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ABsTRACT. In this paper we show the existence of stochastic Lagrangian particle trajectory for
Leray’s solution of 3D Navier-Stokes equations. More precisely, for any Leray’s solution u of
3D-NSE and each (s, x) € R, x R, we show the existence of weak solutions to the following
SDE, which has a density p, .(7,y) belonging to H,” provided p, g € [1,2) with 24 5 > 4:

dX,, = u(s, X,,)dr + V2vdW,, X, =x, 1>,

where W is a three dimensional standard Brownian motion, v > 0 is the viscosity constant.
Moreover, we also show that for Lebesgue almost all (s, x), the solution X§.(x) of the above SDE
associated with the mollifying velocity field u, weakly converges to X;.(x) so that X is a Markov
process in almost sure sense.
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1. INTRODUCTION

Throughout the paper we assume d > 2. Consider the following Navier-Stokes equation:
ou=vAu+u-Vu+Vp, divu=0, uy = ¢,

where u = (uy,--- ,uy) is the velocity field of the fluid, v > 0 is the viscosity constant, and p
stands for the pressure. It is well known that for any divergence free vector field ¢ € L2(RY),
there exists a divergence free Leray weak solution to NSEs in the class

”u”L"O([O,T];LZ(Rd)) + ||Vu||L2([O,T];L2(Rd)) <oo, YT > 0. (L.1)

In a recent remarkable paper, Buckmaster and Vicol [4] showed that there are infinitely many
weak solutions u € C(R,; L*(T?)) for 3D-NSEs on the torus. However, it is still unknown
whether the above Leray solution is unique and smooth, which is in fact a famous open problem
for a long time.

In this work we are interested in the following problem: For any Leray solution u, is it
possible to construct the stochastic Lagrangian particle trajectory X, = X,(x) associated with
the velocity field u? More precisely, for each starting point x, is there a unique solution to the
following SDE?

dX, = u(t, X,)dt + V2vdW,, X, = x, (1.2)
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where W is a d-dimensional standard Brownian motion on some probability space (Q, %, P). If
u is smooth in x, then by Constantin and lyer’s representation [6] (see also [28, 30]), u can be
reconstructed from X;(x) as follows:

u(t, x) = PE(V'X, (%) - (X, (1)),
where P is the Leray projection and X;!(x) is the inverse of stochastic flow x - X,(x), and V"

stands for the transpose of the Jacobian matrix. By Krylov and Rockner’s result [15], under the
following assumption

u € N[0, T LP(RY), pog>2, 4+2<1,

for any starting point x € R, there is a unique strong solution to SDE (1.2). Moreover, the
unique solution X;(x) is weakly differentiable in x and satisfies (see [7, 27, 32]):

supE( sup |VXt(x)|P) <oo, Yp=21, T > 0.
x€Rd 1€[0,T]

On the other hand, one says that a vector field u : R, x RY — R satisfies the so called
Ladyzhenskaya-Prodi-Serrin’s condition (abbreviated as LPS) if

u € NroLU([0. T LP(RY), p.ge 2,000, ¢+2 <1, (13)

It is now well known that any Leray solution u of 3D-NSE must be smooth under the above
LPS conditions (see [20, Theorem 13.11 and Notes, p.261]). Unfortunately, it is still not known
whether each Leray solution satisfies (1.3). Indeed, by (1.1) and Sobolev’s embedding (see
Lemma 2.1 below), we only have

u € NrooL/([0, T LP(RY), pg>2, §$+2=1. (14)

Notice that the deterministic Lagrangian particle trajectories associated with u have been stud-
ied very well (for example, see [20, Chapter 17] and [5]), which depends on further regularity
on Leray’s solution. Here we want to solve SDE (1.2) under (1.4) for d = 3.

For given (s, x) € R, X R?, we consider the following SDE in R starting from x at time s:
dX,, = b(t, X, )dr + V2dW,, t > s, X,, = x, (1.5)

where b(t,x) : R, x R? — R¢ is a measurable vector field. The generator associated with the
above SDE is given by

LP = A+Db(t,)- V.
In this paper, we focus on the weak solution of SDE (1.5) with lower regularity b, that is,

b€ NpsoL!([0, T LP(RD) =2 L, (L), p,g>2, 4+2<2.

loc

Roughly speaking, a weak solution to SDE (1.5) is a semimartingale (X;,);s; so that
!
f |b(l", Xs,r)ldr < 00, Yt > S, a.s.,
and

!
X =x+ f b(r, X, )dr + \/§(Wt -Wy), V=5, a.s. (1.6)

When b € L! (L?) for some p, g € [2, %) with % + %] < 1, as mentioned above, by Girsanov’s
transformation and L”-theory of second order parabolic equations, Krylov and Rockner [15]
showed that there is a unique strong solution to SDE (1.5), which extended the main results in

[25] and [35]. In [19], Rezakhanlou showed the almost Lipschitz regularity of the associated
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stochastic flow in the spatial variable and showed some applications in Hamiltonian systems
perturbed by white noises. The strong well-posedness of SDE (1.5) driven by multiplicative
Brownian noise was studied in [27, 32] by Zvonkin’s transformation introduced in [35]. More-
over, the flow property and weak differentiability of X, ,(x) in x are also obtained therein. When
be H™ witha € (0,1) and p € (7%, ¢) is time-independent, Flandoli, Issoglio and Russo [9]
showed the existence and uniqueness of “virtual” solutions (a class of special weak solutions)
to SDE (1.5). Later, the well-posedness of martingale solutions and weak solutions (which may
not be a semimartingale but a Dirichlet process) was established in [33] for b € H™*? with
a € (0, %] and p € (ﬁ, 00). We also mention that Bass and Chen in [2] studied the weak well-
posedness of SDE (1.5) in the class of semimartingales when b belongs to some generalized
Kato’s class K,_;, namely b is a signed measure with

lim Supf M =0,

020 yepd Jly-xl<s lx — yld_l
(see also [34]). In particular, the space L” with p > d is included in this class.

It should be emphasized that even in the weak sense, all the works mentioned above do not
cover the borderline case b € L;’OC(LP ) with % + %1 = 1, not to mention the supercritical case

% + % > 1. Let us explain the difficulty firstly. In order to get the weak existence of SDE (1.5)
with singular drifts, a straightforward way is to use Girsanov’s transform as in [15]. However,
this approach does not work in the case when p < d. Let us make a detailed analysis for this
point. Let C be the space of all continuous functions from R, to R¢, which is endowed with the
topology of locally uniform convergence. Let B(C) be the Borel o-field generated by all open
subsets of C. The set of all probability measures over (C, B(C)) is denoted by Z(C). Let w, be
the canonical process over C. For ¢ > 0, define

B(C) :=o{w, : 0 < s <1

Let P € &2(C) be the classical Wiener measure so that ¢t — w, is a d-dimensional standard
Brownian motion. For b € LP(R%) with p < d, one can check that the Novikov condition

T
EPexp(% f |b|2(a)t)dt)<oo (1.7)
0

for the exponential supermartingale

t l i3
8§’=exp( f b(wy)dw, — = f |b|2(ws)ds)
0 2 0

may not hold. Notice that condition (1.7) is somehow equivalent to say that b belongs to some
Kato’s class (see [1]). In fact, without other conditions, if » only belongs to Lf’o‘f \ Lfo .» then the
weak existence may be failed. For example, consider the following SDE:

t
X, = —cf XX, 2ds + W,, c€R. (1.8)
0

If ¢ > d, Kinzebulatov and Semenov [ 14, page 3] explained why the above SDE does not allow
a solution (see also [3]). Meanwhile, for ¢ < ¢4, where c¢; € (0,d) is some constant only
depending on d, they proved that there exists a weak solution to the above SDE by utilizing the
analytic construction of the semigroup e “*>*¥)_ By direct calculations, for b(x) := —cx|x|~> and
d > 3, we have

divh(x) = —c(d - 2)|x|* ¢ Lfo/f :
3



Intuitively, if X is a solution of (1.8) and c is sufficiently large, then the centripetal force is

too strong so that the occupation time fOT 1x,=0yd? of X at origin during [0, 7] must be positive
for any T > 0 even though a random perturbation is added (see [3] for more details), and thus
there is no semimartingale solution for SDE (1.8). However, our result below shows that if
b € L¥>**(R?) for some & > 0, then equation (1.5) has at least one semimartingale solution,
provided that the negative part of divb satisfies some integrability condition. We emphasize that
Kinzebulatov and Semenov’s result in [14] can not be applied to the case b € L%\ L? . We

loc loc*

believe that the divergence condition is necessary for this case. Moreover, the singular time-
dependent drift b is not treated in [14]. If it is not possible, it seems hard to directly construct
the two-parameter semigroups associated with time-dependent drifts by analytic method.

Before stating our results, we introduce the following notion of martingale solutions.

Definition 1. For given (s, x) € R, XR%, we call a probability measure P,, € Z(C) a martingale
solution of SDE (1.5) with starting point (s, x) if
(i) Py (w; = x,t < s) =1, and for each t > s,

!
EFs« ( f |b(r, w,)ldr) < 00,

(ii) Forall f € Cf(Rd), Mtf isa B,-martingale under Py ,, where

t
M,f(a)) = fw,) — f(x) — f L f(w)dr, t>s.
The set of all martingale solutions Py, with starting point (s, x) and drift b is denoted by M v’fx.

Remark 1.1. Let P, € .#?.. By Lévy’s characterization for Brownian motion, one sees that

2 !
W, = g (wt - Wy —f b(r, a),)dr), t>s,

is a d-dimensional standard Browian motion under P, (see [23, Theorem 4.2.1]), so that
!
w; =X+ f b(r, w,)dr + ‘/EW,, t>=s.

In other words, (C, B(C),Ps ., w,, W,) is a weak solution of SDE (1.5).
Our main result is
Theorem 1.1. Suppose that for some p;, q; € [2, ) with !% + % <2,i=1,2,
—divb < @y, & := |Iblligy + l1®pllzz: < oo, (1.9)
where —divb < O, is defined in the sense of (2.2) below, and |- |||i{; is defined by (2.5) and (2.4)

below. Then for each (s, x) € R, X RY, there exists at least one martingale solution P, € A f,’x,
which satisfies the following Krylov’s type estimate: for any a € [0, 1] and p,q € (1, o) with
% + % < 2 — a, there exist 0 = O(a, p,q) > 0 and a constant C = C(II) > O such that for all

s<tg<tp<ocowithty—ty<land f € C;"(Rd”),

BFs ( f | f(t, w,)dt

where 11 := (k,d, pi, qi, P, q, @) is the parameter set. Moreover, we have the following conclu-
sions:

Bm) < Cty = 1) I f gz, (1.10)
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(i) (Weak uniqueness) For any mollifying approximation b, of b, there is a Lebesgue-null set
N c R, x RY such that for all (s, x) € N,

P{ . weakly converges to P, € M ffx, where P . € M f ", (1.11)

(ii) (Almost surely Markov property) For each (s, x) € N¢, there is a Lebesgue null set I, C
[s, 00) such that for all ty € (s,00) \ I, any t; > ty and f € C,(RY),

E*(f(wi)IBy,) = B0 (f(wy)), Poy—a.s. (1.12)

(iii) (LP-semigroup) Let T, f(x) := B f(w,). Forany p > 1 and T > 0, there is a constant
C = C(T, 1) > 0 such that for Lebesgue almost all 0 < s < t < T and f € LP(R?),

T fllp, < ClIflp. (1.13)
We now give some remarks about the above results.

Remark 1.2. By discretization stopping time approximation, Krylov estimate (1.10) is equiva-
lent to say that for any 6 € (0, 1) and stopping time T € [s, 00),

T+0
EFs ( f f(t, w,)dt

where B, := 0{wn:,t = 0} is the stopping o-field. In fact, suppose that (1.10) holds and let T,
be a sequence of decreasing stopping times with values in D := {k - 27" : k,n € N} and so that
T, > Tasn — oo, Forany f € CZ"(Rd“) and 6 € (0, 1), by the dominated convergence theorem
and martingale convergence theorem, we have

T+0
EFss ( f f(t, wy)dt
a-+o
= r}l_)ll;lo EPS,X (Z 1{‘1’,1:61} f f(t, a)[)dt BTn]
aeD a

a+o
= lim " 17, E™ ( f ft, w,)de Ba)

aeD
Loy ] 0
< CONfllgor Tim D Lg,a) = CSllf o
aeD

Br) < Collf ;- (1.14)

Ty +0

B,) = lim EFs ( f(t, wydt B,n)

Moreover, let g, (t,dy) := P, o wt‘l. For any a € [0,1] and p, q € (1, 00) with 1% + % <2-aq,
by (1.10), for any T > O there is a constant C > 0 such that for all f € C2([0,T] X RY),

T
f f f(l’ y)/-ls,x(t, dy)dt < C”f”H;(Y’F,
0 Jre
which in turn implies that u; ,(t,dy) = p,.(t, y)dy with p, . € H‘q’}l(’(;gpgl).

Remark 1.3. If (divd)™ = O, then ||T,.f1i < |Ifl; in (1.13). Ifdivb = O, then for any nonnegative
f e L'RY, 175/ = lIfli. By (1.4), we can apply the above theorem to the Leray solution of
3D-NSEs.

Remark 1.4. Let d > 3 and a < 3. Define
xX—-z
b= )y 2D,

774
where for some M > 0, y, € (0, M) is a constant and ¢ € C7(R,;[0, 1]) with ¢(r) = 1 for

r € [0,1] and ¢(r) = 0 for r > 2. It is easy to see that (1.9) holds.
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Remark 1.5. It should be compared with the results in [29, 31]. Therein, under the assumptions

Vhel!

loc?

(divh)",b/(1 + |x]) e L=, (1.15)

the existence and uniqueness of almost everywhere stochastic flows are obtained in the frame-
work of DiPerna-Lions’ theory. By the estimate (1.13), we can weaken the assumption on the
boundedness of (divb)~ in [31] when the noise is nondegenerate. On the other hand, in [29, 31]
and recent work [26), under (1.15), the existence of a solution is only shown for Lebesgue al-
most all x € R, while, under (1.9) we can show the existence of a solution for all starting point
x € RY

To the best of our knowledge, Theorem 1.1 seems to be the first one that considers the well-
posedness of SDE (1.5) beyond the LPS condition. However, it should be also pointed out
that the weakness of the present paper is that we can not get the pathwise uniqueness for (1.5)
when the drift vector field is the Leray solution of 3D-NSE, not to say the flow property of
the solutions and the weak differentiability of the associated stochastic flow with respect to the
starting point x. We would like to say that these problems are open to us. We hope to study
them in the future.

To prove Theorem 1.1, the key point for us is to establish the maximum principle for the
following parabolic equation under (1.9):

ou=Au+b-Vu+ f, u(0) =0. (1.16)
More precisely, for any o € [0, 1] and g, p € (1, o) with ;i, + 5 <2-a,

lleell o= g0, 793mey < C|||f|||ﬁ;"fp- (1.17)

When f = 0, under (1.9) the local maximum principle is proved by Nazarov and Ural’tseva
in [16] by using Moser’s iteration. It should be mentioned that when b is divergence-free and
smooth, still by Moser’s iteration, Qian and Xi [18] recently studied the apriori Aronson’s type
estimate for the heat kernel of operator .£> = A + b - V, where the bound depends only on the

norm ||b||L£,’, where p,q € (2, ) satisfies 1 < % + % < 2. We also refer to [12] for the study

of elliptic equations with drift » = 0 and f € LP(RY) for p > %’. Here an open question is that
whether we can show (1.11)-(1.13) for all (s, x) € R, x R¢, which is closely related to find a

continuous solution for PDE (1.16) under (1.9).

This paper is organized as follows: In Section 2, we establish the key maximum estimate
(1.17) by De Giorgi’s method. In fact, we shall show a more general result by allowing b and
f being in negative Sobolev spaces, which are not treated in [12, 16]. In Section 3, we prove
our main result Theorem 1.1. In Appendix, some properties of certain local Sobolev spaces are
given. Throughout this paper we shall use the following conventions:

e We use A < B to denote A < CB for some unimportant constant C > 0.

e Forany € € (0,1), weuse A < eB+D todenote A < eB+C.D for some constant C, > 0.
e Ny :=NU{0}, R, :=[0,00),aV b :=max(a,b),a Ab := min(a,b),a* :=a V0.

e For r > 0, we define B, := {x e R? : |x] < r} and Q, := (-2, %) X B,.

2. MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS BY DE GIORGI’S METHOD

Let 2 := C(RY*!) be the space of all smooth functions with compact supports and 2’ the

dual space of &, which is also called distribution space. The duality between 2’ and Z is
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denoted by (-, -)). In particular, if f € &’ is locally integrable and g € &, then

(f.8) = f(f(t),g(t»dt with (f(1),8(®)) := f f(t, x)g(t, x)dx. 2.1)
R R4
For two distributions f, g € &’, one says that f < g if for any nonnegative ¢ € &,
(fr ) <48 ¥). (2.2)

For @ € R and p € (1, o), let H*? be the usual Bessel potential space with norm

1/p
1Nl = 1= )2 111, = (fd (T - A)a/zf(X)l”dX) :
R
It is well known that for a € (0, 1), an equivalent norm of H*? is given by (see [22])

2
1fllap = A1 + 1A £,

where A%? := —(=A)¥/? is the usual fractional Laplacian. For @ € R and p,q € (1,0), let
Hy” := LY(R; H*”) be the space of spatial-time functions with norm

1/q
[V ( fR Ifa, -)||g,pdt) .

If f e Hy”, g € H ™" with llp + # =1 and é + qi = 1, as above we denote

T RGO R
For @ = 0 and p, g € [1, o], we also define
Hy? = LP == LY(R; L"(RY)),
and the energy space
¥ o= {f e LLnHY  Iflly = Ifllz, + IVafll; < o).
Throughout this paper we fix a cutoft function

X € CX(R™, 10, 1]) with x|, = 1 and xlg; = 0,

and for » > 0 and (s, z) € R, define
XAt %) = x (2 ), 0t x) = x(t— s, x—2), (t,x) e RT (2.3)

Next we introduce the localized Bessel potential spaces for later use.
Definition 2. Let a # 0 and p,q € (1,0) or @« = 0 and p, q € [1, oo]. We define

HY ={fe? : fpeH, Vpe CO®RM),
and the Banach space: for fixed r > 0,

7= {1 € HL W Mg o= sup L g < oo, (2.4)
For simplicity, we shall write
w0 ._ 0.0 o 1702 12 Tp._ 70, ._
Ly, o= B Yo = B2, 0EL2 L2 = 07, £l o= Sl 2.5)

Moreover, we also introduce the localized energy space

Vo= {f €TLNEY Al = Wl + V.Sl < o). (2.6)
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Remark 2.1. By the very definition, one sees that the definition of EIZ"’ does not depend on the
choice of r > 0 (see (i) of Proposition 4.1 in the appendix).

Moreover, we also introduce the following index set that will be used to state the conditions
on the coefficients b, f throughout the paper.

Definition 3. Ford > 2, define
I, = {(a/,p,q) € [0, 11X (1,00) X (1,00) : 4 + 2 < 2—a}.

For given (a, p, q) € 9, we define r, s € [2, ) by relations
1 1

1 1 1 1
Q2-a)p + r - 2° (2-a)yg + K 27

(2.7)
which implies that

d 2 d_ 2d

;+[—1<2—a/<:);+;>5. (2.8)

In what follows we shall also use the following mollifiers: for £ € (0,1) and n € N,
pe(x) := £ p(e™' ), palx) := p1jn(X),

where 0 < p € C2(By) with [p = 1.
2.1. Localization estimates. In this subsection we prove an important localization lemma for

later use, which is a consequence of Holder’s inequality and the following Gagliado-Nirenberge’s
interpolation inequality (see [11, Corollary 1.5]): for any u € H 117 N L7,

A ?ul|, < CIIVullf,llullf,_H, (2.9
where @ € [0, 1], 6 € [a, 1] and p, g, r € (1, 00) satisfy
1 « (1 1) 1-6
—=—+0|-—-=+—.
r d p d q
Notice that if u has support in B, and ra < d, then we also have
Netllor < lluall, + IA?ull, < Clltllrdja—ray + CIIVullf,Ilull,}_H < CIIVMIIf,IIMIII,_", (2.10)

where the last inequality is due to (2.9) with @ = 0. Here C = C(a, d, p, q, 7).
First of all, we have the following interpolation estimates.

Lemma 2.1. Letr,s > 2 with § + 5 > 5. If 6 := § = $ € [0, 1), then for any & € (0, 1), there is a
constant C; = C.(d, r,s) > 0 such that for all f € HY* N1L2

2(1-6)s/(2-s6y’
1flle; < eVl + Coll £l
In particular, if suppf C Q,, then for some C = C(d,r, s) > 0,
Ifll; < Cliflly, feV. (2.11)
Proof. Forr e [2,0)ifd =2o0rre[2,2d/(d —2)]if d > 3, by (2.9) we have
11l < CIV AN ™.

Since s6 < 2, by Holder’s inequality we further have

A1y < CIIVfllﬁgllfllfLZe ;

2(1-)s/(2-56)

2 .
2(1-0)5/(2-56)

which gives the desired embedding by Young’s inequality. O
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Lemma 2.2. Let Q = I x D € R X R? be a bounded domain. For any p,q,r, s € [1, 0], there is
a constant C > 0 only depending on Q, p, q,r, s such that for any A C Q,

(r/P)N(s/q)
Mally < CILLG/ 7.
Proof. Define

A, = f 1,(¢, x)dx.
D
If r/p < s/q, then by Holder’s inequality,

1/q r/(sp)
ally = ( f A;”Pdt) < c( f Af/’dt) = LY.
1 1

If r/p > s/q, then by Holder’s inequality,

1/q l/q
AY" < CAT" = 4l = ( f A?“’dt) <C ( f Af/’dt) = CI14I1.
1 1

The proof is complete. |
The following lemma is the key localization result.

Lemma 2.3. Let (o, p,q) € Yyandr, s € [2,0) be defined by (2.7). Let x» be the cutoff function
defined by (2.3). For any € € (0, 1), there is a constant C, = C.(d, @, p, q) > 0 such that for any

¢,b, f € H 3" andn € C2 (05310, 11), w € Yor,
(e W < ellwily, + Colloxall " lwi;, (2.12)
(0. VIPW N < ellpwlly, + Col 1+ bl )(1+ V7l + VAR W Lol (213)
LWL < ellmwlly + Collfxales (1 + 1971 I psol,- (2.14)
Proof. Since a € [0, 1], by relation (2.7), one sees that
| 1 a r+2 N 2(1 - a/)
r p d 2r d r d'

Thus for any g € H™*? and h € H"?/"+? ¢ H*?" with support in B,, we have

(8. h) < ||g||—a/,p||h||a/,p ”g”—ap”hllr/z VAL, (12)- (2.15)
By mollifying approximation, below we assume c, b, f € C* and fix n € C°(0»; [0, 1]).
(i) Since xalg, = 1 and 5lg; = 0, by (2.15) with g = cx, and & = 5>w?, we have
(e.PW?) = (ex2. W) < llexallap W L IV G WIS, )
S llexall-apllmwl 2 =N @w)V a3, 42,
< llexall—aplmwlZ IV Gw)lI3,

where we drop the time variable ¢ and the last step is due to Holder’s inequality. Integrating
both sides in the time variable, and due to =% <+ + - =1, by Holder’s inequality we get

(CYRTDIES ||c)c2||H wIInWIILr“IIV(UW)IILz,
which gives (2.12) by Young’s inequality.



(ii) By (2.15) with g = by, and h = V*w?, we have
(b, VIPw?) = (bx2, VP w?) < |Ibxall-ap IV W IV VWIS, 12

Notice that
VP w2112 < 201Vl WL, 0llZ,

and by Holder’s inequality,

2.2 2.2 2 20,2
IVOV WOl r+2) < IV W rsia2) + IV VW L2y r42)

2.2 2
< IV |-l IWlysolly + 41wVl - lInVwll,.

Hence,

bW S 10Xl IV W Lol 202211, oy 900l 2+ Il - 190113
S 10X 2ll-a (VI TS + IV L0l + 17l l L0l 2 IVl

< Ibxallap((1+ 1927l + IVRIZ)IWLysoll? + IVRlllw ol UV G,

and by Holder’s inequality and due to 611 + 2;;1 +5=1,

€D, VIPw M < 16X allggzer (1 + V27l + V7R IW L0l

2q/(q—1)

+ ”bXZ”H;“’p||V77||oo||W1n¢0||igallv(nw)|lig-
The desired estimate (2.13) follows by Young’s inequality and 2¢/(g — 1) < s.
(i11) By (2.15) with g = fnp and h = nw, we have

1wy S Ul Wl IV GG, -

Since V(nw) = V(nw)* — V(pw)™ = 0 a.e. on {yw = 0} (cf. [10, Lemma 7.6]), we have

V(w) = Viw)l,pz0, a-e.
Thus, by Holder’s inequality, we further have
[ S il w5 IV )l ol

S W fll-a pllmwll = IV G5 ol

andduetod + =2+ ¢4+l —1andd+2> ¢
q 2 r s 2

N A

" N @.11)
Ko WIS Il |l IV ol < Ll llmwil I Lol -

Notice that by n = y,n and (4.2) in the appendix,

W7l < 1P x 2l (1 + 11VAlle).

Substituting this into (2.17) and by Young’s inequality, we obtain (2.14).
10
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2.2. Local energy estimate. Throughout this paper we shall always assume
bels,. fe€?,
and consider the following parabolic PDE in R¢*!:
Ou=Au+b-Vu+f. (2.18)

Definition 4. A function u € ¥}, N 1L} is called a weak solution (subsolution or supersolution)
of PDE (2.18) with coefficients (b, f) if for any nonnegative smooth function ¢ € C (R,

—(u, 0ip) = (S or 2) = (Vu, Vo) + (b - Vu, o)) + ([, o), (2.19)
where (-, -) is the dual pair between &' and 9 (see also (2.1)).

Now we prove the following local energy estimate.

Lemma 2.4 (Energy estimate). Suppose that for some (a;, p;,q;) € Fa, i = 1,2, 3,
beH P —divb < @, e H "7, feH P

q1.,loc ° q2.loc ° g3.loc *

Let (r;, s;) € [2,0) be defined by (2.7) in terms of p;,q; and k > 0. For any weak subsolution
ue VN L. of PDE (2.18), there is a constant C > 0 depending only on d, a;, p;, q;,i = 1,2,3
and quantities

||bX2||H;;7‘l~P1 N ”@b)(Z”H;Z“Z’PZ .
where x, is defined by (2.3), such that for w := (u — k)" and any n € C(Q5;[0,1]) and t > 0,

liw Tl < CZ2 (Iwtpso Ty + Tl + IFaT oo Mageoll. ) (2.20)
where I,(-) := 1_w (), and

Z, = 1 +110mlle + VA, + IV?7ll- 2.21)

Proof. We divide the proof into three steps.
(i) Letp € C2(0Q2;[0,1]), « > 0 and w := (u — k)*. In this step we show that for Lebesgue
almost all # € R,

f (mw)* (1) < f Om*,w*y =2 f (Vu, Vip*w)) + 2 f b -Vu,’w) +2 f (f,*w). (2.22)
R4 —00 -0 —o0 -

Since we want to take the test function ¢ = wr? in (2.19), and d,u only makes sense in the
distributional sense, we shall first approximate u by its Steklov’s mean:

1 h 1 t+h
Spu(t, x) = Ef u(t+ s,x)ds = Ef u(s, x)ds, he(,1). (2.23)
0 '
Let uy, := S,u. By Definition 2.19 and noticing that 0,u;, € L%,loc’ one sees that for any nonnega-
tive ¢ € CX (R,

COutn, @) = —Cun, ) < =V, Vo) + (S (b - Vi), @) + (fir> ) (2.24)

By standard smoothing approximation, it is easy to see that (2.24) still holds for any nonnegative
¢ € Y, NL7° with compact support in Q,. Now fix ¢ € R and define

loc
516(5) = Loy + (1 = &7 (5 = D)Ly (5), € € (0, ).

Let wy, := (u, — k)*. Since

260ty Wil L) = 260w, Wil Lo = f ) Wi’ Le) — f d Wil — f ,1 Wi (Om*Le)s
R R R

11



by (2.24) with ¢ = wyn?l,s € Yioe NL{2, and [, 8,(win*4e) = 0, we obtain

_f UZW%Z t/,a <f W%l(atnzgt,s) - 2<<Vl/th, V(Whnzét,a)»
Rd+1 Rd+1

+ 248 1(b - V), Wi G ) + 26 fios Wil Lie )

Noticing that u, w € ¥, NL> and b € L3

> 10c> DY letting 2 | 0 and the dominated convergence
theorem, we obtain

- | owyZ, < f W (O ie) — 24Vu, VW L))
Rd+l R{[H

+ 24D - Vu, Wi L) + 20, Wil e ).

Since lim, o {o(s) = 1wq(s) for each s € R, the right hand side of the above inequality
converges to the right hand side of (2.22) as & | 0. On the other hand, by the Lebesgue
differential theorem, we also have

1 1+e &
— | oWy, = f ds f () (s) = f aw)(@0),  a.e.
Rd+1 E Js R R

Thus, we obtain (2.22).
(i1) In this step we use (2.22) to show that for Lebesgue almost all 7 € R,

(UW) () +2 f InVWI f (0.7 + APl w?)

(2.25)
f (O f (b, ViPw?)| +2 ‘ f o w>‘
Noticing that
Vu-Vw = |[Vw, (Vu)w = (Vw)w = Vw?/2, (2.26)
by the integration by parts formula, we have
2Vu, V(iPw)y = 2 f 7 |Vw]?* - f w? - At (2.27)
R4 R4
Moreover, let w, be the mollifying approximation of w. By —divb < ®,, we also have
2b - Vuw) = (b - VW) = lim (b - Vo)
= ling( — (divb, n2w§) — (b, Vn2w§))
< 1im (@, 7°w2) — (b, V' w})
= (Op. W) = (b, V' w?). (2.28)

Substituting (2.27) and (2.28) into (2.22), we obtain (2.25).
(ii1) By (2.25) and definition (2.6), we have
!

lpwI Il < <I0ﬂ72 + AP + 2|Vi?[, w?) + sup

S<t

fs <@ba 772W2
s 4

IREEEDT
- i=1

2

+ sup

s<t

+ 2 sup

St




For I;, noticing that ry, s; > 2, we have
I < (2”61‘77”00 + 2IVAllZ, + lAnlle + 4||V77||00)||W177¢01-t”]i§ < CEnllwlmeoftllirl-
5]

For I, I and 14, by (2.12), (2.13) and (2.14), we have

2 2/(2— 2
L < ellpwI |, + Cll@wxall 50 Iwn 1 -,
.\‘2

a2

and

I3 < ellpw |5 + Co( 1+ 10Xl o (1 + IVl + 1V )Ly LI,
1 51

Iy < ellpwIilly + Cllfo2T il oain (L4 IR sl
Combining the above calculations and letting £ be small enough, we obtain
lwZ |5 < EI]”WlniOIt”iq + ||WUIt||i§% +(1+ IIVUIIi)IIf)(zLIIEH;;m ||1,,w¢ollig,
where Z, is define by (2.21). From this, we derive (2.20). O

Remark 2.2. If oy = 0 and pil + i =1 or b(t,x) = b(x) € L¢ (R?), then we can remove the

loc
assumption on the divergence of b. In fact, in this case, we can give a direct treatment for the

term b in (2.22) as follows: For any € > 0, let
be(t, x) 1= b(1,) * ps(x), by(t, x) := b(t, x) = by(t, X).

Lyl 1 11 g o d 2 _d 4,2 _1 g _
Letr—1+p—1—31+ql—2, which satisfy r1+S1—2duet0 p1+q1—1. Since yon = n, by (2.26),

Holder’s inequality and Lemma 2.1, we have

! ! !
f Kb - Vu, 7*w)| < f bs - Vi, P w)| + f [Kbe - Vu, 7w
< Baxalln 79wl llmw iy + bexallel VWl limw ol
< clpwI IR + Co(1 + IVl oL |1

29
LZ

where lim,_,gc, = 0 and lim,_,oC, = oco. Using this estimate to replace the corresponding
estimate about b and taking € small enough, we still have (2.20). Here the reason that for p = d
we assume b being time-independent is that in general

lirré 1bexallLe # 0 for b € Ly (L} ), but lirrg lbexalla = 0 forb e LY

loc\"loc loc*
2.3. Maximum principle. The following De Giorgi’s iteration lemma is well known [12].

Lemma 2.5. Let (a,),n be a sequence of nonnegative numbers. Suppose that for some Cy, A > 1
and € > 0,

apy < Co'al*®, n=1,2,---.
Ifa; < C(;l/s/l_l/gz, then
lim a,, = 0.

Now we can show the following local maximum principle for PDE (2.18).
Theorem 2.1 (Local maximum estimate). Suppose that for some («;, pi,q;) € g, i = 1,2,3,

beH W, ~divb < @, e .27, feH "

q1;loc q2;loc q3;loc *
13



For any weak subsolution u € ¥, N Ly of PDE (2.18), there is a constant C > 0 depending
onlyond,a;, pi,q;,i = 1,2,3 and the quantities
||bX2||H;;Y|~!’1, ||@bX2||H;;2vl’2,

where y, is defined by (2.3), such that

I T,k < € (Juxally + fellzran ) (2.29)

Proof. Let k > 0, which will be determined below. For n € N, define
=4 (@ 4347, 4, = 14217 k= (1-217)

and

Ly = (=ty, 1) X By, L [-1, 1] X By = Q.
Let £ € C>((—4,4);[0, 1]) be a time-cutoff function so that for some C > 0 and any n € N,

Glctriy = 1o Glcsaye =0, 10,4, < C4"
Let £} € C2(By; [0, 1]) be a spatial-cutoff function so that for some C > 0 and any n € N,
Qls,., =1 Qls =0, V< C2, j=1,2.

n+1

Now let us define
(t, %) 1= £, (1) - £ ().
Let E,, be defined by (2.21). It is easy to see that for some C > O and all n € N,
Mlr,. =1, male; =0, &, < C4"
Let (r;, s;) € [2, 00) be defined by (2.7) in terms of p;, g;, and define
Wy = (U — k).
Notice that
Wl 20 = (U = Knet + Knst = Kn) ", 20 = Knat — K = k27"
Fori=1,2,3, due to n,|r« = 0, we have
AURES Walr, ll > Iwady,w,z0ll > K271y, 200l
which means that

L0l < 267 k. (2.30)

Since 2 + £ > 4 by (2.8), we can choose y;, B; > r;, 6;,7; > s; so that

1 1 1 I 1 1 d 2 _d

s - s + =

+ == .
Yo Bi ori 6 woosioovi 60 2
= 1, Holder’s inequality, Lemmas 2.1 and 2.2, we have

Gy = Wil < 1wl

Thus, by n,|r

n+l

< awnall i g, 0l

1 1
(Si>/Ti>/\(’i/ﬁi)
Ly

< Cllmwnelly - 22 100N,
14
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< aWna I g, 20l
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Notice I'y = Q. By (2.20) withn =n, and w = w,,, for « > || f, )(ZIIH—az »3, We obtain

sl < 2° (e, g+ Wl + el Mg ol

230 (2.32)

) C2M(E) + 69 +2"€0) s 4760 + 67 + L)),
where we have used that w,,; < w, and 1, < 1r,. Now we put

a, = (60 + €2 + () /x.
By (2.31) and (2.32), we obtain that for some Cy,& > 0and 4 > 1,

3
ap1 < C'a, ) (2"a,) M) < Cod'a) ', W € N,

i=1

provided k > || f)(z”H-ttz »s. Notice that by y»|r, = 1 and Lemma 2.1,

3

1

<= ) eIl < Z e xall s < —||u Kally.
i=1

If k > (ClCl/gxll/s lutxally) Vv ||f)(2||Hm » S0 that a; < Cal/sxl‘l/s , then by Fatou’s lemma and
Lemma 2.5,

1w =) 1, ll 7y < liminf [jw, I, [l 1 = hmmf{’(” < k-limsupa, =0,

n—oo

which implies that for Lebesgue almost all (¢, x) € R x R¢,
(1)1, 2) < CLCy "l xally V Il fallyorn.
The proof is complete. O

Remark 2.3. Ifa; =0 and £ + 2 =1orb(t,x) = b(x)e L!
drop the condition on the dlvergence of b.

(RY), then by Remark 2.2, we can

loc

Now we aim to prove the following crucial result.
Theorem 2.2. (Global maximum estimate) Suppose that for some (a;, p;,q;) € Z4, i =1,2,3,
beH, ™", —divb < 6, e H;™, feH, ™", (2.33)

Letu € V), NL;>. be a weak solution of PDE (2.18) with initial value u(0) = 0. For any T > 0,
there exists a constant C > 0 depending only on T, d, «;, p;, q; and the quantity

K= (Blllgerrs + 1Ol o2
such that
ltll = qor1xeay + WMuio,rlly < Cllf Lyo,r ;oo (2.34)
Proof. Without loss of generality, we assume 7 = 1 and
u(t,x) = f(t,x) =0, Vr<O.
Let y; be as in (2.3) and define for z € RY,

n.(t,x) == x1(t, x — 2).
15



By translation and (2.20) with n = 17, and w = u™, 4™, there is a constant C > 0 depending only
onT,d, a;, pi, qi, |||b|||H;m,m , I(divb)~||g-e2»> such that for all ¢ € [0, 1],
1 a2

0,
Iz lly < C(llyeo Tl + InaeZ llz + 1A T Ml )
where )(g’z is the same as in (2.3). Taking supremum in z € R? for both sides, we obtain

5

sup ||n.ul |y < C( sup ||u1,,z¢0It||Hd;} + sup ||nZuI,||Lr§ + sup ||fngZL|IH;;r3$p3). (2.35)
Z Z Z Z

Since for each z € R, there are at most N -points zj,- -+ , 2y € R? such that
By(z) € UL Bi(z)),
where N = N(d) and B,(z) := {x : |x — z| < r}, we have for t € [0, 1],

N
o Tl < g Tlln < ) llulp oy Dlly < NsuplipaZlln, — (236)
=1 ¢
where the last step is due to 7, [j0.1x5,;;) = 1. Hence, by (2.35), (2.36) and (4.3) in appendix,
sup 72 |l < C(‘suplip-uZ lly + sup el .y + If L llgoa0s). (237)
z Z Zz -
Let
0 d d , 2(1 - Hi)Sl‘
= — =, 5=
2 ri ! 2 — S,‘gi
Since ri; + % > 4, by Lemma 2.1, we have for any ¢ € (0, 1),
Inul ;< ellVO) Lillz + Cellnul iz, - (2.38)

Combining (2.37) and (2.38), we arrive at
sup [[n.ul |l.2, + sup (V)L 4llrz < 2sup [lpul|ly
Zz Zz Z

<esup IV L llz + Cosuplinaul llz |, +CNf L llgosn.
b4 z 1Y%

By choosing € small enough, we obtain

suplpul iz, +sup VG Lillz < Csuplinulille, |+ CllF Ll s (2.39)
z z z slv_sz

Since s}, 5, < oo and u(?) = 0 for ¢ < 0, the above inequality implies that for any 7 € [0, 1],
vs)

!
sup [l < C sup f (I ds + CIFTIL -
b4 z 0

493

By Gronwall’s inequality we obtain

sup sup [|(7.1)(Dll> < Cll fLjo,1llg-233 5
7z 1€[0,1] a3

which together with (2.39) yields
Meedio,llly < stgp ||77zM1[0,1]||]Lgo + Slgp ||V(77zu)1[0,1]||L§ < |||f1[0,1]|||ﬁ;;’3~1’3- (2.40)
Finally, by (2.29) and (2.40), we also have
lletll 2 0,175y < Sl:P (@™ + w1 0,11x8, ) lloo

< Ml il + |||f1[o,1]|||ﬁ;;w3 < |||f1[0,1]|||ﬁ;;fs’1’3-
16



The proof is complete. O

2.4. Existence-uniqueness and stability. In this subsection we prove the existence-uniqueness
and stability of weak solutions for PDE (2.18) by using the apriori estimate (2.34). For T > 0
and a function f in R¥*!, we denote

FT = flors %=1 Ty < oo}, LY = {f : 11/ lleo < oo}

Theorem 2.3. (Existence-uniqueness) Under (2.33), there exists a unique weak solution u €
Nrso¥7 N LY to PDE (2.18) with initial value u(0) = 0.

Proof. First of all, the uniqueness is a direct consequence of (2.34). We prove the existence by
weak convergence method. Let b,(t, x) := b(t,-) * p,(x) and f,(¢, x) := f(t,-) * p,(x). By (ii) of
Proposition 4.1 in Appendix, we have

b, € L' (R;;CY(RY), f, €Ll

loc loc

(Ry; C(RY)),
and

~divhy < @y pu, sup (lbullgzoir + 10y * pullgzror: + Whllgzom ) < 0. (2.41)

n

It is well known that the following PDE has a unique smooth solution u, € C(R,; C;’ (R%)) (see
[23]):

o, = Auy, + b, - Vu, + f, =0, u,(0)=0. (2.42)
By (2.41) and Theorem 2.2, we have
sup (Jliuj lle + lluef Il ) < o0, ¥T > 0. (2.43)

Hence, by the fact that every bounded subset of ﬁé’z is relatively weak compact, there is a

subsequence 7y and i € N7.o¥7 N LY such that for any ¢ € C:?"(R"“) and g € H;;i’ozc,
lim u,, o) = (@, - (2.44)

By taking weak limits for equation (2.42), one finds that # is a weak solution of PDE (2.18).
Indeed, it suffices to prove that for any ¢ € CX(R*!),

1im (b, - Vit @) = (b- Vit @), lim (o ) = (s 0. (2.45)

Let the support of ¢ be contained in Q¢ for some R > 0. Since b € Liloc,
inequality, we have for some C > 0 independent of £,

(bu, = D) - Vi, @) = Cxr(bn, = b) - Vity, @) < IV@llool (b, = D)xrll2 IVt llr2
< C”(bnk - b)XR”L% — 0 as k — oo,

by (2.43) and Holder’s

where y is the cutoff function defined in (2.3). On the other hand, since div(by) € H, 2 has
compact support, by (2.44) we also have

gim «b-V(u,, —u),e) = l}im uy, — u, div(be)) = 0.

Thus we obtain the first limit in (2.45). The second limit in (2.45) is direct. O
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Theorem 2.4. (Stability) Let (p;,q;) € [2,00) with f + % < 2, where i = 1,2,3. For any
n e NU{co} =: N, letb,, f, € D satisfy
~divhy < Oy, sup (Iballzy, + 10l + fllzy ) < o (2.46)

neNg

For n € N, let u, € ¥ AL be the unique weak solutions of PDE (2.18) associated with
coefficients (b, f,) with initial value u(0) = 0. Assume that for any ¢ € C.(R*),

Tim (16, = bl + 1 = el ) = 0. (2.47)
Then it holds that for Lebesgue almost all (t,x) € R, X RY,
lim u,(t, x) = us(t, x). (2.48)

Proof. Notice that equation
ou, = Au, + b, - Vu, + f, = Au,, + div(b,u,) — (divb,)u, + f,

holds in the distributional sense (see (2.19)). Letting r := ;’22 < 2and s := qzl% < 2, by
Proposition 4.1 in Appendix, we have

T : T T . TN, T T
@t Lol 1 < WAL + div(blul) — (divbDyul + £ llg10
T T T . TN, T T
< Mo e + BTl My + v e Mo + £ Mo

T T T T T T
S Mt gz + 6y Nl lloo + Wiyl oty Nz + 1 M

< Moty Mg + 16, Mz (1] llo -+ ety |||ﬁ;2) + o Mz
By (2.46) and Theorem 2.2, we get for any T > 0,
sup (luallcs + Netally + @) Lol ) < oo

Thus by Aubin-Lions’ lemma (cf. [21]), there is a subsequence n; and & € ﬂT>0(”/7T NL7T) such
that (2.44) holds and

1}1_2}0 lletr, — @llr2q0.r1x8,) =0, YT >0,m € N.

By selecting a subsubsequence n;, it holds that for Lebesgue almost all (7, x) € R, X RY,
g (1, %) — (8, %), k — oo, (2.49)
As in showing (2.45), one can show that i is a weak solution of PDE (2.18). By the uniqueness,
il = U, and by a contradiction method, the whole sequence converges almost everywhere. O
3. ProoF oF THEOREM 1.1
Below we always assume that for some p;, g; € [2, o) with 1% + % <2,i=1,2,
—divb < 0y, «:=Iblign + 11®ylligp: < co.
Let b,(t, x) = b(t, -) * p,(x) be the mollifying approximation of b(z, -). By (ii) of Proposition 4.1
in Appendix, we have
~divb, < O, * pr.sup (Ibillzz, + 110, * ooz ) < Ci 3.1

and

loc

b, € LI (R,; CY(RY)).
18



For (s, x) € R, x RY, consider the following SDE:
dX", = b,(t, X" )dt + V2dW,, X" =x, 1>, (3.2)

where W is a d-dimensional standard Brownian motion on some complete filtered probability
space (Q, .7, (Z,)=0, P). It is well known that there is a unique strong solution X§ (%) to the
above SDE (cf. [13]).

Now we are in the position to prove our main result.

3.1. Existence of martingale solutions. First of all, we prove the following crucial estimate
of Krylov’s type.

Lemma 3.1. For any («, p,q) € Yy, there are constants 6§ = 6(«, p, q) > 0 and C > 0 depending
onk,d, a,p,q, pi,q; such that for any f € CZ"(R‘J“) and 0 < s <ty <ty <oowithty—t, <1,

3l
sup sup E ( f fa, X?,,(x))dt|%o) < Clt - 10N g0 (3.3)
n  xeR4 o
In particular, we have the following Khasminskii’s estimate: for any A € R,
s+1
sup sup E exp {/l f lf(, X"t(x))ldt} < C = CA, & 1 f g )- (3.4)
n  xeRd s

Proof. Fix 0 < s <1y <1 < oo withfy — 1, < 1 and f € C;°(R™*"). Let u, be the unique smooth
solution of the following backward PDE:

Oty + Auy + by - Vu, + f =0, u,(t,-) =0. (3.5)

By (3.1) and Theorem 2.2, for any (¢, p’,q’) € -y, there is a constant C > 0 depending only
onk,d,a,p’,q, pi,q; such that for all ¢, € [0, #;],

lln(t0)lleo < CllF .01 llg-or - (3.6)

By It6’s formula we have
un(t1, X5,) = up(to, X3, +f (O + A, + by, - Vuy,)(t, X )dt + \/_f Vu,(t, X ,)dW,.

By (3.5) and taking conditional expectation with respect to .%,,, we obtain

( f fa, X",)dt'c%o)— 0, X2 1 o) < (1) (3.7)

Smce + < 2 — a, we can choose g’ < g so that I‘f + = < 2 — a. Thus by (3.6) and Holder’s
1nequa11ty, there is constant C = C(x,d, a, p, q, pi» qi) > O such that

7]
E(f fa, X"t)dt'fzo) Clllfl[totl]llle C(t — o) 7|||f|||H<w
To

Thus we obtain (3.3). As for (3.4), it is a direct consequence of (3.3) and [17, Lemma 1.1] (or

see [27]). O

Lemma 3.2. For any T > 0, there is a constant C > 0 such that for any f € L'(R?) and n € N,
W75 I <ClIflli, YOS s<t<s+T,

where T, f(x) := Ef(X{,(x)). Moreover, if (divb)™ = 0, then the above C can be 1.
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Proof. Let Y{, := Y{ (x) be the inverse flow of x — X (x). Notice that s > Y, solves the
following backward SDE:

Yﬁt:x—fb(r,Y",)dr+ \/_(W W,), 0< s <

N

Letting J{, := J{ (x) := VY{ (x) be the Jacobian matrix, we have
0,05, = Vb, (s, Y )]}, = 0,det(Jy,) = divb,(s, Yy,) det(J{,).

det(Jy,) = exp {—f divb,(r, Y”t)dr} exp {f (®, * p,)(r, Y"t)dr}

Fix t > 0. For any s € [0,7], let Z{, := Y7, b,(s,y) := by(t — s,y) and W, := W,_, — W,. One
sees that {WS}SGLOJJ is a standard Brownian motion on the interval [0, #] and

Hence,

Z, :x+f bu(r,Z},)dr + \/_W
0

Thus, by (3.1) and Khasminskii’s estimate (3.4) with (a, p, g¢) = (0, p», ¢2), we have

[—S
sup sup E det(J{,(x)) < sup sup E exp {fo |®p, * p,|(t — 1, Z”t(x))dr} < oo,

n  xeRd n  xeRd

Now by the change of variables, for any nonnagative f € L'(R¢), we have

175 f 1l = (fd f(XZ’,t(X))dX) = E(fd f(x) det(J’J,t(X))dX) < ClIflh-
R
Moreover, if (divh)™ = 0, then det(J7,) < 1 and the above C = 1. |
Lemma 3.3. For each (s, x) € R, XRY, let P% . be the law of X (x) in C. Then (P ),en is tight.

Proof. Fix (s,x) € R, x R?and T > s. Let T > s be any stopping time less than T. Notice that

T+0
X" s(0) = X! (%) = f bu(t, X" ,(0)dt + V2(Wei5 — W), 6> 0.

By (3.3) with @ = 0 and Remark 1.2, we have
T+0
EIX{ . ;(x) = X{ (DI <E f 1b,1(t, X ,(x))dt + V2E|Wpy5 — W

<C&Nbally + V28" < C8'llblly + V26",
where C is independent of n and x. Thus by [34, Lemma 2.7], we obtain
sup  sup ( sup X" 5(x) = X" t(x)|1/2) <C (59/2|||b|||”2 51/4).
n o (sel0,TIxRI  \rels,T]
From this, by Chebyshev’s inequality, we derive that for any 7, & > 0,

limsup  sup ( sup X7, 5(x) = X7, (x)| > 8) =0.

020 5 (s x)e0.TIxR  \r€[s,T]

Hence, by [23, Theorem 1.3.2], the law of X¢.(x) is tight in C, O

Now we can show the existence of martingale solutions.
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Lemma 3.4. Any accumulation point Py, of (P§ ).en belongs to ,///Slfx. Moreover, for any
(@, p,q) € Iy, there are 6 = 0(a, p,q) > 0 and constant C > 0 such that for any f € C;?(R™*")

and 0 < s<tg <t <ocowitht; —ty < 1,
11
sup EFs= ( f f(t, wy)dt
xeR4 to

Proof. Let (a, p,q) € Z,. By (3.3), there are 8 = 6(«, p, q) > 0 and constant C > 0 such that for
any f € C(R™),0< s <1y <t; <oowitht; — 1y < 1, and G € Cy(C) being B,,-measurable,

Bto) < C(ty = 1) WSl (3.8)

11
sup sup B ( f flt,wpdt - Gto) < C(ty = 1) N fllz+rBAG,). (3.9)
Iy

n  xeRd

Let P, . be any accumulation point of (P )cx, that is, for some subsequence rny,

P, weakly converges to P, , as k — oo.
By taking weak limits for (3.9) and a standard monotone class method, we obtain (3.8). In order
to prove P, , € .#?_, it suffices to prove that for any #; >, > s and f € C*(RY),

E(M]|8,) = M!, P, -as.,
where t
M = flw) — flw,) - f (A+b-VVf(rw)dr

By the standard monotone class method, it is ehough to show that for any G € C,(C) being
8B,,-measurable,

E"(M! - G,) =E™(M] - G,).
Note that for eachn € N,
Pl €. Ml = ER(M) -G ) = E(M) - G,
where

M = f(w) - flwy) - f(A + Dy - V) f(r, wp)dr.

We want to take weak limits, where the key point is to show

lim B+ ( f l(bnk~V i, w,)dr~G,0(a))) =E™ ( f l(b~V i, w,)dr~G,0(w)). (3.10)

k—oo

Assume that supp(f) € Qg. By (3.3) with @ = 0 and (4.5) in Appendix, we have

sup EFsx

nzm

1
<Gyl llV o sUp E (f (b = bl wr)dr) .

f (b = b) - V)R 0)dr - G (@)

nzm

SGyllllVfllso sup b = ba)xllzz — 0, m — oo,

nzm

where xrlo, = 1 is defined in (2.3). Similarly, by (3.8),

]EPS,X

f 1((bm = b) - V)(r,w)dr - G (w)

S N@w = D)xrllzn — 0, m — oo. (3.12)
Moreover, for fixed m € N, since

0 f (b - V) 0)dr - Goy(@) € CH(C),
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we also have

lim % ( f l(bm~Vf)(r,wr)dr~Gm(w)) _ B ( f l(bm~Vf)(r,wr)dr~G,0(w)),

k—oo

which together with (3.11) and (3.12) yields (3.10). The proof is complete. O

3.2. Weak convergence of P .. In this subsection we show that for Lebesgue almost all (s, x),
the accumulation point of (P ,),ew 1s unique, which in turn implies that

P" weakly converges to P, € .#" asn — .

For fixed T > 0 and f € L7 = L*([0, T] X RY), by Theorem 2.3, there is a unique weak solution
u = ury € ¥r NL7 to the following backward PDE:

O+ Au+b-Vu+ =0, u(t,)r =0. (3.13)

Let Q C R be the set of all rational numbers and %, a countable dense subset of C°(RY). For
m € N, we recursively define a countable set ¥, as follows:

9, = {g:fuT,heL‘}" T eQ, fe9, he%,,_l}.

Clearly,
o =U, %4, C L™ is a countable set.

Lemma 3.5. ForT >0, f € L7 and n € N, if we define
T
iy (5, %) = B ( f fa, w,>dt), (3.14)
then uf, 7 € % N L7 uniquely solves PDE (3.13) with b = b,. Moreover, there is a Lebesgue

nullsetN Cc R, de such that for all (s,x) e N, fe o/ and s <T € Q,
lim uT,f(s, X) = ur,¢(s, x). (3.15)

Proof. Form € N, let f,,(¢, x) := f(t,-) * p(x) and

T
u'}’";(s, x) = EFs (f T2, w,)dt) , s€[0,T], xe R
It is well known that u'”" solves PDE (3.13) with b = b, and f = f,, (cf. [23]). By Theorem 2.4,
for Lebesgue almost all (s x), we have
"m(s X) > u f(s X), m — oo, (3.16)

where u”’°° € “IZ N L7 is the unique weak solution of of PDE (3.13) with b = b,. On the other
hand, by Krylov s estimate (3.3), for each s < T and x € R?, we have

lim B ( f fut, w,)dt) = EF- ( f fa, wt)dt) = U,

which together with (3.16) gives u; f = ur . a.e. Moreover, for fixed 7 € Q and f € o, by

Theorem 2.4 again, there is a Lebesgue null set Nty € Ry X R? such that (3.15) holds for all
(s,x) € N}', - Finally, we just need to take

N = UTEQ Ufebg/ NT’f.

The proof is complete. |
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Lemma 3.6. Let N be as in Lemma 3.5. For fixed (s, x) € N¢ and any two accumulation points
P(le and IP(YZ))C of (P§ Inen, we have

P{) =PY. (3.17)

Proof. Fix (s,x) € N°. For s < T € Q and f € %, by (3.15) and taking weak limits for (3.14)
along different subsequences for PE’)X, i = 1,2, one finds that

. T
g (s, x) = BF ( f f(wt)dt), i=1.2,

which implies that for all s < 7 € Q and f € %,

T T
EFe ( f f(wt)dt) = B ( f f(wt)dt)-

In particular, for all T > s and f € %,

T T

s N

Claim: Let (s,x) € N“and T > s. For any sequence g,, € L7 with sup,, ||gm||1L°; < oo and being
such that g, (¢, x) — g(¢, x) for Lebesgue almost all (¢, x), it holds that

lim supE s (f lg. — gl(t, a),)dt) (3.18)

Proof of Claim: For R > 0, define
=inf{t > s : |ws = R}.
By (3.3) with (a, p, q) = (0,d,4) and the dominated convergence theorem, we have

TATR
lim sup B+ (f lgm — 8I(2, wt)dt) < C lim llCgm - g)l[s,r]xBRHLz’ =0. (3.19)

m—0oo n

On the other hand, by SDE (3.2) and (3.3) again, we also have

T
( sup |X5 |) Slxl+1+ E(f |b,(t, X”t)ldt)
tels,T] 0

where C is independent of n. Hence,
lim supP{ (7 < T) = hm supP( sup X7, (x)| > R) hm supE( sup |X7 tl) /R =0,
R—eo n te[s,T] n 1€[s,T]

which together with (3.19) yields the claim.

Next let s < T < T, be two rational numbers and fi, > € %. Let (P{)ien be a subsequence
so that (P )y weakly converges to P(l). By the Markov property, we have for fi, > € %

T>
sz(vmwn( ﬁ@ﬁﬁ%)

:pﬁﬁuﬁmwﬁfﬁmem)

= lim EFs ( Si(wy, )E i ! ( fz(ws)ds) dtl)

k—o0 1
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3. 14)

Ty
1 EP” ( ﬁ(wtl )M’;{;’fz(l‘],wtl )dtl)

k—o0

k—o0

n Tl
= lim EF ( Silwy)ur, 1 (1, wy, )dfl) )

where the last step is due to (3.15) and the above Claim. Notice that
8(s, x) := fi(ur, ;,(s,x) € 7.

Hence,

T
3.15)

: Pk, (3.14) .. ) 3.
lim B+ ( Siws)ur, 5, (11, Wy, )dtl) = lim Uy, [(5,%) "= ur o(s, ).

N

Since the right hand side does not depend on the choice of the subsequence n;, we finally obtain
that for any rational numbers s < T; < T, and fi, f> € %,

(1)

T> T>
(2)
B ( Silwy) ( fz(a)zz)dtz) dﬁ) =3 ( filwy,) ( fz(w,z)dtz) dtl) )
K 11 N n
From this, as above we derive that for all f;, , € %and T, > T > s

(1) (2)
E™ (fi(wr) folwr,)) = B (filwr,) flwr,)) -
Similarly, we can prove that for any 7, > --- > T, > sand fi,- -, fu € %,
EPA * (fl (le fm (me )) - EPA * (fl (le fm(me ))
Thus we obtain (3.17). i
3.3. Almost surely Markov property. Let A be as in Lemma 3.5. We fix (s, x) € N°¢ so that

P . weakly converges to P, as n — oo. (3.20)

Recalling that % is a countable dense subset of CZ(R?), to show (1.12), it suffices to prove the
following claim:

Claim 1: For fixed t; € (s,00) N Q and f € ¥, there is a Lebesgue-null set Iif;f C (s,1;) so
that for all fo € (s, ;) \ I''Y,
B (flwn)IBy) = B0 (f@), Pox—as. (3.21)
Indeed, if this is proven, then we can take
Is,x = US<I]€Q Ufe% Islx .

Thus for any 7y € (s,00) \ I, and all tp < t; € Q and f € %,
EP (f(wi)|By,) = E 0“0 (f(w,,)), Pyx—a.s.

By a standard approximation argument, the above equality also holds for all #, > #, and
f € C(RY).

Furthermore, to prove Claim 1, it suffices to prove the following claim:

Claim 2: Lett; € (s,00) N Q and f € %,. For fixedm € N, s1,---,5, € (s,;) N Q and

81s---»8m € %, there exists anull set I := I,"""g" C [s,,, 1] so that for all to €[Sy, t1]1\ 1,

7 (81(wy) - 8@, ) (@) = B (g1(w) -+ gm(@y, JE 0 (f(w,)) . (322)
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Indeed, if this is proven, then we can define
., . — S15758m
Isixf = Upen US1,--~,sm€(s,t1)ﬂQ Ug1,~--,gm€€401g11,~-~ »8m C (s,10).

Thus for any 7, € (s,1,) \ I/, (3.22) holds for all m and sy,--- , su € (5,2] N Q with 5, <
§3 < o < Sp, &1, »8&m € %. By a standard monotone class argument, we obtain (3.21) for
fo € (s,1) \ 1%/ from (3.22).

Proof of Claim 2: For simplicity of notations, we shall write

G, (w) = gi(wy,) -+ - gmlwy,).

By the Lebesgue differential theorem, we only need to prove that for any 7y € [s,,, 1],

! t f g (G, (BT (f(w,,))) dr. (3.23)

tl_ 0 Jr

EF (G, () f(wy)) =

Clearly, by the Markov property of (P ) yer, xre,» W€ have

B (G, (@) f () = —— f E™ (G, (w)E o (f(wy,))) dr. (3.24)
1 =10 Jy
By (3.20) we have
lim B (G,,, (@) f(@y)) = E™* (G, (@) f(@))) - (3.25)

Define
H,(r,y) :== E™ f(w,,) = Ef (X}, ).

Since by (3.20), H,(r,y) — H(r,y) for Lebesgue almost all r, y, by (3.18), we have

11
lim sup B ( f \H,(r,w,) — H(r, w,)|dr) = 0.
fo

n—oo k

On the other hand, for fixed »n and r, since y — H,(r,y) is continuous, we also have

5 3l
lim | B (G, (w)H,(r,w,))dr = f E (G, (w)H,(r, w,)) dr.

k— o0 o 10

Therefore,

tim [ 5% (G (@)ETer (f(w,))) dr = f " (Go @B (fwy)) dr,

n—oo f 1o

which together with (3.24) and (3.25) gives (3.23). The proof is complete.

Proof of Theorem 1.1. By Lemma 3.4, we have the existence of P, € ., which satisfies the

Krylov estimate (1.10). By Lemma 3.6, we have (i). By Subsection 3.3 we have (ii). By Lemma

3.2 and (i), we have (iii). O
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4. ApPENDIX: PROPERTIES OF SPACE H”

In this appendix we prove some important properties about the space ﬁ[g”’ . We need the
following lemma, which can be found in [24, p.205] and [33, Lemma 2.2].

Lemma4.1. (i) Foranya € Rand p € (1, ), there is a C = C(d, «, p) > 0 such that

1/ 8llop < Cliflla.pllglliate1.c0- (4.1)

(ii) Let p € (1,00) and a € (0, 1] be fixed. For any p; € [p,) and p, € [1%,00) with

el Lo % + 4, there is a constant C > 0 such that for all f € H™*"" and g € H"",

p pP1 P2
Ifgll-ap < Cllfll-a.p, 18]l ps - (4.2)

The following proposition tells us that the localized norm || - |||ﬁg,p enjoys the almost same
properties as the global norm || - |z

Proposition 4.1. Let p,q € (1,0) and a € R.
(i) Forr # 1 > 0, there is a constant C = C(d, a,r,r") > 1 such that for all f € ﬁg’p,

C™ sup llfx, g < sup llfxy llger < C sup llfx Il (4.3)
8,2 8,2 8,2
In other words, the definition of ﬁg’p does not depend on the choice of r.
(ii) Let (0n)nent be a family of mollifiers in RY and f,(t, x) := f(t,-) * p,(x). For any f € Hy”, it
holds that f, € L (R; CZ"(R")) and for some C = C(d, a, p,q) > 0,

loc

Il fullzer < Cllflzr, Yr €N, (4.4)
and for any ¢ € CZ(RI1),
Im [I(fu = Hpllgr = 0. (4.5)

. Tra+k,
(iii) For any k € N, there is a constant C = C(d, k, a, p,q) > 1 such that for all f € I[-]Iq+ P
cf geser < IS Mgz + Iv* lzr < CllA Mo
(iv) Let p € (1,00) and a € (0,1], g € [1,00]. For any p; € [p, ) and p, € [-L-, ) with

pi-1’°
Ll Lo 1_17 + 4, andqil+ ql—z = 611, there is a constant C > 0 such that

N TR
7 gl < Cllfllgeri gz
(v) LD + L ¢ LY.
Proof. (i) Let r > r’. We first prove the right hand side inequality in (4.3). Fix (s,z) € R,
Notice that the support of x;* is contained in Q5*. Clearly, Q5° can be covered by finitely many
Qif’zi ,i=1,---,N, where N = N(d, r,r") does not depend on s, z. Let ((pi)ﬁ , be the partition of
unity associated with {Qii’z",i =1,---,N}so that

SisZi

(g1 + -+ @nlgs = 1, supp(p;) € Q..
Thus, due to y,;“| = = 1, by (4.1) we have

N N
X lhssr < D IA il = > I il
i=1 i=1
N
< D A g il < C sup (1A e,
- i=1, N

i=1 i=1
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where C = C(N,a,d,r,r") > 0, which yields the right hand side inequality in (4.3). On the

other hand, since x,;° = x,°x,.°, by what we have proved, we have

xSl = sl < CLAs el g < CLEx o,

where C does not depend on s, z, which gives the left hand side inequality.
(ii) By the definition of convolutions, it is easy to see that

K F(E 20 = X7 20 - (58, ) * pal).
Hence,
il < TNl < el 15 T

which gives (4.4). As for (4.5), it follows by a finitely covering technique.
(iii) We only prove it for k = 1. By definition and y,*Vx|* = Vx7* we have

IV Mz < IVGO e + 11V sz
S I gerte + 100 Mg IV X g,

which in turn gives the right hand side estimate by (i). The left hand side inequality is similar.
(iv) By (4.2) and xy°x° = x|°, we have

I e ey = NG x5 @xy Mg < X g gy g

The desired estimate follows by (i).
(v) Let Z9 be the set of all lattice points. Define

£ = 1@ Y = A1, e,
774

It is easy to see that f € LY, but f ¢ L + LY. O
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