The proof of our main results relies on the Ll-maximal regularity estimate for
the following second order parabolic PDE in R, x R%:

O = a"9;0;u+ f, u(0) =0, (1.7)

where a(t,z) : Ry x R? - R? @ R? is a symmetric matrix-valued Borel function
and satisfies

(H®) limj,_y| 0 8upser, llat,z) —a(t,y)|[ms = 0 and for some ¢y > 1 and for all
(t,x) S R+ X Rd,

o HE)? < a¥(t,2)&€; < col€]?, VE € R (1.8)
More precisely, for any p,q € (1,00), we want to establish the following estimate:

HatUHLg(T) + ||V2U||1L§(T) < OHfH]LZ;(T)- (1.9)
Such type of estimate has been used in [19] to study the strong well-posedness of
SDEs with Sobolev diffusion coefficients. Notice that when p = ¢, it is a standard
procedure to prove (1.9) by freezing coefficient argument (cf. [22]). While for p # g,
it is non-trivial. When a% is independent of x, (1.9) was first proved by Krylov in
[8]. In the spatial dependent case, Kim [5] showed (1.9) only for p < g. Here we
shall drop this restriction by a duality method. In particular, we need to treat the
adjoint equation of (1.7) in Sobolev spaces with negative differentiability index, see
Theorem 3.3 below, which is of independent interest. Moreover, we also show the
estimate (1.9) in localized space IETQ’(T).

This paper is organized as follows: In Section 2, we collect some preliminary
tools. Section 3 is devoted to the study of Lf-maximal regularity estimate for second
order parabolic equations. In Section 4, we prove our main theorems. Throughout
this paper we shall use the following conventions:

e The letter C denotes a constant, whose value may change in different places.

° WeuseASBandAxBtodenoteA<CBandC’lBgAgCBfor
some unimportant constant C' > 0, respectively.

e For any € € (0,1), we use A S eB + D to denote A < eB + C.D for some
constant C; > 0.

e Ny := NU {0}, Ry := [0,00), a Vb := max(a,b), a A b := min(a,b),
at:=aVO.

o V, =0y :=(0py, " ,0p,), 0 1= 0y, := 0/0x;.

2. PRELIMINARIES

First of all, we introduce some spaces and notations for later use. For («,p) €
R x (1,00), let H*P := (I — A)~*/2(LP(R?)) be the usual Bessel potential space
with norm
[fllap = II(T- A)a/zfllp,
where ||-||, is the usual LP-norm in RY, and (I—A)*/2 f is defined through Fourier’s
transform

(I—A)2f=F Y1+ |H)*2FF).

Notice that for n € N and p € (1,00), an equivalent norm in H™? is given by

[ £llnp = fllp + 1V fllp-




L(L?)-THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS 5

Let x € C°(R%) be a smooth function with x(z) = 1 for |z| < 1 and x(z) = 0 for
|z| > 2. For r > 0 and z € R%, define

Xr(2) := x(x/r), x7(x) = xr(z = 2). (2.1)

Fix r > 0. We introduce the following localized H“'P-space:
A0 = {1 € HiP®"), |l = 500 i s < 00}

For T >0, p,q € (1,00) and a € R, we also define space-time function space
LE(T) = L9([0,T); LP), HJP(T) = L9([0,T); H*?),

and the localized space f[-v]lg"p(T) with norm

Wl ey = 5up [ Fllgrcry < oo (22)
zER4

For ¢ = 0o and p € [1,00), we define L2 (T) being all the functions f € L?_(T)
with

lim sup | f(t,-) % pe = f(t,)]p = lim w]() = 0, (2.3)
e—0 tE[O,T] e—0

where (p:)cc(0,1) is a family of mollifiers in R?. For simplicity we shall write
HP = NgsoHY?, ﬁ?’p = ﬂT>0ﬁ?’p(T), IEZ = mT>OIEZ(T)-

It is not hard to show that the definitions of H*? and ]ﬁlg‘*p (T") do not depend on
the choice of r and . In fact, we can prove that for any r, 7" > 0 (cf. [24]),

sup [IX7fllmer(r) = sup [|x7 fllmg»(r)- (2.4)
z€ER4 z€ER4

Notice that
LA([0,T]; H*P) C HP(T).
Now we list some easy properties about space ]ﬁlg"p (T') for later use.
e The following Sobolev embedding holds: For any a@ > 0, p,q € [1,00) and
v e lp, %110&@ + 00 - 1,44l there is a constant C' > 0 such that
1llgy vy < CU gy (2.5)
e For any f € I?]Ig“p, it holds that for any T, R > 0 (cf. [24, Proposition 4.1]),
sub |l vry < Ol vy IS — Fxrlizgory =00 (26)
where f. := f * p is the usual mollifying approximation of f.
e Let p,q € [2,00) satisfy % + % < 2. If uw € HZ?(T) and dyu € LE(T), then
u € C([0,T] x R?Y) (cf. [9, Lemma 10.2]).
For R € (0,00), we define the local Hardy-Littlewood maximal function by

Mpf(z) = sup

f(z+y)dy,
re(0,R) |BT| B,

where B, := {x € R%: |z| < r} is the ball in R%. We have the following results (cf.
[14] or [21]).
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Lemma 2.1. (i) For any R > 0, there exists a constant C' = C(d, R) > 0 such that
for any f € L®(RY) with Vf € L} (R?) and Lebesgue-almost all x,y € R,

loc

|f(z) = f(W)] < Clz = y|((MgIV fl(z) + Me[VfI(y) +[1fll)- (2.7)
(i) For any p > 1, ¢ > 1 and R > 0, there is a constant C = C(R,d,p) > 0 such
that for all f € LL(T),
Mgz ry < Ol sy (28)
Proof. (i) If |z — y| < R, then by [21, Lemma 5.4] we have

[f(x) = f(W) < Clz = y[(Mg|V fI(z) + M|V [|(y)).
If |z — y| > R, then
[f (@) = f()] <2z = y[ | flloc/R.
Thus (2.7) is true.
(ii) Noticing that for |y| < R, xr(z) = xr(x)x3r(x + y), by definition we have

p

dx

» 1
IXaMaflE = / xr(@) swp / fola+ 2+ y)dy
R4 )|Br| B,

re(0,R

P
1
</ sup —/ xar(@ + 9l fel(@ + 2+ )y | de
re \re(o,r) |Brl /B,

< Clixsr - f5(-+ 2l = Clxar Sl
which in turn gives (2.8) by (2.4). O

The following freezing lemma is taken from [23, Lemma 4.1].

Lemma 2.2. Let ¢ be a nonzero smooth function with compact support. Define
¢x(x) == ¢p(x — 2). For any o € R and p € (1,00), there exists a constant C > 1
depending only on o, p,d such that for all f € HYP,

1/p
Moy < ([ 107122) < Clslay (29)

The following lemma was proven in [8] (see also [5, Lemma 2.5]).

Lemma 2.3. Fork=1,--- ,n, leta, : R = R?@R? be a measurable function and
satisfy that for some co > 1,

o HE? < af ()& < col€? V(L €) € R x RY,

For fited « € R, p € (1,00) and X\ > 0, let uy € HP solve the following PDE in
the distributional sense:

Oy, = a?j@ijuk — Aug + fr, u(0)=0.

Then for any T > 0, there is a constant N = N(d,«,p,n,co) > 0 independent of
T, )\ such that

T n no T
/0 ]IV @)E,dt < NS / 1z, TTI92ue®))z, .
k=1 k=1

0k



L(L?)-THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS 7

3. Lg—MAXIMAL REGULARITY ESTIMATE FOR PARABOLIC EQUATIONS

Consider the following second order parabolic PDE in R, x R%:
Oru = a” 0;0;u + b'0u — M+ f, u(0) =0, (3.1)

where A > 0, a(t,z) : Ry x R = R? @ R? and b(t,z) : Ry x R? — R? are Borel
measurable functions. The main aim of this section is to establish the following
[Lf-maximal regularity estimate for the above equation.

Theorem 3.1. Let p,q € (1,00). Assume (H®) and one of the following conditions
holds:

. .y . d .
(i) (Subcritical case) T + % <1 and ]:07” any T > 0, |||b|||ltg(T) < kb < o0;
(ii) (Critical case) p € (1,d) and b € L&,

Then for any f € IEZ and X > 1, there exists a unique strong solution u € fﬂg*p to
PDE (3.1), that is, for all t = 0 and Lebesgue almost all x € RY,

u(t,z) = /Ot(aijaiaj)u(s,x)ds + /Ot(biaiu)(s, x)ds — )\/Otu(s,x)ds + /Ot f(s,z)ds.

Moreover, for anyT > 0 and « € [0, 2—%), there is a constant C > 0 only depending

on a,p,q,d,co, T and the continuity modulus of a, as well as Iil% in case (i), and

k%.(€) in case (ii), where k4(g) is defined by (2.3), such that for any A > 1,
—a_ 1
AN ullger oy + 19cullgy oy + lullgze ) < CUF s oy (32)
Remark 3.2. In critical case (ii), if b(t,x) = b(x) € L4(R?) is time-independent,
then b € L&,

3.1. Smooth a and f. In this subsection, we study PDE (3.1) with b = 0 and a
smooth enough, that is, a satisfies (H*) and for all m € N,

IV™a" |0 < 00,

where V™ stands for the m-order gradient. Given s < ¢, A > 0 and ¢,¢ € Cg°(R?),
consider the following forward heat equation

Ou = a“0;;u — u, u(s) = ¢, (3.3)
and backward (adjoint) heat equation
Dsw = Aw — 9;j(aw), w(t) =1p. (3.4)
Let u(t) and w(s) be the unique solutions of (3.3) and (3.4) respectively. We shall
simply write
Topp =u(t), To:=w(s).
In other words, we have

O Tonp = a7 0;Torp — NTowp, 05T b = AT — 03 (@ T ).

Le p > 1. By the chain rule and above equations, it is easy to see that for any
@, € H®P C C°(RY),

t
(Toront) — (0. o) = / Ao (Tarip, To) = 0,
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where (f,g) := [pa f(x)g(x)dz, which means that
< s,t%¢> = <(p77j:tz/]> (35)
Fix T > 0 and p,q > 1. For f € LL(H>P) := L9([0,T]; H>**), define
t T
u(t,x) = / Tsif(s,x)ds, w(s,x) = / T f(t,z)dt. (3.6)
0 s
It is well known that u solves the following forward equation
Oyu = a”dju— Xu+ f, u(t)|ico =0, (3.7)

and w solves the following backward equation
Dsw = Mw — 0 (aw) — f, w(s)|s>1 = 0. (3.8)
We first prove the following a priori estimates by duality.

Theorem 3.3. Under (H?), for any p,q € (1,00) and T > 0, there is a constant
C > 0 only depending on T, d, p,q,co and the continuity modulus of a such that for
any f € LL(H>™?) and A > 0,
IV2uxlle () I fllLe () (3.9)
HfHHf’P(T)v (3.10)

where uy and wy are solutions of (3.7) and (3.8), respectively. Moreover, for any
aecl0,2—- %), we also have

<C
IV2wAllg 20y < C

a 1

luallaer @y < CLVA)ETFT fllLpry, (3.11)
o 1

||w>\||H‘;g2’P(T) < C(l \ )‘) 2y ||f||H;2’P(T)' (3'12)

Proof. For simplicity of notations, we drop the subscript A and divide the proof
into five steps.

(i) We first claim that it suffices to prove (3.9) and (3.10) for p < ¢. Indeed, suppose
that ¢ < p and let

P — 4
7= o < f:= pE

By duality (3.5) and Holder’s inequality, we have

T t
HV2U||1L§(T) (3.6) sup / / (/ ﬁ,tf(s,x)ds> V2g(t, z)dzdt
gELF (C2°), ||9||LT(T)<1 0 JRd 0
- sup / / ( Touf(s,2)V3g(t, a:)dx) dsdt
gELF(C2), ||q||LT(T)<1 Rd
(3:5) o * Y72
= Sup f(S,.’II) s,tv g(t, x)dfl] dsdt
geLF (C&)lglluy (<170 YO Rd

= sup / f(s,x) / T V2g(t, z)dt | dads
gELF(CL), ||q||LT(T)<1 Rd

<0 sw Wl IVl < Ol
QGL%O(CSO)vﬂ.‘]HLg(T)gl

where the first inequality is due to (3.10) for p =r < 0 = q.



L(L?)-THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS

9

(ii) We only prove (3.10) and (3.12) for p < ¢ since (3.9) and (3.11) are similar. By
Marcinkiewicz’s interpolation theorem (see [14]), it suffices to prove that for any

p>1landneN,

HV%’HH;E’P(T) < CHfHHEﬁ’p(T)'

(3.13)

Below we fix p > 1 and n € N, and use the freezing coefficient argument to prove
(3.13). Let ¢ be a nonnegative smooth function with support in the ball Bs and
f]Rd ¢(Pdxz = 1, where 6 > 0 is a small constant and will be determined below. For

z € R, define

and
w:(s,x) == w(s,2)C: (), fo(s,2) := f(s,2)C ().
It is easy to see that
Dow. + 03 (aTw.) — M. + g = 0, w.(T) =0,
where
9z = f2 + Oy (a”w)(. — Oy(afw(z).

Moreover, by Fubini’s theorem and [, (¥ = 1, we have

[ watoligas = [ o(e)6 s = Juls)
Below we drop the time variable for simplicity. Noticing that
9: = fC —20;(a"w)9;(: — a¥wdiiC: + 95 ((a” — a¥ Jw(z),
and by Lemma 2.2 with ¢, = (., 0;(;, 0;;(. respectively, we have

1/p
( / d ||gz||%,pdz) <Olfll-2+ Cs Y 10 (@) -2
7,7
+C Y [l wl| -, + wa(8) | w]ly,
,J
where

wa(d) :==sup sup |a(t,x) — a(t,y)l-
20 |2—y|<o

(3.14)

(3.15)

(3.16)

Let a,,(t,x) := a(t, ) * pn(x) be the mollifying approximation of a. For every ¢ > 0,

we can take n large enough such that
D llos(aw)ll—2p + Y llaw] -2,y
2% 0]

S llawl[—1,p < lanwl-1,p + [[(an — @)w]|-1,p
S llanll2,cllwll=1,p + [[(an — a)wll,
< Cn”wH—l,p +wa(%)”w||p

S llwll-2p +ellwllp,
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where the last step is due to the interpolation and Young’s inequalities. Hence, by
(3.16), for any € € (0,1) and § > 0 being small enough,

1/p
([ 10:12200) S 1A0-2p+ Holl-ap ol @17)

(iii) For any s € [0, 7], notice that by Lemma 2.2 again,

T n
vaH%’;g,p(ms/ (/ |V2w(t)cz||p27pdz> dt
/ ([ 192wc17, 0:) a
+/ (/ |Vw(t)-V§z||’i27pdz> at
s R4
T n
+/ (/ |w(t)-V2CZ||1127pdz> dt
s R4
T n
5/ (/ |V2wz(t)|p21pdz> dt
s R4

T T
/IWMN\ et [ o)

/ / H||v2wzk )Py pdzs -+ dzndt

+/ ()| dt. (3.18)
Given z1,--- , 2z, € R and by Lemma 2.3, we have
/IHW% mthZ/HM|WJMW% (Ot
s s 14k

which together with (3.18) and (3.17) yields that for any ¢ € (0, 1),

HWW%pnNZl/ 90O 2 TT o, (5022 - Azt ol

(#£k

n—1
| (/gd|gza>|P2@dz><]gdnu&<wnzdz) at+ Wl
T
(3.15) P (n—1) np
D ([ 101 ) @l + ol

(3.17)

S ||f||;ﬂ§g’p(s,T) + Hw||;ﬂﬁ%5wp( + €||v2w|‘np2 P( T)

where the last step is due to Holder’s inequality and interpolation’s inequality.
Taking ¢ = 1/2, we get for any s € [0, T,

||v2anp2 P(S T) < ||f||%§p2’p(s,T) + Hw”%ﬁ%i,p(&jﬂ)' (319)
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(iv) Let A%, := fst a.(r)dr and

z = !
Pt () = Gy qaa)

—((AZ ) y,y) /2 —)d
1/2 /Rde f(l‘ y) y

Notice that the solution of equation (3.14) is explicitly given by

T
wz(s,x):/ ek(s_t)P;tgz(t,:zr)dt.

By (1.8) and a standard interpolation technique, one sees that for any « € [0, 2),
there is a constant C' = C(a, d,p, co) > 0 such that for all z € R?,

T eAs—t)
[w(s)l[a—2,p < O/S mﬂgz(ﬂﬂf‘z,pdt-

Thus, for any « € [0,2), by (2.9) and Minkowski’s inequality we have

1
> T
@z S ([ 10l 202) " < | (_—/(/ lo-(t ||P2pdz) dt

(317 T gi(s—t) 9
< / m(”f(t”‘*Zp_"Hw(t)”727p+HV w(t)||,21p)dt. (3.20)

Now by (3.20) with o = 0 and (3.19) with n = 1, we have
T
[0 S [ (17O, + 10O, + 172wl , )t
ST
< [ (O + o), )at

which by Gronwall’s inequality yields

p — p p p
||wHH;32’p(T) = Sup ||’U}(S)|| 2,p ~ ||f|| 2P(T) ~ ||f|| 2P(T)

s€[0,T]

Substituting this into (3.19) with s = 0 and noting [|w|ly-z2.r 1) < [[wllg=20 (7, we
obtain (3.13).

(v) Finally, letting ¢’ = q_Ll, for any « € [0, 2—%), by (3.20) and Holder’s inequality,
we have

9
7

T eq’)\(s t) " T q
sl < ( / m@ [ (Ol + @2+ o) "o

T
S (v ET / (IO, + 0@, + V20|, )t

3.9) ($-1+1) g
S ava© [F - / lw(®) e ), (3.21)

which yields by choosing a = 0 and Gronwall’s inequality that

q — q q
||w||H;02’p(T) - SGSEPT] ||w(s)|| 2,p ~ ||f|| 2 P(T)

The proof is complete by substituting this into (3.21). O
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3.2. Proof of Theorem 3.1. By standard continuity method (cf. [7]), it suffices
to establish the a priori estimate (3.2). We divide the proof into three steps.
(i) (Case b = 0) Fix T > 0 and p,q € (1,00). Let u € HZ?(T) and f € L2(T)
satisfy (3.1). Let p, be a family of mollifiers in R?. Define
Un(t, ) == ult, ) * pp(x), an(t,x):=a(t, ) * pp(x), fult,z):= f(t, ") * pn(x).
It is easy to see that u,, satisfies
atun = aflj(?ijun — AUy, + gn,, un(O) =0,

where

Gn = fn + (a9 0i5u) * pp — a0y jup.
Since a,, satisfies (H*) uniformly in n and g, € LL(H>?), for any o € [0,2 — %),
by (3.7), (3.9) and (3.11), there is a C' > 0 such that for each n € N and A > 1,

e _

_a_ 1
ATE lunllaer ) + 10sunllLe(ry + ||V2Un||1L5(T)
<O (Ifallgery + 1(@70i5w) « pr = alfDigunlligery ).

Letting n — oo and by the property of convolutions, we obtain

2 _

AR %HUHH&”(T) + [0eullLzry + IV 2ulleeery < Cll flluzry- (3.22)
Next, let xZ be defined by (2.1). Multiplying both sides of (3.1) by xZ, we have
Or(ux;) = a”0i;(ux;) — dux; + g7,
where
g7 = [XZ + X2aY0;u — a0y (ux?).
For any a € [0,2 — %), by (3.22) we have

2 __

1—a_1
A 2T luxg e o) + [10vuxs e () + ||V2(UX5)||JL§(T) S lgrllee(ry-
Noticing that
a0, (ux?) — xZa" 0iu = a"udi; Xz + 24" 0;ud; Xz,
we have
lgrlliery S NFxFleey + luxs ey + (1IVu - X3 iz ()
Hence, for any « € [0,2 — %) and ¢ € (0,1), by taking supremum in z € R? and
using (2.4), we obtain that for all A > 1,

a

- §
N ullga oy + B0y + Tl
< WMy + Mgy + Nallgs oy < W lep ey + Mallzg iy + el .

which implies by taking e = 1/2 that

o _ 1

1—
N3 e oy + D00llzper + Tl ey S Wl + Nullzp oy,
In particular, for « = 0, we have

1/q

T
le(D)llp < WAz ) + ( /O ||IU(S)|||ZdS>
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By Gronwall’s inequality again, we obtain

|||U|||]1jgo(T) S O|||f|||njg(T)v

and so, for any « € [0,2 — %),

_a_ 1
N5 ullga ey + 10ully e + lullgzo ey S Uflgpery.  (3:23)

(ii) (b # 0: subcritical case) Let ¢1 € (%,q] and A > 1. For any a € [0,2 — q%),
by (3.23), we have
1—o_ 1
A ullger oy + 10sullgy oy + llellgze (o
SIf+ 8 0ullzy (o) < WFflgz, () + 10" 0iullzy ()- (3.24)
Let 2 +21 =L Forany ¢ ¢ (%, 1 — ), by Holder’s inequality and Sobolev’s
embedding (2.5), we have

b0l vy < Iblzg oo Vullzsge oy S Tellgago . (3.25)
Substituting this into (3.24) with a = 1+ 6, we get
101
N8 ullgson oy < Oy ooy + Ieligasonry:
In particular, if ¢; < ¢, then g2 < co and by Gronwall’s inequality again, we obtain
lellgor iy < Clfllez () < ClF gz () (3.26)
The desired estimate now follows by (3.24), (3.25) with ¢ = ¢ and (3.26).

(iii) (b # 0: critical case) Let b,(t,x) := b(t,-) * p1/n(x). Since b € Lduni by
definition (2.3) we have

lim sup ] lon(t) — b(t)la = 0.

n=90 ¢el0,T

Let p < d and ¢ € (1,00). For any € € (0,1), by Sobolev’s embedding (2.5) and
letting n be large enough so that sup,¢jo 77 [[bn () — b(t)[la < &, we have

|||bi5iu"|]£g(T) < |||(b; - bi)aiu|||ig(T) + |||bizaiu|"£g(T)
< sup 19.(8) = 0Ol allVellgrara-s 7y + 1onllcolellgyr ()

1/2 1/2

< lullzz ey + Cllonllcllel sl

< 2efuligas iy + CllbnlZ Nullzs .
Hence, for any o € [0,2 — %), by (3.24) with ¢; = ¢, we have
_a_ 1
N7 T ullgew oy + 10ullgn ) + Nullgzo oy S W len () + ellullger () + el )
which implies by taking ¢ = 1/2,

1—o_1
A ullger oy + lullgz e oy S WAE2 ) + lullzs o)-

As above, by Gronwall’s inequality, we obtain the desired estimate.
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4. SUBCRITICAL CASE: PROOF OF THEOREM 1.1

In this section we assume (H?) holds and for some p;, ¢; € [2, 00) with g—l—% <1,
i=1,2,
Vo elll, bell>.
It is easy to see that (H) holds for
al = gk gk /2,
We prepare the following crucial lemma for latter use.
Lemma 4.1. Let X;(z) be a solution of SDE (1.2) and p,q € (1, 00) with %—l—% < 2.

(i) (Krylov’s estimate) For any T > 0, there is a constant C' > 0 such that for
any f € LE(T) and x € R, 0 <tg <t <T,

ty
B[ s X @)as| %, ) < Ol g (4.1)

(i) (Khasminskii’s estimate) For any v € R and f € IEig(T), we have

T
Eexp (7/0 |f(s,XS)|ds> < 0. (4.2)

(iii) (Generalized Ité’s formula) Let p',q' € [2,00) with ﬁ + % < 1. For any
u € Jﬁlg;pl (T) with dyu € IE’q): (T), we have

¢
u(t, Xt) = u(0,x) + / (Osu + a1 0;0u + b'Ou) (s, Xs)ds

0
. _ (4.3)

—|—/ (0 0pu) (s, Xs)dW,.
0
Proof. (i) By (3.2) and using completely the same argument as in [19, Theorem
5.7], we can prove the Krylov estimate (4.1).

(ii) Since % + % < 2, we can choose ¢’ < ¢ so that g + % < 2. Thus by (4.1) and

Hoélder’s inequality we have

t1 ’
E < / f(s,Xs@))ds]%o) < Ul 0y < Cltx = 10 ¥ Wlzgery
to

which implies (4.2) by [19, Lemma 3.5].
(iil) Let u,, = (u * pp)(t, z) be the mollifying approximation. By Itd’s formula we
have
t .. .
un (t, Xt) = un (0, Xo) + / (Ostin, + a™ 0ijun + b'0jun) (s, Xs)ds
0
. (4.4)
+ / (09 Dyuy,) (s, X5 )dW.
0

For R > 0, define a stopping time
TR :=inf{t > 0:|X¢ > R}.
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Let x g be defined by (2.1). By Itd’s isometric formula, we have

tATR . . 2
E / (090; (wn —u)) (s, X,)AW?
0
tATR
<lol ([ 19— s, xas)
0
¢
B ([ 00 9l 0o, X
0
(4<1) 5 2 2
S eIV = )Pl 2y = IRV (W =l 7
which converges to zero by (2.6) as n — oo. Similarly, let 1—17 = p%‘h%v % = qiz+%'

Since % + % < 2, by (4.1) and Hélder’s inequality we have

B ([ ot~ wlis Xogas ) < B ( [ xn(60) - B0t~ s, Xy

n—r oo

< b0 — w)lipry < Bblizss oy Ix2n¥ (i — W)l ) "5 0,

and

n—oo

tATR B
0

By taking limits n — oo for both sides of (4.4), we get on {t < 7r},
t

t
u(t, X¢) :u(O,Xo)—i—/ (Bsu—i—aijaiaju—i—biaiu)(s,Xs)ds—i—/ (07 0;u) (s, Xs)dW?.
0 0

Finally, letting R — oo, we obtain the desired formula. 0

Below, we fix a T' > 0. Consider the following backward PDE:
Oyu + aij&aju — M+ bu+b=0, uT)=0.
By Theorem 3.1, there is a unique solution u € Jﬁlgfz (T') such that for any o €
(0,2 — q%) and A > 1,
N E 7 Jullgern oy + 100tllzgs oy + elzes oy < CUblls oy
In particular, since 1% + q% < 1, by (2.5) one can choose A large enough so that
ullso + Vulloo < 3 (4.5)
Define
O(t,z) ==z +u(t,x).
By (4.5), one sees that z +— ®(t,z) is a C'-diffeomorphism and
IVPlloo, VR Hloo < 2.
Moreover, we also have
0P + aij&aj@ +b'0;® = \u.
Define
5(t,y) = (7 9;@)(t, 27 (t,y))
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and
b(t,y) = Au(t, (¢, y)).

By the generalized Itd formula (4.3), we have the following Zvonkin’s transformation
(see [19, Theorem 3.10]).

Lemma 4.2. X; solves SDE (1.2) if and only if Y; = ®(t, X;) solves the following
SDE:

t t
Y; :y—i—/ b(s,YS)ds—i-/ o(s,Y)dWy  with y:= ®(0,x). (4.6)
0 0
Now we can use the above lemma to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.2, it suffices to show the conclusions for SDE
(4.6). Since the coefficients of SDE (4.6) are bounded and continuous, the existence
of a solution Y; is well known. By Yamada-Watanabe’s theorem, we only need to
prove the pathwise uniqueness for (4.6) and show (i)-(iii) for Y.

(i) is proven in Lemma 4.1.

(ii) For i = 1,2, let Yt(i) be two solutions of SDE (4.6) with starting point y;, that

is,
YOyt [ B s+ [ (s v
0 0
For p > 1, by Itd’s formula we have
t
Y = V2P = gy — gl + / YO - YPPPdA 4 M, (4T)

0

where M, is a continuous local martingale given by

t
Myi= [ 2l P2 Y) = (s Y] (VD - Y
0

where the asterisk stands for the transpose of a matrix, and Ay is defined by

) /f 2p(V:V — Vi b5, Vi) — b(s, Vi) 4 pll3 (s Vo) = (. V)
= S
t 0 |Y'S(1) _ Y'S(2)|2
“op(p — D5 (s, YY) = 5(s, Y (v - v))?
+ O _ @ ds.
0 [y — y 2

Notice that by Lemma 2.1,

5(s,) = 5(5,9)] < Cla =yl (M V3 (5, )|() + M1 IVE (5, ) () + ] )
[B(s,) = b5, y)| < Cla =yl (M| VB(s, )l (@) + M |VB(s, )| (y) + [Pl )
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Thus, by the definitions of b and & we have
A% [ (MITBIG. Y0+ M5, ) + )
[ (M3, 0) 4 MW, ) + 1) s
[ (M1, 720) 4 Ml 9105, Y1) + 5] ) s
St (I8l + Blloe + 1312 + 31100 +1)
+ /Ot (M1|VU|2(S,YS(1)) + M1|VU|2(S,YS(2))> ds
+ /Ot (M1|V2u|2(s,Ys(1)) + M1|V2u|2(s,Ys(2))> ds,

where we have used that |V&|(s,z) < |Vol(s,z) + |[V2ul(s, 7).
On the other hand, by (2.8) we have

< 00,

2 2 _ 2
IMINV o lep 2y < CUIVOFlign iz ) = CUVO g (1

and

2
ir2(r) <

2,2 2,12 _ 2
MVl ) < CU V20 lgpags oy = CT 2l
Thus, by Khasminskii’s estimate (4.2),
E47T < 00, VyeR.

Hence, by (4.7) and stochastic Gronwall’s inequality (cf. [13] or [19, Lemma 3.7]),

E ( sup ;M — Yt(2)|p> < Clyr — yaf?, (4.8)
t€[0,T]

which in turn implies by [18, Theorem 1.1] that
sup E [ sup |[VY(y)|P | < cc.
yeRd tE[O,T]

Thus, by Lemma 4.2 we obtain (1.4). Moreover, by (4.8) we also have the pathwise
uniqueness.

(iil) Let o, (t,y) := a(t,-) * pn(y) be the usual mollifying approximation. Let Y;"
be the unique strong solution of the following approximation SDE:

AY* = b(t, Y AL + G, (8, Y, )dAW,, Y =y

By the classical Bismut-Elworthy-Li’s formula (for example, see [17]), we have for
any h € R? and every bounded continuous function ¢,

ViEe(Y/'(y)) = ®

PB[(70) [ (¥ @)] YW, (19)
0
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where V,,Y/*(y) := lim._o[Y;"(y + ¢h) — ¥;"(y)]/e. On the other hand, by (H?)
and the property of convolutions, it is easy to see that

lim  supsup ||6,,(¢t, ) — 7, (L, y)||gs =0,
|[z—y|=0 n ¢

and for ng large enough,
(2c0) THEP < [on(t, 2)E” < 200l€f?, € € R

Hence, Y;" satisfies the Krylov estimate (4.1) with the constant C' independent of
n. As a result of [19, Theorem 3.9], we have

lim E( sup |V (y) —Yt(y)|> =0.
n—00 t€[0,T]
Moreover, as in the proof of [22, (5.22)], we have

lim sup E ( sup |VY"(y) — VYt(y)|> = 0.

N0 cRd t€[0,7

Now taking limits n — oo for both sides of (4.9) yields that for every ¢ € C}(R?),

ViEp(Yi(y)) = %E

¢
- -1
p(Yi(y)) / (s, Ys())] VhYs(y)dWs] :
0
Finally, using ¢ o ®, ' (y) in place of ¢ in the above formula, we obtain (1.5). O

5. CRITICAL CASE: PROOF OF THEOREM 1.4
In this section we assume that (H”) holds and b € L&, Let
bn(t, ) :=b(t, ") * pn(x), on(t,z) :=0o(t,-) * pp(x).
By (2.3) and (2.6), it is easy to see that
sup k57 (g) < Crb(e). (5.1)

Without loss of generality we assume s = 0 and consider the following approxima-
tion SDE:

dX[" = b, (t, X)dt + o, (¢, X[")dWy, X§ = x.
We first prove the following crucial lemma about Krylov’s estimate.
Lemma 5.1. Let p € (1,d) and q € (1,00) with % + % < 2. For any T > 0, there

are constants 6 = 0(p,q) >0 and C > 0 such that for any f € C(RI*Y), stopping
time 7 < T/2 and § € (0,T/2),

749
sup sup B ( / f(s,xgl(x))ds]%) < C ey, (52)
n zgeRd T

Proof. By discretizing stopping time approximation (see [24, Remark 1.2]), it suf-
fices to prove that for any 0 < tg < t; < T and f € C°(RIHL).

sup sup B ( Ia f(s,ch))ds\%) <Ot —t) gy (53)

n zeR
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Let u,, be the smooth solution of the following backward PDE:
Optun, + 20075 0,0,u, + b 0iun + f =0, un(ts,) = 0.

Then, by It6’s formula we have

t1 tl . .
un (t1, X70) = un(to, Xip) — f(s, XM)ds —|—/ o)) Oiun (s, X1)dW.

to to

Taking conditional expectation with respect to .%#;,, we obtain

ty
B ([ 1o X000 7 ) = o, X5) < 1)
to

Since %—i— % < 2, we can choose ¢’ < ¢ so that g + % < 2. Thus by (5.1), (3.2),
(2.5) and Hélder’s inequality, there is constant C' > 0 such that

E< " f(s, X)ds

to

Fi) € Wl gy < Ot = 10" ¥ Wy

which in turn gives (5.3). The proof is complete. O

By the above lemma, we can show the following tightness result for X".

Lemma 5.2. For each x € RY, let P be the law of X™(x) in C. Then (P?),en is
tight.

Proof. Let T'> 0 and 7 < T be any bounded stopping time. Notice that for every
0 >0,

T+ T+6
Xs—X!'= / b (s, X)ds —|—/ on(s, Xs)dWs.

Let p € (1,d) and ¢ € (1, 00) with g—l—% < 2. By (5.2) and Burkhélder’s inequality,
there exists a # > 0 such that for any 6 € (0,7,

4o 4o 1/2
E|Xf+5—Xf|<E/ b (s, X)|ds +OE/ o (s, X)|2ds

2.6)

(
< O bullgp ory + €32 < OO Illzy (o + O,

(2T

where C' > 0 is independent of n. Thus by [23, Lemma 2.7], we obtain

n n 1/2
supE ( sup |X75 — X |1/2> <O ("2 o +67).
n s€[0,T] oo

By Chebyshev’s inequality, we derive that for any € > 0,

limsupP [ sup |Xs— X >e]| =0,
6—0 p <Se[0)T] +o

which implies the tightness of X by [15, Theorem 1.3.2]. O

Now we can give the proof of Theorem 1.4.
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Proof of Theorem 1.4. Since (P?),en C Z(C) is tight, let P, be any accumulation
point of (P?),cn. By Krylov’s estimate (5.2), it is by now easy to show that P, is a
martingale solution of SDE (1.2), see for example, [23]. Moreover, (1.6) holds. We
shall only prove the uniqueness of martingale solutions. Let ]P’Sf) € ///(i f,i =1,2
be any two martingale solutions of SDE (1.2) so that for any 7' > 0, there is a
constant C' > 0 such that for all z € R and 0 <ty < t; < T, f € Eg(to,tl),

ty
(i)
P ( /t f(S,ws)ds‘Bt[)) <Ol gy (5.4)

Let p € (1,d) and g € (1, 00) satisfy %—i—% < 2. For T > 0and f € C([0,T] x RY),
by Theorem 3.1, there is a unique solution u € Hﬁ’p (T') to the following backward
equation:
du+ L7+ f =0, uT)=0.
Let un(t, ) := u(t,-) * py(z) be the mollifying approximation of u. Then we have
Ot + L7 Un + gn =0, un(T) =0,

where
gn = fn+ (ﬁa,bu) *Pn — Zf’b(u * Pn).
For R > 0, define
TR :=inf{t > 0: |w| > R}.

By Ito’s formula, we have
) Q) Trn
EP= Un (T N TR, wrarg) = un(0,2) — EF= / gn(s,ws)ds |, i=1,2. (5.5)
0

Since
b 2 (25)
12" ully ) < ool V2ulizg oy + llz o2y - IV ullgpira gy S Bullgzogry,

by Krylov’s estimate (5.4) and (2.6), we have

. TNATR
lim EP%’ </o ((agf’bu) s pn — L7 (ux pn)) (s,ws)ds>

n— o0
< Cnli_{r;o |||XR(($a7bu) * Pn — ga’b(u * pn))"lﬂg(T) =0,

where the cutoff function xg is defined by (2.1). Letting n — oo for both sides of
(5.5) and by the dominated convergence theorem, we obtain

) . TNATR
IEP(;)u(T A TR, WTAr) = u(0,2) — EP:’ (/ f(S,ws)d8> , =12
0

which, by letting R — oo and noting «(7T") = 0, yields

_ T
u(0,2) = EP: </ f(s,ws)ds> , 1=1,2.
0

This in particular implies the uniqueness of martingale solutions (see [15]). O
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