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Abstract. In this paper we show the existence of stochastic Lagrangian particle trajectory for
Leray’s solution of 3D Navier-Stokes equations. More precisely, for any Leray’s solution u of
3D-NSE and each (s, x) ∈ R+ × R

3, we show the existence of weak solutions to the following
SDE, which has a density ρs,x(t, y) belonging to H1,p

q provided p, q ∈ [1, 2) with 3
p + 2

q > 4:

dXs,t = u(s, Xs,t)dt +
√

2νdWt, Xs,s = x, t > s,

where W is a three dimensional standard Brownian motion, ν > 0 is the viscosity constant.
Moreover, we also show that for Lebesgue almost all (s, x), the solution Xn

s,·(x) of the above SDE
associated with the mollifying velocity field un weakly converges to Xs,·(x) so that X is a Markov
process in almost sure sense.
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1. Introduction

Throughout the paper we assume d > 2. Consider the following Navier-Stokes equation:

∂tu = ν∆u + u · ∇u + ∇p, div u ≡ 0, u0 = ϕ,

where u = (u1, · · · , ud) is the velocity field of the fluid, ν > 0 is the viscosity constant, and p
stands for the pressure. It is well known that for any divergence free vector field ϕ ∈ L2(Rd),
there exists a divergence free Leray weak solution to NSEs in the class

‖u‖L∞([0,T ];L2(Rd)) + ‖∇u‖L2([0,T ];L2(Rd)) < ∞, ∀T > 0. (1.1)

In a recent remarkable paper, Buckmaster and Vicol [4] showed that there are infinitely many
weak solutions u ∈ C(R+; L2(T3)) for 3D-NSEs on the torus. However, it is still unknown
whether the above Leray solution is unique and smooth, which is in fact a famous open problem
for a long time.

In this work we are interested in the following problem: For any Leray solution u, is it
possible to construct the stochastic Lagrangian particle trajectory Xt = Xt(x) associated with
the velocity field u? More precisely, for each starting point x, is there a unique solution to the
following SDE?

dXt = u(t, Xt)dt +
√

2νdWt, X0 = x, (1.2)
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Zhao is supported by the German Research Foundation (DFG) through the Collaborative Research Centre(CRC)
1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their
applications”.
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where W is a d-dimensional standard Brownian motion on some probability space (Ω,F ,P). If
u is smooth in x, then by Constantin and Iyer’s representation [6] (see also [28, 30]), u can be
reconstructed from Xt(x) as follows:

u(t, x) = PE(∇tX−1
t (x) · ϕ(X−1

t (x))),

where P is the Leray projection and X−1
t (x) is the inverse of stochastic flow x 7→ Xt(x), and ∇t

stands for the transpose of the Jacobian matrix. By Krylov and Röckner’s result [15], under the
following assumption

u ∈ ∩T>0Lq([0,T ]; Lp(Rd)), p, q > 2, d
p + 2

q < 1,

for any starting point x ∈ Rd, there is a unique strong solution to SDE (1.2). Moreover, the
unique solution Xt(x) is weakly differentiable in x and satisfies (see [7, 27, 32]):

sup
x∈Rd

E
(

sup
t∈[0,T ]

|∇Xt(x)|p
)
< ∞, ∀p > 1, T > 0.

On the other hand, one says that a vector field u : R+ × R
d → Rd satisfies the so called

Ladyzhenskaya-Prodi-Serrin’s condition (abbreviated as LPS) if

u ∈ ∩T>0Lq([0,T ]; Lp(Rd)), p, q ∈ [2,∞], d
p + 2

q 6 1. (1.3)

It is now well known that any Leray solution u of 3D-NSE must be smooth under the above
LPS conditions (see [20, Theorem 13.11 and Notes, p.261]). Unfortunately, it is still not known
whether each Leray solution satisfies (1.3). Indeed, by (1.1) and Sobolev’s embedding (see
Lemma 2.1 below), we only have

u ∈ ∩T>0Lq([0,T ]; Lp(Rd)), p, q > 2, d
p + 2

q = d
2 . (1.4)

Notice that the deterministic Lagrangian particle trajectories associated with u have been stud-
ied very well (for example, see [20, Chapter 17] and [5]), which depends on further regularity
on Leray’s solution. Here we want to solve SDE (1.2) under (1.4) for d = 3.

For given (s, x) ∈ R+ × R
d, we consider the following SDE in Rd starting from x at time s:

dXs,t = b(t, Xs,t)dt +
√

2dWt, t > s, Xs,s = x, (1.5)

where b(t, x) : R+ × R
d → Rd is a measurable vector field. The generator associated with the

above SDE is given by
L b

t := ∆ + b(t, ·) · ∇.
In this paper, we focus on the weak solution of SDE (1.5) with lower regularity b, that is,

b ∈ ∩T>0Lq([0,T ]; Lp(Rd)) =: Lq
loc(L

p), p, q > 2, d
p + 2

q < 2.

Roughly speaking, a weak solution to SDE (1.5) is a semimartingale (Xs,t)t>s so that∫ t

s
|b(r, Xs,r)|dr < ∞, ∀t > s, a.s.,

and

Xs,t = x +

∫ t

s
b(r, Xs,r)dr +

√
2(Wt −Ws), ∀t > s, a.s. (1.6)

When b ∈ Lq
loc(L

p) for some p, q ∈ [2,∞) with d
p + 2

q < 1, as mentioned above, by Girsanov’s
transformation and Lp-theory of second order parabolic equations, Krylov and Röckner [15]
showed that there is a unique strong solution to SDE (1.5), which extended the main results in
[25] and [35]. In [19], Rezakhanlou showed the almost Lipschitz regularity of the associated
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stochastic flow in the spatial variable and showed some applications in Hamiltonian systems
perturbed by white noises. The strong well-posedness of SDE (1.5) driven by multiplicative
Brownian noise was studied in [27, 32] by Zvonkin’s transformation introduced in [35]. More-
over, the flow property and weak differentiability of Xs,t(x) in x are also obtained therein. When
b ∈ H−α,p with α ∈ (0, 1

2 ) and p ∈ ( d
1−α ,

d
α
) is time-independent, Flandoli, Issoglio and Russo [9]

showed the existence and uniqueness of “virtual” solutions (a class of special weak solutions)
to SDE (1.5). Later, the well-posedness of martingale solutions and weak solutions (which may
not be a semimartingale but a Dirichlet process) was established in [33] for b ∈ H−α,p with
α ∈ (0, 1

2 ] and p ∈ ( d
1−α ,∞). We also mention that Bass and Chen in [2] studied the weak well-

posedness of SDE (1.5) in the class of semimartingales when b belongs to some generalized
Kato’s class Kd−1, namely b is a signed measure with

lim
δ→0

sup
x∈Rd

∫
|y−x|<δ

|b|(dy)
|x − y|d−1 = 0,

(see also [34]). In particular, the space Lp with p > d is included in this class.

It should be emphasized that even in the weak sense, all the works mentioned above do not
cover the borderline case b ∈ Lq

loc(L
p) with d

p + 2
q = 1, not to mention the supercritical case

d
p + 2

q > 1. Let us explain the difficulty firstly. In order to get the weak existence of SDE (1.5)
with singular drifts, a straightforward way is to use Girsanov’s transform as in [15]. However,
this approach does not work in the case when p 6 d. Let us make a detailed analysis for this
point. Let C be the space of all continuous functions from R+ to Rd, which is endowed with the
topology of locally uniform convergence. Let B(C) be the Borel σ-field generated by all open
subsets of C. The set of all probability measures over (C,B(C)) is denoted by P(C). Let ωt be
the canonical process over C. For t > 0, define

Bt(C) := σ{ωs : 0 6 s 6 t}.

Let P ∈ P(C) be the classical Wiener measure so that t 7→ ωt is a d-dimensional standard
Brownian motion. For b ∈ Lp(Rd) with p 6 d, one can check that the Novikov condition

EP exp
(
1
2

∫ T

0
|b|2(ωt)dt

)
< ∞ (1.7)

for the exponential supermartingale

Eb
t = exp

(∫ t

0
b(ωs)dωs −

1
2

∫ t

0
|b|2(ωs)ds

)
may not hold. Notice that condition (1.7) is somehow equivalent to say that b belongs to some
Kato’s class (see [1]). In fact, without other conditions, if b only belongs to Ld−ε

loc \ Ld
loc, then the

weak existence may be failed. For example, consider the following SDE:

Xt = −c
∫ t

0
Xs|Xs|

−2ds + Wt, c ∈ R. (1.8)

If c > d, Kinzebulatov and Semenov [14, page 3] explained why the above SDE does not allow
a solution (see also [3]). Meanwhile, for c < cd, where cd ∈ (0, d) is some constant only
depending on d, they proved that there exists a weak solution to the above SDE by utilizing the
analytic construction of the semigroup e−t(∆+b·∇). By direct calculations, for b(x) := −cx|x|−2 and
d > 3, we have

divb(x) = −c(d − 2)|x|−2 < Ld/2
loc .
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Intuitively, if X is a solution of (1.8) and c is sufficiently large, then the centripetal force is
too strong so that the occupation time

∫ T

0
1{Xt=0}dt of X at origin during [0,T ] must be positive

for any T > 0 even though a random perturbation is added (see [3] for more details), and thus
there is no semimartingale solution for SDE (1.8). However, our result below shows that if
b ∈ Ld/2+ε(Rd) for some ε > 0, then equation (1.5) has at least one semimartingale solution,
provided that the negative part of divb satisfies some integrability condition. We emphasize that
Kinzebulatov and Semenov’s result in [14] can not be applied to the case b ∈ Ld−ε

loc \ Ld
loc. We

believe that the divergence condition is necessary for this case. Moreover, the singular time-
dependent drift b is not treated in [14]. If it is not possible, it seems hard to directly construct
the two-parameter semigroups associated with time-dependent drifts by analytic method.

Before stating our results, we introduce the following notion of martingale solutions.

Definition 1. For given (s, x) ∈ R+×R
d, we call a probability measure Ps,x ∈P(C) a martingale

solution of SDE (1.5) with starting point (s, x) if
(i) Ps,x(ωt = x, t 6 s) = 1, and for each t > s,

EPs,x

(∫ t

s
|b(r, ωr)|dr

)
< ∞.

(ii) For all f ∈ C2
c (Rd), M f

t is a Bt-martingale under Ps,x, where

M f
t (ω) := f (ωt) − f (x) −

∫ t

s
L b

r f (ωr)dr, t > s.

The set of all martingale solutions Ps,x with starting point (s, x) and drift b is denoted by M b
s,x.

Remark 1.1. Let Ps,x ∈M b
s,x. By Lévy’s characterization for Brownian motion, one sees that

Wt :=

√
2

2

(
ωt − ωs −

∫ t

s
b(r, ωr)dr

)
, t > s,

is a d-dimensional standard Browian motion under Ps,x (see [23, Theorem 4.2.1]), so that

ωt = x +

∫ t

s
b(r, ωr)dr +

√
2Wt, t > s.

In other words, (C,B(C),Ps,x, ωt,Wt) is a weak solution of SDE (1.5).

Our main result is

Theorem 1.1. Suppose that for some pi, qi ∈ [2,∞) with d
pi

+ 2
qi
< 2, i = 1, 2,

−divb 6 Θb, κ := |||b|||L̃p1
q1

+ |||Θb|||L̃p2
q2
< ∞, (1.9)

where −divb 6 Θb is defined in the sense of (2.2) below, and ||| · |||L̃p
q

is defined by (2.5) and (2.4)
below. Then for each (s, x) ∈ R+ × R

d, there exists at least one martingale solution Ps,x ∈M b
s,x,

which satisfies the following Krylov’s type estimate: for any α ∈ [0, 1] and p, q ∈ (1,∞) with
d
p + 2

q < 2 − α, there exist θ = θ(α, p, q) > 0 and a constant C = C(Π) > 0 such that for all
s 6 t0 < t1 < ∞ with t1 − t0 6 1 and f ∈ C∞b (Rd+1),

EPs,x

(∫ t1

t0
f (t, ωt)dt

∣∣∣∣Bt0

)
6 C(t1 − t0)θ||| f |||H̃−α,pq

, (1.10)

where Π := (κ, d, pi, qi, p, q, α) is the parameter set. Moreover, we have the following conclu-
sions:
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(i) (Weak uniqueness) For any mollifying approximation bn of b, there is a Lebesgue-null set
N ⊂ R+ × R

d such that for all (s, x) ∈ Nc,

Pn
s,x weakly converges to Ps,x ∈M b

s,x, where Pn
s,x ∈M bn

s,x. (1.11)

(ii) (Almost surely Markov property) For each (s, x) ∈ N c, there is a Lebesgue null set Is,x ⊂

[s,∞) such that for all t0 ∈ (s,∞) \ Is,x, any t1 > t0 and f ∈ Cb(Rd),

EPs,x( f (ωt1)|Bt0) = EPt0 ,ωt0 ( f (ωt1)), Ps,x − a.s. (1.12)

(iii) (Lp-semigroup) Let Ts,t f (x) := EPs,x f (ωt). For any p > 1 and T > 0, there is a constant
C = C(T,Π) > 0 such that for Lebesgue almost all 0 6 s < t 6 T and f ∈ Lp(Rd),

‖Ts,t f ‖p 6 C‖ f ‖p. (1.13)

We now give some remarks about the above results.

Remark 1.2. By discretization stopping time approximation, Krylov estimate (1.10) is equiva-
lent to say that for any δ ∈ (0, 1) and stopping time τ ∈ [s,∞),

EPs,x

(∫ τ+δ

τ

f (t, ωt)dt
∣∣∣∣Bτ) 6 Cδθ||| f |||H̃−α,pq

, (1.14)

where Bτ := σ
{
ωt∧τ, t > 0

}
is the stopping σ-field. In fact, suppose that (1.10) holds and let τn

be a sequence of decreasing stopping times with values in D := {k · 2−n : k, n ∈ N} and so that
τn → τ as n→ ∞. For any f ∈ C∞b (Rd+1) and δ ∈ (0, 1), by the dominated convergence theorem
and martingale convergence theorem, we have

EPs,x

(∫ τ+δ

τ

f (t, ωt)dt
∣∣∣∣Bτ) = lim

n→∞
EPs,x

(∫ τn+δ

τn

f (t, ωt)dt
∣∣∣∣Bτn

)
= lim

n→∞
EPs,x

∑
a∈D

1{τn=a}

∫ a+δ

a
f (t, ωt)dt

∣∣∣∣Bτn


= lim

n→∞

∑
a∈D

1{τn=a}E
Ps,x

(∫ a+δ

a
f (t, ωt)dt

∣∣∣∣Ba

)
(1.10)
6 Cδθ||| f |||H̃−α,pq

lim
n→∞

∑
a∈D

1{τn=a} = Cδθ||| f |||H̃−α,pq
.

Moreover, let µs,x(t, dy) := Ps,x ◦ ω
−1
t . For any α ∈ [0, 1] and p, q ∈ (1,∞) with d

p + 2
q < 2 − α,

by (1.10), for any T > 0 there is a constant C > 0 such that for all f ∈ C∞c ([0,T ] × Rd),∣∣∣∣∣∣
∫ T

0

∫
Rd

f (t, y)µs,x(t, dy)dt

∣∣∣∣∣∣ 6 C‖ f ‖H−α,pq
,

which in turn implies that µs,x(t, dy) = ρs,x(t, y)dy with ρs,x ∈ H
α,p/(p−1)
q/(q−1) .

Remark 1.3. If (divb)− ≡ 0, then ‖Ts,t f ‖1 6 ‖ f ‖1 in (1.13). If divb ≡ 0, then for any nonnegative
f ∈ L1(Rd), ‖Ts,t f ‖1 = ‖ f ‖1. By (1.4), we can apply the above theorem to the Leray solution of
3D-NSEs.

Remark 1.4. Let d > 3 and α < 3. Define

b(x) :=
∑
z∈Zd

γz
x − z
|x − z|α

φ(|x − z|),

where for some M > 0, γz ∈ (0,M) is a constant and φ ∈ C∞c (R+; [0, 1]) with φ(r) = 1 for
r ∈ [0, 1] and φ(r) = 0 for r > 2. It is easy to see that (1.9) holds.
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Remark 1.5. It should be compared with the results in [29, 31]. Therein, under the assumptions

∇b ∈ L1
loc, (divb)−, b/(1 + |x|) ∈ L∞, (1.15)

the existence and uniqueness of almost everywhere stochastic flows are obtained in the frame-
work of DiPerna-Lions’ theory. By the estimate (1.13), we can weaken the assumption on the
boundedness of (divb)− in [31] when the noise is nondegenerate. On the other hand, in [29, 31]
and recent work [26], under (1.15), the existence of a solution is only shown for Lebesgue al-
most all x ∈ Rd, while, under (1.9) we can show the existence of a solution for all starting point
x ∈ Rd.

To the best of our knowledge, Theorem 1.1 seems to be the first one that considers the well-
posedness of SDE (1.5) beyond the LPS condition. However, it should be also pointed out
that the weakness of the present paper is that we can not get the pathwise uniqueness for (1.5)
when the drift vector field is the Leray solution of 3D-NSE, not to say the flow property of
the solutions and the weak differentiability of the associated stochastic flow with respect to the
starting point x. We would like to say that these problems are open to us. We hope to study
them in the future.

To prove Theorem 1.1, the key point for us is to establish the maximum principle for the
following parabolic equation under (1.9):

∂tu = ∆u + b · ∇u + f , u(0) = 0. (1.16)

More precisely, for any α ∈ [0, 1] and q, p ∈ (1,∞) with d
p + 2

q < 2 − α,

‖u‖L∞([0,T ]×Rd) 6 C||| f |||H̃−α,pq
. (1.17)

When f ≡ 0, under (1.9) the local maximum principle is proved by Nazarov and Ural’tseva
in [16] by using Moser’s iteration. It should be mentioned that when b is divergence-free and
smooth, still by Moser’s iteration, Qian and Xi [18] recently studied the apriori Aronson’s type
estimate for the heat kernel of operator L b

t = ∆ + b · ∇, where the bound depends only on the
norm ‖b‖Lp

q
, where p, q ∈ (2,∞) satisfies 1 6 d

p + 2
q < 2. We also refer to [12] for the study

of elliptic equations with drift b ≡ 0 and f ∈ Lp(Rd) for p > d
2 . Here an open question is that

whether we can show (1.11)-(1.13) for all (s, x) ∈ R+ × R
d, which is closely related to find a

continuous solution for PDE (1.16) under (1.9).

This paper is organized as follows: In Section 2, we establish the key maximum estimate
(1.17) by De Giorgi’s method. In fact, we shall show a more general result by allowing b and
f being in negative Sobolev spaces, which are not treated in [12, 16]. In Section 3, we prove
our main result Theorem 1.1. In Appendix, some properties of certain local Sobolev spaces are
given. Throughout this paper we shall use the following conventions:

• We use A . B to denote A 6 CB for some unimportant constant C > 0.
• For any ε ∈ (0, 1), we use A . εB+D to denote A 6 εB+CεD for some constant Cε > 0.
• N0 := N ∪ {0}, R+ := [0,∞), a ∨ b := max(a, b), a ∧ b := min(a, b), a+ := a ∨ 0.
• For r > 0, we define Br := {x ∈ Rd : |x| < r} and Qr := (−r2, r2) × Br.

2. Maximum principle for parabolic equations by De Giorgi’s method

Let D := C∞c (Rd+1) be the space of all smooth functions with compact supports and D ′ the
dual space of D , which is also called distribution space. The duality between D ′ and D is
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denoted by 〈〈·, ·〉〉. In particular, if f ∈ D ′ is locally integrable and g ∈ D , then

〈〈 f , g〉〉 =

∫
R

〈 f (t), g(t)〉dt with 〈 f (t), g(t)〉 :=
∫
Rd

f (t, x)g(t, x)dx. (2.1)

For two distributions f , g ∈ D ′, one says that f 6 g if for any nonnegative ϕ ∈ D ,

〈〈 f , ϕ〉〉 6 〈〈g, ϕ〉〉. (2.2)

For α ∈ R and p ∈ (1,∞), let Hα,p be the usual Bessel potential space with norm

‖ f ‖α,p := ‖(I − ∆)α/2 f ‖p =

(∫
Rd
|(I − ∆)α/2 f (x)|pdx

)1/p

.

It is well known that for α ∈ (0, 1), an equivalent norm of Hα,p is given by (see [22])

‖ f ‖α,p � ‖ f ‖p + ‖∆α/2 f ‖p,

where ∆α/2 := −(−∆)α/2 is the usual fractional Laplacian. For α ∈ R and p, q ∈ (1,∞), let
Hα,pq := Lq(R; Hα,p) be the space of spatial-time functions with norm

‖ f ‖Hα,pq
:=

(∫
R

‖ f (t, ·)‖qα,pdt
)1/q

.

If f ∈ Hα,pq , g ∈ H−α,p
′

q′ with 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1, as above we denote

〈〈 f , g〉〉 :=
∫
R

〈 f (t), g(t)〉dt =

∫
R

〈 f , g〉.

For α = 0 and p, q ∈ [1,∞], we also define

H0,p
q := Lp

q := Lq(R; Lp(Rd)),

and the energy space

V :=
{
f ∈ L2

∞ ∩ H
1,2
2 : ‖ f ‖V := ‖ f ‖L2

∞
+ ‖∇x f ‖L2

2
< ∞

}
.

Throughout this paper we fix a cutoff function

χ ∈ C∞c (Rd+1; [0, 1]) with χ|Q1 = 1 and χ|Qc
2

= 0,

and for r > 0 and (s, z) ∈ Rd+1, define

χr(t, x) := χ(r−2t, r−1x), χs,z
r (t, x) := χr(t − s, x − z), (t, x) ∈ Rd+1. (2.3)

Next we introduce the localized Bessel potential spaces for later use.

Definition 2. Let α , 0 and p, q ∈ (1,∞) or α = 0 and p, q ∈ [1,∞]. We define

Hα,pq,loc :=
{
f ∈ D ′ : fη ∈ Hα,pq , ∀η ∈ C∞c (Rd+1)

}
,

and the Banach space: for fixed r > 0,

H̃α,pq :=
{
f ∈ Hα,pq,loc : ||| f |||H̃α,pq

:= sup
s,z
‖ fχs,z

r ‖Hα,pq
< ∞

}
. (2.4)

For simplicity, we shall write

L∞loc := H0,∞
∞,loc, Vloc := H0,2

∞,loc ∩ H
1,2
2,loc, L̃

p
q := H̃0,p

q , ||| f |||L̃p
q

:= ||| f |||H̃0,p
q
. (2.5)

Moreover, we also introduce the localized energy space

Ṽ :=
{
f ∈ L̃2

∞ ∩ H̃
1,2
2 : ||| f |||Ṽ := ||| f |||L̃2

∞
+ |||∇x f |||L̃2

2
< ∞

}
. (2.6)
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Remark 2.1. By the very definition, one sees that the definition of H̃α,pq does not depend on the
choice of r > 0 (see (i) of Proposition 4.1 in the appendix).

Moreover, we also introduce the following index set that will be used to state the conditions
on the coefficients b, f throughout the paper.

Definition 3. For d > 2, define

Id :=
{
(α, p, q) ∈ [0, 1] × (1,∞) × (1,∞) : d

p + 2
q < 2 − α

}
.

For given (α, p, q) ∈ Id, we define r, s ∈ [2,∞) by relations
1

(2−α)p + 1
r = 1

2 ,
1

(2−α)q + 1
s = 1

2 , (2.7)

which implies that
d
p + 2

q < 2 − α⇔ d
r + 2

s >
d
2 . (2.8)

In what follows we shall also use the following mollifiers: for ε ∈ (0, 1) and n ∈ N,

ρε(x) := ε−dρ(ε−1x), ρn(x) := ρ1/n(x),

where 0 6 ρ ∈ C∞c (B1) with
∫
ρ = 1.

2.1. Localization estimates. In this subsection we prove an important localization lemma for
later use, which is a consequence of Hölder’s inequality and the following Gagliado-Nirenberge’s
interpolation inequality (see [11, Corollary 1.5]): for any u ∈ Ḣ1

p ∩ Lq,

‖∆α/2u‖r 6 C‖∇u‖θp‖u‖
1−θ
q , (2.9)

where α ∈ [0, 1], θ ∈ [α, 1] and p, q, r ∈ (1,∞) satisfy

1
r

=
α

d
+ θ

(
1
p
−

1
d

)
+

1 − θ
q

.

Notice that if u has support in B2 and rα < d, then we also have

‖u‖α,r . ‖u‖r + ‖∆α/2u‖r 6 C‖u‖rd/(d−rα) + C‖∇u‖θp‖u‖
1−θ
q 6 C‖∇u‖θp‖u‖

1−θ
q , (2.10)

where the last inequality is due to (2.9) with α = 0. Here C = C(α, d, p, q, r).
First of all, we have the following interpolation estimates.

Lemma 2.1. Let r, s > 2 with d
r + 2

s >
d
2 . If θ := d

2 −
d
r ∈ [0, 1), then for any ε ∈ (0, 1), there is a

constant Cε = Cε(d, r, s) > 0 such that for all f ∈ H1,2
2 ∩ L

2
2(1−θ)s/(2−sθ),

‖ f ‖Lr
s 6 ε‖∇ f ‖L2

2
+ Cε‖ f ‖L2

2(1−θ)s/(2−sθ)
.

In particular, if supp f ⊂ Q2, then for some C = C(d, r, s) > 0,

‖ f ‖Lr
s 6 C‖ f ‖V , f ∈ V . (2.11)

Proof. For r ∈ [2,∞) if d = 2 or r ∈ [2, 2d/(d − 2)] if d > 3, by (2.9) we have

‖ f ‖r 6 C‖∇ f ‖θ2‖ f ‖
1−θ
2 .

Since sθ 6 2, by Hölder’s inequality we further have

‖ f ‖Lr
s 6 C‖∇ f ‖θ

L2
2
‖ f ‖1−θ

L2
2(1−θ)s/(2−sθ)

,

which gives the desired embedding by Young’s inequality. �
8



Lemma 2.2. Let Q = I × D ⊂ R × Rd be a bounded domain. For any p, q, r, s ∈ [1,∞], there is
a constant C > 0 only depending on Q, p, q, r, s such that for any A ⊂ Q,

‖1A‖Lp
q
6 C‖1A‖

(r/p)∧(s/q)
Lr

s
.

Proof. Define

At :=
∫

D
1A(t, x)dx.

If r/p 6 s/q, then by Hölder’s inequality,

‖1A‖Lp
q

=

(∫
I
Aq/p

t dt
)1/q

6 C
(∫

I
As/r

t dt
)r/(sp)

= C‖1A‖
r/p
Lr

s
.

If r/p > s/q, then by Hölder’s inequality,

Aq/p
t 6 CAs/r

t ⇒ ‖1A‖Lp
q

=

(∫
I
Aq/p

t dt
)1/q

6 C
(∫

I
As/r

t dt
)1/q

= C‖1A‖
s/q
Lr

s
.

The proof is complete. �

The following lemma is the key localization result.

Lemma 2.3. Let (α, p, q) ∈ Id and r, s ∈ [2,∞) be defined by (2.7). Let χ2 be the cutoff function
defined by (2.3). For any ε ∈ (0, 1), there is a constant Cε = Cε(d, α, p, q) > 0 such that for any
c, b, f ∈ H−α,pq,loc and η ∈ C∞c (Q2; [0, 1]), w ∈ Vloc,

|〈〈c, η2w2〉〉| 6 ε‖ηw‖2V + Cε‖cχ2‖
2/(2−α)
H
−α,p
q
‖ηw‖2Lr

s
, (2.12)

|〈〈b,∇η2w2〉〉| 6 ε‖ηw‖2V + Cε

(
1 + ‖bχ2‖

2
H
−α,p
q

)(
1 + ‖∇2η‖∞ + ‖∇η‖2∞

)
‖w1η,0‖

2
Lr

s
, (2.13)

|〈〈 f , η2w〉〉| 6 ε‖ηw‖2V + Cε‖ fχ2‖
2
H
−α,p
q

(
1 + ‖∇η‖2∞

)
‖1ηw,0‖

2
Lr

s
. (2.14)

Proof. Since α ∈ [0, 1], by relation (2.7), one sees that

1
p′

:= 1 −
1
p

=
α

d
+ α

(
r + 2

2r
−

1
d

)
+

2(1 − α)
r

>
α

d
.

Thus for any g ∈ H−α,p and h ∈ H1,2r/(r+2) ⊂ Hα,p′ with support in B2, we have

〈g, h〉 6 ‖g‖−α,p‖h‖α,p′
(2.10)
. ‖g‖−α,p‖h‖1−αr/2 ‖∇h‖α2r/(r+2). (2.15)

By mollifying approximation, below we assume c, b, f ∈ C∞ and fix η ∈ C∞c (Q2; [0, 1]).

(i) Since χ2|Q2 ≡ 1 and η|Qc
2

= 0, by (2.15) with g = cχ2 and h = η2w2, we have

〈c, η2w2〉 = 〈cχ2, η
2w2〉 . ‖cχ2‖−α,p‖η

2w2‖1−αr/2 ‖∇(η2w2)‖α2r/(r+2)

. ‖cχ2‖−α,p‖ηw‖2(1−α)
r ‖(ηw)∇(ηw)‖α2r/(r+2)

. ‖cχ2‖−α,p‖ηw‖2−αr ‖∇(ηw)‖α2 ,

where we drop the time variable t and the last step is due to Hölder’s inequality. Integrating
both sides in the time variable, and due to 2−α

s + α
2 + 1

q = 1, by Hölder’s inequality we get

|〈〈c, η2w2〉〉| . ‖cχ2‖H−α,pq
‖ηw‖2−αLr

s
‖∇(ηw)‖α

L2
2
,

which gives (2.12) by Young’s inequality.
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(ii) By (2.15) with g = bχ2 and h = ∇η2w2, we have

〈b,∇η2w2〉 = 〈bχ2,∇η
2w2〉 . ‖bχ2‖−α,p‖∇η

2w2‖1−αr/2 ‖∇(∇η2w2)‖α2r/(r+2).

Notice that

‖∇η2w2‖r/2 6 2‖∇η‖∞‖w1η,0‖
2
r ,

and by Hölder’s inequality,

‖∇(∇η2w2)‖2r/(r+2) 6 ‖∇
2η2w2‖2r/(r+2) + ‖∇η2∇w2‖2r/(r+2)

6 ‖∇2η2‖2r/(r−2)‖w1η,0‖
2
r + 4‖w∇η‖r · ‖η∇w‖2.

Hence,

〈b,∇η2w2〉 . ‖bχ2‖−α,p‖∇η‖
1−α
∞ ‖w1η,0‖

2(1−α)
r

(
‖∇2η2‖α2r/(r−2)‖w1η,0‖

2α
r + ‖w∇η‖αr · ‖η∇w‖α2

)
. ‖bχ2‖−α,p

((
‖∇η‖1−α∞ ‖∇

2η‖α∞ + ‖∇η‖1+α
∞

)
‖w1η,0‖

2
r + ‖∇η‖∞‖w1η,0‖

2−α
r ‖η∇w‖α2

)
. ‖bχ2‖−α,p

((
1 + ‖∇2η‖∞ + ‖∇η‖2∞

)
‖w1η,0‖

2
r + ‖∇η‖∞‖w1η,0‖

2−α
r ‖∇(ηw)‖α2

)
,

and by Hölder’s inequality and due to 1
q + 2−α

s + α
2 = 1,

|〈〈b,∇η2w2〉〉| . ‖bχ2‖H−α,pq
(1 + ‖∇2η‖∞ + ‖∇η‖2∞)‖w1η,0‖

2
Lr

2q/(q−1)

+ ‖bχ2‖H−α,pq
‖∇η‖∞‖w1η,0‖

2−α
Lr

s
‖∇(ηw)‖α

L2
2
.

The desired estimate (2.13) follows by Young’s inequality and 2q/(q − 1) 6 s.

(iii) By (2.15) with g = fη and h = ηw, we have

〈 fη, ηw〉 . ‖ fη‖−α,p‖ηw‖1−αr/2 ‖∇(ηw)‖α2r/(r+2).

Since ∇(ηw) = ∇(ηw)+ − ∇(ηw)− = 0 a.e. on {ηw = 0} (cf. [10, Lemma 7.6]), we have

∇(ηw) = ∇(ηw)1ηw,0, a.e. (2.16)

Thus, by Hölder’s inequality, we further have

|〈 fη, ηw〉| . ‖ fη‖−α,p‖ηw‖1−αr/2 ‖∇(ηw)‖α2‖1ηw,0‖
α
r

. ‖ fη‖−α,p‖ηw‖1−αr ‖∇(ηw)‖α2‖1ηw,0‖r,

and due to 1
q + 1−α

s + α
2 + 1

s = 1 and d
r + 2

s >
d
2 ,

|〈〈 f , η2w〉〉| . ‖ fη‖H−α,pq
‖ηw‖1−αLr

s
‖∇(ηw)‖α

L2
2
‖1ηw,0‖Lr

s

(2.11)
. ‖ fη‖H−α,pq

‖ηw‖V ‖1ηw,0‖Lr
s . (2.17)

Notice that by η = χ2η and (4.2) in the appendix,

‖ fη‖H−α,pq
. ‖ fχ2‖H−α,pq

(1 + ‖∇η‖∞).

Substituting this into (2.17) and by Young’s inequality, we obtain (2.14). �
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2.2. Local energy estimate. Throughout this paper we shall always assume

b ∈ L2
2,loc, f ∈ D ′,

and consider the following parabolic PDE in Rd+1:

∂tu = ∆u + b · ∇u + f . (2.18)

Definition 4. A function u ∈ Vloc ∩L
∞
loc is called a weak solution (subsolution or supersolution)

of PDE (2.18) with coefficients (b, f ) if for any nonnegative smooth function ϕ ∈ C∞c (Rd+1),

−〈〈u, ∂tϕ〉〉 = (6 or >) − 〈〈∇u,∇ϕ〉〉 + 〈〈b · ∇u, ϕ〉〉 + 〈〈 f , ϕ〉〉, (2.19)

where 〈〈·, ·〉〉 is the dual pair between D ′ and D (see also (2.1)).

Now we prove the following local energy estimate.

Lemma 2.4 (Energy estimate). Suppose that for some (αi, pi, qi) ∈ Id, i = 1, 2, 3,

b ∈ H−α1,p1
q1,loc , −divb 6 Θb ∈ H

−α2,p2
q2,loc , f ∈ H−α3,p3

q3,loc .

Let (ri, si) ∈ [2,∞) be defined by (2.7) in terms of pi, qi and κ > 0. For any weak subsolution
u ∈ Vloc ∩L

∞
loc of PDE (2.18), there is a constant C > 0 depending only on d, αi, pi, qi, i = 1, 2, 3

and quantities
‖bχ2‖H−α1 ,p1

q1
, ‖Θbχ2‖H−α2 ,p2

q2
,

where χ2 is defined by (2.3), such that for w := (u − κ)+ and any η ∈ C∞c (Q2; [0, 1]) and t > 0,

‖ηwIt‖V 6 CΞ1/2
η

(
‖w1η,0It‖Lr1

s1
+ ‖wηIt‖Lr2

s2
+ ‖ fχ2It‖H−α3 ,p3

q3
‖1wη,0‖Lr3

s3

)
, (2.20)

where It(·) := 1(−∞,t](·), and

Ξη := 1 + ‖∂tη‖∞ + ‖∇η‖2∞ + ‖∇2η‖∞. (2.21)

Proof. We divide the proof into three steps.
(i) Let η ∈ C∞c (Q2; [0, 1]), κ > 0 and w := (u − κ)+. In this step we show that for Lebesgue

almost all t ∈ R,∫
Rd

(ηw)2(t) 6
∫ t

−∞

〈∂tη
2,w2〉 − 2

∫ t

−∞

〈∇u,∇(η2w)〉 + 2
∫ t

−∞

〈b · ∇u, η2w〉 + 2
∫ t

−∞

〈 f , η2w〉. (2.22)

Since we want to take the test function ϕ = wη2 in (2.19), and ∂tu only makes sense in the
distributional sense, we shall first approximate u by its Steklov’s mean:

S hu(t, x) :=
1
h

∫ h

0
u(t + s, x)ds =

1
h

∫ t+h

t
u(s, x)ds, h ∈ (0, 1). (2.23)

Let uh := S hu. By Definition 2.19 and noticing that ∂tuh ∈ L
2
2,loc, one sees that for any nonnega-

tive ϕ ∈ C∞c (Rd+1),

〈〈∂tuh, ϕ〉〉 = −〈〈uh, ∂tϕ〉〉 6 −〈〈∇uh,∇ϕ〉〉 + 〈〈S h(b · ∇u), ϕ〉〉 + 〈〈 fh, ϕ〉〉. (2.24)

By standard smoothing approximation, it is easy to see that (2.24) still holds for any nonnegative
ϕ ∈ Vloc ∩ L

∞
loc with compact support in Q2. Now fix t ∈ R and define

ζt,ε(s) = 1(−∞,t] + (1 − ε−1(s − t))1(t,t+ε](s), ε ∈ (0, 1).

Let wh := (uh − k)+. Since

2〈∂tuh,whη
2ζt,ε〉 = 2〈∂twh,whη

2ζt,ε〉 =

∫
Rd
∂t(w2

hη
2ζt,ε) −

∫
Rd

w2
hη

2ζ′t,ε −

∫
Rd

w2
h(∂tη

2ζt,ε),
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by (2.24) with ϕ = whη
2ζt,ε ∈ Vloc ∩ L

∞
loc and

∫
Rd+1 ∂t(w2

hη
2ζt,ε) = 0, we obtain

−

∫
Rd+1

η2w2
hζ
′
t,ε 6

∫
Rd+1

w2
h(∂tη

2ζt,ε) − 2〈〈∇uh,∇(whη
2ζt,ε)〉〉

+ 2〈〈S h(b · ∇u),whη
2ζt,ε〉〉 + 2〈〈 fh,whη

2ζt,ε〉〉.

Noticing that u,w ∈ Vloc ∩ L
∞
loc and b ∈ L2

2,loc, by letting h ↓ 0 and the dominated convergence
theorem, we obtain

−

∫
Rd+1

(ηw)2ζ′t,ε 6

∫
Rd+1

w2(∂tη
2ζt,ε) − 2〈〈∇u,∇(wη2ζt,ε)〉〉

+ 2〈〈b · ∇u,wη2ζt,ε〉〉 + 2〈〈 f ,wη2ζt,ε〉〉.

Since limε↓0 ζt,ε(s) = 1(−∞,t](s) for each s ∈ R, the right hand side of the above inequality
converges to the right hand side of (2.22) as ε ↓ 0. On the other hand, by the Lebesgue
differential theorem, we also have

−

∫
Rd+1

(ηw)2ζ′t,ε =
1
ε

∫ t+ε

t
ds

∫
Rd

(ηw)2(s)
ε↓0
→

∫
Rd

(ηw)2(t), a.e.

Thus, we obtain (2.22).
(ii) In this step we use (2.22) to show that for Lebesgue almost all t ∈ R,∫

Rd
(ηw)2(t) + 2

∫ t

−∞

∫
Rd
|η∇w|2 6

∫ t

−∞

〈|∂tη
2 + ∆η2|,w2〉

+

∣∣∣∣∣∣
∫ t

−∞

〈Θb, η
2w2〉

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ t

−∞

〈b,∇η2w2〉

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
∫ t

−∞

〈 f , η2w〉

∣∣∣∣∣∣ .
(2.25)

Noticing that

∇u · ∇w = |∇w|2, (∇u)w = (∇w)w = ∇w2/2, (2.26)

by the integration by parts formula, we have

2〈∇u,∇(η2w)〉 = 2
∫
Rd
η2|∇w|2 −

∫
Rd

w2 · ∆η2. (2.27)

Moreover, let wε be the mollifying approximation of w. By −divb 6 Θb, we also have

2〈b · ∇u, η2w〉
(2.26)
= 〈b · ∇w2, η2〉 = lim

ε→0
〈b · ∇w2

ε, η
2〉

= lim
ε→0

(
− 〈divb, η2w2

ε〉 − 〈b,∇η
2w2

ε〉
)

6 lim
ε→0

(
〈Θb, η

2w2
ε〉 − 〈b,∇η

2w2
ε〉
)

= 〈Θb, η
2w2〉 − 〈b,∇η2w2〉. (2.28)

Substituting (2.27) and (2.28) into (2.22), we obtain (2.25).
(iii) By (2.25) and definition (2.6), we have

‖ηwIt‖
2
V 6

∫ t

−∞

〈|∂tη
2 + ∆η2| + 2|∇η2|,w2〉 + sup

s6t

∣∣∣∣∣∫ s

−∞

〈Θb, η
2w2〉

∣∣∣∣∣
+ sup

s6t

∣∣∣∣∣∫ s

−∞

〈b,∇η2w2〉

∣∣∣∣∣ + 2 sup
s6t

∣∣∣∣∣∫ s

−∞

〈 f , η2w〉
∣∣∣∣∣ =:

4∑
i=1

Ii.
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For I1, noticing that r1, s1 > 2, we have

I1 6
(
2‖∂tη‖∞ + 2‖∇η‖2∞ + ‖∆η‖∞ + 4‖∇η‖∞

)
‖w1η,0It‖

2
L2

2
6 CΞη‖w1η,0It‖

2
L

r1
s1
.

For I2, I3 and I4, by (2.12), (2.13) and (2.14), we have

I2 6 ε‖ηwIt‖
2
V + Cε‖Θbχ2‖

2/(2−α2)
H
−α2 ,p2
q2

‖wηIt‖
2
L

r2
s2
,

and

I3 6 ε‖ηwIt‖
2
V + Cε

(
1 + ‖bχ2‖

2
H
−α1 ,p1
q1

)(
1 + ‖∇2η‖∞ + ‖∇η‖2∞

)
‖w1η,0It‖

2
L

r1
s1
,

I4 6 ε‖ηwIt‖
2
V + Cε‖ fχ2It‖

2
H
−α3 ,p3
q3

(1 + ‖∇η‖2∞)‖1ηw,0‖
2
L

r3
s3
.

Combining the above calculations and letting ε be small enough, we obtain

‖ηwIt‖
2
V . Ξη‖w1η,0It‖

2
L

r1
s1

+ ‖wηIt‖
2
L

r2
s2

+ (1 + ‖∇η‖2∞)‖ fχ2It‖
2
H
−α3 ,p3
q3

‖1ηw,0‖
2
L

r3
s3
,

where Ξη is define by (2.21). From this, we derive (2.20). �

Remark 2.2. If α1 = 0 and d
p1

+ 2
q1

= 1 or b(t, x) = b(x) ∈ Ld
loc(R

d), then we can remove the
assumption on the divergence of b. In fact, in this case, we can give a direct treatment for the
term b in (2.22) as follows: For any ε > 0, let

bε(t, x) := b(t, ·) ∗ ρε(x), b̄ε(t, x) := b(t, x) − bε(t, x).

Let 1
r1

+ 1
p1

= 1
s1

+ 1
q1

= 1
2 , which satisfy d

r1
+ 2

s1
= d

2 due to d
p1

+ 2
q1

= 1. Since χ2η = η, by (2.26),
Hölder’s inequality and Lemma 2.1, we have∫ t

−∞

|〈b · ∇u, η2w〉| 6
∫ t

−∞

|〈b̄ε · ∇u, η2w〉| +
∫ t

−∞

|〈bε · ∇u, η2w〉|

6 ‖b̄εχ2‖Lp1
q1
‖η∇wIt‖L2

2
‖ηwIt‖Lr1

s1
+ ‖bεχ2‖∞‖η∇wIt‖L2

2
‖ηwIt‖L2

2

6 cε‖ηwIt‖
2
V + Cε(1 + ‖∇η‖∞)‖w1η,0It‖

2
L2

2
,

where limε→0 cε = 0 and limε→0 Cε = ∞. Using this estimate to replace the corresponding
estimate about b and taking ε small enough, we still have (2.20). Here the reason that for p = d
we assume b being time-independent is that in general

lim
ε→0
‖b̄εχ2‖Ld

∞
, 0 for b ∈ L∞loc(L

d
loc), but lim

ε→0
‖b̄εχ2‖d = 0 for b ∈ Ld

loc.

2.3. Maximum principle. The following De Giorgi’s iteration lemma is well known [12].

Lemma 2.5. Let (an)n∈N be a sequence of nonnegative numbers. Suppose that for some C0, λ > 1
and ε > 0,

an+1 6 C0λ
na1+ε

n , n = 1, 2, · · · .

If a1 6 C−1/ε
0 λ−1/ε2

, then
lim
n→∞

an = 0.

Now we can show the following local maximum principle for PDE (2.18).

Theorem 2.1 (Local maximum estimate). Suppose that for some (αi, pi, qi) ∈ Id, i = 1, 2, 3,

b ∈ H−α1,p1
q1;loc , −divb 6 Θb ∈ H

−α2,p2
q2;loc , f ∈ H−α3,p3

q3;loc .
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For any weak subsolution u ∈ Vloc ∩ L
∞
loc of PDE (2.18), there is a constant C > 0 depending

only on d, αi, pi, qi, i = 1, 2, 3 and the quantities

‖bχ2‖H−α1 ,p1
q1

, ‖Θbχ2‖H−α2 ,p2
q2

,

where χ2 is defined by (2.3), such that

‖u+1Q1‖∞ 6 C
(
‖u+χ2‖V + ‖ fχ2‖H−α3 ,p3

q3

)
. (2.29)

Proof. Let κ > 0, which will be determined below. For n ∈ N, define

tn := 4 · (4−1 + 3 · 4−n), λn := 1 + 21−n, κn := κ
(
1 − 21−n

)
and

Γn := (−tn, tn) × Bλn ↓ [−1, 1] × B̄1 = Q̄1.

Let ζ t
n ∈ C∞c ((−4, 4); [0, 1]) be a time-cutoff function so that for some C > 0 and any n ∈ N,

ζ t
n|(−tn+1,tn+1) = 1, ζ t

n|(−tn,tn)c = 0, |∂tζ
t
n| 6 C4n.

Let ζx
n ∈ C∞c (B2; [0, 1]) be a spatial-cutoff function so that for some C > 0 and any n ∈ N,

ζx
n |Bλn+1

= 1, ζx
n |Bc

λn
= 0, |∇ jζx

n | 6 C2 jn, j = 1, 2.

Now let us define
ηn(t, x) := ζ t

n(t) · ζx
n (x).

Let Ξηn be defined by (2.21). It is easy to see that for some C > 0 and all n ∈ N,

ηn|Γn+1 = 1, ηn|Γc
n = 0, Ξηn 6 C4n.

Let (ri, si) ∈ [2,∞) be defined by (2.7) in terms of pi, qi, and define

wn := (u − κn)+.

Notice that
wn|wn+1,0 = (u − κn+1 + κn+1 − κn)+|wn+1,0 > κn+1 − κn = κ2−n.

For i = 1, 2, 3, due to ηn|Γc
n = 0, we have

`(i)
n := ‖wn1Γn‖Lri

si
> ‖wn1ηnwn+1,0‖Lri

si
> κ2−n‖1ηnwn+1,0‖Lri

si
,

which means that

‖1ηnwn+1,0‖Lri
si
6 2n`(i)

n /κ. (2.30)

Since 2
ri

+ d
si
> d

2 by (2.8), we can choose γi, βi > ri, θi, τi > si so that

1
γi

+
1
βi

=
1
ri
,

1
θi

+
1
τi

=
1
si
,

d
γi

+
2
θi
>

d
2
.

Thus, by ηn|Γn+1 = 1, Hölder’s inequality, Lemmas 2.1 and 2.2, we have

`(i)
n+1 = ‖wn+11Γn+1‖Lri

si
6 ‖ηnwn+1‖Lri

si

6 ‖ηnwn+1‖Lγi
θi
‖1ηnwn+1,0‖Lβi

τi

6 ‖ηnwn+1‖Lγi
θi
‖1ηnwn+1,0‖

(si/τi)∧(ri/βi)
L

ri
si

6 C‖ηnwn+1‖V · (2n`(i)
n /κ)

(si/τi)∧(ri/βi).

(2.31)
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Notice Γ1 = Q2. By (2.20) with η = ηn and w = wn+1, for κ > ‖ fχ2‖H−α3 ,p3
q3

, we obtain

‖ηnwn+1‖V . 2n
(
‖wn+11Γn‖Lr1

s1
+ ‖wn+1ηn‖Lr2

s2
+ ‖ fχ2‖H−α3 ,p3

q3
‖1ηnwn+1,0‖Lr3

s3

)
(2.30)
. C2n(`(1)

n + `(2)
n + 2n`(3)

n ) . 4n(`(1)
n + `(2)

n + `(3)
n ),

(2.32)

where we have used that wn+1 6 wn and ηn 6 1Γn . Now we put

an :=
(
`(1)

n + `(2)
n + `(3)

n

)
/κ.

By (2.31) and (2.32), we obtain that for some C0, ε > 0 and λ > 1,

an+1 6 C4nan

3∑
i=1

(2nan)(si/τi)∧(ri/βi) 6 C0λ
na1+ε

n , ∀n ∈ N,

provided κ > ‖ fχ2‖H−α3 ,p3
q3

. Notice that by χ2|Γ1 = 1 and Lemma 2.1,

a1 6
1
κ

3∑
i=1

‖u+1Γ1‖Lri
si
6

1
κ

3∑
i=1

‖u+χ2‖Lri
si
6

C1

κ
‖u+χ2‖V .

If κ > (C1C
1/ε
0 λ1/ε2

‖u+χ2‖V ) ∨ ‖ fχ2‖H−α3 ,p3
q3

so that a1 6 C−1/ε
0 λ−1/ε2

, then by Fatou’s lemma and
Lemma 2.5,

‖(u − κ)+1Q1‖Lr1
s1
6 lim inf

n→∞
‖wn1Γn‖Lr1

s1
= lim inf

n→∞
`(1)

n 6 κ · lim sup
n→∞

an = 0,

which implies that for Lebesgue almost all (t, x) ∈ R × Rd,

(u+1Q1)(t, x) 6 C1C
1/ε
0 λ1/ε2

‖u+χ2‖V ∨ ‖ fχ2‖H−α3 ,p3
q3

.

The proof is complete. �

Remark 2.3. If α1 = 0 and d
p1

+ 2
q1

= 1 or b(t, x) = b(x) ∈ Ld
loc(R

d), then by Remark 2.2, we can
drop the condition on the divergence of b.

Now we aim to prove the following crucial result.

Theorem 2.2. (Global maximum estimate) Suppose that for some (αi, pi, qi) ∈ Id, i = 1, 2, 3,

b ∈ H̃−α1,p1
q1

, −divb 6 Θb ∈ H̃
−α2,p2
q2

, f ∈ H̃−α3,p3
q3

. (2.33)

Let u ∈ Vloc ∩ L
∞
loc be a weak solution of PDE (2.18) with initial value u(0) = 0. For any T > 0,

there exists a constant C > 0 depending only on T, d, αi, pi, qi and the quantity

κ := |||b|||H−α1 ,p1
q1

+ |||Θb|||H−α2 ,p2
q2

such that

‖u‖L∞([0,T ]×Rd) + |||u1[0,T ]|||V 6 C||| f 1[0,T ]|||H̃−α3 ,p3
q3

. (2.34)

Proof. Without loss of generality, we assume T = 1 and

u(t, x) = f (t, x) ≡ 0, ∀t 6 0.

Let χ1 be as in (2.3) and define for z ∈ Rd,

ηz(t, x) := χ1(t, x − z).
15



By translation and (2.20) with η = ηz and w = u+, u−, there is a constant C > 0 depending only
on T, d, αi, pi, qi, |||b|||H−α1 ,p1

q1
, |||(divb)−|||H̃−α2 ,p2

q2
such that for all t ∈ [0, 1],

‖ηzuIt‖V 6 C
(
‖u1ηz,0It‖Lr1

s1
+ ‖ηzuIt‖Lr2

s2
+ ‖ fχ0,z

2 It‖H−α3 ,p3
q3

)
,

where χ0,z
2 is the same as in (2.3). Taking supremum in z ∈ Rd for both sides, we obtain

sup
z
‖ηzuIt‖V 6 C

(
sup

z
‖u1ηz,0It‖Lr1

s1
+ sup

z
‖ηzuIt‖Lr2

s2
+ sup

z
‖ fχ0,z

2 It‖H−α3 ,p3
q3

)
. (2.35)

Since for each z ∈ Rd, there are at most N-points z1, · · · , zN ∈ R
d such that

B2(z) ⊂ ∪N
j=1B1(z j),

where N = N(d) and Br(z) := {x : |x − z| < r}, we have for t ∈ [0, 1],

‖u1ηz,0It‖Lr1
s1
6 ‖u1B2(z)It‖Lr1

s1
6

N∑
j=1

‖u1B1(z j)It‖Lr1
s1
6 N sup

z
‖ηzuIt‖Lr1

s1
, (2.36)

where the last step is due to ηz j |[0,t]×B1(z j) = 1. Hence, by (2.35), (2.36) and (4.3) in appendix,

sup
z
‖ηzuIt‖V 6 C

(
sup

z
‖ηzuIt‖Lr1

s1
+ sup

z
‖ηzuIt‖Lr2

s2
+ ||| fIt|||H̃−α3 ,p3

q3

)
. (2.37)

Let
θi :=

d
2
−

d
ri
, s′i :=

2(1 − θi)si

2 − siθi
.

Since d
ri

+ 2
si
> d

2 , by Lemma 2.1, we have for any ε ∈ (0, 1),

‖ηzuIt‖Lri
si
6 ε‖∇(ηzu)It‖L2

2
+ Cε‖ηzuIt‖L2

s′i

. (2.38)

Combining (2.37) and (2.38), we arrive at

sup
z
‖ηzuIt‖L2

∞
+ sup

z
‖∇(ηzu)It‖L2

2
6 2 sup

z
‖ηzuIt‖V

6 ε sup
z
‖∇(ηzu)It‖L2

2
+ Cε sup

z
‖ηzuIt‖L2

s′1∨s′2

+ C||| fIt|||H̃−α3 ,p3
q3

.

By choosing ε small enough, we obtain

sup
z
‖ηzuIt‖L2

∞
+ sup

z
‖∇(ηzu)It‖L2

2
6 C sup

z
‖ηzuIt‖L2

s′1∨s′2

+ C||| fIt|||H̃−α3 ,p3
q3

. (2.39)

Since s′1, s
′
2 < ∞ and u(t) ≡ 0 for t 6 0, the above inequality implies that for any t ∈ [0, 1],

sup
z
‖(ηzu)(t)‖s

′
1∨s′2

2 6 C sup
z

∫ t

0
‖(ηzu)(s)‖s

′
1∨s′2

2 ds + C||| fIt|||
s′1∨s′2
H
−α3 ,p3
q3

.

By Gronwall’s inequality we obtain

sup
z

sup
t∈[0,1]

‖(ηzu)(t)‖2 6 C||| f 1[0,1]|||H̃−α3 ,p3
q3

,

which together with (2.39) yields

|||u1[0,1]|||V . sup
z
‖ηzu1[0,1]‖L2

∞
+ sup

z
‖∇(ηzu)1[0,1]‖L2

2
. ||| f 1[0,1]|||H̃−α3 ,p3

q3
. (2.40)

Finally, by (2.29) and (2.40), we also have

‖u‖L∞([0,1]×Rd) 6 sup
z
‖(u+ + u−)1[0,1]×B1(z)‖∞

. |||u1[0,1]|||V + ||| f 1[0,1]|||H̃−α3 ,p3
q3
. ||| f 1[0,1]|||H̃−α3 ,p3

q3
.
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The proof is complete. �

2.4. Existence-uniqueness and stability. In this subsection we prove the existence-uniqueness
and stability of weak solutions for PDE (2.18) by using the apriori estimate (2.34). For T > 0
and a function f in Rd+1, we denote

f T := f 1[0,T ], ṼT := { f : ||| f T |||V < ∞}, L∞T := { f : ‖ f T ‖∞ < ∞}.

Theorem 2.3. (Existence-uniqueness) Under (2.33), there exists a unique weak solution u ∈
∩T>0ṼT ∩ L

∞
T to PDE (2.18) with initial value u(0) = 0.

Proof. First of all, the uniqueness is a direct consequence of (2.34). We prove the existence by
weak convergence method. Let bn(t, x) := b(t, ·) ∗ ρn(x) and fn(t, x) := f (t, ·) ∗ ρn(x). By (ii) of
Proposition 4.1 in Appendix, we have

bn ∈ Lq1
loc(R+; C∞b (Rd)), fn ∈ Lq3

loc(R+; C∞b (Rd)),

and

−divbn 6 Θb ∗ ρn, sup
n

(
|||bn|||H̃−α1 ,p1

q1
+ |||Θb ∗ ρn|||H̃−α2 ,p2

q2
+ ||| fn|||H̃−α3 ,p3

q3

)
< ∞. (2.41)

It is well known that the following PDE has a unique smooth solution un ∈ C(R+; C∞b (Rd)) (see
[23]):

∂tun = ∆un + bn · ∇un + fn = 0, un(0) = 0. (2.42)

By (2.41) and Theorem 2.2, we have

sup
n

(
‖uT

n ‖∞ + |||uT
n |||V

)
< ∞, ∀T > 0. (2.43)

Hence, by the fact that every bounded subset of H̃1,2
2 is relatively weak compact, there is a

subsequence nk and ū ∈ ∩T>0ṼT ∩ L
∞
T such that for any ϕ ∈ C∞c (Rd+1) and g ∈ H−1,2

2;loc,

lim
k→∞
〈〈unk , gϕ〉〉 = 〈〈ū, gϕ〉〉. (2.44)

By taking weak limits for equation (2.42), one finds that ū is a weak solution of PDE (2.18).
Indeed, it suffices to prove that for any ϕ ∈ C∞c (Rd+1),

lim
k→∞
〈〈bnk · ∇unk , ϕ〉〉 = 〈〈b · ∇ū, ϕ〉〉, lim

k→∞
〈〈 fnk , ϕ〉〉 = 〈〈 f , ϕ〉〉. (2.45)

Let the support of ϕ be contained in QR for some R > 0. Since b ∈ L2
2,loc, by (2.43) and Hölder’s

inequality, we have for some C > 0 independent of k,

〈〈(bnk − b) · ∇unk , ϕ〉〉 = 〈〈χR(bnk − b) · ∇unk , ϕ〉〉 6 ‖∇ϕ‖∞‖(bnk − b)χR‖L2
2
‖χR∇unk‖L2

2

6 C‖(bnk − b)χR‖L2
2
→ 0 as k → ∞,

where χR is the cutoff function defined in (2.3). On the other hand, since div(bϕ) ∈ H−1,2
2 has

compact support, by (2.44) we also have

lim
k→∞
〈〈b · ∇(unk − ū), ϕ〉〉 = lim

k→∞
〈〈unk − ū, div(bϕ)〉〉 = 0.

Thus we obtain the first limit in (2.45). The second limit in (2.45) is direct. �
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Theorem 2.4. (Stability) Let (pi, qi) ∈ [2,∞) with d
pi

+ 2
qi
< 2, where i = 1, 2, 3. For any

n ∈ N ∪ {∞} =: N∞, let bn, fn ∈ D ′ satisfy

−divbn 6 Θbn , sup
n∈N∞

(
|||bn|||L̃p1

q1
+ |||Θbn |||L̃p2

q2
+ ||| fn|||L̃p3

q3

)
< ∞. (2.46)

For n ∈ N∞, let un ∈ Ṽ ∩ L∞ be the unique weak solutions of PDE (2.18) associated with
coefficients (bn, fn) with initial value u(0) = 0. Assume that for any ϕ ∈ Cc(Rd+1),

lim
n→∞

(
‖(bn − b∞)ϕ‖Lp1

q1
+ ‖( fn − f∞)ϕ‖Lp3

q3

)
= 0. (2.47)

Then it holds that for Lebesgue almost all (t, x) ∈ R+ × R
d,

lim
n→∞

un(t, x) = u∞(t, x). (2.48)

Proof. Notice that equation

∂tun = ∆un + bn · ∇un + fn = ∆un + div(bnun) − (divbn)un + fn

holds in the distributional sense (see (2.19)). Letting r := 2p1
p1+2 6 2 and s := 2q1

q1+2 6 2, by
Proposition 4.1 in Appendix, we have

|||(∂tun)1[0,T ]|||H̃−1,r
s
6 |||∆uT

n + div(bT
n uT

n ) − (divbT
n )uT

n + f T
n |||H̃−1,r

s

. |||uT
n |||H̃1,r

s
+ |||bT

n uT
n |||L̃r

s
+ |||(divbT

n )uT
n |||H̃−1,r

s
+ ||| f T

n |||H̃−1,r
s

. |||uT
n |||H̃1,2

2
+ |||bT

n |||L̃r
s
‖uT

n ‖∞ + |||divbT
n |||H̃−1,p1

q1
|||uT

n |||H̃1,2
2

+ ||| f T
n |||L̃r

s

. |||uT
n |||H̃1,2

2
+ |||bT

n |||L̃p1
q1

(
‖uT

n ‖∞ + |||uT
n |||H̃1,2

2

)
+ ||| f T

n |||L̃p3
q3
.

By (2.46) and Theorem 2.2, we get for any T > 0,

sup
n

(
‖un‖L∞T + |||un|||VT + |||(∂tun)1[0,T ]|||H̃−1,r

s

)
< ∞.

Thus by Aubin-Lions’ lemma (cf. [21]), there is a subsequence nk and ū ∈ ∩T>0(ṼT ∩ L
∞
T ) such

that (2.44) holds and

lim
k→∞
‖unk − ū‖L2([0,T ]×Bm) = 0, ∀T > 0,m ∈ N.

By selecting a subsubsequence n′k, it holds that for Lebesgue almost all (t, x) ∈ R+ × R
d,

un′k
(t, x)→ ū(t, x), k → ∞. (2.49)

As in showing (2.45), one can show that ū is a weak solution of PDE (2.18). By the uniqueness,
ū = u∞, and by a contradiction method, the whole sequence converges almost everywhere. �

3. Proof of Theorem 1.1

Below we always assume that for some pi, qi ∈ [2,∞) with d
pi

+ 2
qi
< 2, i = 1, 2,

−divb 6 Θb, κ := |||b|||L̃p1
q1

+ |||Θb|||L̃p2
q2
< ∞.

Let bn(t, x) = b(t, ·) ∗ ρn(x) be the mollifying approximation of b(t, ·). By (ii) of Proposition 4.1
in Appendix, we have

−divbn 6 Θb ∗ ρn, sup
n

(
|||bn|||L̃p1

q1
+ |||Θb ∗ ρn|||L̃p2

q2

)
6 Cκ, (3.1)

and
bn ∈ Lq1

loc(R+; C∞b (Rd)).
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For (s, x) ∈ R+ × R
d, consider the following SDE:

dXn
s,t = bn(t, Xn

s,t)dt +
√

2dWt, Xn
s,s = x, t > s, (3.2)

where W is a d-dimensional standard Brownian motion on some complete filtered probability
space (Ω,F , (Ft)t>0,P). It is well known that there is a unique strong solution Xn

s,t(x) to the
above SDE (cf. [13]).

Now we are in the position to prove our main result.

3.1. Existence of martingale solutions. First of all, we prove the following crucial estimate
of Krylov’s type.

Lemma 3.1. For any (α, p, q) ∈ Id, there are constants θ = θ(α, p, q) > 0 and C > 0 depending
on κ, d, α, p, q, pi, qi such that for any f ∈ C∞b (Rd+1) and 0 6 s 6 t0 < t1 < ∞ with t0 − t1 6 1,

sup
n

sup
x∈Rd

E
(∫ t1

t0
f (t, Xn

s,t(x))dt
∣∣∣∣Ft0

)
6 C(t1 − t0)θ||| f |||H̃−α,pq

. (3.3)

In particular, we have the following Khasminskii’s estimate: for any λ ∈ R,

sup
n

sup
x∈Rd

E exp
{
λ

∫ s+1

s
| f (t, Xn

s,t(x))|dt
}
6 C = C(λ, κ, ||| f |||H̃−α,pq

). (3.4)

Proof. Fix 0 6 s 6 t0 < t1 < ∞ with t0 − t1 6 1 and f ∈ C∞b (Rd+1). Let un be the unique smooth
solution of the following backward PDE:

∂tun + ∆un + bn · ∇un + f = 0, un(t1, ·) = 0. (3.5)

By (3.1) and Theorem 2.2, for any (α′, p′, q′) ∈ Id, there is a constant C > 0 depending only
on κ, d, α′, p′, q′, pi, qi such that for all t0 ∈ [0, t1],

‖un(t0)‖∞ 6 C||| f 1[t0,t1]|||H̃−α
′ ,p′

q′
. (3.6)

By Itô’s formula we have

un(t1, Xn
s,t1) = un(t0, Xn

s,t0) +

∫ t1

t0
(∂tun + ∆un + bn · ∇un)(t, Xn

s,t)dt +
√

2
∫ t1

t0
∇un(t, Xn

s,t)dWt.

By (3.5) and taking conditional expectation with respect to Ft0 , we obtain

E
(∫ t1

t0
f (t, Xn

s,t)dt
∣∣∣∣Ft0

)
= E

(
un(t0, Xn

s,t0)|Ft0

)
6 ‖un(t0)‖∞. (3.7)

Since d
p + 2

q < 2 − α, we can choose q′ < q so that d
p + 2

q′ < 2 − α. Thus by (3.6) and Hölder’s
inequality, there is constant C = C(κ, d, α, p, q, pi, qi) > 0 such that

E
(∫ t1

t0
f (t, Xn

s,t)dt
∣∣∣∣Ft0

)
6 C||| f 1[t0,t1]|||H̃−α,pq′

6 C(t1 − t0)1− q′
q ||| f |||H̃−α,pq

.

Thus we obtain (3.3). As for (3.4), it is a direct consequence of (3.3) and [17, Lemma 1.1] (or
see [27]). �

Lemma 3.2. For any T > 0, there is a constant C > 0 such that for any f ∈ L1(Rd) and n ∈ N,

‖T n
s,t f ‖1 6 C‖ f ‖1, ∀0 6 s < t 6 s + T,

where T n
s,t f (x) := E f (Xn

s,t(x)). Moreover, if (divb)− ≡ 0, then the above C can be 1.
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Proof. Let Yn
s,t := Yn

s,t(x) be the inverse flow of x 7→ Xn
s,t(x). Notice that s 7→ Yn

s,t solves the
following backward SDE:

Yn
s,t = x −

∫ t

s
bn(r,Yn

r,t)dr +
√

2(Ws −Wt), 0 6 s 6 t.

Letting Jn
s,t := Jn

s,t(x) := ∇Yn
s,t(x) be the Jacobian matrix, we have

∂sJn
s,t = ∇bn(s,Yn

s,t)Jn
s,t ⇒ ∂s det(Jn

s,t) = divbn(s,Yn
s,t) det(Jn

s,t).

Hence,

det(Jn
s,t) = exp

{
−

∫ t

s
divbn(r,Yn

r,t)dr
}
6 exp

{∫ t

s
(Θb ∗ ρn)(r,Yn

r,t)dr
}
.

Fix t > 0. For any s ∈ [0, t], let Zn
s,t := Yn

t−s,t, b̃n(s, y) := bn(t − s, y) and W̃s := Wt−s −Wt. One
sees that {W̃s}s∈[0,t] is a standard Brownian motion on the interval [0, t] and

Zn
s,t = x +

∫ s

0
b̃n(r,Zn

r,t) dr +
√

2W̃s.

Thus, by (3.1) and Khasminskii’s estimate (3.4) with (α, p, q) = (0, p2, q2), we have

sup
n

sup
x∈Rd

E det(Jn
s,t(x)) 6 sup

n
sup
x∈Rd

E exp
{∫ t−s

0
|Θb ∗ ρn|(t − r,Zn

r,t(x))dr
}
< ∞.

Now by the change of variables, for any nonnagative f ∈ L1(Rd), we have

‖T n
s,t f ‖1 = E

(∫
Rd

f (Xn
s,t(x))dx

)
= E

(∫
Rd

f (x) det(Jn
s,t(x))dx

)
6 C‖ f ‖1.

Moreover, if (divb)− ≡ 0, then det(Jn
s,t) 6 1 and the above C ≡ 1. �

Lemma 3.3. For each (s, x) ∈ R+ ×R
d, let Pn

s,x be the law of Xn
s,·(x) in C. Then (Pn

s,x)n∈N is tight.

Proof. Fix (s, x) ∈ R+ × R
d and T > s. Let τ > s be any stopping time less than T . Notice that

Xn
s,τ+δ(x) − Xn

s,τ(x) =

∫ τ+δ

τ

bn(t, Xn
s,t(x))dt +

√
2(Wτ+δ −Wτ), δ > 0.

By (3.3) with α = 0 and Remark 1.2, we have

E|Xn
s,τ+δ(x) − Xn

s,τ(x)| 6 E
∫ τ+δ

τ

|bn|(t, Xn
s,t(x))dt +

√
2E|Wτ+δ −Wτ|

6Cδθ|||bn|||L̃p
q

+
√

2δ1/2 6 Cδθ|||b|||L̃p
q

+
√

2δ1/2,

where C is independent of n and x. Thus by [34, Lemma 2.7], we obtain

sup
n

sup
(s,x)∈[0,T ]×Rd

E
(

sup
t∈[s,T ]

|Xn
s,t+δ(x) − Xn

s,t(x)|1/2
)
6 C

(
δθ/2|||b|||1/2

L̃
p
q

+ δ1/4
)
.

From this, by Chebyshev’s inequality, we derive that for any T, ε > 0,

lim
δ→0

sup
n

sup
(s,x)∈[0,T ]×Rd

P
(

sup
t∈[s,T ]

|Xn
s,t+δ(x) − Xn

s,t(x)| > ε
)

= 0.

Hence, by [23, Theorem 1.3.2], the law of Xn
s,·(x) is tight in C. �

Now we can show the existence of martingale solutions.
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Lemma 3.4. Any accumulation point Ps,x of (Pn
s,x)n∈N belongs to M b

s,x. Moreover, for any
(α, p, q) ∈ Id, there are θ = θ(α, p, q) > 0 and constant C > 0 such that for any f ∈ C∞b (Rd+1)
and 0 6 s 6 t0 < t1 < ∞ with t1 − t0 6 1,

sup
x∈Rd
EPs,x

(∫ t1

t0
f (t, ωt)dt

∣∣∣∣Bt0

)
6 C(t1 − t0)θ||| f |||H̃−α,pq

. (3.8)

Proof. Let (α, p, q) ∈ Id. By (3.3), there are θ = θ(α, p, q) > 0 and constant C > 0 such that for
any f ∈ C∞b (Rd+1), 0 6 s 6 t0 < t1 < ∞ with t1 − t0 6 1, and G ∈ Cb(C) being Bt0-measurable,

sup
n

sup
x∈Rd
EP

n
s,x

(∫ t1

t0
f (t, ωt)dt ·Gt0

)
6 C(t1 − t0)θ||| f |||H̃−α,pq

E(Gt0). (3.9)

Let Ps,x be any accumulation point of (Pn
s,x)n∈N, that is, for some subsequence nk,

Pnk
s,x weakly converges to Ps,x as k → ∞.

By taking weak limits for (3.9) and a standard monotone class method, we obtain (3.8). In order
to prove Ps,x ∈M b

s,x, it suffices to prove that for any t1 > t0 > s and f ∈ C2
c (Rd),

EPs,x(M f
t1 |Bt0) = M f

t0 , Ps,x − a.s.,

where

M f
t := f (ωt) − f (ωs) −

∫ t

s
(∆ + b · ∇) f (r, ωr)dr.

By the standard monotone class method, it is enough to show that for any G ∈ Cb(C) being
Bt0-measurable,

EPs,x
(
M f

t1 ·Gt0

)
= EPs,x

(
M f

t0 ·Gt0

)
.

Note that for each n ∈ N,

Pn
s,x ∈M bn

s,x ⇒ E
Pn

s,x
(
Mn, f

t1 ·Gt0

)
= EP

n
s,x
(
Mn, f

t0 ·Gt0

)
,

where

Mn, f
t := f (ωt) − f (ωs) −

∫ t

s
(∆ + bn · ∇) f (r, ωr)dr.

We want to take weak limits, where the key point is to show

lim
k→∞
EP

nk
s,x

(∫ t1

s
(bnk · ∇ f )(r, ωr)dr ·Gt0(ω)

)
= EPs,x

(∫ t1

s
(b · ∇ f )(r, ωr)dr ·Gt0(ω)

)
. (3.10)

Assume that supp( f ) ⊂ QR. By (3.3) with α = 0 and (4.5) in Appendix, we have

sup
n>m
EP

n
s,x

∣∣∣∣∣∣
∫ t1

s
((bm − bn) · ∇ f )(r, ωr)dr ·Gt0(ω)

∣∣∣∣∣∣
6 ‖Gt0‖∞‖∇ f ‖∞ sup

n>m
EP

n
s,x

(∫ t1

s
|(bm − bn)χR|(r, ωr)dr

)
. ‖Gt0‖∞‖∇ f ‖∞ sup

n>m
|||(bm − bn)χR|||L̃p1

q1
→ 0, m→ ∞,

(3.11)

where χR|QR ≡ 1 is defined in (2.3). Similarly, by (3.8),

EPs,x

∣∣∣∣∣∣
∫ t1

s
((bm − b) · ∇ f )(r, ωr)dr ·Gt0(ω)

∣∣∣∣∣∣ . |||(bm − b)χR|||L̃p1
q1
→ 0, m→ ∞. (3.12)

Moreover, for fixed m ∈ N, since

ω 7→

∫ t1

s
(bm · ∇ f )(r, ωr)dr ·Gt0(ω) ∈ Cb(C),
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we also have

lim
k→∞
EP

nk
s,x

(∫ t1

s
(bm · ∇ f )(r, ωr)dr ·Gt0(ω)

)
= EPs,x

(∫ t1

s
(bm · ∇ f )(r, ωr)dr ·Gt0(ω)

)
,

which together with (3.11) and (3.12) yields (3.10). The proof is complete. �

3.2. Weak convergence of Pn
s,x. In this subsection we show that for Lebesgue almost all (s, x),

the accumulation point of (Pn
s,x)n∈N is unique, which in turn implies that

Pn
s,x weakly converges to Ps,x ∈M b

s,x as n→ ∞.

For fixed T > 0 and f ∈ L∞T = L∞([0,T ]×Rd), by Theorem 2.3, there is a unique weak solution
u = uT, f ∈ ṼT ∩ L

∞
T to the following backward PDE:

∂tu + ∆u + b · ∇u + f = 0, u(t, ·)|t>T = 0. (3.13)

Let Q ⊂ R be the set of all rational numbers and G0 a countable dense subset of C∞c (Rd). For
m ∈ N, we recursively define a countable set Gm as follows:

Gm :=
{
g = f uT,h ∈ L

∞
T : T ∈ Q, f ∈ G0, h ∈ Gm−1

}
.

Clearly,
A := ∪∞m=0Gm ⊂ L

∞ is a countable set.

Lemma 3.5. For T > 0, f ∈ L∞T and n ∈ N, if we define

un
T, f (s, x) = EP

n
s,x

(∫ T

s
f (t, ωt)dt

)
, (3.14)

then un
T, f ∈ ṼT ∩ L

∞
T uniquely solves PDE (3.13) with b = bn. Moreover, there is a Lebesgue

null set N ⊂ R+ × R
d such that for all (s, x) ∈ Nc, f ∈ A and s 6 T ∈ Q,

lim
n→∞

un
T, f (s, x) = uT, f (s, x). (3.15)

Proof. For m ∈ N, let fm(t, x) := f (t, ·) ∗ ρm(x) and

un,m
T, f (s, x) = EP

n
s,x

(∫ T

s
fm(t, ωt)dt

)
, s ∈ [0,T ], x ∈ Rd.

It is well known that un,m
T, f solves PDE (3.13) with b = bn and f = fm (cf. [23]). By Theorem 2.4,

for Lebesgue almost all (s, x), we have

un,m
T, f (s, x)→ un,∞

T, f (s, x), m→ ∞, (3.16)

where un,∞
T, f ∈ ṼT ∩ L

∞
T is the unique weak solution of of PDE (3.13) with b = bn. On the other

hand, by Krylov’s estimate (3.3), for each s 6 T and x ∈ Rd, we have

lim
m→∞
EP

n
s,x

(∫ T

s
fm(t, ωt)dt

)
= EP

n
s,x

(∫ T

s
f (t, ωt)dt

)
= un

T, f ,

which together with (3.16) gives un,∞
T, f = un

T, f a.e. Moreover, for fixed T ∈ Q and f ∈ A , by
Theorem 2.4 again, there is a Lebesgue null set NT, f ⊂ R+ × R

d such that (3.15) holds for all
(s, x) ∈ Nc

T, f . Finally, we just need to take

N := ∪T∈Q ∪ f∈A NT, f .

The proof is complete. �
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Lemma 3.6. LetN be as in Lemma 3.5. For fixed (s, x) ∈ Nc and any two accumulation points
P(1)

s,x and P(2)
s,x of (Pn

s,x)n∈N, we have

P(1)
s,x = P(2)

s,x. (3.17)

Proof. Fix (s, x) ∈ Nc. For s 6 T ∈ Q and f ∈ G0, by (3.15) and taking weak limits for (3.14)
along different subsequences for P(i)

s,x, i = 1, 2, one finds that

uT, f (s, x) = EP
(i)
s,x

(∫ T

s
f (ωt)dt

)
, i = 1, 2,

which implies that for all s 6 T ∈ Q and f ∈ G0,

EP
(1)
s,x

(∫ T

s
f (ωt)dt

)
= EP

(2)
s,x

(∫ T

s
f (ωt)dt

)
.

In particular, for all T > s and f ∈ G0,∫ T

s
EP

(1)
s,x f (ωt)dt =

∫ T

s
EP

(2)
s,x f (ωt)dt ⇒ EP

(1)
s,x f (ωT ) = EP

(2)
s,x f (ωT ).

Claim: Let (s, x) ∈ N c and T > s. For any sequence gm ∈ L
∞
T with supm ‖gm‖L∞T < ∞ and being

such that gm(t, x)→ g(t, x) for Lebesgue almost all (t, x), it holds that

lim
m→∞

sup
n
EP

n
s,x

(∫ T

s
|gm − g|(t, ωt)dt

)
= 0. (3.18)

Proof of Claim: For R > 0, define

τR := inf{t > s : |ωt| > R}.

By (3.3) with (α, p, q) = (0, d, 4) and the dominated convergence theorem, we have

lim
m→∞

sup
n
EP

n
s,x

(∫ T∧τR

s
|gm − g|(t, ωt)dt

)
6 C lim

m→∞

∥∥∥(gm − g)1[s,T ]×BR

∥∥∥
Ld

4
= 0. (3.19)

On the other hand, by SDE (3.2) and (3.3) again, we also have

E
(

sup
t∈[s,T ]

|Xn
s,t|

)
. |x| + 1 + E

(∫ T

0
|bn(t, Xn

s,t)|dt
)
6 C,

where C is independent of n. Hence,

lim
R→∞

sup
n
Pn

s,x(τR < T ) = lim
R→∞

sup
n

P
(

sup
t∈[s,T ]

|Xn
s,t(x)| > R

)
6 lim

R→∞
sup

n
E

(
sup

t∈[s,T ]
|Xn

s,t|

)
/R = 0,

which together with (3.19) yields the claim.

Next let s 6 T1 < T2 be two rational numbers and f1, f2 ∈ G0. Let (Pnk
s,x)k∈N be a subsequence

so that (Pnk
s,x)k∈N weakly converges to P(1)

s,x. By the Markov property, we have for f1, f2 ∈ G0

EP
(1)
s,x

(∫ T1

s
f1(ωt1)

(∫ T2

t1
f2(ωt2)dt2

)
dt1

)
= lim

k→∞
EP

nk
s,x

(∫ T1

s
f1(ωt1)

(∫ T2

t1
f2(ωt2)dt2

)
dt1

)
= lim

k→∞
EP

nk
s,x

(∫ T1

s
f1(ωt1)E

P
nk
t1 ,ωt1

(∫ T2

t1
f2(ωs)ds

)
dt1

)
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(3.14)
= lim

k→∞
EP

nk
s,x

(∫ T1

s
f1(ωt1)u

nk
T2, f2

(t1, ωt1)dt1

)
= lim

k→∞
EP

nk
s,x

(∫ T1

s
f1(ωt1)uT2, f2(t1, ωt1)dt1

)
,

where the last step is due to (3.15) and the above Claim. Notice that

g(s, x) := f1(x)uT2, f2(s, x) ∈ A .

Hence,

lim
k→∞
EP

nk
s,x

(∫ T1

s
f1(ωt1)uT2, f2(t1, ωt1)dt1

)
(3.14)
= lim

k→∞
unk

T1,g
(s, x)

(3.15)
= uT1,g(s, x).

Since the right hand side does not depend on the choice of the subsequence nk, we finally obtain
that for any rational numbers s 6 T1 < T2 and f1, f2 ∈ G0,

EP
(1)
s,x

(∫ T1

s
f1(ωt1)

(∫ T2

t1
f2(ωt2)dt2

)
dt1

)
= EP

(2)
s,x

(∫ T1

s
f1(ωt1)

(∫ T2

t1
f2(ωt2)dt2

)
dt1

)
.

From this, as above we derive that for all f1, f2 ∈ G0 and T2 > T1 > s,

EP
(1)
s,x

(
f1(ωT1) f2(ωT2)

)
= EP

(2)
s,x

(
f1(ωT1) f2(ωT2)

)
.

Similarly, we can prove that for any Tm > · · · > T1 > s and f1, · · · , fm ∈ G0,

EP
(1)
s,x

(
f1(ωT1) · · · fm(ωTm)

)
= EP

(2)
s,x

(
f1(ωT1) · · · fm(ωTm)

)
.

Thus we obtain (3.17). �

3.3. Almost surely Markov property. Let N be as in Lemma 3.5. We fix (s, x) ∈ Nc so that

Pn
s,x weakly converges to Ps,x as n→ ∞. (3.20)

Recalling that G0 is a countable dense subset of C∞c (Rd), to show (1.12), it suffices to prove the
following claim:

Claim 1: For fixed t1 ∈ (s,∞) ∩ Q and f ∈ G0, there is a Lebesgue-null set It1, f
s,x ⊂ (s, t1) so

that for all t0 ∈ (s, t1) \ It1, f
s,x ,

EPs,x
(
f (ωt1)|Bt0

)
= EPt0 ,ωt0

(
f (ωt1)

)
, Ps,x − a.s. (3.21)

Indeed, if this is proven, then we can take

Is,x := ∪s<t1∈Q ∪ f∈G0 It1, f
s,x .

Thus for any t0 ∈ (s,∞) \ Is,x, and all t0 < t1 ∈ Q and f ∈ G0,

EPs,x
(
f (ωt1)|Bt0

)
= EPt0 ,ωt0

(
f (ωt1)

)
, Ps,x − a.s.

By a standard approximation argument, the above equality also holds for all t1 > t0 and
f ∈ Cc(Rd).

Furthermore, to prove Claim 1, it suffices to prove the following claim:

Claim 2: Let t1 ∈ (s,∞) ∩ Q and f ∈ G0. For fixed m ∈ N, s1, · · · , sm ∈ (s, t1) ∩ Q and
g1, . . . , gm ∈ G0, there exists a null set I := I s1,··· ,sm

g1,··· ,gm ⊂ [sm, t1] so that for all t0 ∈ [sm, t1] \ I,

EPs,x
(
g1(ωs1) · · · gm(ωsm) f (ωt1)

)
= EPs,x

(
g1(ωs1) · · · gm(ωsm)EPt0 ,ωt0 ( f (ωt1))

)
. (3.22)
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Indeed, if this is proven, then we can define

It1, f
s,x := ∪m∈N ∪s1,··· ,sm∈(s,t1)∩Q ∪g1,··· ,gm∈G0 I s1,··· ,sm

g1,··· ,gm
⊂ (s, t1).

Thus for any t0 ∈ (s, t1) \ It1, f
s,x , (3.22) holds for all m and s1, · · · , sm ∈ (s, t0] ∩ Q with s1 <

s2 < · · · < sm, g1, · · · , gm ∈ G0. By a standard monotone class argument, we obtain (3.21) for
t0 ∈ (s, t1) \ It1, f

s,x from (3.22).

Proof of Claim 2: For simplicity of notations, we shall write

Gsm(ω) := g1(ωs1) · · · gm(ωsm).

By the Lebesgue differential theorem, we only need to prove that for any t0 ∈ [sm, t1],

EPs,x
(
Gsm(ω) f (ωt1)

)
=

1
t1 − t0

∫ t1

t0
EPs,x

(
Gsm(ω)EPr,ωr ( f (ωt1))

)
dr. (3.23)

Clearly, by the Markov property of (Pn
s,x)(s,x)∈R+×Rd , we have

EP
n
s,x

(
Gsm(ω) f (ωt1)

)
=

1
t1 − t0

∫ t1

t0
EP

n
s,x

(
Gsm(ω)EP

n
r,ωr ( f (ωt1))

)
dr. (3.24)

By (3.20) we have

lim
n→∞
EP

n
s,x

(
Gsm(ω) f (ωt1)

)
= EPs,x

(
Gsm(ω) f (ωt1)

)
. (3.25)

Define

Hn(r, y) := EP
n
r,y f (ωt1) = E f (Xn

r,t1(y)).

Since by (3.20), Hn(r, y)→ H(r, y) for Lebesgue almost all r, y, by (3.18), we have

lim
n→∞

sup
k
EP

k
s,x

(∫ t1

t0
|Hn(r, ωr) − H(r, ωr)|dr

)
= 0.

On the other hand, for fixed n and r, since y 7→ Hn(r, y) is continuous, we also have

lim
k→∞

∫ t1

t0
EP

k
s,x

(
Gsm(ω)Hn(r, ωr)

)
dr =

∫ t1

t0
EPs,x

(
Gsm(ω)Hn(r, ωr)

)
dr.

Therefore,

lim
n→∞

∫ t1

t0
EP

n
s,x

(
Gsm(ω)EP

n
r,ωr ( f (ωt1))

)
dr =

∫ t1

t0
EPs,x

(
Gsm(ω)EPr,ωr ( f (ωt1))

)
dr,

which together with (3.24) and (3.25) gives (3.23). The proof is complete.

Proof of Theorem 1.1. By Lemma 3.4, we have the existence of Ps,x ∈M b
s,x, which satisfies the

Krylov estimate (1.10). By Lemma 3.6, we have (i). By Subsection 3.3 we have (ii). By Lemma
3.2 and (i), we have (iii). �
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4. Appendix: Properties of space H̃α,pq

In this appendix we prove some important properties about the space H̃α,pq . We need the
following lemma, which can be found in [24, p.205] and [33, Lemma 2.2].

Lemma 4.1. (i) For any α ∈ R and p ∈ (1,∞), there is a C = C(d, α, p) > 0 such that

‖ f g‖α,p 6 C‖ f ‖α,p‖g‖|α|+1,∞. (4.1)

(ii) Let p ∈ (1,∞) and α ∈ (0, 1] be fixed. For any p1 ∈ [p,∞) and p2 ∈ [ p1
p1−1 ,∞) with

1
p 6

1
p1

+ 1
p2
< 1

p + α
d , there is a constant C > 0 such that for all f ∈ H−α,p1 and g ∈ Hα,p2 ,

‖ f g‖−α,p 6 C‖ f ‖−α,p1‖g‖α,p2 . (4.2)

The following proposition tells us that the localized norm ||| · |||H̃α,pq
enjoys the almost same

properties as the global norm ‖ · ‖Hα,pq
.

Proposition 4.1. Let p, q ∈ (1,∞) and α ∈ R.
(i) For r , r′ > 0, there is a constant C = C(d, α, r, r′) > 1 such that for all f ∈ H̃α,pq ,

C−1 sup
s,z
‖ fχs,z

r′ ‖H
α,p
q
6 sup

s,z
‖ fχs,z

r ‖Hα,pq
6 C sup

s,z
‖ fχs,z

r′ ‖H
α,p
q
. (4.3)

In other words, the definition of H̃α,pq does not depend on the choice of r.
(ii) Let (ρn)n∈N be a family of mollifiers in Rd and fn(t, x) := f (t, ·) ∗ ρn(x). For any f ∈ H̃α,pq , it

holds that fn ∈ Lq
loc(R; C∞b (Rd)) and for some C = C(d, α, p, q) > 0,

||| fn|||H̃α,pq
6 C||| f |||H̃α,pq

, ∀n ∈ N, (4.4)

and for any ϕ ∈ C∞c (Rd+1),

lim
n→∞
‖( fn − f )ϕ‖Hα,pq

= 0. (4.5)

(iii) For any k ∈ N, there is a constant C = C(d, k, α, p, q) > 1 such that for all f ∈ H̃α+k,p
q ,

C−1||| f |||H̃α+k,p
q
6 ||| f |||H̃α,pq

+ |||∇k f |||H̃α,pq
6 C||| f |||H̃α+k,p

q
.

(iv) Let p ∈ (1,∞) and α ∈ (0, 1], q ∈ [1,∞]. For any p1 ∈ [p,∞) and p2 ∈ [ p1
p1−1 ,∞) with

1
p 6

1
p1

+ 1
p2
< 1

p + α
d , and 1

q1
+ 1

q2
= 1

q , there is a constant C > 0 such that

||| f g|||H̃−α,pq
6 C||| f |||H̃−α,p1

q1
|||g|||H̃α,p2

q2
.

(v) Lp
q + L∞∞ ( L̃

p
q .

Proof. (i) Let r > r′. We first prove the right hand side inequality in (4.3). Fix (s, z) ∈ Rd+1.
Notice that the support of χs,z

r is contained in Qs,z
2r . Clearly, Qs,z

2r can be covered by finitely many
Qsi,zi

r′ , i = 1, · · · ,N, where N = N(d, r, r′) does not depend on s, z. Let (ϕi)N
i=1 be the partition of

unity associated with {Qsi,zi
r′ , i = 1, · · · ,N} so that

(ϕ1 + · · · + ϕN)|Qs,z
2r

= 1, supp(ϕi) ⊂ Qsi,zi
r′ .

Thus, due to χsi,zi
r′ |Q

si ,zi
r′

= 1, by (4.1) we have

‖ fχs,z
r ‖Hα,pq

6
N∑

i=1

‖ fχs,z
r ϕi‖Hα,pq

=

N∑
i=1

‖ fχsi,zi
r′ ϕi‖Hα,pq

6
N∑

i=1

‖ fχsi,zi
r′ ‖H

α,p
q
‖ϕi‖H|α|+1,∞

∞
6 C sup

i=1,··· ,N
‖ fχsi,zi

r′ ‖H
α,p
q
,
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where C = C(N, α, d, r, r′) > 0, which yields the right hand side inequality in (4.3). On the
other hand, since χs,z

r′ = χs,z
2r χ

s,z
r′ , by what we have proved, we have

‖ fχs,z
r′ ‖H

α,p
q

= ‖ fχs,z
2r χ

s,z
r′ ‖H

α,p
q
6 C‖ fχs,z

2r ‖H
α,p
q
‖χs,z

r′ ‖H|α|+1,∞
∞
6 C‖ fχs,z

r ‖Hα,pq
,

where C does not depend on s, z, which gives the left hand side inequality.
(ii) By the definition of convolutions, it is easy to see that

(χs,z
1 fn)(t, x) = χs,z

1 (t, x) · ( fχs,z
2 )(t, ·) ∗ ρn(x).

Hence,
‖χs,z

1 fn‖Hα,pq
. ‖χs,z

1 ‖H|α|+1,∞
∞
‖( fχs,z

2 )n‖Hα,pq
. ‖χ1‖H|α|+1,∞

∞
‖ fχs,z

2 ‖H
α,p
q
,

which gives (4.4). As for (4.5), it follows by a finitely covering technique.
(iii) We only prove it for k = 1. By definition and χs,z

2 ∇χ
s,z
1 = ∇χs,z

1 we have

‖(∇ f )χs,z
1 ‖H

α,p
q
6 ‖∇( fχs,z

1 )‖Hα,pq
+ ‖ f∇χs,z

1 ‖H
α,p
q

. ‖ fχs,z
1 ‖Hα+1,p

q
+ ‖ fχs,z

2 ‖H
α,p
q
‖∇χs,z

1 ‖H|α|+1,∞
∞

,

which in turn gives the right hand side estimate by (i). The left hand side inequality is similar.
(iv) By (4.2) and χs,z

2 χ
s,z
1 = χs,z

1 , we have

‖( f g)χs,z
1 ‖H−α,pq

= ‖( fχs,z
2 )(gχs,z

1 )‖H−α,pq
6 ‖ fχs,z

2 ‖H−α,p1
q1
‖gχs,z

1 ‖H
α,p2
q2
.

The desired estimate follows by (i).
(v) Let Zd be the set of all lattice points. Define

f (t, x) := 1[0,1](t)
∑
z∈Zd

|x − z|−d/p1|x−z|61.

It is easy to see that f ∈ L̃p
q , but f < Lp

q + L∞∞. �
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